Lec6[1]DerivadaDireccional y Gradiente

download Lec6[1]DerivadaDireccional y Gradiente

of 20

Transcript of Lec6[1]DerivadaDireccional y Gradiente

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    1/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    MATH 209Calculus, III

    Volker Runde

    University of Alberta

    Edmonton, Fall 2011

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    2/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Directional derivatives, I

    Recall...

    Let z=f(x, y) be a function of two variables. Then:fx

    : slope of the tangent line to the graph off in the

    direction of the x-axis;fy

    : slope of the tangent line to the graph off in thedirection of the y-axis.

    QuestionWhat about the slope of a tangent line to the graph off in thedirection of an arbitrary line in the xy-plane?

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    3/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Directional derivatives, II

    DefinitionThedirectional derivativeoff at (x0, y0) in the direction of theunit vector u=a, b is the limit

    Duf(x0, y

    0) = lim

    h0

    f(x0+ha, y0+hb)f(x0, y0)h

    if it exists.

    Example

    What is Duf(1, 2), for f(x, y) =x3

    3xy+ 4y2

    and ugiven bythe angle = 6 , i.e.,

    u= cos

    6, sin

    6 =

    3

    2 ,

    1

    2

    ?

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    4/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Directional derivatives, III

    An application of the chain rule

    Set g(t) :=f(x0+ta, y0+tb), so that

    Duf(x0, y0) = limh0

    f(x0+ha, y0+hb)f(x0, y0)h

    = limh0

    g(h)g(0)h

    = dgdt

    (0).

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    5/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Directional derivatives, IV

    An application of the chain rule (continued)

    With g(t) =f(x, y), x=x0+ta, and y=y0+tb, the chainrule yields

    Duf(x0, y0) = dg

    dt(0)

    =f

    x(x0, y0)

    dx

    dt(0) +

    f

    y(x0, y0)

    dy

    dt(0)

    =f

    x(x0, y0)a+

    f

    y(x0, y0)b.

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    6/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Directional derivatives, V

    Theorem

    If f is differentiable, then Duf exists for any unit vectoru=a, b and is computed as

    Duf(x0, y0) =f

    x(x0, y0)a+

    f

    y(x0, y0)b.

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    7/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Directional derivatives, V

    Example (resumed)

    For f(x, y) =x3 3xy+ 4y2 and u=

    32 ,

    12

    , we have

    f

    x = 3x2 3y and f

    y3x+ 8y,

    so that

    Duf(1, 2) = (36)32

    + (3 + 16) 12

    =13332

    .

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    8/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Definition of the gradient

    Definition

    Thegradientoff is the vector function defined by

    f(x, y) =fx(x, y), fy(x, y)= fx(x, y)i+fy(x, y)j.

    Important

    Iff is differentiable, and u is a unit vector, then

    Duf(x, y) =f(x, y)u.

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    9/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Examples, I

    ExampleFind the directional derivative off(x, y) = ln x+e(x1)y at(1, 0) in the direction ofv=i+ 2j.As

    fx= 1x

    +ye(x1)y and fy= (x1)e(x1)y,

    we havef(1, 0) =1, 0.Since|v|= 5, theunitvector u in the direction ofv isu= 15v= 15 i+ 25j.All in all:

    Duf(1, 0) =1, 0

    15,

    25

    = 1

    5.

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    10/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Geometric meaning of the gradient, I

    A geometric observation

    Let fbe a differentiable function of two variables, let u be aunit vector, and let be the angle between u and

    f.

    We have:

    Duf =fu=|f||u| cos =

    |f|

    cos .

    This becomes maximal if cos = 1, i.e., = 0, which meansthat u has the same direction asf.

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    11/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Geometric meaning of the gradient, II

    Theorem

    Let f be a differentiable function of two variables, and letu be

    a unit vector. Then Duf(x, y) is maximal when u has the same

    direction asf(x, y). This maximal value of Duf(x, y) is|f(x, y)|.

    Important

    Everything we said about directional derivatives and gradientsof functions of two variables remains valid for functions of three(or more) variables.

