Lecture 1 - Projectiles

download Lecture 1 - Projectiles

of 10

Transcript of Lecture 1 - Projectiles

  • 8/20/2019 Lecture 1 - Projectiles

    1/25

  • 8/20/2019 Lecture 1 - Projectiles

    2/25

    The picture below shows the path through the air of a jet of water.This path is known as a Trajectory.

    This path would be similar if you propelled a ball by kicking/hitting

    it. i.e. when it has been hit or kicked, the only force acting is gravity!

    You can see that the Trajectory is a Parabola.

    Any object moving

    through the air in

    this manner, solely

    under the influence

    of gravity is

    called a Projectile!

    Projectiles

  • 8/20/2019 Lecture 1 - Projectiles

    3/25

    The projectile is a particle

    The projectile is not under power 

    The air does not affect the motion

    The only force acting is gravity, vertically downwards onsider a golf ball being chipped from ground level at a velocity of

    The diagram

    would look like

    this.

    Projectiles – Modelling Assumptions

    5 10 15 20 25 30 35 40

    5

    10

    15

    20

    x (m) horizontal distance

    y (m) height

    "o 

    #" ms$% 

    % o#"ms "− ∠

  • 8/20/2019 Lecture 1 - Projectiles

    4/25

    &sing what we learned previously, ' have now resolved the velocity

    into two components. (ne hori)ontal, the other vertical.

    This gives*

      Horizontal   Vertical Vector

    Initial posn. " "

    Accln. " + .- ms$# 

    Initial vel. #" cos " ms$%  %" #" sin " ms$%  %.0#

    #" sin " ms$% 

    "o  #" cos " ms$% 

    #" ms$% 

    5 10 15 20 25 30 35 40

    5

    10

    15

    20

    x (m) horizontal distance

    y (m) height

    #" cos " ms$% 

    #" sin " ms$% 

    .- ms$# 1 ve

    "

    .-

      ÷−

    #"cos"

    #"sin"

     

    ÷

  • 8/20/2019 Lecture 1 - Projectiles

    5/25

    Horizontal Vertical

    vh = #" cos " vv = #" sin " + .-t 

      vh = %" vv = %.0# + .-t 

    &sing the suvat e2uation. v  u 1 at  , ' may define the hori)ontal and

    vertical velocities, vh and vv.

    5 10 15 20 25 30 35 40

    5

    10

    15

    20

    x (m) horizontal distance

    y (m) height

    #" cos " ms$% 

    #" sin " ms$% 

    .- ms$# 1 ve

    %"

    %.0# .-t 

     

    = ÷−v

  • 8/20/2019 Lecture 1 - Projectiles

    6/25

    Horizontal Vertical sh = #" 3cos "4t     sv = #" 3sin "4t  + 5.t 

     sh = %"t    sv = %.0# + 5.t # 

    &sing the suvat e2uation , ' may define the hori)ontal

     and vertical positions, sh and sv. 3or x  and y4

    5 10 15 20 25 30 35 40

    5

    10

    15

    20

    x (m) horizontal distance

    y (m) height

    #" cos " ms$% 

    #" sin " ms$% 

    .- ms$# 1 ve

    #

    %"

    %.0# 5.

    t t 

     = ÷−r

    #%

    # s ut at = +

  • 8/20/2019 Lecture 1 - Projectiles

    7/25

    The Maximum Height ( H )

      vh = %" 31)

      vv = %.0# + .-t  (2)

      sh = %"t ( 3)

       sv = %.0#t  + 5.t #  (4)

    6rom (2)* vv = %.0# + .-t and at the ma7imum height e2uals )ero!

