Lead Anodes Electrorefining

393
t l Electrochemical Processes  Within  t h e  Slimes Layer o f  Lead Anodes During  Betts  Electrorefining b y Jose Alber to Go nzalez Dominguez B.Sc. Nationa l Autonom ous Unive rsity of Mexico  (U.N.AM),  1984 M.Sc. National Aut onomou s Unive rsity of Mexico  (U.N.AM),  1985 A THESI S SUBMITTED I N  PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR  TH E DEGREE OF DOCTOR  OF PHILOSOPHY i n THE FACULTY OF GRADUATE STUDIES Department  of  Metals a nd  Mater ials Engineering We  accept this thesis as  conforming to the required standard The University of  British Columbia March 1991 © Jose" Alberto Gonzalez Dominguez, 1991

description

Lead Anodes

Transcript of Lead Anodes Electrorefining

Page 1: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 1/392

t l

Electrochemical Processes Within the Slimes Layer

of Lead Anodes During Betts  Electrorefining

by

Jose Alberto Gonzalez Dominguez

B.Sc. National Autonomous University of Mexico

 (U.N.AM), 1984

M.Sc. National Autonomous University of Mexico

 (U.N.AM), 1985

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR  THE  DEGREE OF

DOCTOR  OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES

Department of Metals and Materials Engineering

We accept this thesis as conforming to the required standard

The  University of  British Columbia

March  1991

© Jose" Alberto Gonzalez Dominguez, 1991

Page 2: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 2/392

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the  University  of British Columbia, I agree that the Library shall make it

freely available for reference and study.  I  further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The  University  of British Columbia

Vancouver, Canada

Date

DE-6  (2/88)

Page 3: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 3/392

Abstract

In the  Betts  process for lead electrorefining the noble impurities originally

prese nt in the bu ll io n for m a strong an d adherent layer of sli mes .  W i t h i n  this

layer the established ionic concentration gradients can lead to secondary

reactions. The following processes  were  analyzed from a thermodynamic

perspective: (A) hyd rol ysi s of the a cid (B) precipita tion of seconda ry produc ts (C)

reacti on of noble c omp oun ds.

The na tur e of the con cent rat ion gradients wi th in the sli mes layer an d related

seconda ry processes was s tudied by usin g transi ent electrochemical techniques

which inc lude: (A) current interruptio n, (B) AC  impedance, and (C) a vari at ion of

S A C V  (Smal l Ampli tude Cycl ic Voltammetry) .  These  studies  were  complemented

by: (A) phys ico-chem ical da ta on electrolyte properties, (B) "insitu"  and "industriallyrecovered"  sli mes electrolyte comp osi tio ns, (C) S EM a nd X-ray  diffraction analysis

of the slimes layer. Fo r com par is on purp ose s the electroc hemic al beha viou r of

"pure" Pb electrodes was also studied.

Upon current interruption the anodic overpotential decays, first abruptly,

(as the uncompensated ohmic drop disappears) and then slowly (due to the

presence of a back  E .M.F .  created by ionic concentration gradients  that decay

slowly). Cu rr en t int erru ptio n measu remen ts showed that:  (A)  concentration

gradients exist across the slimes layer, (B) inne r sol utio n potentials wit hi n theslimes layer can be larger than those measured from reference electrodes located

i n the bu l k electrolyte, (C) seco ndar y pro duc ts ca n shift the in ne r sol uti on potenti al

to negative val ues wh i ch  reverse up on re-dissolution an d (D) ioni c diffusi on is  seen

u po n cu rre nt i nt err upt ion bu t it is complex an d difficu lt to mod el due to the

presence of processes  that  can supp or t the passage of in ter nal cur ren ts.

The ano dic polariza tion components were obtained by an aly zin g the pot ential

an d current dependance u po n applic ation of a sma ll ampli tude s inu soi dal

wavef orm. Th is depend ance was f oun d to be line ar in the low overpotential region

(< 250 mV) . Th us , up on sub tra cti on of the unc om pen sa te d ohmi c drop, the

remain ing polarizat ion is due to the "apparent" ohmic drop of the sl imes electrolyte

and to  l iquid ju nc ti on and concentrati on overpotentials.  These  comp onen ts are

directly linked to the electrolysis conditions and to the slimes layer structure.

Furthermore, the ratio of   these  components can be used to obtain the point at

wh ic h the prec ipi tat ion of secon dary produc ts starts. Cha nge s in thi s ratio can

also be related to the anodic effects caused by the presence of addition agents.

[ii]

Page 4: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 4/392

AC  imp eda nce mea sureme nts performed i n the presence of a net Fara dai c

current showed that the impedance increases uniformly as the slimes layer

th ic kens up to the poi nt at wh i ch noble impur it ies start to react. Three electri cal

analogue models were  used to describe the impedance spectra.

A steady-state math em at ic al mod el that predicts conc ent rat ion an d potenti algrad ient s acro ss the slimes layer was developed. On ly wh en a pos it ion dependent

eddy diffus ion ter m was incorporate d in the nume ri cal  solut ion, were  reasonable

local  ionic concentrations and overpotentials obtained.

Page 5: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 5/392

Table of Cont ents

Abstract  ii

List of  Tables  iz

List of  Figures  xi

Nomenclature  xz

Acknowledgments  zzv

Chapter 1 Literature Review  3

I  Introduction  3

II Meta l lurgy of  Lead  3

III  Plant Practice  i n Lead E lectroref ining  7

IV The Anodi c Process  12

I.  Introduction  12II. The physi cal metal lurgy of the lead anodes  12III.  Industrial practice  14IV.  Slimes electrochemical behavior  15

V  The Cat hodi c Process  22I. Additives control and electrochemistry  22II.  Starting sheet technology  23III. Cel l electrolysis parameter optimi zation  23IV.  B ipolar ref ining of  lead  25

Chapter 2  Fundamenta ls  of the E lectrochemical Measurem entProcedure  26

I.  Components of the Anod ic Overpotential  26II. Transient Ele ctrochemical Techniques  28A.  Cur ren t interruptio n techniques  28B.  A C  impedance techniques  31

1. Ai ms  and l imitations of  the A C  impedance studies  32

Chapter 3: Exper imental Procedure  34I.  E lectrochemical Experiments  34

A.  E lectrochemical cel ls  341. Beake r  Cel l  34

2. Rectangular cell  35

[iv]

Page 6: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 6/392

B. Ele ctr odes 371. Wo rk in g electrodes 37' (a) Ma te ri al s 37

(b) Be ak er cel l 38(I)  Pure  lead wo rk in g electrodes 38(II) Lead bu ll io n wo rk in g electrodes 38

(c) Re ct an gu la r cel l 38(I)  Pure  lead wo rk in g electrodes 39(II) Lea d bu ll io n wo rk in g electrodes 39

2. Reference electrodes 393. Co un te r electrode 40

C. Ele ctr oly te 41D. Tem per atu re con tro l 43E. Inst rume ntat ion 43

1. We nk in g potent iostat 432. Solartron electrochemical interface and frequency responseanalyzer 47

(a) Gen era lit ies : 47

(b) De sc ri pt io n of the exper iment al set-up 48II. Elect rolyt e Phy sic o-C hem ica l Properties 50

A.  p H mea sure ment s 50B. Elec tri cal conduc tivit y 50C. Kin ema tic viscosi ty 50D. De ns it y 51

C h ap t e r  4  Elect rorefi ning of Lead In A Small-Scale Eleclx orefin ing  Cell:

A Cas e St ud y 52

I. Int rod uct ion 52IL Pre sen tat ion of Res ult s 54

A. An od ic overpotential meas urem ents 561.  Stage  I 562.  Stage  H  653.  Stage  m  67

B. Ana ly ti ca l chem istr y 691. B u l k electrolyte con cent rati ons 692.  Inner  sli mes electrolyte conc entr ati ons 71

C. Ch ar ac te ri za ti on of the sli mes layer 741. Met al logra phy of the sta rti ng lead anode 752. An al ys is of the sli mes layer phases an d co mp ou nd s 80

(a) S E M ana lys is 80(b) X-r ay dif fracti on 85

C h ap t e r 5  Anodic and  Rest  Potential Behavior of  Pure  Lead inH 2 S i F 6 - P b S i F 6  Elect rolyt es 86

I. Overview of  Pure  Lead Dis sol ut i on in  H 2 S i F 6 -PbS i F 6  ElectrolytesUn de r Galv anost atic Cond iti ons 86

A.  Ano di c overpot ential i n the absence of large co nce ntr ati ongrad ient s in the anode bo un da ry layer 86

Page 7: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 7/392

B. Cor re lat io n between the anod ic overpotential an d the presenceof  add it io n agents 88C. Cor re lat io n between the anodi c overpotential an d the presenceof  seco nda ry produ ct s that precipi tate on the anode surface 89

II. Establishment of  Ionic  Concentration Gradients in the AnodeBoundary  Layer  an d their Relat ionshi p to the Ano di c Ov erpotentia l

90A.  In the absence of addi ti on agents i n the bu l k electrolyte 92B. In the presence of addi ti on agents i n the bu l k electrolyte 98

III. AC  Impedance  102A.  Int rod ucti on 102B.  Impedance  spectra obtained in an electrolyte without additionagents 103C.  Impedance  spectra obtained in electrolytes containing additionagents 108

Ch a p te r  6  Electrochemical Behavior of  Lead  bull io n Electrodes i n thePresence of Sl im es 115

I. In tr oduc ti on 115II. A C  Impedance  Char acte riza tion of the Storting Wor ki ngElectrodes 117

A.  AC behaviour in the absence of addition agents in the bulkelectrolyte 118B. AC behaviour in the presence of addition agents in the bulkelectrolyte 120

III.  DC and AC Stu die s i n Cor rod ed Elect rodes 124A.  Studi es und er galvanostatic, potentiostatic, and curr ent

in terrupt ion  cond iti ons 1241. Ex pe ri ment al resu lts 124

(a) Variation of the anodic overpotential as a function of theelectrol ysis time an d the cur ren t in te rrupt io n time 124(b) Cha ng es i n the impe dan ce as a fu nc ti on of the s limeslayer th ic kne ss an d of the cur ren t in te rrupt io n time 133

2. An al ys is of the expe rime ntal da ta 151(a) Relationship between the  DC  anodi c overpotent ial an dthe  DC cur ren t dens ity 151

(I) Da ta anal ysi s 153(b) Proposed analogue representation of a lead bullionelectrode covered wi th a laye r of sli mes 161

(I) Da ta ana ly si s 169(i) Case I: impedance spectra obtained in the

fwesence  of a net Fa ra da ic cu rr en t 170ii) Case II: impedance spectra obtained in the

abse nce of a net Fa ra da ic cu rr en t 183

[vi]

Page 8: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 8/392

C h a p t e r 7  Physico-Chemlcal Properties of  H 2 S i F 6 -Pb S I F 6  Electrolytesan d thei r Rel ati onsh ip to the Tr ans por t Processes Acr os s the Sli mesLayer 191

I. In tr odu ct io n 191II. Average Sli mes Electrol yte Co mpo si ti on 191III. Eh -p H Di ag ra ms 194

A.  (F)-Si-H2

0  sys tem 195B.  (Pb-F)-Si-H aO  sys tem 196C.  (Sb-F)-Si-H 2O f   (As-F)-Si-H20, and  (Bi-F)-Si-H 20  sys tems 199

IV. Physico-Chemical Properties of  H 2 S i F 6 - P b S i F 6 Elect rolyte s 201A.  pH, density, viscosity, and activity of  H 2 S i F 6  sol uti ons 201B. Density, viscosity, and electrical conductivity of  H 2 S i F 6 - P b S i F 6

electrolytes 203V. Math ema ti cal Model : Nume ri cal Solu tio n of the Nems t-Pl anckF l u x  Equ ati ons 214

A.  Case A: const ant y, val ues 21 5B. Case B: constant  yt   val ues in the presence of eddy di ffusi on .... 21 7C. An od ic overpotential valu es derived from the mat hem ati cal

model 222

S u m m a r y  226C o n c l u s i o n s  234R e c o m m e n d a t i o n s f o r F u r t h e r W o r k 

B i b l i o g r a p h y  238

Page 9: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 9/392

Appendices

Append ix  1 Mathematical  Model :  Numerical Solution of theNernst-P lanck Fl ux Equati ons and Its App li cat ion to the  Betts

Process 265

Append ix  2  Ana lyt ica l Sol uti on of the Nernst-Planck Fl ux

Equations 276

Append ix  3  Time Do ma in To Frequency Doma in Transfor mation:

The Fourier Transform In Current Step Electrochemical Techniques291

Append ix  4  Ana lyt ica l Che mis tr y of Electrolyte Solut ions

Conta in ing  PbS iF 6 -H 2 S iF 6  312

Append ix  5 Comp ut er Interfacing of the We nk in g Potentiostat :Cal ibrat ion  of the Rou ti nes use d to Interr upt the Cu rr en t 322

Append ix  6  Current Interruption and  AC Impedance Meas urem ent s

us ing  the Sol art ron Devices 330

Append ix  7 Solubil i ty of PbSiF 6 4 H 2 0 334

Append ix  8 Sol uti on of Fick' s Second Law Equ at io n Un de r Cu rr en tInter ruptio n Cond iti ons 337

Append ix  9  Ext end ed Ve rs io n of Tabl es Presented i n Ch ap te r 6 34 8

Append ix  10 Krame rs-Kr onig Transf ormat ions of   NUD Elem ents 360

Append ix  11 Programs Used to Generate the Eh-pH DiagramsPrese nted i n Cha pt er 7 36 3

[viii]

Page 10: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 10/392

L ist  of Tables

Chapter  1

Table  1.1 Bet ts  lead eleclxorefining in the wor ld  10

Table  1.2 Chemi ca l composit ion and X-Ray di ffraction analys is  of thelead anode slimes  19

Chapter 4

Table  4.1  Character is t ics of  experiment 1X2 55

Table  4.2  X-ray d iffraction analysi s  of  outer  and in ner sli mes powde rsamples  85

Chapter  5

Table  5.1  Resu lts  of  the a nalysis  of  the conc ent rat ion o verpotentialincreases during the  first second after application of  the cur rent stepsFick's Second  Law  approximation  96

Table  5.2 Var ia t ion of  the B x  and  parameters wi th curr ent density  .. 107

Chapter  6

Table  6.1 Character is t ics of the experiments presented  i n chapter  6 116

Table  6.2 Average t imes requ ire d to measure  the AC  impedance

spec t rum  117

Table  6.3  S u m m a ry  of  the va lues  of  the electrical analog ue para mete rsobtained under rest potential conditions  117

Table  6.4  Ana lys is of  the spikes produced dur in g the appl icat ion of theAC waveform,  i n the presence  of a net DC curre nt (Exp. CA 2, Figs. 6.32to 35) 156

Table 6.5.a Analysis of  the spike s prod uced dur in g the appl icat ion of

the  AC waveform,  i n the presence  of a net DC current  (Exp. CA6) 158

Table 6.5.b Analysis of  the spikes produc ed duri ng the application of

the  AC waveform, und er curren t inte rrup tio n condit ions (Exp. CA6) 159

Table  6.6  Ana lys is of the spikes produced dur ing the appl icat ion of the

AC waveform,  i n the presence  of a net DC current  (Exp. CC1) 159

Table  6.7  Pa rameters derived fro m the f itting of  the imped anc e dat aobtained i n Exp. C A2 to the  ZZARC-ZZARC   analogue (Circuit  A . 2 ,Figs.  6.38,39)  175

[ix]

Page 11: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 11/392

Tabl e 6.8 Param ete rs derived fr om the fitt ing of the imp eda nce spectr aobt ain ed i n Exp . CA 2 (Ci rcu it B.2, Figs. 6.40, 41) 179

Tab le 6.9 Parame te rs deri ved fr om the fit tin g of the  Impedance  dataobtained in Exp CA5 to the  Z^c-Z^^e  analogue (Ci rcui t A.2) 181

Tabl e 6.10 El ec tr ic al analog ue param eter s derived fr om the fitt ing ofthe imp eda nce dat a obta ined i n Ex p. CA 5 (Cir cuit B.2) 181

Tabl e 6.11 Para mete rs derived fro m the fitti ng of the imp eda nce dat aobtained in Exp. CA2 to the Randies Analogue Circuit (Figs. 6.43, 44)

184

table 6.12 Electrical analogue parameters derived from the Fitting ofthe impedance data obtained in Exp. CA5 to the Randies AnalogueCi rcu i t  (Fig. 6.45) 188

Tab le 6.13 El ect ri cal Anal ogue parameter s derived fro m the fitt ing ofthe  A C  impedance data obtained in Exp. CA4 to the  T^SC'^ZJ^  analogue(C ir cui t A. 2, Fi g. 6.47) 190

Chapter  7

Tabl e 7.1 Co mp os it io n of the electrolyte samp les extracted fr om ano deslimes obtained under industrial operation o f  the B E P (Corninco Ltd.) .. 192

Table 7.2 Va lue s of the coefficients A an d Q i n Eq ua ti on 7.17 20 2

Table 7.3 Ch an ges i n the osmo ti c an d acti vit y coefficients as a

funct ion of the  Ionic  stre ngth 20 3

Tabl e 7.4 Physi co-c hemical properties of  H 2 S i F 6 - PbS i F 6  electrol ytes 20 4

Tabl e 7.5 Coeffici ents i n the emp ir ica l electri cal conduc tivi ty, vis cosi tyan d dens ity corre lati ons 20 6

Tabl e 7.6 Ch ang es in the indi vi dua l ioni c mobil itie s as a fun ct io n of

the electrolyte com pos it io n 21 2

SummaryTable S. 1  Su mm ar y of info rmat ion that can be derived fro m us in gtrans ient electro chemical technique s 233

[x]

Page 12: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 12/392

L ist  of Figures

Chapter  1

Fig.  1.1

  F lowsheet  for lead extracti on from sulph idi c concentr ates  4

Fig.  1.2  A  generalized flowsheet  for the pyrometal lurgic al ref ining oflead  5

Fig.  1.3  A  generalized flowsheet  for the pyro metal lurgical/electrometal lurgical ref ining of  lead  6

Fig.  1.4  Changes  i n the anodi c overpotential value,  r\ A ,during leadelectxorefining  9

Fig.  1.5  Lead  anode microstructure  13

Fig.  1.6

  S tra ight  type  horiz ont al lead anode casti ng sys tem  15

Fig.  1.7

  B i sm ut h content  of  the ca thod ic dep osit as a funct ion of theanodic polarizat ion a nd the electroly sis time

  17

Fig.  1.8

  D imens ions  of  the anod es u se d  i n Wenzei 's experi mentsshowing  the pos i t ion and size of  the electrolyte sa mp li ng wells

  18

Fig.  1.9

  Cha nge s wi th electrolysis t ime of  the relat ive conc entra tions  ofP t r 2  and H

+  w i t h i n  the sli mes layer wi th respect  to their bul k values  ....  19

Fig.  1.10  Lead  specific weight loss (corrosion)  as a funct ion of theimmer s ion t ime  i n a  2  M Pb(BF4)2-1  M H B F 4  so lut ion i n the presence  of0, 2, 5,  and 10  m M of  B i + 3

  21

Fig.  1.11

  Cont i nuou s pur i f i ca t ion of  electrolyte  v ia puri f ica t ion c ol um n22

Fig.  1.12  Influence of  the c ycle l engt h and cur ren t reversal r at io  on theanodic overpotential  va lue  dur ing PCR  24

Chapter  2

Fig.  2.1  E lect roch emical cel l arrangement  27

Chapter 3

Fig.  3.1  Asse mbly used  i n the experiments per formed wit h  the  beakercell  35

Fig.  3.2  Assembly used  i n the experimen ts performed usi ng therectangular cel l

  36

Page 13: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 13/392

F ig .  3 .3  Sections of the lead  bu l l i on  anodes used to prepare working

electrodes  3 7

F ig .  3 .4  Detail of the Luggin-Haber reference electrode arrangement  4 0

F ig .  3 .5  Exp eri men tal set-up us in g the Wen kin g potentiostat  4 4

F ig .  3 .6  Det ai l of the connect ions requ ired to int err upt the curr ent an d

to follow the cell response  4 5

F ig .  3 .7 Cur re nt step resu lt in g fro m hal ti ng the flow of cur ren t to theelectrochemi cal cell us in g the Wen kin g potentiostat  4 7

F ig .  3 .8  Con nec ti ons fro m the electrochemical cell to the Sol art ron

Electrochemica l  Interface  4 9

Chapter  4

F ig .  4 .1

  Lead  anode top view  5 4

F ig .  4 .2 An od ic overpotent ial (uncorrected for changes as a fun ct io nof   the slime s layer thick ness  5 7

F ig .  4 . 3 Ou te r an d in ne r A, B, an d C reference electrodes anod ic

overpotential respo nse to cur rent int err upt ion s (duri ng an otherwisegalvanostatic experiment)  5 8

F ig .  4 . 4 Det ai l of the  TIa response of the  i nne r  A reference electrode tocurrent interruptions (during the whole electrorefining cycle)

  5 9

Fig.  4 . 5 Detail of the rj A  response of the  i nne r  B (Fig. A) an d  i nne r  C

(Fig. B) reference electrodes to current interruptions (during the wholeelectrorefining cycle)

  5 9

Fig.  4 . 6 Det ai l of the  r\ A  response to current interruptions measured by

the outer reference electrode (at different slimes layer thickness)  6 0

F ig .  4 . 7  Changes In the  va lue of the uncom pensa ted ohm ic  drop,  T| Q,  as

a function of the slimes thickness  6 1

F ig .  4 . 8 Det ai l of the  T\ A  response to current interruptions measured by

the  i nne r  A reference electrode (at different slimes layer thickness)  6 2

F ig .  4 . 9 Detai l of the i i A response to cur ren t inter rup ti ons mea sur ed by

the  i nne r  B reference electrode (at different slimes layer thickness)  6 3

F ig .  4 . 1 0 Det ai l of the  T\a response to current i nterr upti ons meas ured

by the  i nne r  C reference electrode (at different slimes layer thickness) ..  6 4

F ig .  4 . 1 1 An od ic overpotent ial (corrected for  T

J

Q)  changes as a function

of  the slimes layer thic kness  6 5

[xii]

Page 14: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 14/392

F ig .  4.12 An od i c overpotent ial (uncorrected for i i d changes as a

fun ct io n of the cur ren t int err upt ion time 66

F ig .  4.13 Changes In the  va lue  of the ano dic overpotenti al ( uncorre ctedfor  TI J  as a fu nc ti on of the electrolysis time 67

F ig .  4.14 Anodic overpotential response upon current interruption

(Stage m  Table 1 68

Fig.  4. 15 Chang es i n com pos iti on of the bu lk electrolyte as a f unc ti on

of the sl imes layer th ic kn es s 70

Fig.  4. 16 Cha nge s i n the bu l k electrolyte compos iti on as a fun ct ion of

the cur ren t in te rru pti on time 70

Fig.  4. 17 Chan ges in the loca l compo si ti on of the slim es electrolyte as afu nc ti on of the movement (from the samp li ng point) of theano de/ sli mes interfac 71

F ig .  4.1 8 Change s in the loca l con cen tra tio n of the tota l Si a nd Fpre sen t i n the sl ime s electrolyte as a fu nc ti on of the mov eme nt (fromthe sa mp li ng point) of the anode /s li mes interf ac 72

F ig .  4.19 Change s in the loca l compo si ti on of the slimes electrolyte as afu nc ti on of the cur ren t int err upt ion time 73

F ig .  4.20 Chan ges in the local conce ntr ati on of the total Si and Fpre sen t i n the sl ime s electrolyte as a func ti on of the cu rr en tint erru pti on time 74

Fig.  4.21 Sect ion of the lead anode an d of the slim es layer st ud ie dmetallographically 75

Fig.  4.22  Lead  anode microstuctures. Anode "A", Air cooled face. Allmic rog rap hs co rre spon d to the same observat ion point( point # 1F ig .  4.21) 76

F ig .  4.23  Lead  anode micr ostuc tures . Anode "A" . Al l mic rogr aphscorrespon d to the sam e obse rvat ion point( poi nt #2 Fi g. 4.21) 78

F ig .  4.24  Lead  anode microstuctures. Micrographs correspond to

different observati on poi nts 79

F ig .  4. 25 Mi cr os tr uc tu re of the slimes layer  @2mm  away  from the

sli mes/ elec tro lyt e interface (position #2 Fig. 4.21) 81

F ig .  4.26 Deta il of the micr ost ruc tur e of the slimes layer  @2mm  awayfr om the slimes/elec trol yte interface (position #2 Fi g. 4.21) 82

F ig .  4.27 Mi cr os tr uc tur e of the slim es layer @12m m  away  from theslimes/ elec tro lyt e interface (position #3 Fi g. 4.21) 83

F ig .  4 .28 Detai l of the micr ost ruc tur e of the slimes layer @12 mm  awayfr om the sli mes/elec tro lyt e interface (position 3 Fi g. 4.21) 84

[xiii]

Page 15: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 15/392

Chapter  5

F ig .  5.1  Pot ent ial difference between a fixed reference electrode an d acorroding  anode in the absence of addition agents  87

F ig .  5.2  Overpote ntia l changes dur in g the galvanosta tic di sso lu ti on ofpure lead (in the presence of excess quantities of addition agents)  89

F ig .  5.3  An od ic overpotenti al response (uncorrected for  TJQ) of pu re lead,to the application of successive current step  90

F ig .  5.4  Cu rr en t step fun cti on use d to study the est abl ishm ent ofconcentration gradients in the anode boundary layer. The rise time ofthe current steps was smaller than  10  usee  91

F ig .  5.5  An od ic overpotenti al response (uncorrected for  TIJ of a pu relead electrode to the current steps described in Fig.   4,  i n the presence

of   addition agents (compare with Fig.  5) 92

F ig .  5.6  Chang es in the uncomp ensat ed ohmi c drop  [r\o)  as a function

of   the applied current density  93

Fig.  5.7  An od ic overpotential respons e (corrected for in it ia l TIJ of a pu relead electrode to the current steps described in Fig.  4 94

F ig .  5.8  Ch an ge s i n the dimens io nl es s ove rpo ten tial, <!>!, as a fu nc ti on

of  the squar e root of time, 96

F ig .  5.9  Decay i n the ano dic overpoten tial (corrected for  TJQ) as afunct ion of the in te rrupt io n time, t   97

F ig .  5.10  An od ic overpotent ial response (uncorrected for  TIJ  of a purelead electrode to the current steps described in Fig.   4 98

F ig .  5.11  An od ic overpotentia l response (corrected for in it ia l of a

pure lead electrode to the current steps described in Fig.  4 99

F ig .  5.12  Co mp ar is on between the anodic overpotential va lue  obtainedr ight  after app li cat ion of cur ren t (*) an d the unc omp ens at ed ohm icdrop  obt ained from the hi gh frequency inte rcep t of the impedance

spec t rum  100

F ig .  5.13  Cha nge s i n the anodi c overpotenti al up on app li cat io n of acurrent step  101

F ig .  5.14  Changes i n the ano dic overpotent ial as a fu nc ti on of the

current i nterru ption t ime  102

F ig .  5.15  Impedance  diagram of pure lead under rest potential

condit ions  (in the absence of addition agents)  104

F ig .  5.16  Det ai l of the impe danc e curve sho wn i n Fig .  15  (after

subtract ing  the  Rg  value)  105

[xiv]

Page 16: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 16/392

F ig .  5.17 Impedance  d iagram of  pur e le ad  i n the presence  of an  anodiccur re nt 1=150 A m p m* 2  (after subtract ing the Rg value)  107

F ig .  5.18 Impedance d iagram of  pur e lead under rest potentia l

condit ions  (in the presence  of  addi tio n agents)  108

F ig .  5.19 Impedance  diagrams  of  pur e lead un de r rest potentia lcondit ions  obtained at two different ampli tude s of the applied AC

waveform  (in the presence  of  addi ti on agents)  109

F ig .  5.20 Analogue circuits used  to model the hi gh frequency respon se

of  the impe dance curve sho wn  i n F ig.  15 110

F ig .  5.21 Hi gh frequency section of  the impedance d iag ram show n  i n

F ig .  18 112

F ig .  5.22 Impedance  diagrams  of  pur e lead obta ined i n the  presenceand  i n the absence  of a net Faradaic current  (in the presence ofaddit ion  agents)  113

F ig .  5.23 Deta i l of  the impeda nce dia grams obtained i n the presence of

a  net Faradai c current  (in the presence  of  addi ti on agents)  114

Chapter  6

F ig .  6.1  Impedance  diagram (Argand plot)  of a  typical lead bullionelectrode  (Exp. CC1-6) und er rest potent ial cond iti ons an d i n theabsence  of  addit ion agents  119

F ig .  6.2 Impedance  diagram (Argand plot)  of a  typical lead bullionelectrode  (Exp. CA2-J)  under rest potential conditions an d in thepresence  of  addit ion agents  120

F ig .  6.3 Deta i l of  the hi gh frequency r egion of the imped ance dia gramshown  i n F ig . 2 121

F ig .  6.4 Deta i l of the hi gh frequency regions of  the imp eda nce dia gra msobtaine d und er rest potential conditi ons  122

F ig .  6.5 Impedance  spectra obtained under potentiostatic (solid line)

and galvanostatic control (dashed line)  123F ig .  6.6 Overpote ntial response  of a typic al lead bul li on anode  as afunct ion of  the sli mes thickn ess  (Exp. CA2) 125

F ig .  6.7 An od ic overpotenti al (corrected  for in i t ia l r y  measured  by thecounter  and  reference electrodes  as a funct ion of the slime s thi ckne ss(Exp.  CA5 ) 127

F ig .  6.8 Cu rr en t density changes  as a funct ion of the electrolysis timeand  of  the amo unt  of  lead d issol ved (Exp. CA 4, potentiostaticcondit ions £^^,,=220 mV) 128