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    12/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Examples, II

    Example

    The temparature in a room at (x, y, z) is given by

    T = 80

    1 +x2 + 2y2 + 3z2,

    with T in centigrade and x, y, z in meters.In which direction increases the temparature fastest at(1, 1,2)? What is the maximum rate of change?The gradient is

    T = Tx

    i+T

    y j+

    T

    zk,

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    13/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Examples, III

    Example (continued)

    ...i.e.,

    T =

    160x

    (1 +x2

    + 2y2

    + 3z2

    )2i

    320y

    (1 +x2

    + 2y2

    + 3z2

    )2j

    480z(1 +x2 + 2y2 + 3z2)2

    k

    = 160

    (1 +x2 + 2y2 + 3z2)2(xi2yj3zk).

    It follows that

    T(1, 1,2) =58

    (i2j+ 6k).

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    14/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Examples, IV

    Example (continued)

    This vector has the same direction as1,2, 6.The unit vector in this direction is

    u= 141

    i 241

    j+ 6

    41k,

    which gives the direction of the maximum increase.The maximum increase is

    |T(1, 1,2)|= 58

    414 C/m.

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    15/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    More geometric meaning of the gradient, I

    Another geometric observation

    Let Sbe a level surface of a function F(x, y, z), i.e., given bythe equation F(x, y, z) =Cwith a constant C.Let P(x0, y0, z0) be a point on S, and let

    r(t) =x(t), y(t), z(t) be a curve in Spassing through P.Then F(x(t), y(t), z(t)) =C, so that

    0 = dC

    dt

    = Fx

    dxdt

    + Fy

    dydt

    + Fz

    dzdt

    =Fr(t).

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    16/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    More geometric meaning of the gradient, II

    Another geometric observation (continued)

    Let t0 be such that r(t0) =x(t0), y(t0), z(t0).Then

    0 =F(x0, y0, z0)r(t0).This means thatF(x0, y0, z0) is perpendicular to the tangent

    vector r(t0) to any curve r(t) passing through P.

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    17/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Definition of tangent plane and normal line

    DefinitionThetangent planeto the level surface Sgiven byF(x, y, z) =C at P(x0, y0, z0) is the plane passing through Pwith normal vectorF(x0, y0, z0), i.e., with the equation

    Fx

    (x0, y0, z0)(xx0)

    +F

    y(x0, y0, z0)(yy0) + F

    z(x0, y0, z0)(zz0) = 0.

    Thenormal lineto S through P is the line passing through Pperpendicularly to the tangent plane, i.e., with the symmetricequations

    xx0Fx(x0, y0, z0)

    = yy0

    Fy(x0, y0, z0)

    = zz0

    Fz(x0, y0, z0)

    .

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    18/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Examples, IV

    ExampleLet Ebe the ellipsoid given by

    x2

    2 +

    (y1)24

    + (z+ 2)2 = 4.

    Find the tangent plane and the normal line to E atP(2, 3,1).Set

    F(x, y, z) = x2

    2

    +(y1)2

    4

    + (z+ 2)2.

    Then E is the level surface F(x, y, z) = 4.We have

    F

    x

    =x, F

    y

    =1

    2

    (y

    1), and

    F

    z

    = 2(z+ 2).

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    19/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Examples, V

    Example (continued)

    We obtain:

    F

    x(2, 3,1) =2,

    F

    y(2, 3,1) = 1, and F

    z(2, 3,1) = 2.

  • 8/13/2019 Lec6[1]DerivadaDireccional y Gradiente

    20/20

    MATH 209

    Calculus,III

    Volker Runde

    Directionalderivatives

    The gradient

    Tangentplanes to levelsurfaces

    Examples, VI

    Example (continued)

    Hence:

    the tangent plane has the equation

    2(x+ 2) + (y3) + 2(z+ 1) = 0,i.e.,

    2x+y+ 2z= 5;

    the normal line has the symmetric equations

    x+ 22

    =y3 = z+ 12

    .