lec01.pdf

6
1 Big Picture 2.003J/1.053J Dynamics and Control I, Spring 2007 Professor Thomas Peacock 2/7/2007 Lecture 1 Newton’s Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big Picture First Half of the Course Momentum Principles (Force, Vectors) Newtonian Dynamics Second Half of the Course Lagrangian Dynamics (Energy, Scalar) Both give equations of motion. Restrictions: a. Planar (2-D) Dynamics [(3-D) Dynamics 2.032 - Graduate follow on course] b. Linear Dynamics [Nonlinear Dynamics I: Chaos 2.050J - Undergraduate follow on course] Learning Objectives You might comment, “I’ve seen this material before in 18.03, 8.01.” You will use knowledge from previous courses including differential equations and mechanics. After this course, you will be able to: 1. Apply knowledge to new problems 2. Define coordinate system 3. Obtain equations of motion 4. Solve equations Isaac Newton’s (1642 - 1727) Laws of Motion Principia, Chapter 1, in Cambridge Trinity College. Originally in Latin. Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics and Control I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

description

lec01.pdf

Transcript of lec01.pdf

1 Big Picture2.003J/1.053JDynamics andControlI, Spring 2007 ProfessorThomasPeacock 2/7/2007 Lecture 1Newtons Laws, Cartesian and Polar Coordinates, Dynamics of a Single Particle Big PictureFirst Half of the Course Momentum Principles (Force, Vectors) NewtonianDynamicsSecondHalf of the Course LagrangianDynamics (Energy,Scalar)Bothgive equations ofmotion.Restrictions:a. Planar (2-D) Dynamics [(3-D) Dynamics 2.032 - Graduate follow oncourse]b. Linear Dynamics [Nonlinear Dynamics I: Chaos 2.050J -Undergraduatefollow oncourse]Learning ObjectivesYoumightcomment,Iveseenthismaterialbeforein18.03,8.01. Youwilluseknowledgefrompreviouscoursesincludingdierentialequationsandmechanics.After this course,youwill be able to:1. Apply knowledge to new problems2. Dene coordinate system3. Obtain equationsof motion4. Solve equationsIsaac Newtons (1642 -1727) Laws of MotionPrincipia,Chapter 1, in CambridgeTrinity College. Originallyin Latin.Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics andControl I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on [DD Month YYYY].Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics andControl I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on [DD Month YYYY].2 Inertial Frame of ReferenceI. 1st Law -A particle remains at rest or continues to move in a straight linewith constantvelocityif there is no resultantforce acting onit.II.2ndLaw- Aparticleacteduponbyaresultantforcemovesinsuchamannerthat the time rate ofchange ofits linear momentum is equalto the force.F =ma for a single particle.where F is the force,m is the mass,anda is the acceleration.III.3rdLaw- Forcesthatresultfrominteractionsofparticlesandsuchforcesbe-tweentwoparticlesareequalinmagnitude,oppositeindirection,andcollinear.a. ReadWilliams Chapter 1 and2 for backgroundi. History ofCalculus: Leibniz and Newtonii. Principia-Mostly geometricdiii. Euler wroteF =ma andF =dt(mv)Calledlawsbecausetheyhavebeentested. Cannotprove,butcandisprove.Inertial Frame of ReferencedpNewtonII:Requiresthe conceptofaninternalframeofreferencebecausedtdependsonreferenceframeinwhichmotionisobserved(thisisnotsoformassofparticle or the force appliedto the particle.)Aninternalreferenceframemustbenon-accelerating. Whatisnon-accelerating?(Newton I)Absolute inertial frame is where Newton I holds andis anidealizedsituation.Surfaceofearthisgoodenough(forshortperiodsoftime: minutes). Earthisrotating. If particle followedlong enough,will curve. (Fictitious force, coriolliseect).Denitions of Velocity and AccelerationThe velocity of a particle B is the time rate ofchange ofits position.r drv= lim =t0 t dtCite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics andControl I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on [DD Month YYYY].3 Two coordinate systems: Cartesian and Polarrisposition,andtistime. Thedirectionofvisinthedirectionofrast0.The acceleration:dv d2ra= =dt dt2Accelerationis the time rate ofchange ofits velocity.Two coordinate systems: Cartesian and PolarVelocities and accelerations can be expressed using a variety of dierent coor-dinate systems. Here are twoexamples.In Cartesian(rectangular)coordinates(x,y):Figure 1: A Cartesiancoordinatesystem. Figure by MIT OCW. ^means unit vector; means time derivative r=x+y v=r=x+ y a=v = r=x+ yIn polar coordinates(r,):See Figure 2.r=rerCite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics andControl I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on [DD Month YYYY].4 Two coordinate systems: Cartesian and PolarFigure 2: A polar coordinate system. r is the distance from origin. is theangle made with x-axis. eand erare perpendicular. Figure by MIT OCW.v=dr=drer+rder=rer+redt dt dta=dv= rer+ re+ re+rer2erdta=( rr2) er+ (r+ 2 r) ede=erdtder Proofthatdt=e:Figure3: Dierentiationofunitvectors. Changesinthedirectionofunitvectorercanbe relatedto changes in . Figure by MIT OCW.der er|er| d= lim = lim e= e=edt t0 t t0 t dter=cos+sin d er=sin+cos=(sin+cos)=edtCite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics andControl I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on [DD Month YYYY].5 Dynamics of a Single Particle (Review)Dynamics of a Single Particle (Review) Figure 4: A pointmass m movesfromr(t0) to r(t). Figure by MIT OCW.Consequences of Newtons Second Law: Linear and Angular Mo-mentum ConservationUsing aninertial frame ofreference,here is the expressionofNewton II:F =ma.Linear Momentum PrincipledF = (mv) =p (p = mv = Linear Momentum)dtIfF =0,p is constant. (ConservationofLinear Momentum)Angular Momentum PrincipleDene Angular Momentumabout B in aninertialframe of reference.hB=rmv is the moment ofthe linear momentum about B.InvestigateProperties(Take the Time Derivative)Cite as: Thomas Peacock and Nicolas Hadjiconstantinou, course materials for 2.003J/1.053J Dynamics andControl I, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on [DD Month YYYY].6 Dynamics of a Single Particle (Review)Figure 5: Vector relationships between moving point mass m and angularmomentumaroundB. B isageneralpoint(couldbemoving);chooseB appropriately to help solvethe problem. Figure by MIT OCW.-dhB=r mv+rmvdt= ( RRB)mv+rF= (vmv)vBmv+rF (1)=vBmv+rF (2)The rst term in Equation (1) is zero, because the cross product of twoparallelvectorsis zero.DeneResultantTorquearoundB.B=rF isthemomentofthetotalforce aboutB. Combining this denition with Equation(2) yieldsB=hB+vBmv.If B= 0 and vB= 0 or vB mv hB= 0 (Conservation of AngularMomentum)