[xv]

Page 17: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 17/392

Fig.  6.9 Changes in the anodic overpotential (corrected for  TJQ) as afu nc ti on of the am ou nt of lead dis sol ved (Exp. CA4) 129

F ig .  6.10 Anodic overpotential changes upon current interruption

(Exps. C A 2 . C A 5 , an d CA4) 130

F ig .  6.11 Anodic overpotential (corrected for initial   TJQ)  as a function ofthe sli mes th ic kn ess (Exps. CA 6 an d CC1 ). .: 132

F ig .  6.12 Anodic overpotential changes upon current interruption

(From Ex p. CA6 ) 133

F ig .  6.13  Impedance  spectr a obtai ned du ri ng Ex p. CA 2 at sli mes layerth ic kn es s betwe en 0.8 an d 7.8 m m 134

F ig .  6.14  Impedance  spectr a obtai ned du ri ng Ex p. CA 2 at a s lime s

laye r th ic kn es s of 8.4 m m 135

F ig .  6.15  Impedance  spec tr um obtained du ri ng Ex p. CA 2 at a sl imes

layer th ic kn es s of 8.65 m m 136

F ig .  6.16 Changes in the  va lue  of the unc omp ens ate d ohm ic re sistance,

Rg,  as a fu nc ti on of the sli mes th ic knes s (Exp. CA2) 137

F ig .  6.17  Impedance  spectr a obtai ned du ri ng Ex p. CA 5 at slim es layerth ic kn es s betwe en 0.64 an d 1.89 m m 138

F ig .  6.18  Impedance  spectra obtained during Exp. CA5 at a slimeslayer thickness of 2.2 mm  (Rg  was subt ract ed from the com pon ent ofthe impedance ) 139

F ig .  6.19 Changes in the  va lue  of the unc omp ens at ed ohm ic resist ance,

Rg,  as a fu nc ti on of the sl imes th ic kn es s (Exp. CA5) 140

F ig .  6.20  Impedance  spectra obtained dur in g Ex p. CA 4 at sli mes layerth ic kn ess between 0.87 an d 2.87 m m 141

F ig .  6.21 Changes in the  va lue  of the unc omp ens at ed ohm ic r esist ance,

Rg,  as a fu nc ti on of the sli mes th ic kn es s (Exp. CA4) 142

F ig .  6.22 Ar ga nd plot sho win g the changes i n the imp edan ce spec tra

obtained in the presence of a layer of slimes and in the absence of a netFa rad ai c cur ren t (Exp. CA2) 143

F ig .  6.23 Changes in the  va lue  of the unc omp ens at ed oh mic resistance,

Rg,  as a fun ct io n of the cur ren t int err upt ion time (Exp. CA2) 143

Fig.  6.24 Argand plot showing the changes in the impedance spectraobtained in the presence of a layer of slimes and in the absence of a netFa rad ai c cur ren t (Exp. CA5) 144

Fig.  6.25 Changes in the  va lue  of the unc omp ens at ed oh mic resist ance,

Rg,  as a fu nc ti on of the cu rr en t in te rr up ti on time (Exp. CA5) 145

[xvi]

Page 18: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 18/392

F ig .  6.26 Ar ga nd plot sho win g the changes in the impe danc e spec traobtained in the presence of a layer of slimes and in the absence of a netFa radai c cur ren t (Exp. CA4) 146

F ig .  6.27  Impedance  spec tra obtai ned du ri ng Ex p. C A6 at sli mes layerth ic kn es s between 0.43 an d 7.7 m m 147

F ig .  6.28  Impedance  spec tra obtai ned du ri ng Ex p. CC 1 at sli mes layerth ic kn es s between 0.14 an d 5.3 m m 148

F ig .  6.29 Changes in the  va lue  of the unc omp ens at ed oh mic resis tance,

Rs,  as a fun ct io n of the slim es thi ckn ess (Exps. CA 6 an d CC1 ). 149

F ig .  6.30 Ar ga nd plot sho win g the change s in the impe danc e spec traobt ained in the presenc e of a layer of sl ime s an d in the absence of a netFar ada ic cur ren t (Exp. CA6) 150

Fig.  6.31 Changes in the  va lue  of the unc omp ens at ed oh mic resis tance,

Rg,  as a fu nc ti on of the cu rr ent in te rr up ti on time (Exp. CA6) 150

F ig .  6.32 Detail of the "spikes" observed at -0.8 mm slimes (Exp. CA2,Ta bl e 6.4) 154

F ig .  6.33 Variations in the anodic overpotential as a function of theanodic current density at various slimes thickness (Exp. CA2,Tabl e 6.4) 155

F ig .  6.34 Changes in the  va lue  of the res ist ance of the sl imeselectrolyte as a fu nc ti on of the slim es th ic knes s (Exp. CA 2 , Tabl e 6.4)

157F ig .  6.35 Changes in the parameters  b  and  IRn,  with relationship to theexpe rime nta l vari ati ons of the anodi c overpotential (Exp. CA 2,Tabl e 6.4) 157

F ig .  6.36 Propos ed analogue m odel repres entat ion of a lead bu ll io nelectrode covered wi th a layer of sli mes 164

F ig .  6.37 Ele ctr ic al cir cui ts us ed to analyze the impe danc e spec tra 171

F ig .  6.38 Cor rel ati on between the exper iment al an d theoret ical

imp edan ce spec tra (Exp. CA 2, cir cui t A. 2, Table 6.7). 174

F ig .  6.3 9 Va ri at io n of the derived electrical analogue param eters as afun ct io n of the sli mes thi ckn ess (Exp. CA 2, Ci rc ui t A. 2, Table 6.7) 177

F ig .  6.40 Det ai l of the imped ance s pec tr um obtai ned i n Ex p. C A2 at

0.80 m m of sl imes (Exp. CA2 , ci rcui t B.l) 178

F ig .  6.41 Va ri at io n of the derived elec tric al anal ogue par ameter s as afu nc ti on of the sli mes thi ckn ess (Exp. CA 2, Ci rc ui t B.2, Table 6.8) 179

[xvii]

Page 19: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 19/392

Fig.  6. 42 Va ri at io n of the ma x i m u m valu es of the real, Z*. and theimaginary parts, -Zg , of the impedance as a function of the amount oflead dis sol ved (Exp. CA4) 182

Fig.  6.43 Mod ifi ed Ran die s analog ue cir cui t 183

F ig .  6.44 Cor rel at ion between the exper imen tal an d th eoreti calimped ance spe ctra (Exp. CA 2, curre nt inte rrup tio n condi tion s,Tabl e 6.11) 184

F ig .  6.45 Cor rel at ion between the exper imen tal an d the oreti calimped ance s pectra (Exp. CA 5, curre nt inte rrup tio n condi tion s,Table 6.12) 186

F ig .  6 .46 Ar ga nd plot of a typica l lead bu ll io n electrode (Exp. CC 2) i n

the presen ce of a 2.2 m m layer of sl imes 187

Fig.  6.47 Cor rel ati on between the exper imen tal an d the oreti cal

impedan ce spect ra (Exp. CA4, curren t interru ptio n condit ions,Table 6.13) 189

Chapter  7

Fig.  7.1  Sys t em  (F)-Si-H 20  at 25  °C   196

F ig .  7.2  Sys t em  (Pb-F)-Si-H 20  at 25 °C 197

F ig .  7.3 Cha ng es in p H as a fun ct ion of   loga SiF -2  and  loga  p b + 2  198

Fig.  7.4A  Sys tem  (Sb-F)-Si-H aO  at 25 °C 199

Fig.  7.4B  Sys tem  (Bi-F)-Si-H 20  at 25 'C 200

Fig.  7.4C  Sy st em (As-F)-Si-HaO  at 25 °C 20 0

Fig.  7.5 Cha ng es i n p H as a fu nc ti on of the electrolyte compos it io n 201

F ig .  7.6 Ele ct ric al cond ucti vity , density, an d visc osit y of  H 2 S i F 6 - P b S i F 6

electrolytes 207

F ig .  7.8 Changes in Walden's  product as a function of the square rootof   the ion ic stre ngth 21 3

Fig.  7.8 Va ri at io n i n the slime s electrolyte com pos iti on as a fun ct io n ofthe distance from the slimes/bulk electrolyte interface, assuming nochanges in activity coefficients  (Case A) 21 6

F ig .  7.9 Chang es i n the poten tia l of the slim es electrolyte as a fun ct io n

of   the dist ance fro m the anode/ sli mes interface 218

Fig.  7.10 Changes in the potential difference between the outer andin ne r reference el ectrodes as a fu nc ti on of the distance from the

s l imes/bulk  electrolyte interfa ce 21 9

[xviii]

Page 20: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 20/392

F ig .  7.11 Var ia t ion of the eddy diffu sion constant,  D  E 

 ,  as a  funct ion of

the distance from the sl im es /b ul k electrolyte interface, (oc=lxlO 2  m m

a n d p ^ x l O " 4  c m 2 sec"1)  220

F ig .  7.12 Variation i n the  slimes electrolyte composition as a  fu nctionof   the distance from  the sli me s/b ul k electrolyte interface,  when

changes  i n activity coefficients and in eddy diffusi on are accounted for(CaseB )  221

F ig .  7.13 Variation  i n the  slimes electrolyte composition as a  fu nctionof   the distance from  the sli me s/b ul k electrolyte interface,  whenchanges  i n eddy diffusi on are accounted  for (Case C) 222

F ig .  7.14 Variation  i n physico-chemical properties of the sli meselectrolyte  as a  funct ion of  the di stance fr om the s l imes /bulkelectrolyte interface  223

Fig.  7.15 Compar ison between the experimental (unsteady-state) andpredicted (steady-state)  anodic overpotentials  225

[xix]

Page 21: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 21/392

Nomenclature

a,  molar activity coefficient of  species i: a, =  C,

a pbdXi)  Activity of  Pb+2

 as a function of  the distance from the slimes/electrolyteinterface.

a   +2(bulk)  Activity of  Pb +2 in the bulk  electrolyte (i.e. outside the slimes/bulk electrolyte

interface).

b  slope,  mV (Eq. 5, Chapter 6).

Bj  Frequency independent parameter,  [Q cm2

 sec V zc

], (Eq. 6, Chapter 5)

b,b2b0  Frequency independent parameters, [£2cm2sec"1^], (Eq.  10. Chapter 6)

bD  Dimensionless parameter defined in Eq. 4, Chapter 5.

Capacity of the electrical double layer,  [uF cm"2]

Cg  Geometrical capacitance, [|xF cm"2]

C°  t 2  Bulk  Pb+2 concentration, [mol cm"3]rb

C,o  Concentration of  species i at the electrode surface (at x=0), [mol cm"3]

C,  Concentration of  species i, [mol cm"3]:Species a: Pb +2  Species b: SiF6"

2  Species c: H +

Clo o  Concentration of  species i in the bulk  electrolyte (at x=°°), [mol cm"3]

CPE!  Analogue parameter that represents the distributed nature of the

anode/slimes and the slimes/slimes electrolyte interfaceCPE2  Analogue parameter that represents the presence of  a distributed

capacitance generated by the concentration gradients present in the slimeselectrolyte.

D   Diffusion coefficient, [cm2 sec"1

]

D t  Diffusion coefficient of  species i, [cm2 sec"

1

]

D  E   Eddy diffusion constant, [cm2 sec"

1

]

D  D^2  Mean diffusion coefficient for Pb +2 ions, [cm2

 sec"1

]

D™   Molecular diffusion coefficient of  species i, [cm2 sec"1]

<Di   Overall diffusion coefficient of  species i, [cm2 sec"1]  : T>i  =  DT+D E

e(t)  Potential as a function of time

Econtroi  Difference in potential between the reference and  working electrodes underpotentiostatic control.

F  Faraday's constant. 96487 C eq"1

iron.  Steady-state corrosion current density,  [Amp m"2]

i\,  Exchange current density,  [Amp m"2]

[xx]

Page 22: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 22/392

I& 0  Current density at the electrode surface,  [A cm"2].

I (t) Superficial current density at the anode/slimes interfaceas a function of the electrolysis time,  [A cm"

2

].

It  Total molar ionic strength = /, = 0.5{Af u(v,Z2+v 2)+M m{y&  + VjZ2

)} =  4x[PbSiF(5]

+ 3x[H2SiFe]IiHzSifj  Molar ionic strength of  H2SiF6 in a H2SiF 6-PbSiF6 mixture = 3x[H2SiF6]

hbsiFj  Molar ionic strength of  PbSiF6 in a H2SiF 6-PbSiF6 rnixture= 4x[PbSiF6]

 j   Imaginary number , V  --T

L  Characteristic length of the electrode, [cm]

mD  Slope defined in Eq. 4, Chapter 5, [sec"0 ^

m  Molality, [mol of  solute/Kg of  solvent]

 M   Molarity, [mol/1]

N,  Water mol fraction with respect to species i.

n  Number of electrons involved in electrode reaction.

I r Ia,  I yr 12  Statistical parameters defined in Appendix 9.

 R,  Analogue parameter that represents charge transfer resistances associatedwith the lead dissolution processes, [Qcm ].

Analogue parameter related to the DC conductivity of the slimes electrolyte,[Qcm2]

ra  Analogue parameter related to the DC resistance of the slimes electrolyte,[Qcm2]

rb  Analogue parameter related to the charge transfer resistance associated withthe lead dissolution process, [Qcm2]

Rb  Resistance of the electrolyte present between the reference electrode and theanode boundary layer, [Clem ]

R,t  Charge transfer resistance, [Qcm2]

RD  Diffusional (DC) resistance, [Qcm2.]

Rata  Resistance of the film created by the addition agents, [Qcm2]

Rm  "Apparent" average resistivity of the electrolyte present across the slimeslayer, [Qcm2].

Rp  Polarization resistance, [Qcm

2

]Rs  "Uncompensated" ohmic resistance, [Qcm2].

R   Universal gas constant,  [8.3114 J  mol"1 deg"1]

s, Stoichiometric coefficient in electrode reaction

T  Absolute temperature, [K]

v+ and v_   Number of cations and anions into which a mole of electrolyte dissociates.

w  Solution composition, [wt% H2S1F<J

x, Distance from the slimes/bulk electrolyte interface at which point D e  is to

be computed, [ x, < x^], [mm]

[xxi]

Page 23: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 23/392

Xjotai  Total slimes thickness, [mm]

x  Mixing fraction (Eq, 22, Chapter 7).

Z,  Charge number of  species i, [eq mol"1]

Z(jco)  Impedance as a function of  frequency,. [Qcm2]

Zj  Imaginary component of the impedance, [Qcm2]Z*  Real component of the impedance, [Qcm2]

IZI  Absolute value of the impedance, [Qcm2],  (| Z |= -N/ZI+Z2)

Z a / s e  Faradaic impedance at the lead anode/slimes electrolyte interface.

Z a / s l  Electronic impedance at the lead anode/slimes interface.

ZCP E  Impedance of the CPE analogue element.

 Z 2/lBC   Impedance of the  ZARC analogue circuit.

ZnJt)  Changes in D C  impedance as a function of time.

Z s l / b e  Faradaic impedance at the slimes/bulk electrolyte interface.

Z s I / s e  Faradaic impedance at the slimes/slimes electrolyte interface.

Warburg ionic diffusional impedance in the slimes electrolyte/bulkelectrolyte interface.

Zw  Warburg ionic diffusional impedance throughout the slimes electrolyte.

[M™]  Ionic concentration of ions M, [Ml.

[M fn]b  Ionic concentration of ions M, at the slimes/bulk electrolyte Interface, [Mj.

[M+n]e  Ionic concentration of ions M, at the anode/slimes electrolyte interface, [Mj.

{M+n}r  Concentration of ions M at the anode/slimes interface with respect to their[Pfr+

^V

concentration at the slimes/bulk electrolyte interface (e.g. {Pb+

%=—^)

It  Total molar ionic strength =  4x[PbSiF6l + 3x[H2SiF6]

[HaSiFglu H2SiF6 concentration at the total molar ionic strength of  H2SiF 6-PbSiF6

mixtures, [M],

[PbSiFg] + [HaSiFJ PbSiF6 and H2SiF6 concentrations in the electrolyte rnixtures, [M],

[PbSiFelK   PbSiF6 concentration at the total molar ionic strength of  H2SiF6-PbSiF 6

mixture, [M].

a and  p  Arbitrary positive constants whose value depends on the electrolysisconditions: a [mm] and (3 [cm2 sec"1]  (Eq. 31, Chapter 7).

pa  Anodic Tafel slope

Pc  Cathodic Tafel slope.

8 Thickness of the hypothetical Nernst boundary layer, [cm]

[xxii]

Page 24: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 24/392

y,  Individual molar activity coefficient.

Y±  Mean activity coefficient

AO  Migration or "liquid junction" potential, [mV]

Oe  Maximum value of the migration potential for a fixed slimes thickness, [mVj

<J>1( 02  Dimensionless parameters in Eqs. 4 and 5, Chapter 5.

^zc  Fractional element in CPE analogue element

A ^  Equivalent conductivity of the H 2SiF 6-PbSiF6 mixtures, [cm2 eq"1 ft"1]

A   ^  and ApK^  Equivalent conductivity of the pure H2SiF6 and PbSiF6 solutions at

the total ionic strength of  H2SiF 6-PbSiF6 mixtures, [cm2 eq"1 CI' 1 ]

X,  Individual equivalent conductivity of  ions i, [cm2 eq'1 Ci' 1 ]

T) a c  Activation overpotential, [mV]

r)n  "Uncompensated" ohmic drop, [mV]•nA  Anodic overpotential, [mV]

r|c  Concentration overpotential. [mV]

rj^,  Total ohmic drop across the slimes layer, [mV]  (Eq. 32, Chapter 7)

r\c  Concentration overpotential due to Pb+2,  [mV] (Eq. 33, Chapter 7).

ru  Steady-state anodic overpotential from the solution of the Nemst-Planck flux

equations,  [mV] (Eq. 34, Chapter 7).

TI  Dynamic viscosity [coefficient  q/), [cP]

K   Electrical conductivity, [mmho cm"1]K  [x^  Electrical conductivity changes as a function of the distance from the

anode/slimes interface,  A*  [mmho cm"1]

K fc  Electrical conductivity of  H2SiF 6-PbSiF6 mixtures, [mmho cm"1]

 KiPbsiFj,,  Electrical conductivity of  PbSiF6 at the total ionic strength of  H2SiF 6-PbSiF6

mixtures, [mmho cm"1.]

K_   Bulk  electrolyte electrical conductivity, [mmho cm"1]

H,  Absolute ionic mobility of  ion i, [cm2 sec"1 volt"1]

v  Kinematic viscosity [coefficient  oJ),  [cSt].

pm  Specific electrical resistivity of the electrolyte entrapped within the slimeslayer, [ftcm].

p  Solution density, [g cm"3]

ov  Warburg Coefficient,  [CI  cm2

 sec"05]

x Relaxation time, [sec]

tD  Dielectric relaxation time of the bulk electrolyte,  [sec], TD=Cg.Rb

xf   Relaxation time of the Faradaic reaction taking place upon discharge of thedouble layer, [sec]

[xxiii]

Page 25: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 25/392

0)

 ©min

 ©max

AAS

 ACBEP

cd

C.P.V.

CPE

DC

E.M.F.

EPMA

FFT

FRA

PCR

RM.S.

SACV

SEI

SSM

SEM

SSR

Relaxation time of the diffusional processes across the hypothetical Nemstboundary layer, [sec].

Relaxation time required to equilibrate the charge of the electrical doublelayer, [sec]

Frequency, [rad sec"1

]

Minimum frequency at which the AC impedance was acquired (or analyzed),[rad sec"

1

]

Maximum frequency at which the AC impedance was acquired (or analyzed),[rad sec"

1

]

Abbreviations

Atomic Absorption Spectroscopy

Alternating currentBetts electrorefining process

Current density

Cathode polarization voltage

Constant phase  angle element

Direct current

Electromotive force

Electron probe microanalysis.

Fast Fourier transform.

Frequency Response Analyzer

Periodic current reversal

Root mean square

Small amplitude cyclic voltammetry

Solartron Electrochemical Interface

Secondary solidified material

Scanning Electron Microscopy

Solid State Relay

[xxiv]

Page 26: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 26/392

Acknowledgments

I want to express my sincere appreciation to my research advisor, Dr. Ernest

Peters who guided me constantly throughout my stay at U.B.C.  I want to thank

him  for all his teachings, and most of all for having the  persistence of bearing

with me.

My stay at U.B.C. was made possible due to scholarships  from; Universidad

 National  Autonoma de Mexico  (U.NJLM.)  and The University of  British Columbia,

and  through supplementary funding from the Natural  Sciences and  Engineering

 Research Council of Canada.  I want to thank  these institutions for their support.

I  want to  express my gratitude to Dr. R.C.  Kerby  (Corninco Ltd.) and Dr.

C.C.H. Ma (Dept. of  Electrical Engineering, U.B.C.) for providing me with a variety

of   new ideas. My sincere thanks to Dr. Charles Cooper for taking the task ofproofreading the thesis and contributing with constructive comments.

I  want to thank my beloved wife,  Diana,  whose positive and encouraging

attitude  gave me the strength to accomplish this work.

I  also would like to thank my parents and brothers for giving me moral

support throughout this work.

[xxv]

Page 27: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 27/392

Introduction

The  Bet ts proces s for lead electrorefining treats lead bu ll io n cont airi ing 1-4%

impur i t i es .  Antimony, arsenic, bismuth, an d a variety  of  min or metals i ncl udi ng

silver  and gold are amongst these impuri ties . The bu l l ion i s  cast into anodes of

about  1 m 2 , wei ghi ng between 20 0 and 30 0 kg. These anodes  are electrolytically

corroded with  the s imult aneous pl at ing of  relatively pur e lead ( >99.99% Pb) on

cathodes  (pure  lead starting sheets)  of  about  the same area as the anodes. The

electrolyte  is typical ly an aqueous lead f luosil icate sol utio n (0.2 to 0.5 M PbSiFg)

containing excess  f luosi l icic  acid (0.5  to 0.8 M  HaSiFg). The impur i t ies are  largely

retained  on the anode scr ap  as an adheri ng slime. Betts  ref ining is the  preferred

lead refini ng process when b i smut h must be separate d fr om lead. S ince  b ismuth

forms a soli d solu tion wit h lead at concentrations nor mal ly foun d i n lead  bull ion,

it  is necessary  for the anode s lime s  to adhere  so tha t they  can cement  out the

bismuth f rom the electrolyte after  it has corroded with l e a d 1  .

Th is stu dy was designed to obt ain a fund amen tal und ers ta ndi ng of the anodic

proces ses that take place up on elect roche mical dis so lut ion of lead anodes as us ed

i n the Bet ts proc ess. Du ri ng the refi ning of lead by the Bet ts process , ideally, only

lead would dissolve  an d the  noble impur itie s wou ld rem ai n unreacte d  and

attached  to the anode formi ng a strong , adherent, an d hi ghl y por ous slime s layer.

The extent to wh ic h this ideal operation ca n be achieved  i n practice  is a  complexfu nc ti on of the lead anode phys ic al meta llu rgy and  of  the electrol ysis con diti ons.

This dissertat ion has focused  on s tudying how the electrolysis cond iti ons affect

the behavior  of  typ ica l lead anodes . The ma i n objectives  of  thi s resear ch were:

1) To analyze f rom a therm odyn amic perspective, the condit ions und er whi ch

hydrolysis  of the  ac id,  precipitat ion  of  secondary produ cts,  and d issolut ion of

noble compounds  can take place .

2) To obt ai n the component s of the anodic polar iza tio n an d relate them w it h:

(a)  transport processes across  the  slimes layer  (b)  hydrolysis  and  secondary

products precipitat ion  (c)  noble compounds dissolut ion  (d)  bu lk electrolyte

composit ion  (including addition agents)  (e) cur ren t densi ty.

3)

  To  formulate  a  mathematical model that  ca n be  used  to  predict

concentrat ion  and poten tial gradients across  the sl ime s layer.

1 If bismuth does not corrode with lead it would enrich at the anode surface until lead corrosion is

stopped.

[1]

Page 28: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 28/392

The  single, most important parameter to study was found to be the ionic

concentration gradients in the electrolyte entrapped within the slimes layer. One

of   the direct  effects  of the presence of   these  concentration gradients is the

precipitation of secondary products within the slimes layer. The characterization

of  these secondary products and their effect on the dissolution of  noble compoundswas studied by several methods.  Among these, transient  DC (direct current) and

AC (alternating current) electrochemical techniques  were used to find the extent

to which precipitation of secondary products and entrapped electrolyte

concentration gradients affect the refining cycle. The electrolyte composition

within the  slimes  and the accompanying potential gradient were  obtained by

mcorporating tap holes in typical lead anodes. The study and characterization of

this entrapped electrolyte required the use of several analytical procedures,

including  titTimetic analysis and atomic absorption spectroscopy. Thecharacterization of the physico-chemical properties of this entrapped electrolyte

was achieved by measuring the electrical conductivity, viscosity, and density of

synthetically prepared solutions whose compositions approximated those of  inner

electrolytes as found from anode tap holes or calculated from theory. In addition

to this, sampling of the  slimes  layer and characterization of the contained

secondary products was an important part of this work. Scanning electron

microscopy and X-ray diffraction techniques were employed to detect the phases

and elements in the  slimes layer.

A  mathematical model based on the Nernst-Planck flux equations was

developed to describe the establishment of concentration gradients within the

slimes  layer.  This  model predicts  these  gradients when combined with

relationships between concentrations and fundamental solution properties (i.e.

activities, mobilities, diffusion coefficients). The full application of this model will

occur only when more experimental data on these fundamental properties become

available.

To explain the presence of secondary products and their stability range from

a thermodynamic perspective, computer generated Eh-pH diagrams were drawn.

[2]

Page 29: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 29/392

Chapter  1  Literature Review

I  Introduction

This chapter deals mainly with the Betts electrorefining process for lead, as

described in the literature. In this process lead bullion is purified by transferringmost of the lead from a soluble anode to a cathode through a lead-containing

electrolyte while leaving behind impurities in an adherent anode slime. The

electrochemistry of this process involves the properties of anode  slimes and of

entrained electrolyte. Thus, the processes of  anodic corrosion of  lead and transport

of  lead ions through the entrained electrolyte are essential to the understanding

of  the Betts process.  In this chapter, the physical metallurgy of  lead anodes, which

affects the  slimes adherence is also discussed.

n

  Metal lurgy of Le ad

Lead is an ancient metal. It was used by the Romans for components  of  their

water distribution systems, and for that purpose it had  to be malleable and ductile

IH. The ancients made lead of acceptable purity probably by smelting lead ores

under conditions that prevented arsenic, antimony, and other hardening elements

from reducing to the metallic phase.  This could be accomplished in most  cases

by producing high lead slags such as those still produced in fire assaying.  In those

days it was necessary to avoid excessive copper in the ore, but arsenic, antimony,

bismuth, nickel, iron,  etc. were reliably held in the slag by maintaining the high

oxidizing conditions of lead silicate based  slags.  Lead recoveries  were low - not

better than 85% from the highest grade hand picked galena ore. When high lead

recoveries  were found to be obtainable by coke-based blast furnace reduction,

lead so produced was too  hard,  usually because  of its copper, antimony, and

arsenic content. The function of lead refining became both a softening process

and  a method of recovering silver and gold [2].

Nowadays the extraction process can be conveniently portrayed in the

two-step flowsheet shown in Fig.  1. The first step involves bullion production from

the sulphide concentrate and the second  step the refining of  bullion to the final

product.

The  conventional route for bullion production requires sintering of the

concentrate to produce a lead oxide containing product, which is then reduced

in  a blast furnace with metallurgical coke to produce lead bullion. The KTVCET

[3]

Page 30: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 30/392

Metallurgy of Lead

and QSL  processes represent two relatively recent commercial developments 131

that replace both the sintering - blast furnace combination with a single furnace

that  treats  concentrates, and reduce both the  costs  of lead smelting and the

environmental impact.

The  KIVCET [4] process replaces the sintering/blast furnace operations witha flash smelting step. In this process, lead sulphide is oxidized to lead bullion and

sulphur dioxide in a stream of oxygen. In a second step, the bullion and slag flow

under a weir to an electrically heated settling hearth where coke breeze or coal is

added to reduce the residual lead oxide in the slag and produce a  final bullion

(for refining) as well as a low-lead slag.

Lead  Sulphide

Concentrate

Bullion

Lead  Bullion

Production

Sulphur

Dioxide

Refining  of

Bull ion

Residues

Fig. 1  Flowsheet for Lead

Extraction fromSulphidic

Concentrates.

99.99+ %Pb

Byproduct

Metals

The  QSL [5] process  consists  of a long, horizontal, tubular,  brick-lined

converter in which lead concentrates are pelletized and injected near one end into

a bath containing lead bullion,  lead oxide - containing slag, and lead sulphide

matte. Oxygen is blown into the bath in the feed injection (and lead - bullion

discharge) zone where it ultimately oxidizes sulphide sulphur to sulphur dioxide

gas. Slag is tapped from the far end of the reactor after passing through a zone

where reducing coal-air mixtures are injected through tuyeres to lower its lead

oxide content.

[4]

Page 31: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 31/392

Metallurgy of Lead

The  refining of bullion is carried out by either a pyrometallurgical route or

a combined pyrometallurgical/electrometallurgical route. Comparisons between

these two routes show that the pyrometallurgical route is usually used when ores

with low Bi content are treated  17,81. The generalized pyrometallurgical flowsheet

is shown in Fig.  2 \ This process consists of a series of  steps which capitalize ona complex  series of  phase relationships to extract all the impurities contained in

the lead bullion down to very low levels. Reviews on the chemistry and technology

of  these refining steps are available in the literature [4,6,9-11].