    " %.0# + .-t

    8ubstituting for t  in (4)  sv = %.0#t  + 5.t # 

     sv = %.0#9%. + 5. 9%.#  %:.0 m

    ;a7 height, H   %:.0 m

    5 10 15 20 25 30 35 40

    5

    10

    15

    20

    x (m) horizontal distance

    y (m) height

    vh = %"

     H  + ma7. height

    vv = "

    1 ve

    %.0#%. s

    .-t  = =

  • 8/20/2019 Lecture 1 - Projectiles

    8/25

    The Time of Flight (T ) and ange ( R)

      vh = %" 31)

      vv = %.0# + .-t  (2)

     sh = %"t ( 3)

       sv = %.0#t  + 5.t #  (4)

  • 8/20/2019 Lecture 1 - Projectiles

    9/25

    The Time of Flight (T ) and ange ( R) (  Alternative method for T)

      vh = %" 31)

      vv = %.0# + .-t  (2)

     sh = %"t ( 3)

       sv = %.0#t  + 5.t #  (4)

  • 8/20/2019 Lecture 1 - Projectiles

    10/25

    Horizontal! 

    uh  v cosθvh = v cosθah  "  sh = v 3cosθ 4t 

    Vertical!

    uv  v sinθ vv = v sinθ + .-t sv = v 3sinθ 4t + 5.t # 

    General Projectile Euations

    5 10 15 20 25 30 35 40

    5

    10

    15

    20

    x (m) horizontal distance

    y (m) height

    v sin θ .-

    v cos θ 

    v

    θ 

    1 ve

  • 8/20/2019 Lecture 1 - Projectiles

    11/25

    A ball is projected hori)ontally at : ms$% from a window 5 m above the

    ground. a4 how long does it take to hit the ground> b4 how far from

    the window does it land> c4 what is the velocity, as a magnitude and

    direction at the instant it hits the ground>

    ?raw a diagram

    a4 @ertical* uv  ",  sv  5, a  .-, t   >

    &se* s  ut  1 !."at #  ⇒ 5 5.t # 

    t =

     b4 =ori)ontal* sh  R  uh t = : 9 "."5

     R  5.:# m

    Projectile Pro$lems

    : ms$%

     R m

    5 m

    .- ms$#

    1 ve

    5"."5s

    5.=

  • 8/20/2019 Lecture 1 - Projectiles

    12/25

  • 8/20/2019 Lecture 1 - Projectiles

    13/25

    The diagram depicts omeoBs attempt to attract CulietDs attention by

    throwing a pebble at her window. =e launches the pebble at a height of

    % m above the ground, at a speed of %%.: ms$% , "o to the hori)ontal.

    a4 =ow long does the pebble take to reach the house>

     b4 ?oes the pebble hit CulietBs window>c4

    E&am 'tle )uestion

    ".: m

    %." m

    %.: m

    %." m

    %." m

    %" m

    %." m

    "o

    %%.: ms$%

    downstairs window

    CulietBs window.- ms$#

    1ve

  • 8/20/2019 Lecture 1 - Projectiles

    14/25

    a4 =ow long does the pebble take to reach the house>

    vh  %%.: cos " :.:

    ah  ", hence,

    ".: m

    %." m

    %.: m

    %." m

    %." m

    %" m

    %." m

    "o

    %%.: ms$%

    downstairs window

    CulietBs window.- ms$#

    1vedistance %"

    time %.5 sspeed :.:

    = =

  • 8/20/2019 Lecture 1 - Projectiles

    15/25

     b4 ?oes the pebble hit CulietBs window>

    av  + .-, uv  %%.: sin " ., t   %.5,  so  %, vv  >

    CulietBs window is E 0 m high and

    F 5 m high, so the stone hits her window!

    ".:m

    %."

    m

    %.:

    m

    %."

    m

    %."

    m

    %" m

    %." m

    "o

    %%.: ms$

    %

    downstairs

    window

    CulietBs

    window.- ms$#

    1ve

    #

    "

    #

    %use

    #

    % . %.5 ".: .- %.5

    0.:"m

    v

    v

    v

     s s ut at 

     s

     s

    = + +

    = + × + × − ×

    =

  • 8/20/2019 Lecture 1 - Projectiles

    16/25

    c4

    use v  u 1 at 

    vv  . 1 +.- 9%.5 +."#

    ?raw a vector diagram!

