Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e...

61
Physics 1 Lecture 10: Wave optics : interference and diffraction Prof. Dr. U. Pietsch

Transcript of Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e...

Page 1: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Physics 1

Lecture 10: Wave optics : interference and diffraction

Prof. Dr. U. Pietsch

Page 2: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Reflection andrefraction

n1

n2

Law of reflection

Law of refraction

Page 3: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Law of refraction – revised

c = l f

Since c is constant

Wavelength , ln, and velocity oflight, vn, are changing in medium but frequence, f, stays unchanged

Page 4: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Phase difference

Number of wave lengths within length L

Phase difference

Page 5: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction
Page 6: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Huygen´s Principle

Incomingwavefront

Often a plane wave

Christiaan Huygens1629 - 1695

Page 7: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Diffraction

The smaller the slit the smaller is bending radius of the created spherical wave

Page 8: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Young´s double slit experiment Bright and darkfringes

Page 9: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Path length difference

For bright fringes

For dark fringes

Page 10: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction
Page 11: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Fresnel bi-layer experimentwith x-rays

-0,2 -0,1 0,0 0,1 0,20,1

1

10

100

1000

7 keV

Inte

nsi

ty(1

0ch

annels

)

z [mm]

Measurement

Simulation

Page 12: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

I = (E1 + E2 )², I0 = E0²

Intensity maxima at Intensity minima at

Intensity of double slit interference

Page 13: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Coherence : the two interfering wave must be able to interfere,

i.e. wave fronts must have same wave length and same shape.

Temporal coherence length L =l²/2Dl

Spatial coherence length L =l/2Da a

ll==L

d

Rraum

Page 14: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Temporal coherence length

L =l²/(2Dl)

Spatialcoherence length

L =l/(2Da)

a

Page 15: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Michelson interferometer

object

Object thickness L, index nNumber of fringes induced by the object

Number of fringes without object

To measure L

Page 16: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Separate two subsequent Maxima

Page 17: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

R

Page 18: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction
Page 19: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

-0.10 -0.05 0.00 0.05 0.10

5

10

15

20

z [mm, relative to center]

Calculation of coherence properties from the

Fraunhofer X-ray Diffraction at Circular Aperture

R

Eds

R

Eds

II

IIV

=

=

398,12

398,12sin

minmax

minmax

averaged verticalsource size s:(46 +/- 6)µm

(for R=7,43m , distance ofa Be-window in the beam path (looks like a virtual

source))

7keV

-0.10 -0.05 0.00 0.05 0.10

100

1000

inte

nsity [counts

per

10

s]

Imin,2,r

Imin,1,r

Imin,2,l

Imin,1,l

Imax,2,l

Imax,2,r

Imax,1,r

z [mm, relative to center]

Imax,1,l

6 8 10 12 14 160.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1 source pinhole = 10 µm

calculation 10 µm Pinhole

source pinhole = 15 µm

calculation 15 µm Pinhole

source pinhole = 25 µm

calculation 25 µm Pinhole

vis

ibili

ty

energy [keV]

Beryllium-window

Pin-hole

R

30m

Page 20: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Interference at thin films

Constructive interference of r1 (phaseshift 0.5) and r2 (no phase shift)

n1 = n3 =1

at b

at a, c

n1/n2 interfacen2/n3 interface

Destructive interference of r1 (phase shift0.5) and r2 (no phase shift)

Page 21: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

examples

Page 22: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Newton´s rings

Radius of the Nth ring is givenby

https://en.wikipedia.org/wiki/Newton%27s_rings#/media/File:Optical_flat_interference.svg

Page 23: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Refraction index for X-rays

l

iA

Zr

Nn A == 1

21 2

0

862

0

542

0

10..10"2

10..10)´(2

=

=

k

k

k

kA

k

kk

k

kA

fA

rN

ffA

rN

l

l

< 1

Page 24: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Reflection and Refraction for X-rays

21

1

21

21

0

21

21

21

21

0

2

)sin(

)cos()sin(2

)sin(

)sin(

=

=

E

E

E

E

b

r

• Snellius Law

• Fresnel formulas

1

2

2

1

cos

cos

N

N=

2

0E

ET b=

2

0E

ER r=

E0 Er

Eb

Using grazing angle q

Page 25: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Grazing incidence, varying

2

)1)(2

11()

2

11(

coscos

2

2

2

1

2

2

2

1

2211

=

= nn

}2

2{

11

2

1

11

2

12

c

ci

=

critical angle

Total external reflection

Fresnel-Reflectivity

= 4.0...15.021 c

Page 26: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Fresnel equations: helpful approximations