LEAD BULLION

<Co,Sb.At.SnAg,Au.Bf)[F»^n3/*.01

T

DROSSING

COPPER DROSS

OR  MATTE1T

COPPER DROSS

OR  MATTE

SOFTENING

ANTIMONIAL

 SLAG

l

[Sb]

T

Fig. 2  A   Genera lized Flowsheet for

the Pyrometallurgical Refining of

DESILVERISING

ZINC-SILVER

CRUST

L e a d [6].

1

(ZnS)

IS>I

T

ZINC-SILVER

CRUST

0  brackets indicate  a  major impurity

component

DEZINCING METALLIC ZINC

0  brackets indicate  a  major impurity

component

i

(Bi)

T

[] brackets indica te  a mi nor impurity

component

DEBISMUTHISING

BISMUTH

 DROSS

[] brackets indica te  a mi nor impurity

component

1

<C.Mg)

IZnJb)

T

FINAL REFINING

CAUSTIC DROSS

T

MARKET LEAD

>  99.99% Pb

The  combined pyrometallurgical/electrometallurgical route is shown in

Fig.  3.

 Here, copper dressing is performed to remove the bulk of the copper as a

combination of   matte  and arsenide - antimonide for further treatment,  thus

allowing for the removal of  some  arsenic and antimony. Arsenic and antimony

are sometimes reduced further as sodium arsenate - antimonate dross by oxidizing

in  the presence of caustic soda, because their levels in bullion must be controlled

to produce suitable  anodes for successful  electrorefining practice.

1 Fig.

 2 was

  taken

 as

 is

 from

 the

 literature

 and

 does

 not

 contain inputs required

 for

 material

 balances.

[5]

Page 32: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 32/392

Metallurgy

 of Lead

Molten .crude lead

f

Slag and

 matte

Cu

 recovery

Continuous drossina

 tumace

Decopperized lead

I  Casting

 kettle  I

Anode

 casting machine

Electrolyte

Anode

7 3 _ J  c

I  Electrolytic cell

Scrap

 anode

Mechanical scraper I

Starling sheet kettle

  i

I .Starling sheel machine

^ m

Starling sheet

Scrap

I

Filtrate-

Deposit cathodes

T

Wa

Fig. 3  A Generalized Flowsheet

for the Pyrometallurgical

/Electrometallurgical Refining of

Lead [22].

Cenlrituge

Slime

T

Precious metals recovery

1  Pig castin

kettle  1

1  Casting machine  1

Pig lead

Electrorefining is carried out in either a fluosilicic, fluoboric or sulphamic

acid electrolyte and produces a commercial lead cathode product and an anode

with an adhering slime [12] \ The purity of the produced lead is usually higher

than 99.99% [131. The slimes, representing only 2 to 4% of the anode weight, are

treated by a variety of  processes to recover silver, copper, antimony, gold, bismuth,

and  sometimes tin and indium [ 14-21].

Processes  that entirely avoid smelting (and its attendant gas and dust

treatment  systems  and associated environmental risks), utilizing

hydrometallurgical/ electrometallurgical flowsheets, have also been proposed to

replace the current technology [23]. These include (a) the U.S. Bureau of Mines

ferric chloride leach process [24] which recovers lead via the molten salt electrolysis

of PbCl2,  (b) the Minemet Recherche ferric chloride leach process [25]  which

recovers lead from chloride leach solutions using aqueous electrolysis and (c) the

U.S. Bureau of  Mines process [26] for leaching lead concentrates  in waste fluosilicic

1 Nitric acid media are not suitable because,

 in

 the presence of free

 acid,

 nitrate is reduced (to nitric oxide

gas) at the cathode, preferentially to plating of lead. At higher pH, where the nitrate ion is much more inert

to

 reduction,

 the electrical conductivity of the electrolyte

 is

 much too low for an economic practice.

[6]

Page 33: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 33/392

Plant Practice

 in

 Lead

 Electrorefining

acid with an oxidant (hydrogen peroxide or lead peroxide) followed by aqueous

electrolysis from the fluosilicic acid leach solution. All of  these processes have

been piloted, but none has been commercialized \

HI  Plant Pract ice  i n Lead E lectrore f ining

A detailed description of  the Betts Electrorefining Process  (BEP) can be found

in Betts' book  [271 and numerous patents [28-32]. The fundamentals of the process

described there remain applicable to all the plants which electrorefine lead

nowadays.

The BEP process is used in Canada [33-36],  China [22,37,38], East Germany

[39], Italy [40-42], Japan [43-51], Peru [52-541, Rumania [55.56], Russia [57-591, U.S.A.

[60] and West Germany [61-63]. The average annual production of lead by BEP is

approximately  1,000,000  tons.  Since the production of refined lead in the

non-socialist countries (for which good figures are available) is close to 4,700,000

tons per year [64], it can be assumed that up to about 20% of the world lead

production is refined by the BEP. Two variations of the BEP, the sulphamic acid

and  the fluoboric acid processes are operated in Italy 141] and in West Germany

[61] respectively.

The Betts Electrorefining Process normally utilizes a fluosilicic acid (HaSiFe)

electrolyte containing lead fluosilicate to electrorefine impure lead  anodes  into

pure  lead cathodes. The fluoborate and the sulphamate  processes are identical

to the fluosilicate  process except for the substitution of the electrolyte. Fluoboric

acid has not been used extensively due to its relatively high cost. HBF 4is  a stable

acid with a good electrolytic conductivity and a high solubility of the lead salt. It

is  also  used in lead plating baths  [65-67],  lead fluoborate-fluoboric acid

rechargeable batteries and in the recovery of lead from spent batteries [68-72].

The sulphamic acid process has two main limitations when compared to the

fluosilicic acid process [40,58,73]:  firstly, sulphamic acid decomposes rapidly at

current densities larger than 100 Amp/m 2

 resulting in high reagent replacement

cost;  secondly, the free acid is a crystalline solid of limited solubility, and limited

ionization in aqueous solution, leading to a low conductivity of sulphamic acid

solutions (at most, half  of  the conductivity of equivalent fluosilicic acid solutions).

This results in larger power  costs in refining. The significant advantage of the

1 Commercialization of any new lead processes

 faces

 a lack of need for plant expansion in

 this

 industry

and so must be justified on the basis of conversion or replacement of existing capacity.

[7]

Page 34: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 34/392

Plant Practice

 in

 Lead Electrorefining

sulphamic acid process is that it is the most efficient  process for the removal of

tin  from impure lead (Sn remains in the  slimes) [74-77]. Plants that use the

fluosilicic process remove Sn prior to electrolysis by using the Harris process 1781.

When anodes containing significant Sn concentrations are refined by the Betts

process, tin dissolves with lead at the anode and co-deposits at the cathode. Thelead - tin alloy may be sold, or some post treatment of the cathodes is necessary

to remove Sn [79].

The  wide use  of  H 2SiF 6in lead electrorefining is due to its low cost. Fluosilicic

acid is produced as a by-product of the treatment of phosphate rock in fertilizer

manufacture  [801.  Fluorides and silica contained in phosphate rock form

fluosilicate and are separated from the fertilizer product. Fluosilicic acid is also

produced as a by-product during the dissolution of apatite with sulphuric acid

[54,80]. During  the electrorefining operation, fluosilicic acid is consumed by

entrapment in the anode  slimes  and by volatilization from the surface of the

electrolyte. The acid  develops  significant vapour pressures through volatile

decomposition products according to the reaction,

 H 2 SiF 6  2HF(g)  + SiF 4(g)

SiF 4and HF are both corrosive and toxic and are removed from the tankhouse

atmosphere by adequate ventilation.

Table  1  shows some  of the operating parameters of various lead

electrorefining plants. The wide variation in electrolysis conditions  seen in this

table does not seem to have a strong influence on the final quality of the refined

lead. For example, lead concentrations in the electrolyte can be varied between

30 and 270 g/1 without affecting seriously the refined lead quality. The electrolyte

recirculation rates are also varied widely, with no apparent correlation to other

operating parameters. Extremely high electrolyte  velocities might improve mass

transfer across electrode boundary layers, but can also nullify the additive effects,

worsening the deposit quality and causing short circuits [81].

Table  1 also shows that the current densities employed in the Betts process

fall  in the range of 120 to 230  Amp/m 2 .  Higher current densities  have  been

achieved through the use of galvanodynamic techniques such as current

modulation and periodic current reversal  (PCR).  The current modulation

technique consists of  decreasing the current density (e.g. from 220 to 160 Amp/m 2)

in  small steps [33,87].  Each  constant current density  step  is determined on the

[8]

Page 35: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 35/392

Plant Practice in Lead Electrorefining

(a)

ft

a

G

Q

C0)uJ -l

3O

Va

200

<uo

120

  ft

IH

>

o80

o

•3o

40

 JH

<0

  60 90 120 ISO 180

Electrorefining  Time,  hrs

a

in

Q

C9)IHIH

U

(b)

l

c

,

  extrapolated

  curve

l

c

,  current modulation program

>

aa)

C4

oftIH

>

oT lO

c<

60

  90 120 150 180

Electrorefining  Time,  hrs

Fig. 4  Changes in the anodic overpotential value,  riA,during lead electrorefining [87]

(a) Conventional galvanostatic process (b) Galvanodynamic process in which the cell current is continuously

decreased during the refining cycle to fix the value of   T | A .

basis of an anode overpotential value which increases as the slimes layer thickens

and decreases when the current density is reduced. The upper limit for the anode

overpotential is usually deterrnined by Bi dissolution from the anode. Fig.  4 shows

the current density program that can be applied to the elechrorefiriing circuit

without reaching the critical overpotential value for Bi dissolution. The higher

average current density possible with current modulation reflects in a shorter

electrorefining cycle and higher refinery production.

Periodic current reversal (PCR) in lead electrorefining is widely employed in

China  {381. PCR involves frequent short reversals of the electrolysis current

direction 188]. This reduces the concentration polarization in the slimes layer andlevels  the cathodic deposit by  selectively  dissolving projections.  High current

efficiencies, good cathode quality, low electrolyte  losses, low energy consumption

and  a decrease in the number of short circuits have been reported through the

use of  PCR  [22]. A 16% increase in free acid was found in the slimes layer due to

PCR. [22]

[9]

Page 36: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 36/392

Plant Practice in Lead Electrorefining

T A B L E 1 . B e t t s l e a d e l e c t r o r e f i n i n g i n t h e w o r l d

Takehara. Japan U ]

Chiglrlshlma Japan 1471 Harima,Japan 1*6]

Shenyang Smelter,China  [sal

Electrolyte:

Pb. g/1Total HjSiF,. g/1Free HjSlFj, g/l

Others: rag/1

 Additives  Consumption: Aloes, g/tonLigniri Sulphonate, g/tonGlue, g/tonOthers, g/ton

Temperature, CCirculation Apparatus

236-270

52-61

2-5 Bi. 0.5-2 Cu, 1-2 As,130-200 Sb

600-1100

28-43

75135

35-38

90-100

110-115

1000

40-43

1.8 m'/min x 20 m Head

74104-12438-58

400 Sb, 800 Fe,110 As, 28 Zn.290 Sn. 0.2 Ag

300-450200-300

32-45Pressure Tank withcentrifugal copper

 pump18-251.5-1.7

Recirculation Rate, 1/min Add   loss. Kg/ton

301.6-2.7

402.3

304

74104-12438-58

400 Sb, 800 Fe,110 As, 28 Zn.290 Sn. 0.2 Ag

300-450200-300

32-45Pressure Tank withcentrifugal copper

 pump18-251.5-1.7

Current:

 Amp/m 1, CathodeCdf Voltage, VCurrent, Kw per Generator

Current Efficiency. %Energy Consumption Kwh/ton Pb:Electrolysis Mechanical

120-1400.5-0.6

15000 Amp S70V

95.6-98.7154-15717.8-20.7

1470.47

10000 Amp 9200V

9314330

1850.55

5000 amp ® 50v 13000amp  8

 50v

93175-180

154-1720.46

2800-3500

96.30120-13030-40

Anodes:

Casting Technique

Composition

Length,Width,Thickness,  mm 3

 Mode of SuspensionLife, DaysScrap. %

 Anode Spacing, mm Weight, Kg

Casting Wheel, 18 Moulds

.98% Sb. 0.5% Bi.0.02% Cu. 0.02% Sn.

0.01% As, 67 oz/ton Ag.0.4 oz/ton Au

1150x1000x25-39Cast Lugs

8 (half cycle scrubbing)

380-440

 Vertical Casting With Water Cooling On Top Of

The Mould

1.25%  Sb. 0.12% Bi,0.06% Cu, 65 oz/ton Ag.

0.07 oz/ton Au

1200x800x24cast lugs

730100250

Casting Wheel With WaterCooing On Top And

Bottom  Of The Mold. 15 Mould

.5%Sb. 0.13% Bl. <. 1% Cu. 0.05% Sn.

0.05% As

970x740x35cast lugs

826.5110280

Casting Wheel

.68% Sb.0.073% Cu.0.044% Sn

920x620x23Suspended Lugs

20-2595

140±3

Cathodes:

Starting SheetProduction TechniqueThickness, mm Weight, KgLife, days

0.6-1.010-204-5

.8107

1104

.8-1.8-112.5

Anode Slimes:

Composition

Removed  After ? daysPercentage of AnodesScrubbing Technique

36.9% Sb.  17.4% Bl,12.1%Pb. 3.1% Cu.0.1%  Sn. 0.4% As.8.9% Ag. 0.06% Au

2.4-3.6Rotating Brush

45%  Sb. 4% Bi. 12% Pb.3%Cu. 7-10% Ag,

3.22 oz/ton Au. 30% H O

72.9 1.3

12-15% Pb,8-12% Bl.0.2-0.4% Te

2.51.1-1.4

Tanks:

Length, Width. Depth, cm'

 Number of Anodes, cathodesConstruction Materials

500x130x155

42, 43 prefabricated  concrete,

PVC lining

300x100x150

28. 29vinyl chloride with steel

frame

1150x920x1450(inner size)

asphalt lined  reinforcedconcrete tank

320x75x120

32, 33Reinforced  Concrete

 with asphalt or PVClining

Pb Annual Production, tonPb Average Content %

4500099.999

6800099.999

2700099.999

5445099.99+

[10]

Page 37: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 37/392

Plant Practice in Lead Electrorefining

T A B L E 1 .  Betts  lead  electrorefining  in the  wor ld(continuation)

Cominco,Canadaiss]

"Albert Funk", EastGermanytM]

Cerro dd  Pasco, Peru[881

Kamloka.Japan  [so]

Electrolvte:

Pb.g/lTotal H,S1F„ g/1FreeH,SiF,.g7l

Others: mg/1

 Additives  Consumption: Aloes, g/tonLignin Sulphonate, g/tonGlue, g/tonOthers, g/ton

Temperature,   T!Circulation Apparatus

Recirculation Rate, 1/min Add  loss. Kg/ton

75 (60-80)141

90 (90-100)

8 Bi. 65 Sb, 4000  SiO,.1.6 Cu, 12 Sn. 5 As,17 In, 70 Tl

170 (Aloin)250 (Calcium)

40 (38-43)Centrifugal Pumps

27 (27-45)2

30-50120100

600

35Storage tank with epoxy

lined^gump

15 (32% pure)

7512060

600 HF. 5. Sb. 0.5 BL0 SlOj. solids

550 (Calcium)550

40Centrifugal Pumps

123

7513075

1 Bi. 150 Sb

180600

35-45 Volte Pump 18.5Kw x 2

402

Current: Amp/m 1, CathodeCellVoltaBe. VCurrent, Kw per Generator

Current Efficiency. %Energy Consumption Kwh/ton Pb:

Electrolysis Mechanical

230 (max).3-.5

6300 Amp(5 day), 5400 Amp(7 day)

1000 kw90-95

16850

1850.45150

92

19590

1560.5-0.6

 Mercury Rectifier 1520 Motor generator 360

90

14335

1350.55

20000 Amp O60V

96

165130

Anodes:Casting Technique

Composition

Open Mould  Casting Wheel

1.2-1.4% Sb, 0.4 %As,0.15%BL0.05%Cu,

100 oz/ton Ag

Casting Wheel, 12 Mould

0.5% Sb. 0.3% Ag.0.3% Bi, 0.1% Cu,

0.002% Sn

Casting Wheel

1.8%  Sb. 0.15% As,1.5% Bi. 0.05% Cu.

0.01% Sn. 0.07 oz/ton Au.

140 oz/ton Ag940x690x25

Horizontal Casting WithHorizontal Mould0.4% Ag. 0.3% BL0.1% Cu. 0.6% As,

0.6% Sb

Length.Width.Thickness, mm 3 864x660x30 730x710x25 (immersedsurface)

Suspended Lugs

Casting Wheel

1.8%  Sb. 0.15% As,1.5% Bi. 0.05% Cu.

0.01% Sn. 0.07 oz/ton Au.

140 oz/ton Ag940x690x25 1140x990x20

 Mode of Suspension Lugs Designed  intoCasting

525100206

730x710x25 (immersedsurface)

Suspended Lugs Suspended Lugs Shoulder Type

Life. DaysScrap, %

 Anode Spacing, mm Weight, Kg

Lugs Designed  intoCasting

525100206

640130200

449100150

645110

Cathodes:Starting, SheetProduction Technique

Continuous DrumCasting

 Mechanized  production with on line casting of

ribbon

Continuous DrumCasting

Direct Method Machine

Thickness, mm Weight, Kg

16.3

160-70 (Final Wdght)

.680 (Final Wdght)

.713

Life, days 5 or 7 3 4 6

Anode Slimes:

Composition

Removed  After ? daysPercentage of AnodesScrubbing Technique

40% Sb, 16% As, 13% Pb.2.5% Cu, 2500 oz/ton Ag

5 or 73

Conveyed  By MonorailBetween Rubber

Scrapers

15% Pb. 25% Sb.15% Ag.  10% Bi, 5%Cu

61% (solids)

 pneumatic stripping

28% Sb.  10%  As.24% Bi. 10% Ag.

1.2% Cu. 0.07%^e,0.52 %Te,  18% Pb,

38.4% HjO.  0.4% SIO,44

 Water Sprays

10% Pb,  15% Ag.15% Bi, l%Cu.  20%  As,

20% Sb

61.4

Rotating Brush

40% Sb, 16% As, 13% Pb.2.5% Cu, 2500 oz/ton Ag

5 or 73

Conveyed  By MonorailBetween Rubber

Scrapers

Tanks:Length, Width, Depth, cm 3

 Number of Anodes, cathodesConstruction Materials

268x82x11224. 25

 Asphalt Lined  Concrete(old) Polymer Concrete

(new)

230x80x120 (inner size)16, 17

Rubberized  steel plates

455x95x13040, 41

Glue Lined  Concrete

500x130x16043, 44

 Vinyl Chloride Resinand  Concrete

Pb Annual Production, tonPb Average Content %

14400099.99

1500099.99

7200099.99

3000099.99

[11]

Page 38: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 38/392

Introduction

TV  The Anodic  Process

A.  Introduction

The Betts process, as practiced by all refineries, depends on the formation

of  an adherent, porous anode  slimes layer during electrolysis. The slimes layerconsists of undissolved impurities which are removed mechanically from anode

scrap after the anodes are withdrawn \ If the  slimes do not adhere to the anode

during electrolysis they will settle  through the solution and to  some extent be

mechanically entrained in the cathode deposit. There is no indication in the

literature of a lead refining process in which (as in copper refining)  slimes fall  is

encouraged.  Further,  the recovery of  slimes  from the bottom of the cell (as in

copper refining) is perceived to be more costly. To form an adherent slimes layer,

certain  elements  (mainly As, Sb, and Bi) must be controlled within a narrow

composition range and/or ratio in the anode, and the anode casting process must

be designed to control the rate of solidification to optimize the microstructure of

the cast bullion.

B. The physical  metal lurgy  of the  lead  anodes

The lead anode microstructure that is desired for optimum slimes structure

during electrorefining is known as the honeycomb structure, because it consists

of  uniform size grains of lead surrounded by impurities on the grain boundaries

(Fig. 5). As the lead grains dissolve they leave behind a skeleton of  slimes which

resembles a honeycomb. Any non-uniformity of the matrix will lead to

non-adherence of the  slimes layer, and any precipitates present in this matrix

material will contribute to slimes detachment because of their extra weight.

There are four elements present in the lead anodes that seem to exert a strong

influence on the anodic process: As, Sb, Bi and Ag. The interaction of  these

impurities with each other and with lead can be deduced from the available binary

and  ternary phase diagrams  [89-93],  which  show  that both intermetallic

compounds and eutectic structures maybe present. Three different slime forming

systems have been identified and classified from studies on synthetic anodes [94].

1 During

 normal

 lead

 electrorefining

 practice

 some slimes

 do

 fall, and are cleaned out

 of the cells

 at very

infrequent

 intervals (months).

[12]

Page 39: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 39/392

The Physical Metallurgy of  the Lead Anodes

Fig. 5  Lead anode microstructure. From an anode currently being used by Cominco Ltd. Chemical composition

as described in Table 1. Top view, air cooled side.

1) Impurity phases of the  solid solution type  (SST): the  Pb-Bi  system.

2) Impurity phases of the precipitation type  (PT):  the Pb-Sb system.

3) Impurity phases of the eutectic type  (ET): the  Pb-As and the  Pb-Agsystems.

The strength of slimes adhesion to the anode was quantified by Tanaka [94]

through observations of slimes  fall and slimes morphology. Tanaka summarized

the results of  these studies  with the  following  relationships:

1) The greatest slimes adherence  is obtained when impurity phases of the

SST type are present in the  anode in concentrations  greater  than 0.23% wt.

A  SST concentration lower than this  critical  value produced a slime  that

easily slides off the anode.

2) The addition of a third element to the eutectic systems increases

significantly  the slimes adherence.

3) Water quenching of the  anodes  increase slimes adhesion particularly in

[13]

Page 40: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 40/392

Industrial practice

the FT and ET systems. However, the very small slimes particles formed

during  quenching may  also  promote  slimes  detachment and mechanical

entrainment in the cathodes.

The  increase of  slimes adhesion by water quenching relates directly to thelead anode solidification rate, which influences the growth and distribution of

impurity-containing  phases.  Especially important are the  eutectic  forming

systems where it is known that the solidification parameters (growth velocity,

temperature gradient in the liquid and growth mechanism) and system parameters

(volume fraction and impurities  content)  can lead to anomalous  eutectic

structures 1951. Such structures have been reported to occur in the following

systems (95]1 :

Ag-Pb and Ag-Bi: broken lamellar structure type

Pb-Bi: complex structure type

Pb-Sb: complex regular structure and irregular structure type.

It must be emphasized that even though the physical metallurgy of the lead

anodes  is of great importance to the  Betts  process, there remains a lack of

knowledge in this area.

C. Industrial practice

As Table  1 shows, the range of anode impurities used in lead refining varies

from plant to plant. In every refinery the anode composition is kept vrittiin narrow

limits to obtain an adherent slimes layer. The need for production of  anodes with

homogeneous properties has led to control methods for cooling rates and casting

techniques. In addition to the use of a casting wheel, straight horizontal 144-46]

and  vertical [47] anode casting systems are employed.

Fig.  6 shows the straight type horizontal lead anode casting system currently

used in  Japan.  Although the vertical and horizontal casting  processes were

originally developed to save space (over that occupied by a casting wheel),  they

were carefully designed to achieve uniform cooling rates during the casting of the

1

 A  broken lamellar structure  consists of a near regular array of "broken" plates and occurs in systems

that

 contain less than 10% of the faceting phase [95]. The

  complex structure

  consists of an array of plates

that

 are regular over small areas around a

 well

 defined spine [95].[14]

Page 41: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 41/392

Slimes

 electrochemical behavior

Anode

 Conveying

 System

 Anod*

01 ID

i  i I I T I  J  C

Casting

 Mould

Lifter

Cooling

Lifter

1

Fig. 6 Straight Type Horizontal

Lead Anode Casting System [44]

Electrode

Assembling

Machine

anodes. Such new techniques for anode casting as well as for optimizing heat

treatment have been patented by Japanese companies  1961, but no information

was found that would indicate the nature of  changes in microstructure resulting

from these newer techniques.

D .

  Sl imes electrochemical  behavior

The  slimes  layer formed in the BEP undergoes structural and chemical

changes during its growth. As the slimes layer thickens, the different phases and

compounds present react with the entrained electrolyte creating secondary

products. The Ej, - pH diagram for the  PbSiF6-H 2SiF 6  system  (ion  indicates that

both lead fluoride and silica can precipitate at higher pH values.  This has been

related to the  effect of electrolysis parameters on secondary processes  (such as

these precipitations) that take place witxiin the  slimes  layer during  electrolysis

[97-1001. The transport processes within the  slimes layer in the  context of  these

secondary reactions have also been the subject of several studies [102-108].

A simple physical model to study the role of the slimes layer during anodic

dissolution rate in electrorefining  systems was developed by Reznichenko et al.

[1091. In this model, the slimes layer was represented by a silver gauze diaphragm

(representing the noble impurity) electrically connected to the anode (a highly

pure base metal) and placed at a (variable) distance from the anode corresponding

to the slimes - electrolyte interface. The  distance between the anode and the gauze

was varied to simulate the effect of an increasing ohmic drop between the anode

and  the  slimes  layer.  During  electrolysis, concentration gradients normally

[15]

Page 42: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 42/392

Slimes   electrochemical behavior

present in a  slimes  layer were  replaced by a simple concentration difference

between the solutions on the two sides  of the gauze, and this was related to a

modified Nernst equation:

where:

[A/eJ, /^ concentration and valence of noble metal

[Me,],nx  =  concentration and valence of  base metal

A<t> =  ohmic drop between the base metal and the noble metal gauze

=  rest potential of the metal to be refined

E 2° =   rest potential of the noble metal

Equation  1 shows that the larger the ohmic drop the larger the equilibrium

concentration of ions of the noble metal and the larger its dissolution rate.Although this model oversimplifies the different phenomena taking place within

a slimes layer, it provides an insight as to the effect of ohmic drop buildup in the

slimes layer and  the dissolution rate of  noble impurities normally left in the slimes.

Reznichenko et al.  11091  applied their model to the study of the  Cu-Ag system in

which they found a logarithmic relationship between the dissolution rate of noble

impurities and the ohmic drop potential.

Early research on the behavior of   BEP  slimes has focused on relating the

anodic overpotential to the cathode purity [l io.ni]. Among  the impurities mostclosely followed in the cathodic deposit is Bi [112.1131. Even though the  BEP  has

a large selectivity for the removal of  Bi,  it has been found that towards the end of

the electrorefining cycle such selectivity can be lost.  It seems that the buildup of

concentration gradients and the precipitation of secondary products within the

slimes  layer can initiate  steep  increases or discontinuities in the anodic

overpotential at a certain slimes thickness.  This would produce a large increase

in  the rate of dissolution of such impurities, and subsequently in the deposition

of   impurities in the cathodic deposit. Fig. 7 shows how Bi contamination in the

cathode increases with anodic overpotentials above a  critical value (about 200

mV).  This has been recognized as a general behaviour for  bismuth in lead refining

by  the BEP  [33,87,110, ill].

  On  the other hand, the use of  periodic current reversal

(PCR)  [39,98] has been found to increase the minimum anodic overpotential at

which noble impurities start to dissolve.

...1

[16]

Page 43: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 43/392

Slimes electrochemical behavior

500

Electrorefining  Time,  hrs

Table  1 shows that the  slimes layer weight is only 1 to 4% of the original

anode weight; yet, the slimes occupy the whole of  the original anode volume. This

indicates that the porosity of the  slimes layer exceeds 92% and may be as highas 98% (taking into account a density for slimes phases of about half that of the

bullion). Concentration gradients in the electrolyte confined within this highly

porous layer and the slimes electrochemistry are closely linked.

Wenzel  et al. [97,114,1151  measured the change in composition of the

electrolyte contained in the  slimes  layer as a function of time and of   slimes

thickness.  Fig. 8 shows the sampling method used by Wenzel, utilizing sampling

wells at different distances from the anode surface. Small amounts of electrolyte

were withdrawn through these wells at carefully selected times (to avoid perturbing

appreciably the system).

According to their results, using a range of anode compositions (Bi from 0

to 1.74% and Sb from 0.45 to 3.01%), the more the amount of  secondary solidified

material (SSM) present in the anode, the steeper the pH and the Pb + 2

 concentration

gradient throughout the slimes layer. Also they found that the thicker the slimes

layer the  steeper  the concentration gradients. Fig. 9  shows  these  changes  in

concentration for two different anode compositions. Wenzel et al.proposed that

[17]

Page 44: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 44/392

Slimes   electrochemical behavior

62

Bath level

oCO

o

CM

Fig. 8  Dimensions of  the anodes

used in Wenzel's experiments

showing the position and size of  the

electrolyte sampling wells  [97].

All measurements in mm.

498

i

®::i : : e -  -

tj *i

-e- -Q-

"  T  T

T   * 8

due to the pH increase several reactions may occur: SiF6"2

 decomposition to SiF 4

and  F" (pH > 3); precipitation of Sb 2 0 3  (pH > 4.9) and precipitation of  PbO (pH >

7).Table 2 shows the results of  chemical and diffraction analysis, which seems

to indicate the presence of  these secondary compounds within the slimes layerl

.

From  an analysis of the concentration of noble impurities in the entrapped

electrolyte, Wenzel et al.were able to conclude that when the  SSM exceeded 5%,

as determined from the  Pb-Bi-Sb ternary diagram, permissible impurities in the

anode were too high to obtain an acceptable  impurity level in the refined lead.

1  Note that since slimes oxidize rapidly in air, the analysis may indicate oxide phases

 where

 metallic

phases

 were

 present

 in

 the in-situ slimes.

[18]

Page 45: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 45/392

Slimes electrochemical behavior

Fig. 9 Changes with electrolysis time of  the relative concentrations of  Pb*2 and H* within the slimes layer with

respect to their bulk  values [97,115].