    8peed is the

    magnitude of v

    8peed of pebble

    when it hits

    the house is, .%0

    ".:

    m

    %."

    m

    %.:

    m

    %." m

    %."

    m

    %"

    m

    %." m

    "o

    %%.: ms$

    %

    downstairs

    window

    CulietBs

    window.- ms$#

    1v

    e

    ."#

    :."

    v# #:.: ."# .%0= + =v

  • 8/20/2019 Lecture 1 - Projectiles

    17/25

  • 8/20/2019 Lecture 1 - Projectiles

    18/25

    A ball is kicked from ground level over hori)ontal ground. 't leaves at aspeed of #: ms$% at an angle of θ to the hori)ontal such that cos θ   ".

    and sin θ   ".#-.

    i4 ?erive e7pressions for the hori)ontal and vertical displacement at

    time t .

    ii4 alculate the ma7imum height the ball reaches.

    iii4 alculate the times when the ball is at half its ma7imum height and

    the hori)ontal distance travelled between these two times.

    iv4 6ind, when t   %.#:* A4 the vertical component of velocity of the

     ball. I4

  • 8/20/2019 Lecture 1 - Projectiles

    19/25

    A ball is kicked from ground level over hori)ontal ground. 't leaves at a

    speed of #: ms$% at an angle of θ to the hori)ontal such that cos θ   ".

    and sin θ   ".#-.i4 ?erive e7pressions for the hori)ontal and vertical displacement at

    time t .

    Jositive upwards.

    @ertical* uv = #" sin θ #: 9 ".#- , av = – .-

    &se*

    =ori)ontal* uh = #" cos θ #: 9 ". #5, ah  "

    Again use*

    # #% 5.#

     s ut at t t = + ⇒ = −

    #% #5#

     s ut at & t = + ⇒ =

  • 8/20/2019 Lecture 1 - Projectiles

    20/25

    A ball is kicked from ground level over hori)ontal ground. 't leaves at aspeed of #: ms$% at an angle of θ to the hori)ontal such that cos θ   ".

    and sin θ   ".#-.

    ii. alculate the ma7imum height the ball reaches.Jositive upwards

    v   ", u   , a   +.-

    &se* v# = u# 1 #as ⇒ " # 1 #9 + .- s   5 + %. s 

    E&am – 'tle )uestion

    5#.: m

    %. 

     s   = =

  • 8/20/2019 Lecture 1 - Projectiles

    21/25

  • 8/20/2019 Lecture 1 - Projectiles

    22/25

    A ball is kicked from ground level over hori)ontal ground. 't leaves at a

    speed of #: ms$% at an angle of θ to the hori)ontal such that cos θ   ".

    and sin θ   ".#-.iv4 6ind, when t   %.#:* A4 the vertical component of velocity of the

     ball. I4

  • 8/20/2019 Lecture 1 - Projectiles

    23/25

    A ball is kicked from ground level over hori)ontal ground. 't leaves at a

    speed of #: ms$% at an angle of θ to the hori)ontal such that cos θ   ".

    and sin θ   ".#-.v4 8how that the artesian e2uation of the trajectory is*

    and find the range of the ball.".

    3#5" 4:

     &  &= −

    ( )   ( )

    #

    # # #

    # #

    #

    #

    5. % #5 #

    from # subs. for in ##5

    5. %"

    5. ".#5 #5 #5 #5 #5 #5

    ". ".%" #5 #5"

    #5 :

      t t E & t E &

     E t t E

     & & & & & &

     

     &  & & &

    = − ==

       

    = − = − = − ÷ ÷   ÷      

    = × − = −

  • 8/20/2019 Lecture 1 - Projectiles

    24/25

    A ball is kicked from ground level over hori)ontal ground. 't leaves at a

    speed of #: ms$% at an angle of θ to the hori)ontal such that cos θ   ".

    and sin θ   ".#-.v. 6ind the range of the ball.

    To find the range we needto find & when   "

     

    "." 3#5" 4

    :

    " or #5" $ "

    #5"ange 05.0 m

     & &

     & &

    = −

    = =

    =

  • 8/20/2019 Lecture 1 - Projectiles

    25/25

     

    = @

    'nitial

     position " "

    a "  – g 

    u   u &  u cos %  u   u sin % 

    v   v &  u cos %  v   u sin % + gt 

    r    &  ut  cos %     ut  sin % + L gt #

    General Euations – velocit - positionx

     g 

    %

    u

    (

    1 ve