2_2

2_1

)2

2

11(

)2

2

11(

2

2

12

1

1

2

1

11

1

11

2

11

2

11

=

=

=

forr

forr

r

2_12

2

2_

2

2

)2

2

11(

2

2

2

1

1

1

11

1

1

1

2

1

11

1

2

11

1

=

=

fort

fort

t

T=t² R=r²≈q-4

0,00 0,05 0,10 0,15 0,20

1

2

3

4

T(q

z)2

qz=4/lsin(a

i)

0,00 0,05 0,10 0,15 0,20

10-5

10-4

10-3

10-2

10-1

100

1/q4

qc

qz=4/lsin(a

i)

Re

fle

ctivity

11

Page 27: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Experimental set-up

Home equipment

X-raytube

Monochromator Detector

Sample

Knife edge

Page 28: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Layer thickness

2222 )2

(d

mcm

laa =

Dt/t=Dai/ai

BN film on Silicon

Page 29: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Determination of density and mass

a 2=c

el

celr2

2

l

a =

ZN

A

A

elmass =

elelr

l

2

2 =

2a

si=7 1023cm-3, m =2.32gcm-3

LB30=4.6 1023cm-3, m =1.54gcm-3D/=2ai/ac

Organic film on silicon

Page 30: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Diffraction

Page 31: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Diffraction at a single slit

b = a/2 sin q

Condition for cancellation (minimum)

Generell:

a sin q = m l, m=1,2,3

Page 32: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Single slit interference - quantitative

Divide slit width, d, into m-1 virtual slits

Page 33: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

and : m/(m-1)≈ 1

Single slit interference - quantitative

m-1 virtual slits

Page 34: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Intensity of single slit diffraction

Phase difference of two interfering waves

Minima at

1.Min at sin q =l/a

= 90° for l/a =1= 11.5 for l/a = 0.2= 5.7 for l/a = 0.1

Page 35: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction
Page 36: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction
Page 37: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Diffraction at circular aperture

compare

Resolvability of two neighbored apertures

Requested angular separation

Small angles

Page 38: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction
Page 39: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction
Page 40: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Double slit experiment (again)

Interference for zero slit width

Interference of single slit

a

a

d

Page 41: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction
Page 42: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Diffraction gratings

Page 43: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Width of the interference lines

First minimum occurs, if N is number of slits

Page 44: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Grating spectrometer

Page 45: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction
Page 46: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Solid state physics

Lecture 2: X-ray diffraction

Prof. Dr. U. Pietsch

Page 47: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

The mean aim of Max von Laue (1912)X-rays are electromagnetic wave with wave length much smaller

than wave length of visible light. X-rays are diffracted a crystal lattice

1914

Nobelpreis fürPhysik

Page 48: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Original experiment von Laue, Friedrich und Knipping

X-ray tube

Photographic film

CollimatorCrystal

Displayed at Deutsche Museum in Munich

20.April 1913

Page 49: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Photographic film

Erster Kristall

Cu2SO4 ⋅ 5 H2O

First Laue Experiment

Page 50: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

1912: Begin of modern Crystallography

X-rays are electromagnetic waves of very short wavelength ( ~ 1 Å = 10-10 m).

Crystals are periodic structures in 3D : interatomic distances are of similar order of magnitude as

x-ray wave length

X-ray diffraction is a method to determine the geometric structure of solids !

Page 51: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Explaination by interference at 3D lattice

Page 52: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Explanation of Laue pattern

Page 53: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction
Page 54: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction
Page 55: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

recip. lattice vector

Page 56: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

𝑎 = 𝑏 = 𝑐

ql

ql

ql

sin2

sin²²²

2

sin4²²²

2

d

lkh

a

a

lkh

=

=

=

Page 57: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

Alternative description of Laue-pattern by W.H.Bragg und W.L.Bragg

Interference at dense backed

„lattice planes“

Nl=2dsin

Bragg equation

Page 58: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

X-ray tube and tube spectrum

E = h v = e U

lmin= h c / e Ua

lmin = 12.4/Ua Brems-strahlung

Characteristicradiation

Page 59: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

l=2d1 sinq1

l=2d2 sinq21

1

2

2

Measuring lattice parameters

Page 60: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

reflected X-ray

incident X-ray

refracted and diffracted X-ray

2

reflected X-ray

incident X-ray

refracted and diffracted X-ray

2

reflected X-ray

incident X-ray

refracted and diffracted X-ray

2

[111]

[1-10]

[01-1]

out-of-plane diffraction

In-plane diffraction

[-101]

78 80 82 84 86 88 90 9210

0

101

102

103

104

105

106

107

inte

nsity

2 (deg)

333ZB

=0006w

D=30nm

Da/a=-0,003

InAs

GaAs

X-ray diffraction of InAs Nanowires on GaAs[111]

Page 61: Lecture 10: Wave optics : interference and diffraction · -0.10 -0.05 0.00 0.05 0.10 5 10 15 20 e to center] Calculation of coherence properties from the Fraunhofer X-ray Diffraction

ESRF