Bulk  electrolyte composition: [PbSiFJ = 0.4 M , [HjSiFJ^ = 0.6 M, T= 35 *C, I = 200 Amp/m2

, Stationary

Electrodes. Vertical Axis: Pb +2

 and H* concentration ratio between the electrolyte sampled within the slimes layer

and the bulk  electrolyte.

(a) Anode with 0.46% Sb and 0.24% Bi (= 1.73% SSM) (b) Anode with 0.92% Sb and 0.24%  Bi (= 3.80% SSM)

Note: No extrapolation of  the inner electrolyte concentrations at zero slimes thickness done here.

Table 2  Chemical Composition and X-ray Diffraction Analysis of the

Lead Anode Slimes [97]

Sample

No.

Anode

Composition

%wt,(rest Pb)

Slimes Chemical Analysis %wt X-ray

Diffraction

Analysis

Sample

No.

Anode

Composition

%wt,(rest Pb)

Pb Sb Bi F Si

X-ray

Diffraction

Analysis

1 0.46% Sb,

0.24% Bi

56.98 7.62 3.95 11.97 6.66 PbO,  SbaOg,

PbF2,  Bi 20 3

2 0.46% Sb,

0.24% Bi

58.02 9.40 4.28 14.09 3.33 PbO,  Sb 203,

PbF2, Pb4Si0 4.

BtjOg

3 0.92% Sb,

0.24% Bi

56.57 6.81 5.55 11.27 6.65 PbO, Sb203,  PbF2,

BiaOg

4 0.92% Sb,0.24% Bi

53.77 9.37 9.20 12.22 4.19 PbO. Sb203.  PbF2,BisOa

[19]

Page 46: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 46/392

Slimes electrochemical behavior

Wenzel's  X-ray  diffraction analysis on the  slimes products agree with the

findings of Isawa et al. 1116,117], who studied the slimes composition of synthetic

and  industrial lead anodes and found the presence of the following compounds1

Metallic Bi: In the  Pb-Bi, Pb-Bi-As,  Pb-Bi-Sb, and Pb-Bi-As-Ag  systemsMetallic As: In the  Pb-As,  Pb-Bi-As,  and Pb-Bi-As-Ag  systems

Metallic Ag: In the  Pb-Ag and Pb-Bi-As-Ag  systems

Also  the presence of the  Bi-Sb solid solution, of the e and e' phases of the

Ag-Sb system, and of water soluble As and Sb (identified as As2

0

3

  and of Sb2

0

3

)

was found in some of the above mentioned  systems and in the  slimes obtained

from industrial anodes [Ii6,ii7].

One  compound that has been difficult to characterize is AgaSb 194], whose

presence has been  detected  in both synthetic and industrial lead anodes. The

morphology of  this compound has been found to be a function of  the anode cooling

rate and of the electrolysis conditions.

The  electrolyte used in lead electrorefining contains impurities  whose

concentration ranges from a few ppm  and several g/1, and have their origin in the

anode from which they are dissolved (i.e.  Cu+ 2

,  Sn+2) or from the acid

manufacturing  process (i.e. phosphorus  species).  Their  steady  state

concentrations  in the electrolyte depend on the electrolysis parameters and slimes

thickness. They can affect both the anodic and cathodic  processes  through

changes in fundamental electrochemical parameters such as the exchange current

density [Q, the symmetry factor (a), and the electrical double layer capacity (CdJ \

Measurement of   these  parameters usually involve transient electrochemical

techniques, such as polarization scans, current interruptions, and AC impedance

studies.

Miyashita  et al. [118-1231 have studied  extensively  the influence of minor

impurities and addition agents  in the electrolyte used in lead refining. These

studies  focused on the determination of the fundamental electrochemical

1 The term electrical double layer is used to describe the arrangment of charges and oriented dipoles

constituting the interphase region at the boundary of an electrolyte [144, p.630]

The exchange current density, i

0

, is a measure of the

 rate

 of

 equilibrium

 potential and sensitivity to

interference

 [145, P.IO]

The symmetry factor, a, determines

 what

 fraction of the electrical energy resulting

 from

 the displacement

of

 the potential

 from

 the

 equilibrium value

 affects the rate of electrochemical transformation

 [144, P.923]

[20]

Page 47: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 47/392

Slimes   electrochemical behavior

parameters  [i^, e.d.l., and a) as a function of  Sn + 2 , Fe + 3,  Zn+ 2  and glue, using a

single current  step  transient method [118].  He found that under an oxygen

atmosphere the presence of the above ionic  species  increased the anodic

overpotential value. Thus, they may inhibit the dissolution of  some noble species

including lead.

Fig .  10  Lead specific weight loss

(corrosion) as a function of the

immersion time in  a2M

Pb(BF4)2-l M   HB F 4 solution in the

presence of  0,2,5, and  10 mM   of

Bi*3

  [66].

50

  100 150 200

Immersion  Time,  hrs

When noble impurities present in the lead anodes transfer to the electrolyte

they can be redeposited by cementing on  less  noble  elements.  While  such

redeposition is obscured  during  anodic dissolution, it can be inferred  from

corrosion measurements in the absence  of a current. For  example, the weight loss

rate for a lead sample in the presence of dissolved bismuth has been observed in

the  HBF4-Pb(BF4)2  system [661. Fig. 10 shows how Bi concentrations as low as2 mM  enhance the corrosion rate of lead.

During  the dissolution of the lead anodes in the  BEP,  bismuth and other

noble impurities accumulate in the proximity of the slimes/bulk electrolyte

interface as well as in the bulk   electrolyte [39,124]. Since these noble impurities

will  deposit on the cathode at their limiting mass  transfer rate, the permitted

[21]

Page 48: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 48/392

Additives control and electrochemistry

electrolyte concentration is related to cathode purity specifications (0.12  mM of

bismuth will typically lead to 10  ppm Bi in the cathode! 124]). They can be removed

by one of two methods:

a) Continuous cementation  [125.126]  through a column filled with lead

particles (Fig. 11).b) Electrodeposition in a separate electrolysis circuit [124]. The purified

electrolyte is then sent to the main electrolyte stream.  This method is being used

in Japan [43].

The  majority of plants that electrorefine lead do not purify their electrolyte,

but rather operate under conditions where the dissolution of noble impurities

from the anode is limited to tolerable levels.

Fig.  11  Continuous purification o f

electrolyte  via  purification co lumn

[125,126].

Continuous Purification

 of Electrolyte via

 Purification

 Column

V  The Cathodic  Process

A. Additives control and electrochemistry

In  the  absence of additives, lead deposits with a very small overpotential,

and tends to form rough, porous deposits or dendrites that result in short circuits.

To obtain deposits that are flat, smooth, and free from projections, special reagents

are added to the electrolyte. These "addition  agents"  increase the cathodic

overpotential (actually called "inhibition"), and change the kinetic parameters (to,

a, and e.d.l.) under comparable electrolysis conditions [120-123].

[22]

Page 49: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 49/392

Starting sheet technology

Polarization measurements have been used for controlling and monitoring

the concentration of additives in lead electrorefining circuits [81.127-129], as well

as for screening of additives in the electrolytic refining of  Cu and for the testing

of   impurity levels in the electrowinning of  Zn [130-135]. A polarization technique

for  determining lignin sulphonate in lead plating baths has also been described[136].  Long term studies and years of  industrial practice, especially by Cominco

researchers  [81,129]  have led to a sufficient understanding of the levelling

mechanisms of lignin sulphonate and  aloes,  to permit the use of polarization

measurements for controlling the concentration of  these species in the industrial

electrolyte for lead refining.  This  additives control is achieved by keeping the

cathode polarization voltage  (C.P.V.) within preset limits, and adjustments are

made by either new additions or by regeneration (in the  case of  aloes) with a

thiosulphate  salt [128]. The level of additives present at a given time is directly

related to the  C.P.V.

B.  St ar ti ng sheet tech nolog y

The  cathode starting sheets used in the  BEP are usually cast on a rotary

drum  casting machine. The  stiffness  of   these  sheets  is increased by adding

approximately 15 ppm  Sb to the melt and by impressing wrinkles on the cathodes

right after they are produced [791. Procedures to avoid dross incorporation in the

lead cathodes have also been developed [137]. In this section of  the electrorefining

process high levels of automation have been achieved [138].

C. Ce ll electrol ysis parameter op tim iza tio n

The  overall electrorefining process has been studied using statistical

correlations of  some of the variables measurable in an operating plant [39.54.98].

To  optimize the electrolysis parameters when the BEP is run at high current

densities (> 200 Amp/m 2),  factorial design of experiments at three levels for four

variables has been used by Lange et  al.[98]. They  varied  PbSiF6  and  H 2SiF 6

concentrations, temperature, and current density, at constant values of  addition

agent (glue), anode composition, cell geometry, and electrolyte recirculation. The

influence of  these parameters on the average anodic and cathodic polarization,

on  the cell voltage, and on the specific energy consumption was obtained by

employing regression analysis correlations. In addition,  changes  in  these

parameters were correlated with the cathode quality and appearance as well as

[23]

Page 50: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 50/392

CeH

 electrolysis

 parameter

 optimization

with the consumption of glue. The optimum electrolysis parameters found for a

current density increase (from 200 to 300 Amp/m 2) were a Pb+ 2

 concentration of

60 g/1 (down from 80 g/1), a glue addition maximum of 1500 g/ton Pb (up from

1250 g/1), a free  H 2SiF 6  content of 120 g/1 (no change) and an electrolyte

temperature of 35 to 40°C. Under these electrolysis conditions, Lange et al. foundthat Sb and Bi slimes layers could be subjected to anodic polarizations as high

as 280  mV without serious impairment of the cathode quality.

140

120

cO

100

CO

ti80

c u

>

O  4 0

o•rH

T3  20

O

ti

-  : ; :

(*)

i  . . . i . . . i . . . i . . . i .. .

Fig. 12 Influence of  the cycle length

and current reversal ratio on the

anodic overpotential value during

PCR  [39].

Bulk  composition and temperature:

[PbSiFJ = 0.29  M,  [HjSiFj] = 0.84  M,

T= 37.5  ' C .

W  f  — 1  =  =  10 sec

< * ) ^  = £ r ^  = 20.ec

1

  backward   1

20 40 60 80 100 120 140

Electroref ining  Time,  hrs

Optimization of the  BEP  through half   cycle anode slimes scrubbing and

cathode exchange was also investigated by Lange et al. [98]. Not only did the specific

energy consumption decreased by the implementation of this procedure, but

highly pure cathodes were assured by avoiding anodic overpotentials in excess of

the preset limits for impurities dissolution.  On the other hand, the exchange of

cathodes and the half  cycle scrubbing of  the anodes incorporates labour increases

making  implementation difficult. The use of this technique is necessary when

anodes containing high impurity levels (>5%) are to be treated. For example, in

Russia  [57], lead anodes containing as much as 15% Bi are scrubbed every 48

[24]

Page 51: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 51/392

Bipolar

 refining of lead

hours  during  the 6-day long anode cycle. In addition to this, cathodes are

exchanged daily to avoid short circuits and to obtain a deposit of  acceptable purity

[57].

Lange et al. also studied the use of  PCR  in the BEP.  Fig. 12 shows the anodic

overpotential dependance on the  PCR  parameters. Thiet [39] found that the useof PCR  decreased the anodic overpotential values. The reduction in the anodic

overpotential values did not reflect in lower PCR  energy consumption probably

because it was  offset by unproductive energy consumption during  the reverse

current phase of the cycle. Thiet also showed that the quality of the PCR  cathode

deposits was very high [39].

D.  Bipolar ref ining of lea d

Among other alternatives to optimize the lead electrorefining process, theuse of a bipolar configuration looks most  promising.  In this configuration only

the terminal electrodes are connected to the source of  current.  Between  these

electrodes a large number of  bipolar electrodes can be incorporated. One side of

these electrodes will corrode anodically, while pure lead will deposit on the other

side. The Impurities will be left behind as a slimes layer on the anodic side. The

advantages of  operating the BEP in a bipolar mode include PCR, C.P.V., optimum

lead  and free acid contents, and the use of  jumbo  electrodes (~4m2, possible

because there are no bus-bar connections)\ The process has been operated in a

pilot plant where it proved to be superior to the parallel process [1421. The rationale

for  the current use of the  parallel system is that a high economic investment is

required for the substitution and implementation of the bipolar process. If new

plants to electrorefine Pb are to be constructed in the future, very likely they will

be assembled on the bipolar configuration.

1 In the bipolar

 mode

 by-pass currents are reduced by increasing the area of the electrodes so that the

ratio of bypass to electrode area

 in

 the cell decreases.

[25]

Page 52: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 52/392

Chapter  2  Fundamentals of the Ele ctr och emi cal Measurement

Procedure

Early  in the development of this project it was found that the  form of ionic

concentration gradients within the lead anode slimes layer needed to be studied.

To study these concentration gradients without causing major disruptions to the

system, "in-situ" experimental techniques  were  considered.  Among  these,

transient electrochemical techniques appeared to be particularly advantageous

and  consequently  were  used  extensively  in this work. The study of the

electrochemical response of typical lead  anodes  was complemented by

measurements on the physico-chemical properties of  H2SiF6-PbSiF6  electrolytes.

What follows in this chapter is a description of the electrochemical parameters

germane to this work, and of the transient techniques that were used.

I.  Components of the An od ic Over poten tial

The  anodic overpotential was measured by following the difference in

potential between the lead anode ("working electrode") and a suitable reference

electrode. A high purity lead wire located within a Luggin capillary and contacted

with cell electrolyte was chosen as the reference electrode. Its use was possible

because of the high reversibility of lead in the  H2SiF 6-PbSiF6  electrolyte system.

Furthermore, the amount of  current that passes through the reference electrodeis limited to the current drain  of the meter (a few nanoamperes). The "anodic

overpotential" \  T\ A , measured by such an electrode would  also be free of any

 junction potential between its tip and the slimes/electrolyte interface provided

the  bulk   electrolyte is well mixed. In the present work   (unless  specified) all

potentials are given with reference to such an electrode. The third  electrode (a

lead  foil  counter electrode) is required to complete the electrical circuit. The

electrochemistry of this counter electrode is of no importance to the anodic

processes. Fig. 1 shows a simplified view of this three electrode arrangement.

The  anodic overpotential measured under constant current conditions

increases continuously as the slimes layer thickens during the refining cycle. The

build up of concentration gradients in the proximity of the anode/slimes interface

1 This "anodic overpotential", r\ Al  or potential difference between the anode and the reference electrode,

includes an ohmic

 component, x\a , and long range potential gradients as well as interfacial overpotential

components.

[26]

Page 53: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 53/392

changes the value of  T | A mainly through changes in its migration and concentration

overpotential components. Additionally, an ohmic contribution is included in this

TJ a  measurement.

Fig.  1  Electrochemical  Cell ArrangementThe importance of the ohmic component in electrochemical measurements

is evident by the number of  studies that have been conducted in order to assess

its  effect  [1-91.  According  to Vetter [ioi the ohmic component is not a real

overpotential because its presence does not have any influence on the rate or type

of   electrochemical  processes  under investigation.  Ohmic  drop or resistance

polarization can be separated from migration and concentration overpotentials

only in regions where the electrolyte composition is uniform as  between  the

reference electrode tip and the slimes/electrolyte interface.

Concentration  overpotential, ric, is the Nernst potential generated due to

activity differences of the electroactive ion. Its presence is  primarily due to the

limitation in the ionic transport of  species moving from or towards the working

electrode surface. When this concentration overpotential occurs in the presence

of  concentration gradients of  non-electroactive ionic species, a migration potential

[27]

Page 54: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 54/392

gradient \  AO, is generated. The migration potential arises concurrently to  TJC.

Thus, by subtracting the value of  r|Q  from the r\ A measurement, an overpotential

value consisting of  T]C and AO is obtained.

An  additional contribution to the anodic overpotential, the activation

overpotential, t|ac, is a function of the transport rate of charge carriers across theelectrical double layer. The larger the hindrance for this transport process, the

larger T|A C will be. By measuring the difference in potential between the working

electrode and a point located very near its surface, the value of  T]AC is obtained.

The presence of other contributions to T| A (crystallization, reaction) will not

be described here, as they are unimportant for lead. Vetter [io] establishes  the

conditions upon which these components are to be taken into consideration. We

assume that the contributions of  these overvoltages to T|A are either negligible or

can  be incorporated within T]AC  or r\c .

n.  Transient E lec tro chem ica l Techniques

The  amount of information that non-transient electrochemical techniques

are able to provide is rather limited [ 11-14]. Significant enhancements  in electronics

in the last 25 years have supplied the electrochemist with a wide range of  transient

techniques. Reviews on the use, applications, and limitations of  these  techniques

are available [11.15-21]. Among these transient techniques, current interruption

and AC  impedance  were used  extensively  in this work. These techniques  were

chosen due to their potential for resolving the  T\ A components.

 A . Current interruption  techniques

Current  interruption techniques go back as far as 1937 [221. The original

driving  force for their implementation was to obtain the value of the

uncompensated ohmic  drop,  T| N . Further  research has demonstrated that by

studying the polarization decay curves and their dependance with time, kinetic

and mass transport information can be obtained [23-30]. When several phenomena

are superimposed, interpretation of the current interruption decay curves is not

straightforward. For example, Newman [7,31] and other researchers [3,27,32] have

stressed the fact that upon current interruption, internal currents may not be

1 The migration potential,

 <t>

 can be calculated by solving the Nernst-Planck flux equations. Appendixes 1

and 2 describe how

 these

 equations can be solved.

 A4>

 can be neglected in the presence of a substantial

excess of supporting electrolyte.

[28]

Page 55: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 55/392

halted instantaneously.  This will be the case if contained electrical double layers

are not uniformly charged \ The relaxation time required for the double layer to

equilibrate can be estimated from the following relationship   2 :

TD  = . . . 1*  K

The  discharge of the double layer can  also  take place through Faradaic

reaction. The time constant for this reaction can be estimated using the following

equation:

T/

  Ft. -

Z

The  third major process that can take place upon current interruption is the

relaxation of concentration gradients. The time constant for this unsteady state

process can be estimated from the following relationship:

 X "   = D -  3

Upon  disappearance of the external current,  r\a  will vanish almost

immediately (in < IO"2  msec)  [3413.  On the other hand, residual charge

arrangements in a supposedly  uniform charged electrolyte may affect the rate at

which i] a  vanishes.

Typical values for x f  and x 

R are close to 0.5 msec [7]. Thus, the electrical double

layer will be equilibrated and discharged in approximately 1 msec. After this time,

concentration gradients will relax. The larger the time constant the longer it will

take for the  system to reach its open-circuit or equilibrium potential. Another

process that can take place upon current interruption is the dissolution and/or

re-precipitation of secondary products within the slimes layer. This process may

originate one or several potential arrests  [351 *.

1 Double layers may not be uniformly charged if the difference in potential at the electrode/solution

interface is not uniform.

2 L

 is the characteristic length

 that

 controls the current

 distribution [20,33].

3 In

 electrolytes of

 uniform

 composition, potential

 drops upon

 current interruption

 have

 time constants of

the order of 7x10* msec

 .

4 These potential arrests are sometimes referred as Flade potentials.

[29]

Page 56: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 56/392

An  estimation of the time required to relax the concentration gradients

present within the  slimes layer can be done by using  Eq. 3. Assuming that the

entire slimes layer can be considered as a "nearly" stagnant environment and  that

 D is of the order of 10"5  cm 2/sec, we get for a 0.1 cm slimes thickness a value of

V  of 1000 sec. This shows that long relaxation times are required for the levellingof   the concentration gradients present within the  slimes  layer.  Thus,  current

interruption  for short periods of time (~ 0.3 sec) during the galvanostatic

dissolution of lead anodes was not expected to change the  system appreciably.

The  information provided by analyzing short interruptions was supplemented by

following, for selected cases, the decay in potential over extended periods of time

(several days).

The  experimental  set-up (using a Wenking potentiostat)  allowed the decay

potential to be followed from about 0.5  msec  after current was interrupted.

Oscilloscope traces at shorter times after current interruption showed that the

potential at time zero could be obtained by linear or exponential approximation

of   the decay curves in the vicinity of the current interruption. These  studies

resulted in a semi-quantitative picture of the transport processes taking place

within the lead anode  slimes layer.

It has been shown [1,36-39] that analysis of  the potential decay curves obtained

upon current interruption is more easily accomplished when the time-domain

data1  are transferred into the frequency-domain through the use of   Fourier

transformations. Both analytical and numerical transformation of the

time-domain generated data can be performed. Matching transformations on

equivalent electrical circuits selected by trial and error must be found to interpret

the data in terms of electrical components such as resistors and capacitors. The

input and output signals are subjected to Fourier transformation (i.e. one-sided

Laplace  transformation) and a transfer function is obtained. In the  case  of a

current interruption experiment, both potential, e(t) and current, i(t) are Fourier

transformed to obtain the system impedance from their ratio. Appendix 3 shows

how the response to current pulses of a simple  RC circuit was analyzed in the

frequency domain. Numerical Fourier  transformation of   some  of the current

interruption data generated in this work  was carried out by using the Fast Fourier

1

 The

 time

 domain data

 refers

 to the potential and current transients dependance

 with time. When these

data are Fourier transformed, the frequency spectrum of the system is obtained (time-domain o

frequency-domain). For

 a

 more complete description of

 this

 transformation see appendix 3.

[30]

Page 57: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 57/392

Transform  (FFT) algorithm [40-43]. The software packages used in this work

incorporate this algorithm1

. Knowledge of  the FFT algorithm, its application range

and  limitations, are required to understand the data generated. Appendix 3

reviews  some  of the relevant  steps  required for implementing the  Fourier

transformation.

B. AC impedance techniques

The  use of   AC  impedance to study electrochemical  systems  spans over a

period of more than 100 years. Kohlrausch, as early as 1854 [44] proposed its use

for the determination of the electrical conductivity of electrolytes.  Later, with an

AC bridge, he obtained the conductivities of a large number of electrolytes [45],

Contributions  by  Warburg [46] and Randies [47] set the theoretical and

experimental foundations  from which AC impedance measurements have evolved.Nowadays, the technique is routinely used for the analysis of a wide range of

electrochemical  systems [48-54]. Electrical  engineering theory has been heavily

used by electrochemists to interpret the results, and reviews on its characteristics,

advantages, limitations, and implementation can be found in the literature

[14.19,48.55-57].

In a typical AC impedance experiment, a small sinusoidal signal (either voltage

or  current) is applied to an otherwise  DC system. The AC output response is

followed as the frequency of the input signal is changed. The ratio of the input

and output signals is known as the transfer function [58,59]. Thus, the impedance,

Z(jco), is a transfer function. The system response can be assumed to be linear by

limiting the amplitude of  the input signal to a few mV (or a few mA). The possibility

of   obtaining an electrical analogue circuit by using  AC impedance is a strong

driving force for its application. Knowledge of this analogue allows the modelling

and  prediction of the output signal when the input is known.

The  linkage  between  current interruption and  AC impedance techniques

arises through the use of the transfer function. Theoretically, upon  Fourier

transformation of the current interruption data, the transfer function obtained

should match the one obtained by AC impedance. That this connection exists is

shown in appendix 3. On the other hand, experimental artifacts make the analysis

of  data generated in the time-domain valid only for a very limited frequency range

1

 Asyst* version 2.10 and Asystant* version 1.02.

[31]

Page 58: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 58/392

[40,60-62].  In addition to this, the time span required for an  AC  measurement is

several orders of  magnitude larger than the one required for a current Interruption

measurement.

AC impedance is the best technique available for the determination of  i\a [64].

The  resistance  polarization value obtained using this technique should coincidewith the value obtained from current interruption experiments [65].  Kinetic and

mass  transfer information can also be readily obtained using this technique

[53,66-68].On the other hand, most of the impedance theory developed so far has

been focused on the study of  very dilute solutions [191 and solid electrolytes [16].

/ . Aims and  limitations of  the AC  impedance studies

AC impedance studies are aimed  at finding an electrical analogue that can

be used to study how different physico-chemical (and in some cases mechanical)parameters affect the response of a system given a certain input function. A

comprehensive analogue model ought to be able to incorporate as many

parameters as variables are in the system. It also should predict the output of

the system given the characteristics of the input function.  Like  any other

mathematical model, an analogue model is established using assumptions which

are based on prior knowledge of  some of  the fundamental properties of  the system.

A wide variety of  electrical analogue circuits can  match the response of  the system

but  only a few could represent the physico-chemical process involved (withoutaccounting for different interpretations for the same circuit). An indication that

the model is appropriate is that the electrical parameters ought to change as the

physical variables are altered. Thus, the main limitationoi  the impedance studies

is a function of how ambiguous are the parameters involved in the circuit. Other

limitations arise in unstable systems in which the parameters change faster than

the  AC measurement, decreasing the frequency in which the  AC spectra can be

accurately measured. The search of an electrical analogue that matches the

response of the system has also been extensively pursued using  DC  transient

techniques such as current interruption [8,69,64]  and small amplitude cyclic

voltammetry  (SACV) [70,71].  DC  and AC  studies have been used concurrently to

better characterize the system under study [15,72].

In  the Betts process,  AC  impedance measurements were made across the

slimes layer at preset slimes thickness. Changes in the impedance values were

related to concentration gradients, precipitation of secondary products, and

dissolution of noble compounds.  From  these  studies, kinetic parameters

[32]

Page 59: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 59/392

(exchange current densities, double layer capacities) were determined. Linearity

in  the system  response  was assumed  by limiting the amplitude of the input

sinewaves to very small values  (less than 5 mV R.M.S.  for potential controlled

experiments  and less  than  35  Amp/m 2

  R.M.S.  for  current controlled

experiments).  r\a  values were obtained from both AC impedance measurements

and  a  current interruption routine built into  the  Solartron electrochemical

interface.

The  search of  electrical analogues that match the response  of the system

and  have physical meaning is strongly pursued in this thesis.

[33]

Page 60: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 60/392

Chapter 3: Exp eri men tal Procedure

I.  E lec t rochemica l  Experiments

A. Electrochemical  cells

1. Beaker  Cell

A I L  wide mouth (0=11  cm) polyethylene   1 beaker was adapted to function

as electrochemical cell (Fig. 1). This cell was used to study the anodic behavior

of   small working electrodes (i.e. working electrodes whose geometric area 2 was

between 1.4 and 3 cm2). A Lucite tight cover was used to hold the electrodes in

a fixed position and to avoid loss of water due to electrolyte evaporation. The

cover had holes through which the electrical connections to the  electrodes and

the  tubes used for electrolyte sampling were taken out of the cell. Previous toeach experiment the cell was thoroughly washed several times using deionized

water. After the cell was  dried, the electrodes 3 were firmly positioned In the cell.

Then  the electrolyte was introduced to the cell through a plastic tube.  During

the experiment, this tube was used to obtain bulk  electrolyte samples. Electrolyte

was added only at the beginning of the experiment in volumes that ranged

between 320 and 400 ml. Mixing of the bulk electrolyte was by either magnetic

stirring4

  or recirculation5,6. Electrolyte recirculation provided the  best

experimental reproducibility and was preferred to magnetic stirring. After  theelectrodes were positioned and the electrolyte introduced, the cell was covered

and  sealed using generous amounts of silicone rubber 7 .  Only after the silicone

rubber had  "dried to touch" (i.e. after approximately 2 Hrs.)  was the cell immersed

in  the constant temperature water bath.

1 H

2

SiF

6

 containing solutions

 can

  etch

 glass [1]. Thus,

 glass laboratory

 ware was

  avoided

 as

 much

 as

possible.

2 Geometric areas do not consider

 surface

 rugosities.

3 Electrodes were

  immersed in a 10% Vol  HN0

3

 solution and washed with deionized water prior to

 their

introduction to the cell.

4 Magnetic

 stirrer bar

 coated

 with Teflon* (1=2.54 cm, 0=0.95 cm)

  spinning

 at low  speed by using a

Tek-stir magnetic

 stirrer

 model S8250-1.

5 As

 illustrated

 in Fig. 1 electrolyte was  recirculated through plastic

 tubes

 located at opposite sides of the

cell

 and at different

 electrolyte

 depths.

6 Electrolyte

 recirculation

 rates

 were

 between 5 and 6 ml/min. A

 Masterflex pump

 catalogue No.

 7553-20

and  Masterflex Tygon tubing

 catalogue

 No. 6409-14

 were

 used.

7 100%

  silicone rubber,

 RTV

  Silastic

  732.

[34]

Page 61: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 61/392

Rectangular cell

F i g .  1  Assembly used  in the

experiments performed with

the beaker cell

(A )  W o r k i n g  electrode

(B)  Coun ter electrode

(C ) Refere nce electrode

(D)  C u  wire

(E)  Plastic  tube  used to

 wi th dr aw bu lk

electrolyte   samples

(F) Electrolyte

recirculation   inlet

(G) Electrolyte

recirculation outlet.

2. Rectangular  cell

Rectangular Lucite cells were used to study the electrochemical behavior

of  working electrodes whose exposed geometrical area ranged between 30 and

40 cm2. Fig. 2 describes the dimensions and design features of this kind of  cell  \

A Lucite tight lid was used to cover the cell. In this lid, holes of  appropriate size

were drilled. Through these holes, the electrical connections to the electrodes

and  the tubes used for electrolyte sampling were taken out of the  cell.  Bulk

electrolyte was  recirculated2  using  lateral  cell inlet and outlet facilities.

1 Cell dimensions were modified according to the  characteristics of the experiment. Fig. 2

 shows

 the

actual

 dimensions of the electrochemical cell employed in experiment LC2 to be discussed extensively in

Chapter 4.

2 Electrolyte

 recirculation

 rates

 were

 between

 5 and 6 ml/min.

[35]

Page 62: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 62/392

Rectangular cell

Electrolyte  from  the top of the cell was brought to the bottom continuously.

During the electrolysis of lead electrodes, electrolyte samples taken at different

cell locations showed no significant concentration differences.

Fig. 2 Assembly used in the

experiments performed

using the rectangular cell

(A)  Working electrode

(B)  Counter electrode

(C)  Reference electrode

(D)  Cu wire

(E)  Plastic tube used to

withdraw bulk

electrolyte samples

(F)  Electrolyte

recirculation inlet

(G)  Electrolyte

recirculation outlet

(H)  Lucite side walls

(I)  Lucite strips.

Drawings are not scaled.

All measurements in mm.

(A) Cell tridimensional view

(B) Lateral view(C) Frontal view.

Fig. 2 shows the position of the two small Lucite strips used to support the

anode. The presence of  these strips allowed the electrolyte entrapped within the

slimes layer to flow downwards. Additionally,  wide  Lucite  strips were used to

center the anode in the cell and to improve current distribution. Electrolyte

volumes were fixed at the begirining of the experiment and ranged between 300

and  400 ml.  When bulk   electrolyte samples were withdrawn  from  the cell,electrolyte of the  initial composition was added to the cell to maintain constant

the electrolyte volume. As in the beaker cell case, after the electrodes were placed

and electrolyte added, the lid was fitted to the cell and sealed afterwards using

silicone rubber. Again, only after the silicone rubber had dried to touch, was the

cell immersed in the constant temperature bath.

[36]

Page 63: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 63/392

Materials

B. Electrodes

1. Working  electrodes

(a) Materials

Working electrodes were produced from pure lead1

 and from typical leadbullion  anodes  provided  by  Cominco  Ltd.  Typical  anodes used in the Betts

electrorefining process were taken from the anode refining wheel and some of

its sections were sent to UBC. No particular details regarding the anodes cooling

rates or about the  pyrometallurgical  steps  previous to their casting were

provided. According to Cominco, the anodes were cast under normal operating

conditions and  that's where the term "typical" comes from. The electrochemical

studies here pursued required the anodes to form strong and  adherent slimes.

As was later found, this set of  anodes did produce slimes which did not fall fromthe electrodes and remained attached to them during the dissolution stages.

Anode "A"

A.1

Anode  "B"

B.1  B.2

Fig. 3  Sections of  the lead

bullion anodes used to prepare

working electrodes.

Fig. 3 shows the anode sections that were cut from the anodes and sentto UBC. The anode A strip was sent in July 1986. This strip was cut in smaller

pieces and from the area indicated in Fig. 3A, electrodes were produced. Sections

of  anode B were sent in March  1987. From anode B, electrodes were produced

mainly  from  its center  part  (section B - l shown in  Fig.  3B). The  working

electrodes were prepared so as to study the electrochemical behavior of the

1 Pure

 lead working electrodes

 were

 made out of Tadanac ingots (Pb >99.99%)

[37]

Page 64: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 64/392

Pure lead

 working

 electrodes

"mould" cooled anode face and the  "air" cooled anode face.  Thus,  electrodes

were fabricated by cutting perpendicular sections of the anodes. Depending on

the type of electrochemical cell employed, different electrode sizes were used.

(b) Beaker  cell

Small working electrodes  whose exposed geometric area ranged between

1.4 and 3 cm2

 were prepared as follows:

(I) Pure lead  working  electrodes

Electrodes were made by cutting small pieces of  the pure lead ingot. These

pieces were machined to form rectangular shaped electrodes. The machining

marks on the electrode  sides were removed by pohshing the electrode using

the 600 grit. The electrical contact was incorporated by soldering a Cu wire to

the back of the electrode. Subsequently, the electrode was encapsulated with

epoxy resin1

 exposing the electrode surface by polishing away the unwanted

resin. The exposed surface was polished again using the 600 grit.

(II) Lead bullion working  electrodes

Rectangular shaped electrodes were cut and machined out of the anode

sections previously described. The electrode face to be exposed directly to the

electrolyte (either the air cooled or the  steel cooled face), was not machined.

The  deformed layer produced by the cutting and machining operations was

removed by polishing2

. Electrical contact was made by either soldering a Cu

wire to the back of the electrode or by pressure contact. The later technique

was preferred due to the fact that the soldering process through heating, may

affect the phases originally present in the anode. The pressure contact electrical

connection consisted of  manually pressing a bundle of the Cu wire strands to

the back of the electrode and using acrylic tape to sustain the contact. The

electrode was then mounted in epoxy resin and the unwanted resin was

polished away. The exposed electrode surface was polished with the 600 grit.

(c) Rectangular   cell

Medium size electrodes whose exposed geometric area ranged between 30 and

40 cm 2 were prepared as follows:

1 Acrylic plastic

 resin:

 Quick

 mount®

 self-setting

 resin

2

 The deformed

 layer

 was measured metallographically and in some cases was as thick as

 0.1

 mm.

[38]

Page 65: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 65/392

 Relgrence electrodes

(I) Pure lead  working  electrodes

Electrodes were cut and machined out of  pure lead ingots as in the beaker

cell case. The machining marks were removed by polishing using the 600 grit.

Electrical contact was made by using two Cu rods. These were screwed-in to

the top of the electrode. One of  these rods was used to carry current and the

other to measure the electrode potential. The lateral electrode surfaces were

covered with silicone rubber. The bottom, top, and one of the electrode faces

were not coated with silicone rubber.  Thus,  only the bottom of the electrode

and  one of its sides were directly exposed to the electrolyte.

(//) Lead bullion working  electrodes

Electrodes were prepared out of the anode sections in the same way pure

lead anodes were produced. To sample the electrolyte present in the slimeslayer, and to follow the inner slimes electrode potentials, holes were drilled in

top of  the anode \  Though these holes, plastic tubes were inserted. These tubes

were used either to extract small amounts of electrolyte  2  or to insulate the

pure lead wires. Additionally, one of  these holes was used to insert a Pt wire.

This wire was used to study the electrical conductivity of the slimes layer3.

The  Pt wire did not have any insulation and during some experiments it was

moved to other locations where slimes were present.

2. Reference electrodes

A pure lead wire 4

 was used to measure the difference in potential between

the bulk  electrolyte and the working electrode. This wire was mounted in a plastic

tube (0=2 mm). The tube was bent at one end, and a plastic t ip 5

 was inserted

there. Fig. 4 illustrates this Luggin-Haber reference electrode arrangement. The

reference electrode tip was placed between 2 and 5 mm away from the original

position of the working electrode. This distance remained constant  during the

1

 Size and location of the holes is provided

 when

 specific experiments in which electrolyte samples were

taken and inner potentials obtained are analyzed.

2 From the inner slimes layer 100 u l of electrolyte were

 slowly

 extracted (over a period of 3-6 hours). A

100

 u.L Unimetrics

 removable needle

 syringe was used to

 withdraw

 the inner electrolyte samples.

3 The difference in potential between this wire and the anode was used as an indication of the slimes

layer conductivity.

4 Johnson Matthey,

 99.95% Pb, 0=1.0 mm.

5 Eppendorf pipette tips 5-100

 |xL

[39]

Page 66: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 66/392

Counter  electrode

experiment. The tip of the reference electrode was located facing the geometrical

center of the working electrode.  After  the cell was assembled and the  bulk

electrolyte had penetrated the reference electrode compartment, this was sealed

by using silicone rubber. Thus, the electrolyte  surrounding the lead wire had the

same composition, temperature, and atmosphere as the bulk   electrolyte.

A

 /

Fig. 4  Detail of the Luggin-Haber

reference electrode arrangement

B

/  (A) Pure lead wire

/  (B) Plastic Tube

/  (C) Eppendorf  plastic tip.

0!=1.3±O.2 mm, 02=0.5+0.2 mm

c

1 ..« ,*«H J

In  the experiments1  in which the difference in potential  between  the

electrolyte solution present in the slimes  layer 2

  and the working electrode was

followed, pure lead wires were also used. Plastic tubes (0=1.3 mm) were inserted

in the previously drilled holes up to @2 mm away from the bottom of the holes.

Then,  the lead wires were inserted up to @2mm away from the lower end of the

plastic tubes.  This particular set-up was chosen to avoid prohibitive corrosion

of  the lead wires  during the dissolution of the working electrode.

3. Counter  electrode

Pure lead foils 3

 were used as counter electrodes. In the beaker cell case the

lead foil surrounded the working electrode 4

  whereas in the experiments which

1

 This sort of experiments were only carried out

 using

 the rectangular electrochemical cell

 in

 which the

size

 of the working electrode was large

 enough

 to incorporate these potential measuring probes.

2 The electrolyte entrapped within the slimes layer will be called  slimes electrolyte .

3 Lead foils whose lead content was greater than

 99.95%

4 The working electrode was concentrically placed

 with

 respect to the counter electrode.

[40]

Page 67: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 67/392

 Electrolyte

used the rectangular cell, the lead foil was located facing the working electrode

and  @42 mm away from it. In both cases, the area of the counter electrode was

larger  than the area of the working electrode.  This  was done to improve the

current distribution and also to avoid formation of dendrites. When the beaker

cell set-up was used, the geometric area of the counter electrode was between10 and 15 times larger than the exposed geometric area of  the working electrode.

In the experiments performed using the rectangular cell, counter electrode areas

were between 1.2 and 1.4 times larger than their working electrodes counterpart.

In all the experiments, electrical contact was incorporated by soldering a Cu wire

to the counter electrode. The place where the electrical contact was made was

isolated from the electrolyte by a silicone rubber coating.

C.  Electrolyte

Technical H 2 S iF 6

1  obtained as a by-product of the treatment of phosphate

rock  [2] 2 was neutralized with either PbC0 3  or PbO to prepare mother electrolyte

solutions. The reactions that take place upon neutralization of the acid are:

 H 2 SiF 

6 +PbC0

3  => PbSiF 

6  + H 20+C02 . . .1

 H 2 SiF 6   + PbO => PbSiF 

6  + H 

20  ...2

Upon  neutralization, several insoluble compounds precipitate3. These

precipitates  were  removed by filtering using Whatman paper #40.  After  this

operation, a nearly transparent electrolyte solution is obtained. Depending on the

acid strength of  this solution, Si0 2 nH 2 0 colloidal particles may be observed 13-7] *.

1

 Acid

 composition: 2.03 M  H2

SiF

6

 and 0.40 M Si0

2

. This acid was provided by Cominco Ltd.

2 Phosphate rock is treated

 with H

2

S0

4

 to produce HF which is later contacted

 with

 Si0

2

 to

 produce

H

2

SiF

6

.

 The sequence of reactions that take place is [2]:

Ca]0(PO4)sF2+10//2SO4+20//2O =>  \0CaSOt -2H 2O+6H^POi +2HF ...a

6HF + Si02  => H 2 SiF 6  + 2H 20 ...b

 H£iF 6   => SiF  A T +2HF   ...c

3SiF t  + 2H 20  => H 2 SiF 6  + Si02  ...d

3 Depending on the extent of the neutralization of the acid, a mixture of lead oxides and fluorides in

addition to silica compounds can precipitate.

4 The presence of colloidal Si0

2

nH

2

0

  in

 this system has been reported

 in

 the literature

 [3-7].

[41]

Page 68: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 68/392

 Electrolyte

 A titrimetic analysis routine was set up to analyze the electrolyte for H 2SiF 6,

Si0 2,  HF, and PbSiF6.  In this routine, Pb is analyzed via complexometric titration

with EDTA [8,9]. H 2SiF 6 , Si0 2, and HF (if present) are determined by titration with

LiOH.  Details of this procedure are provided in Appendix 4.

To obtain electrolytes  of  the set compositions, the mother electrolyte solutionswere diluted with H 2SiF 6 and deionized water \

Additives were added to the electrolyte in selected experiments. The additives

used  were aloes 2  and calcium lignin sulphonate 3 . These additives were added

from a mother solution at the beginning of the experiment. Precipitates formed

due to the additives addition were removed by filtering the electrolyte  prior to its

introduction to the electrochemical cell.

The  electrolyte samples withdrawn from the  slimes layer were analyzed by

using Atomic Absorption Spectroscopy  (AAS)4  and specific ion electroanalytical

techniques. In these samples, Pb was determined via AAS using the absorption

line at 283.3 nm.

In the Sb determination via AAS,  matrix effects can affect the analysis [ioi.

Thus,  Sb standard solutions were prepared by adding known amounts of  PbSiF6

and H 2 SiF 6 so as to match the lead and acid content of  the samples.  The absorption

line at 231.1 nm was used to determine Sb via AAS.  The total Si content5  of the

entrapped electrolyte was also determined via AAS. Si was determined using the

absorption line at 251.6 nm and a nitrous oxide - acetylene flame. Three different

standard solutions were prepared as follows:

a)  From  a 1000 ppm Si solution prepared by dissolving  5.056  g of Na

metasilicate (Na2Si0 3.9 HaO) in @300 ml of deionized water, adding sufficient  HCl

to bring the  pH to about 5 and diluting up to 500 ml using deionized water.

b) From H 2 SiF 6 technical solutions diluted so as to obtain standard solutions

with less than 1000 ppm Si.

c) From PbSiF 6-H 2SiF 6 solutions diluted so as to obtain standard solutions

with less than 1000 ppm Si.

1 Deionized water with electrical conductivity lower than 12 u.mhos/cm.

2 Resin from the leaves of certain species of aloes plant native to South Africa.

3 Organic additive obtained as a

 by-product from

 wood pulping operations

4 Perkin Elmer Atomic absorption Spectrophotometer model 303.

5 The total Si content corresponds to the total amount of Si present in the electrolyte as H

2

SiF

6

, PbSiF

6

,

and Si0

2

.

[42]

Page 69: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 69/392

Wenking  potentiostat

The  total amount of fluorine ions present In the entrapped electrolyte was

estimated by using an ion sensitive electrode \ Standards were prepared by using

NaF  solutions.  Additionally, calibration curves were obtained using H 2SiF 6 and

PbSiF6-H 2SiF6  standards.  Gran's  plot and standard addition techniques  were

incorporated in these measurements  [11,12].

D. Temperature control

The  electrochemical cells previously described were immersed in a constant

temperature water bath. This bath had a volume of  @9 L and was covered with

styroform. The bath was stirred using magnetic bars and/or air sparging. The

bath temperature was controlled by using a YSI model 71 temperature controller.

A  thermistor probe 2  was used to monitor the bath temperature and immersion

heaters

 3

  were used to maintain it. This experimental set-up allowed temperaturecontrol within ±1.5 °C of the set point.

After  the bath had reached the set temperature, the assembled

electrochemical cell was introduced and at least 3 hours were allowed for the cell

to reach thermal equilibrium before the electrochemical experiment began.

E.  Instrumentation

The electrochemical instrumentation involved the use of  a variety of  electronic

equipment. A Wenking potentiostat was used in the first half of this work and a

Solartron Electrochemical Interface together with a Solartron Frequency response

analyzer were used in the second half. The improvements in the electronics  of  the

Solartron devices enable complex experiments to be performed. What follows is

a description of the different electrochemical arrangements used. Also, computer

control of the electrochemical experiments and data acquisition will be explained.

 /.  Wenking potentiostat

 A  Wenking potentiostat model 70 HV1/90 was connected to an  IBM XT

personal computer. A Data Translation board DT 2805 was installed in one of

the computer  slots.  This card  allowed the computer to interact with the

potentiostat and with the electrochemical cell. A Data Translation DT707 screw

1

 An Orion Fluoride electrode model

 94-09

 together with a double junction reference electrode Orion

model 90-02 filled

 with

 1M NaN0

3

 in the outer chamber was used in

 these

 measurements.

2 Thermistor probe YSI model 402.

3 Vycor* immersion

 heaters

 with

 100

 to

 500W

 of

 power.

[43]

Page 70: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 70/392

Wenking  potentiostat

terminal panel was used to address the DT2805 board. This panel acts as an

extension of  the DT2805 card and simplifies the process of  computer interfacing.

All the electrical connections are done in the DT707 terminal panel which sends

and  receives  information from and to the DT2805 board. Besides  from this

terminal panel, a control panel was also used to link the potentiostat, computer,

and  electrochemical cell connections.

OSCILLOSCOPE

DT  707

SCREW TERMINAL

PANEL

ELECTROCHEMICAL

CELL

CONTROL

PANEL

IBM  XT  COMPUTER

A S Y S T / A S Y S T A N T  S O F T W A R E

DT  2805  BOARD

Fig. 5  Experimental set-up

using the Wenking

potentiostat

WENKING

POTENTIOSTAT

Fig.  5 shows a simplified view as to how the computer interfacing process

was carried out. The flow of digital and analogue data from the computer to the

system under study and vice versa was controlled by using specialized software \

A number of  programs were written to control the digital and analogue operations

performed  by the DT2805 board . The complexity of   these programs varied

depending on the characteristics of the experiment to be conducted. A storage

oscilloscope  2  was used to test the performance of  these programs and to follow

the response of the system when required. A digital voltmeter 3

  was also used to

check the computer measurements.

1 Asystant® menu-driven software version 1.02, and

 Asyst®

 command-driven software version 2.10.

2 Tektronix analogue oscilloscope model 5115

3 Beckman

 31/2 digit multimeter model TECH 300.

[44]

0

Page 71: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 71/392

Wenking  potentiostat

Fig. 6  Detail of the connections required to Interrupt the current and to follow  the cell response

(A) Three terminal cell

(B)  Four terminal cell

[45]

Page 72: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 72/392

Wenking  potentiostat

The  Wenking potentiostat was used either as a potentiostat or as a

galvanostat. Potentiostatic operation was converted to galvanostatic by

connecting a resistor of suitable power rating between the working and reference

electrode terminals \ It was in this configuration that most of the experiments

were  conducted.  During  galvanostatic operation, current was interrupted byshort-circuiting the internal battery that controls the flow of  current to the cell.

This was done by using a mercury wetted relay2 activated by the computer at

preset times. The connections required to interrupt the current and to follow

the cell response are shown in Fig. 6. As Fig. 6 shows, the current going through

the cell and the difference in potential between the working and the reference

electrodes were continuously logged. Figs. 6A and 6B differ only in the number

of  connections made to the working electrode. When two connections are used

(Fig  6B), one of them is used for conveying current and the other is used for

measuring potential. Experiments in which large amounts of  current are involved

or when contact  resistances are to be avoided call for this particular electrode

arrangement.

Calibration of the routines used for interrupting the current was done by

using "dummy" cell electrical circuits. Appendix 5 provides a description of  these

measurements. The algorithm used in the computer programs to perform the

current interruptions is also described in Appendix 5. By doing these calibration

runs, it was found that the Wenking potentiostat halts the flow of  current to the

cell almost immediately (within 10 (isec3).  On the other hand, after the short

circuit was opened it was found that the current did not immediately recover its

previous value. The rise time of this process was of the order of milliseconds and

was dependent of the current going through the cell (e.g. see  Fig. 7). In addition,

due to hardware and software limitations, the data acquisition system was able

to follow the decay in potential only within 1 msec after current interruption4.

Subsequent points were sampled at various acquisition rates.  This resulted in

the current interruption routine being able to resolve decays  whose  time

1 As shown in Fig. 6, the reference terminal of the Wenking potentiostat is no longer used for connecting

the reference electrode of the electrochemical cell.

2 Mercury wetted relay Elect-trol model 31511051.

3 Value obtained

 from

 oscilloscope readings.

4 Depending on the complexity of the data acquisition program, the interval of time

 between

 current

interruption and the first set of data points sampled was

 between

 0.14 msec and 1.0 msec. Oscilloscope

readings

 were

 used to verify these measurements.

[46]

Page 73: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 73/392

Generalities:

constants were  larger  than 10  msec.  As the time constant of the diffusion

processes under study were several orders of magnitude larger than 10 msec,

this instrumental constraint was not critical.

158  i —

Fig.  7  Current  stepresulting from halting theflow  of   current to the

electrochemical cell usingthe Wenking potentiostat

Current was halted within

-10 usee.

.88 68. 128 188

Tine ,  usee

248 380

2. Solartron electrochemical  interface and  frequency response analyzer

(a) Generalities:

A  1286 Solartron Electrochemical Interface (SEI) and a 1250 Frequency

Response Analyzer (FRA)  were connected to an  IBM XT  personal computer by

using the  IEEE-488  interface built into  these  instruments. To  link   theseinstruments to the computer, an IEEE compatible board 1

 was installed in one

of   its slots. This board enables the computer to act as a "controller" of the flow

of   information. All the electrical connections of the electrochemical cell were

attached directly to the SEI front panel.

1 Scientific Solutions

 IEEE

 488 LM

 board.

[47]

Page 74: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 74/392

 Description  ol  the experimental  set-up

Prograinining of the  IEEE-488  interface is simpler than programming of

the  Data  translation interface previously described. All analogue to digital

conversions are done directly in the IEEE apparatus. This results in all the data

communications being digital. IEEE instruments are controlled by a series of

pre-established commands. As  these  commands are executed they sendinformation to the control device (in this case the computer). This information

instructs the control device with respect to the status of the instrument.

The SEI is a complex and powerful instrument that can be used as a stand

alone electrochemical device. In its simplest configuration, it can function either

as a potentiostat or as a galvanostat. By pressing a button In its control panel

(or by sending a command from  the computer) switching between these two

operating modes can easily be incorporated. Among  other features, the SEI

offers several ways of obtaining the value of the uncompensated ohmic dropIRg \  Among these, the SEI has built in a procedure ("sampled'TR,, compensation)

which allows the potential to be sampled a few microseconds before and after

current is interrupted. However, this IR, drop compensation routine operates

only  under potentiostatic conditions.  When  galvanostatic experiments are

performed, this limitation can be circumvented by switching from galvanostatic

to potentiostatic operation, mteirupting the current, and switching back to

galvanostatic control. Under computer control the whole process takes @5 sec.

The FRA is also a complex instrument. One of its fundamental functions

is to generate waveforms. Sinusoidal, triangular, or square  waves  in the

frequency range between 10  |iHz and 65.5  Khz can be generated by this device.

The frequency and amplitude of  these waveforms can easily be modified. Another

of  the  FRA main functions is to analyze the gain and phase characteristics of

sinusoidal  waveforms. The system transfer function can be obtained by

analyzing concurrently two sinusoidal signals.  This is obtained by using two

channels for simultaneous measurements at any two points in the system.

(b) Description of  the experimental set-up

Both DC and AC experiments were carried out using the SEI together with

the  FRA. Fig. 8 describes the electrical connections that were used in these

experiments.  Furthermore, Appendix 6 illustrates the implementation of the

1 This uncompensated ohmic drop

 IR

S

 is

 equivalent

 to i i

n

 described in

 Chapter

 2.

[48]

Page 75: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 75/392

 Description  of  the experimental  set-up

technique using durnmy circuits to simulate the response of electrochemical

cells. The experimental data generated using these dummy circuits was used

to calibrate the electrochemical set-up.

WE

RE1

RE2

CE

SolartronElectrochemical

Interface

Working

Fig. 8  Connections from the

electrochemical cell  to the Solartron

Electrochemical   Interface.

The dissolution of  pure lead and of  typical lead anodes was studied using

the beaker electrochemical cell previously described. In these studies, all leads

were shielded to avoid pick-up noise. During the galvanostatic and  potentiostatic

experiments current was interrupted using the "sampled" IRg compensation

routine  built into the SEI. In  these  measurements, only the value of the

uncompensated resistance was obtained .

The  AC impedance of  pure lead and of  typical lead anodes was measured

under  a variety of experimental conditions. Impedance measurements were

made under rest potential conditions, in the absence and in the presence of a

slimes layer, and in the absence and presence of   DC current1

. All the AC

impedance spectra were obtained using sampling rates and integration times

set to 200 cycles per frequency followed by a 5 sec break  2

  . The SEI bandwidth

1 The difference in potential between the working and reference electrodes and the current flowing to the

cell are continuously recorded by the SEI. During the AC  experiments, the SEI removes the DC component

(if present) from the potential and current waveforms before

 sending them to

 the FRA. The fundamental

frequency of these waveforms was

 used

 to obtain the impedance of the system.

2 Integration times were reduced by

 using

 the auto-integration routine built-in the FRA.

 A long

  integration

cycle

 was

 chosen

 (1%

 error

 with

 90% confidence)

[49]

Page 76: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 76/392

 pH  measurements

type chosen for experiments under potentiostatic control was the type E

(maximum bandwidth 24kHz) and for experiments under galvanostatic control

the type B (bandwidth >100KHz).

n.  E lect ro lyte  Phys ico -Chemica l  Properties

A . pH  measurements

The  pH of   H 2SiF 6  containing  solutions  was measured using a  liquid

membrane pH electrode1  and a double junction reference electrode2.

Measurements  were  made at room temperature. In  these  measurements, no

attempts were made to correct for liquid junction potentials. pH measurements

were also performed using pH sensitive paper.

B. Electrical  conductivity

The electrical conductivity of H2SiF 6-PbSiF 6 electrolytes was measured using

a Radiometer conductivity meter model CDM2 and a YSI conductivity cell 3 model

3417. A Digital voltmeter was connected to the conductivity meter to assist in the

reading of  the conductivity measurements.  The electrical conductivity of  individual

solutions4

  was measured by immersing the  samples  in a water bath whose

temperature was controlled to within  0.2°C. Two thermocouples  5  were  used to

monitor the bath temperature at different positions in the water bath. The

thermocouples  were connected to a computer which was used as a temperature

control device. Temperature was maintained within the set limits by using heating

elements controlled by the computer via solid state relays (SSR)6.

C. Kinematic  viscosity

Kinematic  viscosity of   H2SiF 6-PbSiF 6  solutions  was measured using

Cannon-Fenske routine viscometers for transparent liquids. The viscometers were

1

 Orion pH electrode model

 93-01.

2

 Orion double junction reference electrode model

 90-02.

 The inner filling solution used

 in this

 electrode

(Orion

 90-00-02)

  matches the characteristics of the standard KCI calomel electrode. In the outer chamber

a

  1

 M NaN0

3

 solution was used.

3 Cell constant =

  1.05.

 Cell constant was obtained by measuring the electrical conductivity of a NaCl

saturated solution and of a

 0.100

 M KCI solution at different temperatures.

4 Sample

 volumes vary

 between  25

 and

 30

 ml.

5 Thermocouples type E Chromel(+)-Constantan(-). A 0 "C reference junction was used during the

temperature measurements.

6 Omega

 DC

 controlled solid

 state relay

 (SSR)

  model

 SSR

  240 D10.

 Control

 voltage

 2-32

 Voc.

[50]

Page 77: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 77/392

Density

immersed in a constant temperature water bath 1 and calibrated using deionized

water. Temperature was controlled within  0.2°C.  From  5 to 12 viscosity

measurements2 were made until average flow times3 readings were within 0.20

sec.

D. Density

The  density of   H2SiF 6-PbSiF 6  solutions was measured using 25  mL

Binghmam-Type  pycnometers. Pycnometers were calibrated by measuring the

density of deionized water. Measurements were made at room temperature. From

3 to 5 density measurements were made until the obtained mean density values

were within 0.2%.

1 Cylindrical

 water

 bath

 with

 @2L volume.

2 Viscosity measurements were made using 10 ml sample volumes.

3 Flow

 times measured by using a digital stopwatch.

 Parallax

 errors

 were

 diminished by using a

magnifying glass.

[51]

Page 78: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 78/392

Introduction

Chapter 4  E lectroref ining of Lead in a Small -Scale  E lectrorefining

Cel l : A  Case  Study

I.  Introduct ion

During the electrorefining of lead by the Betts electrorefining process, ionic

concentration gradients become established within the  slimes  layer due to the

restriction that the  slimes layer presents to the movement of ions. Additionally,

the presence of the electric field created by the passage of  current contributes to

the formation of concentration gradients within this layer.

The  Betts  electrorefining process is  carried out under nearly galvanostatic

conditions.  Under these conditions, a constant flux of lead ions is generated at

the anode/slimes interface. These ions are driven towards the cathode by

diffusion,  migration, and convection. In the  absence of a slimes layer, mixing of

electrolytes removes the migration and diffusion restrictions. Thus,  if pure lead

were to be dissolved, the concentration gradients generated would be present only

within  100 to 1000 |im of the anode/bulk electrolyte interface where mixing

disappears. On the other hand, during the refining of lead  bullion,  the  slimes

layer generates an environment in which ionic concentration gradients can be

present over  distances  larger than 10 mm. These concentration gradients

contribute to gradients in electrode potential applied to  slimes  filaments, and

thereby affect the dissolution of noble impurities. Primarily, this gradient arises

due to the larger concentration of lead ions in the vicinity of the anode interface

with respect to their concentration in the bulk  electrolyte.  Lead ions move out of

the slimes layer mainly by diffusion and migration. As  lead ions are released, their

positive charge must be neutralized to achieve local electroneutrality. This leads

to reverse movement of  SiF 6

 2

 and repulsion of  H+  from the anode/slimes interface.

Electrical  neutrality has to be observed throughout the  slimes  layer and this

dictates  a strong relationship  between  the  SiF6"

2

,  H \ and  Pb

+ 2

  concentrationgradients.

Given the previous relationships, the slimes layer will have a large average

concentration of  Pb + 2

 and SiF6"2

 ions and a small average concentration of  H+

  ions

with respect to their bulk  electrolyte values. Moreover, there will be gradients of

their concentrations throughout the  slimes depending on the  slimes  thickness

and  the current density. The interrelationship between the diffusion coefficients,

ionic mobilities, and activity coefficients of the above ions plays a significant role

[52]

Page 79: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 79/392

Introduction

in the shape of  these concentration gradients. In addition, migration will promote

the movement of anions from the bulk electrolyte towards the anode interface and

would act in the opposite direction for cations. Diffusion will carry Pb + 2

 out of the

slimes layer and SiF6"2 and FT towards it. Convection will affect the movement of

all  the ions and depending on the electrode  size,  it can affect significantly theshape of the concentration gradients.

The  establishment of ionic concentration gradients within the  slimes layer

can shift secondary equilibria that can lead to both new solutes and precipitates

such as fluoride and oxyfluoride ions, hydrated silica, and lead fluorides. The

precipitates can create further hindrances (in addition of  those caused by anode

impurity  filaments) to the convection of electrolyte and to the diffusion and

migration of  solutes.

The stability of the  slimes layer and its adherence to the anode surface is a

complex function of the lead anode physical metallurgy and of the electrolysis

conditions. Upon passage of  current, lead is selectively removed from the bullion

and  a metallic structure of noble impurities is  left  behind.  This  structure is

established as a "slimes layer". The success of the  Betts process relies on this

structure remaining unreacted during the electrorefining cycle. By limiting the

potential difference across the slimes layer to less than 200  mV, this condition is

practically fulfilled. On the other hand, the complex chemistry of this layer and

the presence of ionic concentration gradients within it, can affect the  extent to

which this potential gradient can be observed. If, due to the presence of large

concentration gradients, secondary products precipitate, the  slimes  layer can

detach. Under these  conditions, the noble compounds harbored in the  slimes

layer may no longer remain unreacted, and depending on  shifts  in electrode

potentials, noble impurities can be transferred to the electrolyte, then to the

cathode.

In this chapter, a study of the dissolution of a typical lead anode under

galvanostatic conditions is presented. The establishment of concentration

gradients within the slimes layer, the precipitation of noble compounds, and the

physical metallurgy of the lead anode and the produced slimes layer are reviewed

in  this  case  study.  Current interruption techniques  were used to  find  the  link

between the above mentioned phenomena.

[53]

Page 80: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 80/392

n.  Presentat ion of Res ults

Presentation

 ol Results

The  study of the dissolution of a typical lead anode under galvanostatic

conditions was done by using the rectangular electrochemical cell described In

Fig.  3.2.

42

^

  Inner

  Electrolyte Sam pling Well

Potential Sensing Probe  »//  maaauremontm   In mm

Fig. 1  Lead anode top view.

The  location of the holes in which the inner reference electrodes A, B. and C

 were inserted, isindicated In this diagram. The  position of the well used to extract electrolyte samples from

the slimes electrolyte is also shown.

Fig. 1 is a top  view of  the lead anode showing the locations where the potentia

sensing probes  were  incorporated as well as the point from which electrolyte

samples from the inner  slimes  electrolyte  were  withdrawn. Particular

characteristics of this experiment are provided in Table 1. Current interruption

at preset  slimes  thickness was implemented by using the circuit described in

Figs.  3.5 and 3.6.

Experiment LC2  was carried out in three stages which are described in the

following paragraphs:

Stage I: Galvanostatic dissolution during 300 Hrs.  During this stage, current

flow to the cell was halted for 138  msec every 3 Hrs.

Stage II : Long current interruption for 190 Hrs

Stage HI:  Further galvanostatic dissolution for  30 min.,  during which current

was halted every 10 min for 1.8 sec.

[54]

Page 81: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 81/392

Presentation  of Results

During these stages, electrolyte samples were taken from the bulk  electrolyte

and  from the inner slimes solution  at preset times. After the completion  of stage

m,  current was halted and the corroded anode was left standing  in the cell for

48 Hrs. After this time,  the electrolyte was slowly drained and a dilute  H 2SiF 6

solution (pH =1.5) was used to displace  the concentrated solution  in the slimeslayer. Afterwards, the corroded anode was removed and dried in a vacuum oven

at  low temperature  (t < 40°C).  Slimes samples for observation  in the SEM were

prepared by using a low viscosity resin and a vacuum imbibition technique 11,21

2 .  Unsupported samples of the same slimes were analyzed by  X-ray diffraction.

Table 1  Characteristics of  Experiment LC2

Anode Composition

(Anode A Fig. 3.6)

0.01% Sn, 0.02%  Cu, 0.14%  Bi , 0.25% As, 1.12% Sb, 81 oz/ton Ag.

(Air cooled face exposed to the electrolyte)

Anode Dimensions 69 mm1,42 mm", 29.5 mm'

Cathode Pure lead foil >99.95% Pb

75 mm1,62 mm*, 2 mm'

Reference Electrodes: Pure lead rods, >99.95% Pb:

Outer: Located in the bulk  electrolyte, =5mm away from the

slimes/electrolyte  interface

Inner A, B, and C: Located within the lead anode at =3,6, and 8.5 mm

away from the slimes/electrolyte interface.

Initial Bulk  Electrolyte Composition [H2SiFs] = 0.74 M, [PbSiF6] = 0.28 M, [SiOJ = 0.12 M

Additives Concentration =2 g/1 aloes, =4 g/1 of  lignin sulphonate (added only at the beginning of  the

experiment)

Electrolyte Volume 320 ml

Electrolyte Temperature 40±1.5' C

Electrolyte Recirculation Rate 6 m 1/min

Current Density during stages I and

III (from geometric surface area)

139  Amp/m2

Stage I Current Interruption Length

and Frequency

138 msec every 3 Hrs

Stage m   Current Interruption

Length and Frequency

1800 msec every 10 min

Instrumentation Wenking potentiostat-DT 2805 Data acquisition Board-IBM XT computer

1 Spurr  low-viscosity embedding

 media, 11 = 60 cP

2 In the imbibition technique, penetration of the epoxy resin is encouraged by extracting the air

 within

 the

sample using

 a

 pressure difference

 (i.e. a

 vacuum).

[55]

Page 82: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 82/392

Stage

 I

 A. Anodic  overpotential measurements

1. Stage I

The  anodic overpotential response of electrode  LC2 under galvanostatic

conditions is shown in Fig. 2. As can be seen from all four reference electrodes,

T)A  increases quasi linearly as the slimes layer thickens. At the same time,  r)A

measured by the inner reference electrode A shows that steep excursions in the

potential of the solution inside the slimes layer also can be present, although,

they do not seem to affect the r\ A value measured by the outer reference electrode.

The  relatively uniform  slope of  these measurements  suggests  that the same

reaction and the same ions are being seen by all the reference electrodes \

The  anodic overpotential response of the outer and inner reference

electrodes to current interruptions are  shown In Fig. 3. Details of  the  r|A behavior

of  the inner reference electrodes A, B, and C are provided  in Figs. 4 and 5. In

these  figures current interruptions 43 to 47 are not shown as oscilloscope

readings taken  during  that time  interval  required detachment of the current

interruption triggering device on the data acquisition board 2

.

1

 Measurements on the slimes electrical conductivity were made by following the difference in potential

between a bare Pt wire inserted

 in

 the slimes layer

 and

  the lead anode. In these measurements,

 it

 was

found that the difference in potential between the Pt wire and the lead anode was negligible. The Pt wire

and the anode appeared to be short-circuited indicating the high electrical conductivity of the slimes

filaments.

2 Oscilloscope readings

 were

 consistent

 with

 computer measurements.

[56]

Page 83: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 83/392

Stage/

3X

180

160

140

*  120

n

9 100

o

ft

5 80.

0

0 60.

0

c« 40.

20.

00

* Outer

 —   Inner  A

X Inner B

+ Inner C

tttttt

I— *. tt»tt

I  I I  I  I  I  I  I  I I  I  I  I I

^ 1  + + + +  1

.0  2. 4. 6. 8. 10

Slimes Thickness,  MM

12 14 16

Fig. 2  Anodic overpotential (uncorrected  for  TJQ) changes as a function of the slimes layer

thickness.

Stage I in Table  1.

Position of the reference electrodes:

Outer: Located in the bulk  electrolyte, =5mm away from the slimes/electrolyte Interface

Inner A, B, and C: Located within the lead anode at =3, 6, and 8.5 mm away from the

slimes/electrolyte Interface

[57]

Page 84: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 84/392

 Stage I

2 0 0

>

a

o

&

>O

o

150 -

1 0 0

40 60

Current Interruption Number1 0 0

Fig.  3 Outer and inner A, B,  and C reference electrodes anodic overpotential response to current i nterr uptions (during an

otherwise galvanostatic experiment).

Abscissa values reflect current int erruption number. Current interrupti on measurements  where made  every 3 Hrs. (i.e.  every0.138 mm slimes). The first curr ent in terruption was made in the absence of slimes and the 100th curr ent in terru ption was madeat a 13.8 mm slimes thickness.

[58]

Page 85: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 85/392

Stags/

(A)  (B)1.1  | , "0  I  1 1

2 0 4 0 8 0 8 0 100 20  «1  80 80 100

Current

 Interruption

 Number  Current

 Interruption

 Number

Fig. 4  Detail of the  response of the inner A  reference electrode to current interruptions(during the whole electrorefining cycle).

Fig. (B) is the same data presented in (A) with an expanded vertical scale.

(A)  (B)

M  60 ?0 SO 80 100 S3 " 80 90 100

Current Interruption Number  Current Interruption Number

Fig. 5  Detail of the rfo response of the inner B  (Fig. A) and inner C  (Fig.  B) reference

electrodes to current Interruptions (during the whole electrorefining cycle).

[59]

Page 86: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 86/392

Stage I

6 1 . 1 2 8 1 8 8 2 4 0 3 8 8 .  8 8 6 8 , 1 2 8  1 8 8 2 4 8 3 8 8

1 2 8  1 8 8 2 4 8 8  6 8 . 1 2 8 1 8 8 2 4 8 3 8 8

Fig. 6  Detail of the response to current Interruptions measured by the outer reference

electrode (at different slimes layer thickness).

X axis: Time, msec  Y axis: Anodic overpotential, mV

The  response of the outer reference electrode to current interruption is

shown in Fig. 6 for different slimes thickness.  Upon current interruption, the r\ A

value first drops abruptly, then decays slowly. The abrupt overpotential decay

is nearly equal to the so-called uncompensated ohmic drop,  r\a . Furthermore,

upon application of  current back to the cell, it can be seen that, the thicker the

slimes layer, the longer it takes to attain the rjA value observed prior to current

interruption (Fig. 6).

[60]

Page 87: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 87/392

Stage/

30.  i-

23.

20.

IS.

10.

S.0

.00

^ ^ ^ ^

Fig. 7 Changes in the value of theuncompensated ohmic drop, r\a, as afunction of the slimes thickness.

From the  T |  A   response of the outerreference electrode to currentinterruptions.

i i i 1.00 2.0 4.0 6.0 8.0 10.

Slines Thickness, nn

12. 14. 16.

As shown in Fig. 7,  r\a  remains between 14 and 16 mV during the whole

experiment. Only during the first interruption of current (at zero slimes thickness)does  a larger potential drop appear. The decrease in this value results  from

changes in the electrolyte concentration in the near proximity of the

slimes/electrolyte interface. Within a few milliseconds, steady state is attained

and  r|n  no longer changes.  Upon  interruption of current, the concentration

gradients present within the slimes layer begin to relax towards equilibrium. H +

moves from the bulk  electrolyte towards the slimes layer and Pb + 2

 and SiF 6"2 move

in the opposite direction. This process is currentless and will cause interaction

between the diffusion and migration fluxes so that the potential gradient decaysin the same way as the concentration gradients.

The response of the inner reference electrode A to current interruptions is

different than that observed by the outer reference electrode. Depending on the

slimes thickness,  TJ a measured by this electrode can show a random behavior

(see Fig. 4A).  Thus,  for example Figs. 8A and 8F show that upon current

interruption T)A jumps towards higher values rather than decreasing. There is no

unambiguous explanation for such jumps. The other curves in Fig. 8 show that

[61]

Page 88: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 88/392

Stage/

upon  current interruption  r|A decays  linearly. The amplitude of this decay is

smaller  than that shown by the outer reference electrode at  similar  slimes

thickness (see  Fig. 3).  Additionally,  there is no  initial  steep decay in rjA upon

current interruption. This is an indication that between this electrode and the

lead anode the inner slimes electrolyte does not have a uniform composition.

1 2 0  1 8 0 2 4 0 3 0 O 0 0  6 0 . 1 2 0  1 8 0 2 4 0

Fig. 8  Detail of the response to current Interruptions measured by the inner A  referenceelectrode (at different slimes layer thickness).

X axis: Time, msec  Y axis: Anodic overpotential, mV

[62]

Page 89: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 89/392

The inner reference  electrode B response to current interruptions is shown

in Fig. 9. Upon interruption of current, a very small decrease in r|A takes place

(see  also Fig.  5A). This electrode is very close to the lead anode/slimes  interface

and the concentration of  Pb + 2

 in its vicinity is expected to be very high \ As this

interface  moves  away from  this  reference  electrode,  the region over whichconcentration gradients span grows and so decays in riA of larger amplitude can

take place upon current interruption (see  Fig. 5A).

300

42 .

38 . * *   • *     •

34 . - •  «

38.

26 .

22 . , .

1 . . 1

10.2  M M

.80 60 .

74 .

70 .

66 .

62 ,

58 ,

54 .

- »

128 188 248  388

13.7  M M

1

300 .00 60 . 120 180 240 300

Fig. 9  Detail of the  response to current interrupuons measured by the inner B  reference

electrode (at different slimes layer thickness).

X axis: Time, msec  Y axis: Anodic overpotential, mV

The response of the inner reference  electrode C to current interruption is

depicted in Fig.  10. This electrode does not show any significant  decrease in its

r\A value upon current interruption (see  Fig. 5B). Furthermore, the amplitude of

the potential decay shown by this electrode is the  smallest among all the other

1

 The reference electrode potential is related

 to

 the lead ion concentration. Knowledge

 of

 the activity

coefficients of the various

 species

 that

 are

 in the vicinity of

 these

 electrodes is

 required to

 estimate

 these

ionic concentrations.

[63]

Page 90: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 90/392

Stage /

reference electrodes (see  Figs. 3 and 5B). The  presence of a highly concentrated

Pb + 2

  region between this electrode and the anode/slimes layer interface can

account for this behavior.

13

9.8

5.0

1.0

-3.0

 j   rfWuuum1VBSBuuuin1WSMi

-7.8

8.1 nn

.88 60 ,

40 .

36 .

32 .

28 .

24 .

20 .

120 180 240 300

12.3 nn

i l i i I i i I

26 .

22 .

18 .

14 .

10 .

6.0

49 .

45 .

41 .

37 .

33 .

29 .

 <B>

10.2 nn

.00 60 , 120 180 240 300

13.7 nn

.00 60 , 120 180 240 300 .00 60 . 120 180 240 300

 Fig.  10  Detail of the  T | a response to current Interruptions measured by the inner Creference electrode (at different slimes layer thickness).

X  axis: Time, msec  Y axis: Anodic overpotential, mV

A  plot of the anodic overpotential values obtained right after current

interruptions for  the four reference electrodes is shown  in Fig.  11. By comparison

with Fig.  2, the correlation between the n.A  curves becomes more evident. Fig.  11

shows  that the activities of the lead ions at fixed positions change as the

anode/slimes interface moves, reflecting variations in the inner slimes electrolyte

composition.  Furthermore,  the lines for the various reference electrodes are

almost parallel, indicating a near steady-state in the solution gradients between

any  two reference electrodes.

[64]

Page 91: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 91/392

Stage II

180.  I—

2.08 4.00  6.00 8.00 10.0

SI i lies  Thickness, nn

12.0 16.0

Fig. 11  Anodic overpotential (corrected for riJ changes as a function of the slimes layer

thickness.

Stage I in Table 1.

Position of  the reference electrodes:Outer: Located in the bulk  electrolyte, =5mm away from the slimes/electrolyte interfaceInner   A,  B, and C: Located within the lead anode at =3, 6, and 8.5 mm away from theslimes/electrolyte interface

2. Stage II

After forming a 13.8 mm thick  slimes layer, current was  interrupted for 190

Hrs  and the  lead  anode  polarization  was  followed  as a  function  of   time.  By

[65]

Page 92: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 92/392

mterTupting  the current for an extended period of time, the concentration

gradients present within the slimes layer are expected to disappear. Changes in

these  concentration gradients are reflected in the polarization values which

decrease as a function of time.

x — x  outer  0

D — a  inner  A

inner  B

inner  C

Outer

Inner  B

-40

i-  i.i.i.

  crrri  vrw,  m0 20 40 60 80 100 120 140 160 180 200

Time Since Current Interruption,  Hrs

Fig. 12  Difference in potential (uncorrected for r\^) between the reference electrodes  and  the lead anode as afunction of the current interruption time.

Stage II in Table 1. After anodic dissolution up  to a 13.8  mm  thick layer of slimes  (Fig.  2) current was haltedfor  190 Hrs and  the polarization was followed as a function of time.

The  arrows indicate the polarization values prior to current interruption.

Details of the polarization decay in the first milliseconds after current interruption can be seen in Figs. 6H, 8H,

9D, and  10D.

Fig.  12  shows  how the difference in potential  between  the reference

electrodes and the lead anode decays during current interruption. The  outer and

inner A  reference electrode polarizations decay to values  close to zero within a

few hours. On the other hand, the potential difference measured by inner

reference electrodes B and C is negative.  Furthermore, after a certain time has

elapsed, the polarization displayed by  these electrodes jumps to near zero values.

The  closer the reference electrode is to the anode/slimes interface, the longer it

takes  for this polarization jump to occur. This  rise in potential difference is

[66]

Page 93: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 93/392

Stage III

attributed  to dissolution  of  precipitated products  that  result from changes  in

electrolyte composition in the inner slimes layer. Mixed electrochemical processes

that can support internal currents in the  absence of an external current, such

as the reduction of  an oxidized ion, also can account for the negative polarization

values displayed by these electrodes \

3. Stage III

After allowing the concentration gradients  present within the slimes layer

to relax during the long current interruption, current was applied back  to the

cell during 30 min (Fig.  13).

>

<

.03•+->

C

CD

-t->O

Q.

i_

0)

>

O

o

T3

O

C

<

100

90

80

70

60

50

40

30

20

10

0

-10

:  }:  i •

'- 

 

1

'- 

/  \   ••**•'

;  .^.......\~*-r

 f

|

\   - f - Outer;

* •••!'•  Inner  fAt  : j

-  I  I  I

!  • F  Inner  iC

i,  i ,

Fig. 13 Changes in the value ofthe anodic overpotential  (

uncorrected for  as a functionof   the electrolysis time.

Stage m in Table 1.After interrupting the current for190 Hrs (Fig. 13), current wasapplied back to the cell and theT | A values shown in this plot wereobtained.

10

  15 20

Time,  min

25 30

1 Among

 these mixed electrochemical processes are:

  a)

 local concentration cells (b) cementation

reactions

  c)

 Re-dissolution of PbF

2

:

 PbF 2+2e~ = Pb*2

+2F~

[67]

Page 94: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 94/392

Stage III

Fig. 14 Anodic overpotential response upon current interruption (Stage m   Table 1)

Current interruptions were applied at different electrolysis times as indicated by the arrows

shown in each plot:

(1) 0.01 min (2) 10 min (3) 20 min (4) 30 min

Each plot indicates the overpotential response measured by a different reference electrode:

(A) Outer (B) Inner A  (C) Inner B  (D) Inner C

[68]

Page 95: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 95/392

Bulk

 electrofytB

 concentrations

Fig.  13 shows how the anodic overpotential values increased  during the

application of  current back to the cell. Concentration gradients within the slimes

layer become established very rapidly: In 30 min only =0.02 mm of  slimes were

formed yet the  T)a values increased by more than 40 m V1

. This shows that the

slimes  layer does  hinder appreciably the flow of ions.  Current  interruptionsduring 1.8 sec were applied during this stage to study the characteristics of  these

concentration gradients (Fig. 14). At time zero no significant decay in potential

is observed upon current interruption in any of the reference electrodes. As

concentration gradients become established, larger overpotential drops can be

observed upon current interruption.

B. Analytical  chemistry

1. Bulk  electrolyte concentrations

The changes in composition in the bulk electrolyte during Stage I are shown

in Fig.  15. A continuous depletion of  Pb+ 2  in the bulk electrolyte is seen to take

place during the formation of the  slimes layer. As the current efficiency for the

refining process was  close to 100%, this depletion can only be associated with

Pb+ 2  concentration enrichment in the electrolyte within the  slimes  layer.

Concurrently to the  Pb+ 2

 depletion, there is a continuous, yet small increase in

acid concentration which is related to H + depletion within the slimes layer2. No

major  changes  in the bulk electrolyte concentration of hydrolyzed Si0 2  were

detected during this stage 3 .

The changes in the bulk electrolyte composition during Stage n are shown

in  Fig. 16.  Upon  current interruption, there is an increase in the  Pb+ 2  bulk

electrolyte composition, and a  decrease in the acid concentration. Once current

is interrupted, Pb+ 2  and SiF6"

2 diffuse out of the slimes layer while H+ diffuses in.

1 In the same period of time, the outer anodic overpotential rose by less than 2 mV in the absence of the

slimes layer (Fig. 2), as

 compared

 to

 a 65

 mV rise

 in

 the presence of

 a

 13.8

 mm

 thick layer

 of

 slimes

(Fig. 11).

2

 Material balances indicated that the slimes electrolyte can have average

 [PbSiF

6

]

 higher than  M while

[H

2

SiFe]

 can be lower than 0.5

 M.

3 Si0

2

 as determined by titration via the LiF-LiOH technique described in Appendix 4 is merely

 a

composite of all dissolved species containing at least

 

oxygen atom. The general formula Si

x

(OH)

y

F

z

q

"

with

 1<y<4,

 and

'-  < 6 accounts

 for the

 existence of these species.

[69]

Page 96: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 96/392

 Bulk  electrolyte concentrations

o

E

0.9

0.8

!

0.7

-  .a...

2  0.6

cCDO

c

o

O03

2TS

LU

m

0.5

0.4

 \ ° " 7[H2SiF6]

 [Pb+2]

[Si02]

A-

/S/02/  "~~"~-©-0

 _1 I I  I  I I I  I  I I I  I  I I I  I  I I I  I  I I I  I  I I 1  I  1 I L.

Fig. 15 Changes in composition of  thebulk  electrolyte as a function of theslimes layer thickness.

Stage I  in Table 1.At  preset electrolysis  times  bulkelectrolyte samples were  withdrawnfrom the bulk  electrolyte and analyzedfor the species shown in this plot

From chemical analysis data

2 4 6 8 10 12 14 1<

Slimes Thickness,

 mm

0.9

_  0.8

o

E

o

08

cCDO

eo

OCD

9

TJaLU

CO.

0.7

0.6

0.5

0.4

O  GL.

 [H2SiF6]

 [PbSiF6]

-X-

 [Si02]

i  11 i  i i i i  i i i i  i i  11  11 i i  i i i i  i i i i  i i i  11

Fig. 16 Changes in the  bulkelectrolyte composition as a functionof  the current interruption time

Stage II  in Table 1.

From chemical analysis data

20  40 60 80 100 120 140 160 180 200

Time Since Current Interruption, Hrs

[70]

Page 97: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 97/392

Inner  slimes electrolyte concentrations.

2. Inner  slimes electrolyte  concentrations.

Some information about local ionic concentrations within the slimes layer

was obtained by withdrawing small amounts of electrolyte (=100 |il) from a fixed

point  located =3mm away  from  the slimes/electrolyte interface (as shown in

Fig.  1).

Fig. 17  Changes in the localcomposition of the slimes electrolyteas a function of the movement (fromthe sampling point) of theanode/slimes interface

Stage I  in Table 1.From a fixed point located ~3 mmaway from the slimes/bulkelectrolyte interface (Fig.  1)electrolyte samples were withdrawnat preset times and  analyzed for thespecies shown in the plot.

From chemical analysis data

0

  2 4 6 8 10

Distance

 From the

 Anode/slimes

 interface, mm

Fig.  17 shows the changes in the composition of the inner slimes electrolyte

during  stage I as the anode/slimes interface moves away  from  the sampling

point. As can be seen, Pb + 2

  concentrations at this point are not as high as the

average values predicted from mass balance computations. Furthermore,  the

acid  balance is also somewhat larger than expected . However,  Pb+ 2

concentrations were found to be  between  3 and 6 times larger than thecorresponding bulk   electrolyte values. Differences between mass balances and

local compositions, may be due to presence of precipitates and also to the fact

that sampling was made only at one point within the slimes layer. Fig. 17 also

shows that negative changes in the acid concentration accompany positive PbSiF6

variations. This indicates that SiF6"2 exerts an  influence in the transport processes

within the slimes layer. The Si0 2 concentrations shown in Fig.  17 indicate that

large amounts of  these  species  are contained in the inner slimes electrolyte.

[71]

Page 98: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 98/392

Inner slimes

 electrolyte

 concentrations

Analysis of ionic species of noble impurities in this electrolyte showed that AsO+

was present in concentrations of -0.17  m M whereas  [BiO+] was lower than 0.01

mM . Additionally,  [SbO+] in the entrapped electrolyte was of the order of 0.2  mM .

Furthermore, no major changes in the concentration of  these noble species were

detected  during  the refining cycle. These small amounts of noble impurities inthe inner electrolyte indicate that they do not react significantly at the

corresponding  overpotential levels shown in Fig.  12 \

( A ) (B)1.9

1.8

1.6

^  1 5

E

5f 1 4

1.2

^  from Chemical Analysis

from AAS- H2SIF6

 Standards

- - from

 AAS-PbSiF6-H2SiF6 Standards

i  i  l  I—' ' i I i I I I i i  i

O

E

-

<

 —A\  \

-

\  \\  v

-

Chemical  Analysis

" -o —  JSE  and Gran's Plot  technique

_

  ..

0

.

 ISE  and  Standard Addition technique

,  , I ,

3

2 4 6 8 10

Distance from the Anode/slimes Interface, mm

0  2 4 6 8 10

Distance

 from the anode/slimes

 interface,

 mm

Fig. 1 Changes in the local concentration of the total Si and F present in the  slimeselectrolyte as a function of the movement (from the sampling point) of the anode/slimes

interface

Stage I in Table 1.

Electrolyte samples taken from a fixed point located -3 mm away from the slimes/bulk

electrolyte interface were analyzed for total Si and F using three different analytical

techniques.

(A) Changes in the total concentration of  Si-bearing species

(B) Changes in the total concentration of  F-bearing species

From chemical  analysis data

1 Analysis of the cathode at the end of stage III

 confirmed

 that impurities

 dissolution

 was not significant.

Cathode

 impurities concentrations were: 0.0003%

 Cu ,

 0.0010%

 Sb,

 0.0016%

 Bi,

 <0.0003%

 Sn,

<0.0001%

 Ag,

 and

 <0.0001%

 Tl.

[72]

Page 99: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 99/392

Inner slimes

 electrolyte

  concentrations.

1.2

1 -

S 0.8

o

E

c

o

«3 0.6

[H2SiF6J

- 0

1 3 - •fZT"

/S/027

[PbSiF6]

Fig. 19  Changes in the localcomposition of the slimes electrolyteas a function of the currentinterruption time.

Stage II in Table 1.From a fixed point located ~3 mmaway from the slimes/bulk  electrolyteinterface  electrolyte  samples werewithdrawn at  preset times  andanalyzed for the species shown in theplot.

From chemical analysis data

40  80 120 160

Time

 Since Current

  Interruption,

 Hrs

200

Chemical analysis of total Si and F in the inner slimes electrolyte  during

stage  I are provided in Fig. 18. Si and F total concentrations decrease as the

slimes layer thickens. Changes in the local composition of the slimes electrolyte

are unexpected under steady state anode dissolution conditions. Time dependent

processes such as changes in convection due to movement of the anode/slimes

interface and/or gradual precipitation of secondary compounds can account for

the Si and F decrease at a fixed point such as observed in Fig.  18.

Changes in the composition of the inner slimes electrolyte  during stage  n

are depicted in Fig.  19. Although no major changes in Pb + 2

  concentration are

observed during the long current interruption, a significant enhancement in the

acid concentration is observed. Also,

 a sudden decrease in [SbO+

] concentration

seems to occur just a few hours after current interruption. As expected, the total

Si  and F concentrations increase  during  the current interruption stage  (see

Fig. 20).  Thus,  as concentration gradients disappear, the  driving  force for

convection decreases continuously and redissolution of precipitates can take

place.

[73]

Page 100: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 100/392

Characterization of the slimes layer

(A) (B)

1.2

  O

[Si] from Chemica l Analysis

- o - -  [Si] from AA S- H2SiF6 Standards

-£}•

  [SI] from AAS-PbSIF6-H2SiF6 Standards

I

7.5  |- O

O 6.5

5.5

p o

7  / 13

X  Chemical Analysis

 —£ ISE and Gran's Plot technique

ISE and Standard Addition technique _L _J_

20  40 60 80 100 120 140 160 180 200

Time Since Current Interruption, Hrs

0  20 40 60 80 100 120 140 160 180 200

Time Since Current Interruption, Hrs

Fig. 20  Changes in the local concentration of the total Si and F present in the  slimes

electrolyte as a function of the current interruption time.

Stage n  in Table 1.Electrolyte samples taken from a fixed point located -3   mm  away from the slimes/bulkelectrolyte interface were analyzed for total Si and F using three different analyticaltechniques.Total Silica and total fluorine were calculated by adding the concentrations of  all  the Si and

F-bearing species.

(A) Changes in the total concentration of  Si-bearing species

(B) Changes in the total concentration of  F-bearing species

From chemical  analysis data

C. Characterization of the slimes layer

As  described in the previous section, the total concentration of noble

impurities present in the cathodic deposit was lower than 30 ppm. Thus,  no

significant dissolution of noble  phases and compounds present in the original

lead anode should take place. The relationship  between  the  phases  and

compounds present in the uncorroded lead anode and those found in the slimes

layer was studied by using metallographic techniques.  Electron  probe

microanalysis  (EPMA)  of   these  samples was done by using energy dispersive

spectrometry.  Additionally, X-ray diffraction was used to study the distribution

and  presence of  these phases and compounds within the  slimes layer.

[74]

Page 101: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 101/392

Metallography ol the staring lead anode

1. Metallography of  the starting  lead  anode

Fig.  21  shows  the section of the lead anode used in the metallographic

analysis, and the observation points chosen to correspond to locations where

the slimes layer structure was later studied.

Uncorroded electrode Corroded electrode

de/slimes

Interface F i g . 21 Section of the lead anode andof   the  slimes  layer studiedmetallographically.

The  observation points in theuncorroded specimen were chosen tocorrespond to matching locations inthe slimes layer.

Air  cooled  face

Fig.  22 shows the microstructure of the lead anode ("air" face, location  #1

in Fig.  21)  \  A variation of the so-called "honeycomb" structure can be observed

in Fig.  22. As found from EPMA2

,  the inner grains in this microstructure have

a large concentration of lead-rich phases, whereas  the  grain  boundaries are

somewhat depleted in lead and can contain large concentrations of noble

elements  (Sb, As, Bi, Ag).  EPMA  performed in this sample (Fig. 22C) shows

significant variations in elemental concentrations along the grains and the grainboundaries.

1 This sample was prepared by

 polishing

 up to 600 grit followed by 5 urn alumina. Afterwards, the sample

was chemically etched

 with

 a polishing-etching solution of the following

 composition: 20 ml  CH3COOH(concentrated), 42 ml H2Oj, (30%), 40 ml

 HN03 (concentrated), and 70 ml of glycerine  [6-8].

2 EPMA in etched samples is not recommended as irregular absorption of

 x-rays

 resulting from

topography affects the analysis. Thus, the electron probe microanalysis

 shown

 in Fig. 22C only indicates

qualitative

 changes in concentrations.

[75]

Page 102: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 102/392

(C)Fig. 22  Lead anode microstuctures.

Anode "A", Air cooled face. All

micrographs correspond to the same

observation polnt( point #1 Fig. 21).

 Secondary Electron Images

Specimen was polished up to grit

600 and subsequently chemically

polished/etched

EPMA Fig. C. %wt

Point Cu As Ag Sb Pb Bi

1 0 6 1 2 87 3

2 0 13 5 31 51 0

3 0 14 2 23 62 0

4 0 5 0 2 80 14

5 0 11 4 3 82 0

6 0 9 0 2 81 8

7 0 9 2 3 83 2

[76]

Page 103: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 103/392

 Metallography  ol  the starting  lead  anode

The changes in the anode microstructure at different parts of  the lead anode

can  be  seen in Figs. 23 and 24 (locations #2 and #3 respectively of  Fig. 21) \

EPMA 3  performed on this sample  shows  that there is  less  Pb in the grain

boundaries than inside the grains. Furthermore, Bi seems  to be present with

lead throughout the whole microstructure. This analysis  also shows  a eutecticphase that is rich in As and Sb (points 6 and 7) whereas Sb and Ag-rich phases

can  be observed In the proximities of the grain boundaries (points 8 and 9) and

in some cases within the grains. The precipitates within the grains have a random

composition. Most of  these  precipitates are Pb-rich  compounds. Additionally,

Cu-As compounds (not identified in Fig.  23) can also be seen inside the grains.

The microstructures compared in Fig. 24, show the continuity of  the honeycomb

structure throughout the sample.

1 These samples were not etched. They were prepared by  polishing

 up

 to 600 grit followed by using 0.5

urn

 alumina.

 Backscattered electrons were used to

 reveal

 the anode microstructure.

2 As these samples were not etched,

 relative

 changes in the probe microanalysis are significant and

represent semi-quantitative changes

 in

 the elemental

 composition

 of the samples.

[77]

Page 104: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 104/392

Fig. 23  Lead anode microstuctures.Anode "A". All micrographs correspondto the same observation point( point #2Fig. 21).

 Backscattered  Electron ImagesSpecimen was polished up to grit 600followed by using 0.5  um alumina(sample was not etched or chemicallypolished).

EPMA Fig. C . %wt

Point Cu As Ag Sb Pb Bi

1 0 8 0 1 87 5

2 0 7 0 1 87 5

3 0 7 0 1 88 4

4 0 7 0 1 89 4

5 0 7 0 0 89 4

6 0 12 2 6 77 4

7 0 11 1 13 73 38 0 4 28 10 54 3

9 0 6 23 7 62 2

10 0 8 0 1 87 5

Metallography  ol tie Starting  Lead Anode

[78]

Page 105: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 105/392

 Metallography ol  the Starting  Lead  Anode

 Fig. 24  Lead anode microstuctures. Micrographs correspond to different observation points

(A) and (B) Observation point #2 Fig. 21  (C) and (D) Observation point #3  Fig. 21

 Backscattered  Electron Images

Specimens were polished up to grit 600 followed by using 0.5  urn alumina (samples were not

etched or chemically polished)

Page 106: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 106/392

 SEM  analysis

2. Analysis of  the slimes layer phases and  compounds

(a) SEM   analysis

The  slimes microstructure1

 =2 mm away from the slimes/bulk electrolyte

interface is shown in Fig. 25a

. The  Pb-rich  phases  inside the grains have

dissolved and the noble phases are left behind. The dissolution of the  Pb-rich

phases near the grain boundaries can be seen in Fig. 26.  EPMA  showed that

large concentrations of noble  elements  are present along the former grain

boundaries and that there are gradients in their concentrations (e.g. compare

points 1 and 2).  Additionally, noble compounds and various segregates were

detected in these inicrostructures (see points 3 and 4). Fig. 26C shows the form

of  the precipitates of  noble phases originally present inside the lead anode grains

which report to the slimes layer.

The  slimes layer microstructure1

 =12 mm away  from  the slimes/bulk

electrolyte interface is shown in Fig. 27. Evidence for the presence of  Si-rich

compounds is the major difference  between  this microstructure and the

microstructures  shown in Figs. 25 and 27. As can be  seen  in Fig. 28, Si

surrounds the former grain boundaries and appears randomly throughout the

structure. Si is expected to result  from the hydrolysis of  SiF 6"2

 which should

be more severe near the anode/slimes interface.

1 Total slimes thickness

 =13.8

 mm.

2 Samples

 were mounted using a vacuum imbibition technique and a low viscosity resin. Careful polishing

using

 the

 0.5u.m

 cloth

 grit

 was

 used

 to

 remove

 the excess of resin. Samples were coated with graphite

previous to their observation in the SEM.

[80]

Page 107: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 107/392

SEM  ana/ysis

Fig.  25  Microstructure of the slimes layer @2mm  away from the slimes/electrolyte interface

(position #2 Fig. 21)

Backscattered   Electron  Image

[81]

Page 108: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 108/392

016929  30KV  X 4 0 0 7 5 u m

Fig.  26  Detail of the  microstructure of

the slimes layer © 2 m m  away  from  the

slimes/electrolyte Interface (position #2

Fig.  21)

Backscattered Electron  Images

EPMA Fig.  C , %wt

Point As Ag Sb Pb Si

1 12 8 56 25

2 6 - 79 14 -

3 3 56 40 0 -

4 20 8 35 36 -

[82]

Page 109: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 109/392

Fig. 27  Microstructure of  the slimes layer @12mm away from the slimes/electrolyte

interface (position #3 Fig. 21)

Backscattered   Electron  Image

SEM  analysis

[83]

Page 110: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 110/392

SEM analysis

( B )

016924  30KV  X400"''  '75um

Fig.  28  Detail of the microstructureof  the slimes layer @ 12mm  away from

the slimes/electrolyte Interface(position 3 Fig.  21)Backscattered   Electron  Images

EPMA Fig. C, %wt

Point

1

2

Si Cu As Ag Sb

44 1 8 - 47

23  - 9 6 62

 -   - 15 3 63

Pb

19

[84]

Page 111: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 111/392

 X-ray diffraction

(b) X-ray   diffraction

Table  1 shows the results of the X-ray diffraction analysis of  unsupported

slimes samples

Table 1 X-ray Diffraction Analysis of  Outer and  Inner Slimes Powder Samples

Outer Slimes

(=2  mm  from the slimes-electrolyte

interface)

Inner Slimes

(=12  mm  from the slimes-electrolyte

interface)

PbF 2 X XXX

Si 0 2 X XX

Sb 20 3X XXX

SbA X XX

Bi X XX

Sb X XX

PbO  (yellow) -

Ag 3Sb XX

Cu3Sb XX

A s A - X

PbSiOj

Bi 2 0 3X XX

. Phase presence is dubious

- Phase detected  in  very small concentrations

X  Phase detected  in  low concentrations

XX  Phase detected in medium concentrations

XX X  Phase detected in large concentrations

The  presence of  PbF2 in these samples and its relative larger concentration

in  the inner slimes is a supplementary indication to the presence of  Si  detected

by  EPMA that hydrolysis of  SiF6"2 takes place.

The  presence  of   metallic Bi,  and Sb,  together with some of  their oxides was

as expected  from electron probe microanalysis 2

. The presence of mtermetallic

compounds (i.e.  A^Sb  and Cu 3Sb) was also expected  from these analysis.

1 With multiple phases

 present

 there were overlapping

 peaks

 that caused problems with positive,

unambiguous identification.

2 The

 presence

 of

 oxides

 can be the result of

 oxidation

 of the

 slimes

 after they were

 dried.

[85]

Page 112: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 112/392

Chapter  5 Anodic  and Rest Pot ent ial Behavior  of Pure Lead  i n

HaSiFe-PbSiFe  Electrolytes

I.  Overview of Pure Lead Dis sol uti on in H 2 S i F 6 - P b S i F 6  Electrolytes

Under  Galva nostat ic Condit ionsIn this chapter the dissolution of a pure lead electrode is discussed in terms

of   DC  and  AC  electrochemical measurements. A qualitative analysis of the

controlling mechanisms for lead dissolution is presented. The different

components of the anodic overpotential are related to phenomena taking place in

the electrode boundary layer. In the case of  pure lead, there are no complications

due to the presence of slimes.

A. Anodic  overpotential in the absence of  large concentration gradients inthe anode boundary  layer

During the galvanostatic dissolution of the lead bullion anode described in

Chapter 4, the value of  the uncompensated ohmic resistance, r| n, remained nearly

constant during the whole electrorefining cycle (Fig.  4.7).  In this case, the presence

of  large ionic concentration gradients within the slimes layer results in a counter

E.M.F.  that is responsible for the failure of the anodic overpotential to decay to

zero upon current interruption.  When  pure lead is dissolved,  T|

Q

  increases

continuously with time as  seen  in Fig. 1, as a result of the progressive ohmic

resistance created by the movement of the anode/electrolyte interface.  Increases

in  rj n reflect  changes  in the distance  between  the reference electrode and the

anode/electrolyte interface which directly affect the  Rg1

 value.  Under  these

conditions,  rjQ appears to be the only source of potential between the lead anode

and  the reference electrode. By subtracting the calculated ohmic resistance  from

the r)A  measurements, the  extent  to which concentration gradients become

established in the anode boundary layer can be studied. As Fig. IA shows,  the

corrected anodic overpotential value remains constant  during the dissolution of

lead,  indicating a constant thickness of the boundary layer across which

concentration gradients persist. Concentration overpotential can be considered

to be the only source of potential under these circumstances, as lead dissolution

1 As explained in Chapters 2 and 4, R,

 [Qcm

2

]

 is the specific resistance of the electrolyte and is

 related

 to

T\a

 by the

 following

 relationship:

  Ti

n

=IR

s

.

[86]

Page 113: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 113/392

 Anodic overpotential  in the absence of  large concentration gradients in the anode boundar

occurs nearly reversibly  (n,ac=0  mV) \ The  small  magnitude of the generated

concentration overpotential indicates that large concentration gradients are not

established a .

(A)  (B)

80   i I I I | I i I | I I i  | i  i i |  i  i i | i  i i | i i i | i i   i | i I I | i i   i

>

Fig. 1 Potential difference between a fixed reference electrode and a corroding anode In the

absence of  addition agents.

Experimental conditions: Galvanostatic Experiment, Current Density= 200 Amp m"2

,

Electrode Area  1.50 cm2

, [PbSiF6l=1.31  M ,  [H2SiF6]=0.30  M .  T=4Q±1.5"C, bulk  electrolyteelectrical conductivity K=220 mmhos cm"1. Beaker electrochemical cell, electrolyte volume

=300ml, stationary electrolyte. Wenking potentiostat-Data Translation Board-IBM XTcomputer.

(A) f\

A

 variation during the dissolution of pure lead

(B) T\a changes obtained by interrupting the current at preset times.

1

 iiae

 determination was done by using AC impedance techniques

 described

 in section III.

2 In the

 case

 shown in Fig.

 

concentration gradients

 in

 the Nernst boundary layer span over a region

between 100 and 1000 urn thick.

 By

 comparison, during the refining of impure lead, concentration

gradients are present throughout the whole slimes layer (i.e. the Nernst boundary layer spans over

several

 mm).

[87]

Page 114: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 114/392

Correlation between  the anodic overpotential and the presence ol addition age

B. Correlation  between the anodic   overpotential  and  the presence of

addition agents.

During the refining of  lead, addition agents (i.e. aloes and lignin sulphonate)

are  normally used to modify cathodic reactions. The presence of  addition agents

can  also affect  anodic reactions through complex adsorption mechanisms [lj.  In

general, the r|A values observed during the galvanostatic dissolution of  pure lead

were found to increase in the presence of  addition agents in the bulk  electrolyte1.

Moreover, when an excess of  these additives is added to the electrolyte, to the

extent that suspended material is visible, they collect on the anode and promote

very large overpotential values. This behavior is shown in Fig. 2A where it can be

seen  that in a few hours T|A rises  from  0 to =1000 mV. In this  case, current

interruption measurements indicate thatTjQ accounts for most of  the overpotential

values (Fig. 2B). In the presence of  purely resistive films in the anode surface, T) 0

can  be described by the following equation:

T]

a

  = IRs=I(Rb+Rfi

J

  ...1

Rt was found to be equal to 1.4  Qcm2  from the ohmic drop value obtained a

few seconds after the electrolysis began. Any extra increases in  T I

q are due to the

presence of  Rflim. The T j n produced by this film along with its resistance are plotted

in Fig. 2B. It seems as if the addition agents form or generate a highly resistive

film that may be counter productive to the refining process  a . Furthermore,  the

presence of this  film favours the development of  concentration gradients in the

anode/electrolyte interface.  Thus,  the rjA  values obtained upon current

interruption  increase continuously with time (see inset  Fig. 2A) indicating that

the stagnant zone at the anode surface is thickening.

1

 See section ll.b.

2 Visual observation of the anode after the refining process showed

 that a yellowish

 film adhered to the

anode surface. Such a film was visible only when the amount of undissolved addition agents was large.

 In

electrolyte solutions where the electrolyte was filtered prior to its introduction to the cell, the addition agent

film was not visible at naked eye.

The amount of

 suspended

 solids

 produced

 by excess additives (aloes and lignin sulphonate) seem to

increase

 with

 increasing lead concentrations

 in

 the electrolyte. Techniques for increasing the dissolution

of

 these

 and other additives are reported

 in

 the

 literature

 [2].

[88]

Page 115: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 115/392

Correlation between  the anodic overpotential  and the presence of  secondary products that  precipitate on the ano

(A)  (B)

Fig. 2  Overpotential changes during the galvanostatic dissolution of  pure lead (in the

presence of  excess quantities of  addition agents)

Experimental conditions: Current Density = 180 Amp m"2

.  Electrode Area 31.0 cm2

,[PbSiF6]=1.31  M ,  [H2SiF6]=0.30  M ,  =2 g 1

1 aloes and  =4 g 11

 lignin sulphonate (suspendedmaterial was visible), T=40±1.5°C. Rectangular electrochemical cell, electrolyte volume=320ml, bulk  electrolyte recirculation rate =6 ml min"1. Wenking potentiostat-DataTranslation Board-IBM XT computer.

(A) T |A

 increases as a function of the  electrolysis time(B) Changes in the and R^,  as a function of the electrolysis time. Left, axis:  T |

Q

 due to thepresence of  a colloidal film of "undissolved" addition agent [r\a , fflm ). Right  axis: Ram obtained

from the following relationship: R fi!m  =

C.

  Correlation  between the anodic   overpotential and  the presence of

secondary products that precipitate on the anode surface

Increases  in the anodic overpotential values  as a result of  changes  in its

ohmic component also can be due to the precipitation of nearly insoluble  salts

such as  PbF2  and Si0 2. The precipitation of   these  salts  can be observed if

sufficiently large concentration gradients in the anode boundary layer become

established. The  presence of  these compounds in the anode surface would hinder

the movement of  ions and induce even larger concentration gradients as well as

increase  T J q  . If the concentration gradients are large enough,  even  the highly

189]

Page 116: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 116/392

Establishment  of Ionic Concentration Gradients in  (he

 Anode

 Boundary Layer and their Relationship to  the  Anodic

 O

soluble  PbSiF 6.4H 20  salt can precipitate \ Fig. 3  shows how the formation of

secondary products can be promoted by dissolution of the anode using high

current  densities. rjQ  is the main component of the anodic overpotential values

shown in Fig. 3. Moreover, TJ q  is related to the porosity and tortuosity factors

resulting  from  the presence of precipitated products in the anode vicinity.

Concentration overpotential also contributes to the rjA increases shown in Fig.  3.

6 0 0 0

5 0 0 0  -

4 0 0 0

CM

E\CLE

<

' ( / )  3 0 0 0

c

Q

cOJ1_

13

O

2 0 0 0

1 0 0 0

Anodic

  Overpotential

•  Current Density

0)

o>

 <5

cOJ

-1—'

oCL

i_OJ

>

O

oT5OC

<1 4 0 0 2 8 0 0

i . _ i  o

4 2 0 0

Time,

  sec

Fig. 3  Anodic overpotentialresponse (uncorrected for  TJQ) of  purelead to the application of successivecurrent steps

Experimental conditions: Electrodearea 2.34 cm

2

,  [PbSiFJ^.35 M,[HjSiFd^.SO M, [SiOJ=0.13 M, =2g 1 aloes and =4 g l'

1 ligninsulphonate, T=40±1.5'C, bulkelectrolyte electrical conductivityK=330mmhos cm"

1

. Beakerelectrochemical cell, electrolytevolume =300ml, bulk  electrolyterecirculation rate =6 ml min"

1

.Solartron ElectrochemicalInterface-IEEE Card-IBM XTcomputer

Left axis: Current steps applied as afunction of timeRight axis: Anodic overpotentialresponse (uncorrected for r\^)

EL. Establ ishment  of Ionic  Concentration Gradients  i n the  Anode

Boundary  Layer  and  their  Relat ionship  to the  Anodic

Overpotential

In the previous section it was shown that during the dissolution of  pure lead,

T |

A

  increases almost exclusively due to changes in its ohmic component. By

subtracting rj Q  from n,A, the activation and concentration overpotentials can be

1 The

 maximum solubility

 of

 pure

 PbSiF

6.4H 20 at

 40  °C is 5

 M (see

 Appendix

 7).[90]

Page 117: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 117/392

 Establishment  ol  Ionic Concentration Gradients in the Anode Boundary Layer  and  their  Relationship to the Anodic 

obtained \

The  division of the anodic overpotential in its ohmic, activation, and

concentration  components was attempted by studying the anodic  response of

pure lead to current steps. Prior to the experiment -0.5 mm of  the exposed surface

of  the working electrode was removed by anodic dissolution at low current density.This aided in obtaining reproducible results.  Variation  in rjA as a result of the

presence of addition agents was studied using the same cell and electrodes 2 . The

thickness of the hydrodynamic boundary layer was not controlled, yet, by fixing

the recirculation rate of  the bulk  electrolyte, reproducible results were obtained 3

.

cCDQ

cCDv_i_

(J

Fig. 4  Current  step  function used to study theestablishment of concentration gradients in the anodeboundary layer.

The transient period for both current rise and fall wassmaller than 10 usee.

The time tj marks the onset of  the current interruption.

Time

Fig. 4 shows the characteristics  of  the current steps used to study the anodic

behavior of pure lead.  After  the application of each current  step,  current was

1 As described in Chapter 2, concentration overpotential ,T\C  , develops due to the establishment of

concentration gradients

 in

 the anode boundary layer and is

 a

 function of the current density and the

hydrodynamic

 conditions.

 Activation overpotential, T^ ,

 develops due to the transport hindrance that the

charge carriers find during their movement across the Helmholtz electrical double layer,  can

 be

determined accurately

 in

 the absence of concentration gradients and only when

 it

 is

 controlling the

reaction rate.

2 The experiment started by analyzing the T]

a

 changes using an additives-free electrolyte. Subsequently,

this electrolyte was slowly substituted with an electrolyte of matching

 composition

 but containing addition

agents.

3 The hydrodynamic

 conditions in

 the

 vicinity

 of the anode/electrolyte

 interface

 are more nearly

 a

 product

of convection than of electrolyte recirculation. However, electrolyte recirculation assured uniform

electrolyte

 composition

 between

 the reference electrode and the anode/electrolyte interface.

[91]

Page 118: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 118/392

Page 119: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 119/392

In  the

 absence

 ol

 addition agents

 in the  bulk

 electrol

The  Rg value obtained from the slope of the plot shown in Fig. 6, was nearly

equal to the  Rg value obtained prior to the application of the current steps. The

activation overpotential, if present, would be observable by a non-zero intercept

or  as a curvature near the  origin. Evidently,  activation overpotential is not

controlling the dissolution of the lead anode.The

  T|

A

 values compensated for the  initial r|n

  (Fig.  6) are presented in Fig. 7.

The  overpotential obtained immediately after application of  current is very close

to zero (which implies that  rj

ac

=0  mV)  1

  . Subsequent increases in the anodic

overpotential are due to changes in the concentration of ionic species within the

anode boundary layer2

. Thus,  increases in r|

A

 are nearly equal to changes in its

rj

c

  component.

300

240

>E

CL

o

o

E

O

•  «—IL  ohmic  drop right after  applying  the  current  step

-

; I/"/7 i i i i i i i i i i I i i  i i i i 1  i i i : i i i 1 i i i i i i i 1 i i  i

Fig. 6

 Changes in T)Q as a function ofthe applied current density.

Ti n values derived from the datashown in Fig. 5.

T|n  values  obtained from highfrequency AC measurement (under rest

potential conditions) were consistentwith these readings

400 800 1200 1600

Current Density,

  Amp.rrf 

2

200

1

 As

 described

 by Eq.

 2, at time

 t=0,  T | C= 0. Thus,

 the overvoltage at

 t=0 becomes equal to the initial

 value

of the activation overpotential [3,p. 356].

2 As the anode

 dissolves,

 an extra increment to t\a  can also be present in these measurements. n,

n

changes can be neglected

 during

 the first seconds

 after the

 application of current.

[93]

Page 120: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 120/392

In the

 absence

 of addition agen ts in the bulk  electrolyte

40

  r i i i i i i

  i

  i i | | -

U  1 1 1 1  <

^  j_   Each Curve corresponds   to the   TJ A

<r

  35 j-  response  to a  different current density step

f  from lower

  to

  higher current densities

S

  3 0

  ~~~~

fr t

  o c : / "—~~ . ^

Fig. 7  Anodic overpotential response(corrected for initial T|Q) of  a pure leadelectrode to the current steps describedin Fig. 4.

. —   : / — i  increasing

~£ U  /  T  Current

  I

OJ  j-  f  /

  '  Density

From the rjA data shown in Fig. 5 theT ) N  values  shown in  Fig. 6  weresubtracted.

Each  curve corresponds to the  T |  A

values  obtained at different currentdensities, as follows (from bottom totop): 10, 50,100, 150,206,250, 300,500, 800, 1000, 1400, and 1600

Amp m'

2

.

u

  • • • • •

0  5 10 15 20 25 30

T i m e ,  sec

The  anodic overpotential  response  during the first  seconds  after the

application of the current step was modelled by using the analytical solution of

Fick's diffusion equation under unsteady state conditions. To solve this equation

the following assumptions  were used:

1) Absence of  Migration

2) Absence of Convection

3) Unit Activity coefficients

4) Dissolution of lead is not controlled by kinetics (r|ac=0).

5) Linear  semi-infinite conditions

Description of the boundary conditions required to solve this equation are

provided in Appendix 8 along with its analytical solution. From this solution, the

following relationship between  the concentration overpotential and the square

root of  time should be observed if  the dissolution process is dorninated by diffusion:

eXP  [ RT   J   nFC b p.+2 y

By  defining:

[94]

Page 121: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 121/392

 In the absence ol  addition agents in the bulk  electrolyte

O, =exd1  *|_ RT

21  1

Eq.  3 can be expressed as a linear equation:

<b x=m D-jr  x+b D  ...4

Thus, by plotting d>j vs.'V^a straight line with slope, mo, and intercept,

should be obtained.

By using the data shown in Fig.  7, and assuming that rjJO.tJ^A, the plots

shown in Fig.  8 were obtained. In this figure, a linear relationship between <J>j and

the square root of time is limited to times smaller than 1 sec \  From curve fitting

these  data to  Eq. 4, the data shown in  Table  1 were obtained.  Correlation

coefficients  close to  1 were obtained in almost the whole range of  current densities

studied. The average diffusion coefficient,  D pb+2 ,  agrees with the values reported

in  the literature  a . This diffusion coefficient, while dominated by the movement

of  Pb + 2, also includes the effects of  other ions (SiF6

 2

  and H+ among others). Changes

in  the transference number of the lead ions will take place when concentration

gradients are fully developed and this  will  affect the absolute value of this

coefficient3

. The presence of  these concentration gradients is observable in the

analyzed data, as departures  from  linearity and as changes in the value of the

intercept  from unity4

.

The  agreement between the solution of  Fick's equation and the results of  the

current  step  experiments confirms that in the absence of addition agents,  the

lead dissolution process is controlled by diffusion.

1 As seen in Fig. 8, the larger the applied current density the smaller the linear region

 between

 the square

root of time

 and

 O,.

2 Diffusion coefficients for lead in HCI0

4

-Pb(CI0

4

)

2

 electrolytes at

 25

 "C reported

 in

 the literature are:

D

r o + 1

  = 9.4x10"* cm

2

/sec [1]; Dp 4 + 1

  = 4.8X10"

6

 cm

2

/sec [4j.

3 The solution of Fick's second law presented in Appendix 8 implies that the transference number

 of

 lead

is zero. Any departures from this transference number will affect the obtained diffusion coefficient.

4 Notice also

 that

 b

D

 decreases as the current density increases.

[95]

Page 122: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 122/392

 In the absence of  addition agents in the bulk  electrolyte

Fig. 8 Changes in  <&, as a function of

the square root of  time, -v/f

From the data presented in Fig. 7.

Each  curve corresponds  to the <t>!values  obtained  at  different currentdensities, as follows (from bottom totop): 10,50,100,150,206, 250, 300,500,  800, 1000, 1400, and 1600Amp m"

2

.

Table 1  Results of  the analysis of  the concentration overpotential increases during the first second

after application of  the current steps.  Fick's Second  Law  approximation.

Current Fitting Parameters of  Eq. 4

Density, TUry Regression  D  +2

Amp-m"2

Coefficient,  r 2 cm2-sec 1

50 1.00 0.0371 0.927 5.1E-06

100 0.99 0.0720 0.979 5.4E-06

150 0.983 5.0E-06

250 ^ ^ ^ ^ ^ ^ 0.1614 """"""""""" 6.7E-06

300 0.97 0.1946 ii/iiiiiiiiiiii 6.6E-06

400 0.96 0.2775 0.957 5.8E-06

500 0.95 0.3624 0.963 5.3E-06

800 0.91 0.5672 0.951 5.6E-06

1002 0.89 0.8205 0.964 4.2E-06

1398 0.83 1.1494 0.959 4.1E-06

1598 0.80 1.1921 0.940 5.0E-06

5 . 3 ± 0 . 8 x l 06

[96]

Page 123: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 123/392

 In the absence ol  addition agents in the bulk  electrolyte

If  concentration overpotential is the only source of  potential (after subtracting

riJ its presence will be observed after interrupting the current. This can be seen

in Fig.  9 which shows the decay in the anodic overpotential corrected for ohmic

drop obtained after interrupting the current \

3 0

>E

<

V—

c

cuc>CL

i_<D>

O

oTJ

O

C

<

Fig. 9  Decay  in the  anodicoverpotential (corrected for TIQ ) as afunction of  the interruption time, t2.

t1-t2=460  sec (see  Fig. 4 for a

description of  the relationship betweentt and t .

Other  experimental conditions  as

described in Fig. 5.

Each  curve corresponds  to the  T | A

value obtained after the interruption ofthe applied current density.  Appliedcurrent densities were as follows (frombottom to top):  10,50,100,150,206,250,  300, 500, 800, 1000, 1400, and1600  Amp m"

2

.

i i i i i i i i i i i i i i i i i i i i i i i i i i i i4 6 8 10

Time,  sec

By  solving Fick's equation under current interruption conditions  (see

Appendix 8), the following linear relationship should be observed:

0>2 = mD[V^-VS +  ...5

 where:

0 2 = exp RT

 with rrto and  b D as defined  by Eq. 4.

Eq. 5 is  applicable only when  ti is  very small  (less  than  1 sec) because

convection will stop the thickening of the anode boundary layer. Fick's second

law could not be used  to analyze  the  T |

A

  response upon current interruption

1 T|n was measured prior

 to

 the interruption of

 current

 by measuring the impedance at high frequencies

and by using the current interruption routine built into the SEI. Upon current interruption, the observed

ohmic drop coincided

 with that

 obtained in

 these

 measurements.

[97]

Page 124: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 124/392

 In the presence ol  addition agents in  the bulk  electrolyte

because the boundary conditions are not known precisely. Nevertheless, what the

data in Fig. 9 show is that, upon current interruption, concentration gradients

relax and this relaxation can be followed by monitoring the anodic overpotential

dependance with time.

B. In the presence of  addition agents in the bulk  electrolyte

If  addition agents are added to the bulk electrolyte, the rj

A

 response changes

(Fig.  10). Upon subtracting the initial T |

Q

 value from the r\ A readings, the remaining

overpotential was positive (Fig. 11).  This  rj

A

  value decreased during the first

milliseconds after the application of  current. After this initial decrease,  changes

in TJ a were a function of  the applied current density. In any case, TJ a increased only

up  to the point at which convection  stops the thickening of the boundary layer.

>E

<

.K5- 4— '

COJ

- 4— '

oCL

OJ>

O

u

TJOC

<

200

175

150

125

100

75

50

25

Each  Curve  corresponds  to the 77A

response  to a  different  current  density step

from  lower   to  higher current   densities

Increasing

Current

Density

Fig.  10  Anodic overpotentialresponse (uncorrected for  T|Q) of  apure lead electrode to the currentsteps described in Fig. 4.

conditions:2.34  cm2,

Experimentalelectrode area[PbSiFs]=0.37 M,[H2SiF6]=0.82 M,  [SiOJ=0.13 M,T=40±1.5"C,  =2gl"1

  aloes and=A g l'1  lignin sulphonate, beaker

electrochemical cell, electrolytevolume =310ml, bulk electrolyterecirculation  rate  =6 ml min"1.Solartron  ElectrochemicalInterface-IEEE  Card-IBM  XTcomputer.

i  1 1 1  1 1 1 1 1 1 1 1 1 1 1  11  i i  11 1 1 i

  1 1 11  1 1 i  i  1 1 1 11  i  11  1 1 11  i i

5 10 15 20 25 30

Time,  sec

Current steps were applied onlyafter the electrode had reached restpotential conditions (r|x=0mV).Overpotential readings were taken0.10 sec after the application ofeach current  step.  Each  curvecorresponds to the T | A  response to

a different current density, asfollows (from bottom to top): 10,50, 100, 150, 200, 250, 300, 400,500,600 Amp m"2.

The  differences in the r\ A and T |

N

 values at the beginning of the application of

the current steps where  consistent  throughout the range of current densities

studied (see Figs. 12 and 13). Such differences are the result of the presence of

an  adsorbed film of  addition agents in the electrode interface. Such a film extends

[98]

Page 125: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 125/392

 In the presence of  addition agents in the bulk  electroly

(A) (B)

18.8 r- 18.8-

688.

Mr 11  i l  i 1111 11  l 1111 i i 11  i 1111 i i 111 i I 11111 111

.888 28.6 48.8 (1.8 88.8 188.

• B88t"'  ' ' I '  • •  I ' ' ' I ' '  • I ' •  ' I  ' ' • I  • • ' I • ' ' I  ' ' ' I '  • ' I.888 6.88 12.8 18.8 24.8 38.8

Time, secTime, sec

Fig. 11 Anodic overpotential response (corrected for initial T|J of a pure lead electrode to thecurrent steps described in Fig. 4

From the data shown in Fig.  10 the T|Q values shown in Fig.  12 were subtracted. Eachcurve corresponds to the values obtained at different current densities (in Amp m"

2

) as

shown to the left of every curve. For the different current densities applied, TJA values at t=0were as follows:

Current density. Amp m2

50 150 250 406 600

T|A corrected for T|Q (at t=0), 10 8.2 9.6 11.5 9.1mV

(A) Long range variation of the TIA response (corrected for initial TIJ. T|a increases up to the

point at which convection stops the thickening of the boundary layer.

(B) Detail of the rjA  increases.

the region where concentration gradients can be found. Upon passage of  current,

concentration gradients become established, changing the resistance of the filmand  the kinetics for lead dissolution. The non-zero intercept of the anodic

overpotential curves indicates that inhibition is present as a result of  this adsorbed

film.  On  account of the synergistic  effect between  addition agents,  activation

overpotential, and concentration overpotential, no simple analysis of the  T] A

transients can be performed. Yet, the riA response indicates clearly that the

addition agents affect the anodic reaction for lead in such a way that r| a c can no

longer be considered to be zero.

[99]

Page 126: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 126/392

In the

 presence of

 addition agents  in the

 bulk

 electrolyte

288.

-  *  An o d i c  O ve r p ot e n t i a l  ( r i g h t  a f t e r  ap p l y i n g  current  s tep)

 —0  l ineonpensated  Ohnic Drop  ( f r on  AC nea sur ane nt)

168

128  ,

88.8

48.8

.888 i   ' i I I I

_ I _ I _L

1 I I I

.888 488 688,128. 248 . 36 8.

Current Density, Amp/m2

Fig. 12 Comparison between the anodic overpotential value obtained  right after applicationof current (*) and the uncompensated  ohmic drop obtained  from  the high frequency interceptof the impedance spectrum  (O)

TJA values derived  from  the data presented  in Fig. 10.  T | F T values obtained  from  the highfrequency AC measurements under rest potential conditions (i\n = IRJ.

[100]

Page 127: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 127/392

 In the presence of  addition agents in the bulk electrolyte

1 8 8 .

8 8  . 8

1

T3

C-Mo

&4 8  . 8

c5a

-ao

<2  2 8 . 8

MM  M M H M M M M - * M M » » «  M » »

cd =  4 8 8 . AMP/M1

1 2  . 8 -

9 . 6 8

7  . 2 8

4 . 8 8  -

2 . 4 8

,0004 -L.. 8 8 8

O v e r p o t e n t i a l  decay caused by

the presence of a dd i t io n  agents

t mu»»ii*i

1  • • •  1  •  ' ' 1  ' ' '  1  ' ' '  1 ' ' • 1 ' •'  1  '  • •  1  • •  • 1 ' ' 1 1

. 6 8 8  1 . 2 8 1 . 8 8 2 . 4 8 3 . 8 8

• BOO-j-  1

  1 1

  I

  1 1 1

  I

  1 1 1

  I

  1 1 1

  I

  1 1 1

  I

  1 1 1

  I

  1

  '

  1

  I

  1 1 1

  I

  1 1 1

  I

  1 1 1

  I

. 8 8 8  . 6 8 8 1 . 2 8 1 . 8 8 2 . 4 8 3 . 8 8

Time, sec

Fig.  13  Changes in the anodic overpotential upon application of  a current step.

From the data presented in Fig.  10.  Applied current density: 400 Amp m~ 2

.

Upon application of  current  TJA increases from 0 to 96 mV and  decreases slowly afterwards.From  A C measurements under rest potential conditions an Rg value of 2.09  £2cm

2 was found.

Thus, Tl n=2.09£2cm2

  * 40 mAmp cm 2 =83.6 mV

The  inset plot shows the changes in r\ A  (mV)  as a function of  time (sec) after correcting theanodic overpotential for  r\

a

.

Finally, the ohmic drop measured by either fast current interruption or highfrequency AC impedance measurements predicted T

)a values which were slightly

larger than measured (Fig. 14). The difference between these values is partially

due  to the presence of a film resistance, (so-called "film inhibition').

[101]

Page 128: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 128/392

 Introduction

s

c

II«•0a.

>

a

»

o

i •

20 .0 -

*

i 6 . 0 Y•Unaccounted

• the  p r e s e n c e

o h n i c  d r o p c a u s e d   1>«J

at   a d d i t i o n  a g e n t s

88. e 12 .0

8 . 8 8  -

i

66 .0 4 .aa -

.000+' 1

.eee1 1  1 » 1 1  1 1 1 1  1 1 1 1  1 1

.800  1.60

i  l  i i * 1  i i i  1  i i i  1  i i i 1   i i t 1

2.40  3.20  4 . 8 8

44 . 0

cd=  400.

•8

|  22 .8

 Fig. 14  Changes In the anodic overpotential as a function of the current Interruption time.

Experimental conditions as described in Fig. 10.

After applying current (1=400 Amp m"2

) for 320 sec (trt2=320 sec) current was halted and the

overpotential decay was followed as a function of time.

Upon current interruption % decreases abruptly (from 105 to 12 mV).  From ACmeasurements prior to the interruption of current an R, value of 2.17  Qcm

2

 was found.

Thus. Tin=2.17flcm2

  * 40 mAmp cm2 =86.8 mV.

The  inset plot shows the changes in T | A  (mV)  as a function of  time (sec) after subtracting  T | Q

from the first r^ reading.

HI.  A C  Impedance

 A . Introduction

In the previous section,  DC  (direct current) transient techniques were used

to study the dissolution of pure lead and its relationship to the components of

the anodic overpotential. In this section, a complementary study using AC

techniques is presented1

.

1

 For a description of the

 implementation

 of the AC techniques

 see Appendix 6.

[102]

Page 129: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 129/392

 Impedance spectra obtained  in an electrolyte without  addition age

In  the absence of a net  D C current, application of an A C voltage at low

frequencies (axlO3

 rad/sec) generates sinusoidal concentration gradients whose

amplitudes decrease exponentially from  the electrode surface towards the bulk

electrolyte [5,61. These concentration gradients  cause a characteristic AC energy

absorption. As the A C

 frequency is increased (up to 10

5

 rad/sec), ionic diffusioncannot keep up with the change in direction and so energy absorption disappears

to be replaced by a phase angle characteristic of a capacitor which represents

processes  in the vicinity of the electrical double layer. At extremely high

frequencies (larger than 105 rad/sec) only the movements of ions and dipoles in

solution, representing dielectric properties, can keep up with changing potentials

{7,811.  This  phenomenon is rarely  seen  because such high frequency

measurements in liquid electrolytes are experimentally difficult or inaccessible.

A C impedance studies in the presence of a net Faradaic current are analogous

to the impedance  studies  in the absence of a net  D C bias provided the

electrochemical processes under investigation behave linearly. If  conditions at the

electrode/electrolyte interface change due to the passage of  current, they will be

reflected in the  A C impedance spectrum. For example, nonlinearities in the

response of the system can produce a net rectification current and a rectified

voltage. The presence of   these  nonlinearities and their  effect  on the related

electrochemical  processes  have been studied by using  Faradaic  Rectification

Techniques 16,9].  In highly reversible  systems  where diffusion controls the

dissolution process (such as lead dissolution in H 2SiF 6-PbSiF6  electrolytes), AC

studies  in the presence of a  D C current can provide a better insight as to the

extent  to which concentration gradients become established in the anode

boundary  layer. Also,  information on the  effects  produced by the presence of

addition agents can be derived from A C   studies.

B. Impedance spectra obtained in an electrolyte without addition agents

The  A C

 behaviour of pure lead under rest potential conditions (i.e. in the

absence of a net  Faradaic D C current) is shown in Fig. 15  2

. The straight line

1 The bulk electrolyte has

 a uniform

 composition and its properties are a function of its geometrical

capacitance C

g

 and bulk resistance R

b

. From

 these

 values, the dielectric relaxation

 time

 of the bulk

electrolyte,  Td

  can be obtained (x

D

=R

b

C

8

)

 [7].

2

 A

 sinusoidal

 current waveform with an amplitude of 21

.3 Amp/m

2

 R.M.S.

 was swept from lower

 to

 higher

frequencies

 while

 the impedance was measured at every frequency.

 Application

 of DC currents of the

same order of magnitude of the amplitude of the AC waveform (see Fig. 7) resulted in overpotentials lower

than

 5 mV.

[103]

Page 130: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 130/392

 Impedance spectra obtained  in an electrolyte without  addition ag 

obtained indicates that diffusion in the electrode boundary layer is the only

mechanism controlling the dissolution/deposition of  Pb+ 2

.  At high frequencies,

the interception of the impedance curve with the  Z% axis is equal to the value of

the uncompensated ohmic resistance, Rg1 . When this value was subtracted from

the impedance curve, a 45° straight line was observed in the impedance diagram(Fig.  16)

2

.

U

 NI

120  —

. B9B

. 060

. 030

1 —xE  0 ra<l/sco

- 1 .00

-•

2 . 50 —

6 . 28z D IS . 78

 z_ • 39 . 63

- -4 99 . 58— 6 298 . — O 628 .

- • 1378 .

-*

1771 .

. 000

. O0O . 320 . 640 .968Z r a * l  ft-CM*

1 .28 1 .60

Fig.  15  Impedance diagram of  pure lead under rest potential conditions (in the absence of

addition agents)

Experimental conditions: electrode area 2.34 cm2

, [PbSiFel=0.35 M, [H2SiF6]=0.84 M,[SiO2]=0.13 M, T=40±1.5"C, beaker electrochemical cell, electrolyte volume =300ml, bulkelectrolyte recirculation rate =6 ml min"1. Solartron Electrochemical Interface-IEEE Card-IBM

XT computer.

Impedance curve obtained under galvanostatic  control,  A C waveform amplitude 21.3 Amp m'2

RM.S.

A total of 65 experimental points are plotted. Some of the frequencies  (In rad sec"1

) at whichthese points were sampled are indicated in the diagramFrom the high frequency intercept of  this plot with the Zg, axis, the Rg value can be obtained(Rg= 1.40 Qcm2).

1 For

 a

 fixed distance between the reference and the working electrodes, this value was very reproducible

(variations

 were

 less than 0.5%). These

 R

s

 values were

 used to obtain

 r\n prior to the application of the

current steps (see section ll.b).

2 Impedance diagrams in which the real part of the impedance is the abscissa, Z„, and the negative of

the imaginary part of the impedance is the ordinate, -Z,, are also known as Argand plots.

 In

 an Argand

plot the AC frequencies at which the impedance was measured are also shown.

[104]

Page 131: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 131/392

Impedance

 spectra obtained

 in an

 electrolyte

 without

 addition ag

iaer-xE a

.896 -

.872

N  .848

.824

.eee

Experimental

 —   Analogue node I

rad/sec

A i.ee* 2.58

• 6.28

• 15.78

• 39.65

« 99.58

6 258.0 628.

• 1578.

1771.

Fig. 16 Detail of  the impedance curveshown in Fig. 15 (after subtracting theR, value).

Some frequencies (in  rad sec'1)  areshown for both the experimental (solidline) and the regressed data (dottedline).

The  impedance curve was fitted to a

CPE element  (Z„,E =   (/cof'")  from

which  the following values were

obtained: B , ^ . 139  Qcm2sec**  and

Ta^O.50.

Quality  of Fit Parameters (65experimental points were fitted to the

CPE analogue):r

2

„=0.951, Iyj2=2.19xl0'3  Q2

cm4

r2

3=0.962 Iy3?=1.70xl0"3

  £rcm*^=0.958  ly J

2

=3.75xl03

  Q W

i  i i

.eee .824 .848 .872

Zreal  fi-CM"

.896

xE  8

i  i i  I

.128

To model the diffusion processes that take place in the electrode boundary-

layer,  distributed  elements  have been used  [81112.  Among  these  distributed

elements, the Constant Phase Angle Element (CPE) has been used extensively  [71.

The impedance of the  CPE element can be described by the foUowing equation:

When  the fractional exponent,  ^zc , approaches a value of 0.5, the CPE

element describes a serin-infinite diffusional process. Under these conditions the

1 All real electrical analogue elements are distributed in space, i.e. their absolute value changes with

position

 due to their finite size.

 Diffusion

 processes are distributed over the electrode boundary layer, and

constitute a classical example of a distributed element [8].

2 A

  distributed

 element

is

 a

 component in an analogue

 model that

 represents properties of the system

distributed over macro distances, such as ionic concentration gradients across the Nernst

 diffusion

 layer.

[105]

Page 132: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 132/392

Impedance spectra

 obtained

 in

 an electrolyte

 without

 addition ag

impedance of the  CPE element  is equal to the so-called  Warburg  impedance

[7.10,11] \ The Warburg impedance for the serru-infinite diffusion case is defined

as  [7.8.12]:

Zw,~ =  (/"w)^5

  ...7

When  *¥7jC  =0.5 the Warburg coefficient can be obtained from the Bj value

(Bj = ov). Thus, ^ is a subset of the generalized CPE response.  For the Pb/Pb + 2

equilibrium reaction ov is given by the following equation:

°V,- =RT (n ^°-5

(nF)2  C  pb«D pb«

RT 1..8

When  is different than 0.5 a generalized representation of the Warburg

coefficient 113-15]

2

 can be obtained from the following equation:

The impedance curve shown in Fig. 16 was curve fitted to Eq. 6 from which

the following values were obtained: Bx= 0.139  Q cm2 sec'Vzc and   20=0.5. When these

values were incorporated in Eq. 8, D pb+2  was found to be equal to 2. lxlO"6 cm 2/sec.

For  different experiments this number varied by as much as one order of

magnitude  3 . Nevertheless, it was always observed that diffusion was the only

controlling mechanism for lead dissolution/precipitation. Activation polarization

if  present would have been observed in the Argand diagram as an arc from which

1 Warburg studied the establishment of concentration gradients in the electrode boundary layer upon

application of an AC voltage.

 By

 solving Fick's second law under AC conditions, Warburg found

 that a

square root frequency dependance of the impedance should be observed if the process

 was

 controlled by

diffusion.

 This square root dependance

 is

 equivalent to observing a 45"  relationship

 between

 the

 real

 and

the imaginary components of the impedance

 (or

 a  value of 0.5). The assumptions under which

Warburg

 solved Fick's second

 law

 are similar

 to

 those described

 in

 the previous section to solve the DCtransient case: presence of

 a

 supporting electrolyte, unit

 activity

 coefficients, absence of convection. Any

departures

 from these

 conditions

 will

 be reflected in departures

 from

 the predicted theory.

2 Notice

 that

 Warburg impedance

 is

 strictly valid only

 when

 4*^=0.5. Unfortunately, in the study of

diffusion processes by AC techniques,

 

  values of 0.5 are the exception rather than the rule [13]. By

introducing

 a

 generalized form of the Warburg impedance the physical meaning of each of the involved

parameters may change. For example, variations in the *F

ZC

 value have been related to the presence of

irregularities in the electrode surface at the micrometer level. Also,

 D

M + 2

  no longer represents

 an

absolute diffusional coefficient but rather an integral

 value

 related to all the ionic species present across

the

 diffusion

 layer.

3 Lack of well-defined hydrodynamic conditions could be attributed to this large variation in the observed

diffusion coefficients. As can be seen in Eq. 9

 when 4 ^

 departs from 0.5

 it is

 not possible to obtain

 the

diffusion coefficient unless the thickness of the Nernst boundary

 layer

 is known.

[106]

Page 133: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 133/392

 Impedance spectra obtained  in an electrolyte without  addition age

6.eS|-xE-2

i.ee

• 2.SB

• 6.28

• 13.78

D 39.65

4 99.58

a 258.0 628.

• 888.

4> 1487.

xE-2

Fig. 17 Impedance diagram  of purelead  in the presence of an anodiccurrent  1=150 Amp m'2  (aftersubtracting the R, value).

Experimental conditions: as describedin Fig. 15.

Some frequencies (in rad  sec"1) areshown for both the experimental (solidline) and  the regressed data (dottedline).The impedance curve was fitted  to aCPE  element  from   which thefollowing  values  were obtained:

B,=0.066 Q  cm1 sec"y2C and  Vv-OAL

Quality  of Fit

 Parameters (63

experimental points were fitted  to theCPE analogue):rV=0.973, ly.l^.OSxlO^ Q2cm 4

r 23=0.988 Iy3r=8.95xl0"5 Q2cm 4

^=0.988 ly J 2=2.33xl0^ ftW

4.88 6.88

the exchange current density,  i^, and the double layer capacitance, C^, could have

been obtained (to obtain the so-called Randies circuit [161). Evidently, for lead

dissolution in the absence of  addition agents rjac->0 (i.e.  *«-*»).Table 2 Variation of the B, and  ^Vjc fitting parameters with current density

CurrentDensity, Amp/m 2

0 0 100 150 150 200

Bi,

Qcm 2secyzc

0.139 0.139 0.074 0.066 0.070 0.056

0.50 0.50 0.43 0.43 0.43 0.43

 AC impedance curves obtained  ~2000 sec after the application of the set current density.The amplitude of the applied  AC waveform was set to 21.3 Amp/m 2 RM.S.The experimental impedance curves were fitted  to Eq. 6 using between 60 and 66 pointsRegression coefficients and  residuals for the regression curves were ( l<co<2000 rad/sec ]:r 29t>0.96 with 1 y„  1 a < IO"3 Q2cm 4

r 23>0.95 with 1 y 312 < 10 4 Q2cm 4

A C  impedance curves obtained while a net anodic DC current was applied

were similar to  those  observed under rest potential conditions (Fig. 17).  Upon

application of  current the AC impedance decreases with respect to the impedance

[107]

Page 134: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 134/392

 Impedance spectra obtained  in electrolytes containing  addition ag 

observed In the  absence of a net DC current. Straight lines with slopes close  to

39°  were  obtained (i.e. *Fzc~0.43) while the B x  values were between  0.07 and

0.05  Q cm2 sec'**  and appear to change with current density (see  Table 2).

C.

 Impedance spectra obtained in electrolytes containing addition agents

Addition  agents  are known  to  affect  the  electrochemistry  of   lead

fundamentally through changes in its kinetic parameters [1.17.18]. The 'levelling"

phenomenon found in electrodeposits and attributed to additives is partially due

to a re-distribution of current from changes in the inhibition intensity [19,20] \

3  . 0 0   I —

2  . 40

V

I

«81<*C...NI

X . 80

1  . 20

. 6 8 8

. 0 0 0

r a d / s e c. 8 6 3

« .  4 8

2 .  s e

I S  . 7 8

9 9 . 3 8

•4 6 2 8 .

3 9 6 S

  .

O

2 5 8 1 5 .

1 3 7 8 3 4 .

*

1 9 8 7 8 6 .

. 8 8 8

Fig. 18 Impedance diagram  of pure lead  under rest potential conditions (in the presence ofaddition agents)

Experimental conditions: electrode area 2.34 cm 2, [PbSiF6]=0.37 M, [H2SiFe]=0.82 M,

[SiO2]=0.13 M, T=40±1.5°C, =2 g l" 1 aloes and  =4 g l" 1 lignin sulphonate, beakerelectrochemical cell, electrolyte volume =310ml, bulk electrolyte recirculation rate =6

 ml min'1. Solartron Electrochemical Interface-IEEE Card-IBM  XT computer. Impedance curveobtained  under galvanostatic control, AC waveform  amplitude 21.3 Amp m"2 RM .S.

 A  total of 130 experimental points were obtained. Some of the frequencies (in rad  sec"1) at which these points were sampled  are indicated in the diagram  ( =1.74 Qcm 2).

1 "Inhibition intensity"

 in

 Winand's terms [19,20] includes

 activation

 overvoltage as

 well

 as other

polarizations caused by addition agents.

[108]

Page 135: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 135/392

 Impedance spectra obtained  in electrolytes containing  addition age

The  impedance spectrum obtained when addition agents are present in the

bulk   electrolyte is shown in Fig. 18.  There  are big differences  between  this

spectrum and that obtained in the absence of  addition agents (compare Figs.  15

and  18). The presence of two weU-defined arcs can be  seen in Fig.  18. The arc

observed at large frequencies (a»4000 rad/sec) is related to the charge transferfor  the  Pb/Pb + 2

  reaction  [i^, C ) whereas the arc which spans over frequencies

smaller than 4000 rad/sec is associated with the presence of an adsorbed layer

of   addition agents that affect the movement of ions from/towards the electrode

surface (and the region where concentration gradients can be present) \ The Rg

value was not affected by the presence of the addition agents.

u

ICi

91t

£... N

I

8 . 0 8  i—

6 . 4 0 —

4 . 8 8 —

3 . 2 8

1 . 6 8

. 0 0 0

r a d / s e c

A . 8 6 3

• . 4 0

• 2 . 5 0

• 1 5  . 7 8

• 9 9 . 3 8

-4 6 2 8 .

6 3 9 6 5 .

O 2 5 0 1 5 .

• 1 5 7 8 3 4 .

*

2 2 2 9 5 3 .

2 1 . 3  Anp/n2

4 . 3  A M P / M1

J  I L

. 8 8 8 4 . 8 8 7 . 2 0

Z r e a l  ft-CM*

9 . 6 0 1 2 . 0

Fig.  19 Impedance diagrams of pure lead  under rest potential conditions obtained  at two

different amplitudes of the applied  AC waveform  (in the presence of addition agents)

Experimental conditions: as described  in Fig. 18.

The AC amplitude values shown in the plot refer to their RM.S. value

 A  total of 130 experimental points were obtained. Some of the frequencies (in rad  sec ]) at

 which these points were sampled  are indicated  in the diagram.Ra. was subtracted  from  both impedance curves.

1 This low frequency arc was only observed

 after

 a small Faradaic current was applied

 (less than

 50

Amp/m

2

 for 400 sec),  after which, it was

 always

 present in the impedance curves obtained under

 rest

potential conditions.

[109]

Page 136: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 136/392

 Impedance spectra obtained  in electrolytes containing  addition age

Under rest potential conditions, a decrease in the amplitude of the applied

A C waveform produced a decrease in the size of the low frequency arc while the

high frequency arc remained virtually unchanged (Fig. 19) . It appears as if by

decreasing the amplitude of the  A C waveform, the  size  of the region where

concentration gradients are present expands resulting in apparent increases inthe impedance.

(A) (B)

Fig.

 2 0 Analogue circuits used  to model the high frequency response of the Impedancecurve shown In Fig. 15.

The analogue shown in (B) is obtained  when  Z C P E - ^ . This will happen at high frequencies orsmall values of the Bj parameter.

(A) Analogue used  to represent the high frequency region of the impedance spectrum:

Z(j(6) = R,+  —

l+/?aC^O'(0) + C^iO'<fl)

(B) Analogue used  to represent processes taking place in the electrical

 double layer:

[110]

Page 137: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 137/392

 Impedance spectra obtained  in electrolytes containing  addition ag

Analysis of the impedance spectrum obtained at high frequencies (co>500

rad/sec) was done by using the electrical analogue shown in Fig.  20. In this circuit,

Ret represents the charge transfer resistance which is related to   i„ through the

following equation [21]

The  impedance of the analogue circuit shown in Fig.  20A can be described

as follows 2  :

Z(/co)=/?,+  lVJ   —  ...11

The CPE included in the analogue shown in Fig. 20A is used only to subtract

the high frequency part of the arc observed at low frequencies  from the charge

transfer arc. This  CPE is not intended to represent any particular process but

only to subtract the higher frequency data.

The values of the analogue elements obtained from the curve fitting process

are  as follows (Fig. 21):  R ct= 1.665  Qcm2

  (±5%), Cd ,=20.6  fiF/cm2

  (±3%),

B!=149.25 Qcm 2 sec>l'zc

 (±5%), and  =0.74(12%). From the Revalue ^ was found

to be equal to 82  Amp/m 2  (±5%).  For the same electrode  these  values were

reproduced within 15%. On the other hand,  small changes in the bulk  electrolyte

composition, electrolyte temperature,  bulk   electrolyte recirculation rate, and

electrode roughness appreciably affected the and C  values. In any case, for a

fixed electrolyte composition, i„ values were not smaller than 70  Amp/m2

(70<(o<500 Amp/m 2) whereas C  values were between 18 and 30  |±F/cm2

. Since

in  the absence of  addition agents a charge transfer arc was not found  (io-x»), it

is concluded that the presence of the addition agents  affects significantly the

kinetics for the  Pb/Pb + 2  equilibrium reaction. The decrease in the  *<, values as a

result of the presence of  addition agents can be attributed to: (A) changes in the

1 The Stern-Geary equation has also been used to

 relate

 the steady-state corrosion current density, 4and the polarization resistance, R

p

 [25]:

 \  P

'P

< I '  1_N

^corr 2.303(8, + BC)

2 Analytical representation of the impedance was obtained by using the Laplace plane techniques

described in Appendix 3.

[Ill]

Page 138: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 138/392

Impedance spectra

 obtained in

 electrolytes containing

 addition ag

Fig.  21 High frequency section of the impedance diagram  shown In Fig. 18.

Impedance curve was  fitted  to the electrical analogue shown In Fig. 20A   (R. was computedfrom the high frequency Intercept of the Impedance curve with the Z, axis).From  the curve fitting process, the following values were obtained: B,= 149.250 Q cm

2 sec"¥zc,^=0.741, F^l.SSSQcm 2, 0 =20.6 uF cm 2.

Some frequencies (in rad  sec"1) are shown for both the experimental (solid  line) and theregressed  data (dotted  line).

Quality of Fit Parameters (51 experimental points were fitted  to obtain the values of 4 parameters):

rVO.973, l y a l ^ ^ x l O1 Q2cm 4

rVO.941 I y312=6.16xl0"2 Q2cm 4

^=0.985 ly^l^l . iexlO^Q'cm 4

electrochemically active surface area and (B)  variations in the current distributionin  the anode vicinity. An effective decrease in the value (considering that the

electxochemlcally active surface area is the same in the cases presented in Figs.

16 and 21) would mean that the kinetics for lead dissolution and deposition have

become "less"  reversible.

[112]

Page 139: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 139/392

Impedance spectra

 obtained in

 electrolytes containing

 addition

 ag

The  AC arc observed at  co<4000 rad/sec is more difficult to model by an

electrical analogue. Its presence is associated with abounded concentration region

created by addition  agents, some  of which adsorb on the electrode surface

changing the and values. The "spikes" observed  during the application of

the current  steps  (see Section Il.b) are undoubtedly  associated  with thephenomena displayed by the A C   impedance curves.

2 .ae

1 .68 —

 Y   1 .28

a

91

 £

 N  .888

, 488

.888

r a d / s e c A .863

.48• 2 .58• 15 .78

• 99 .384 628 .

3965 .

0 25815.

157834.

*

198786.

R e s t  P o t e n t i a l  C o n d i t i o n s c d = 8

In  the p r e s e n c e  of a c d = 188  flny/h'

.A

J  L_l_ - i  I L_ I  I I  I I.888 . 788 .48  2.18

Z r e a l  ft-CM*

2 .88 3 .58

Fig. 22 Impedance diagrams of pure lead  obtained  in the presence and  in the absence of anet Faradaic current (in the presence of addition agents)

Experimental conditions: As described  in Fig. 18.

The  AC amplitude was the same in both cases (21.3 Amp m 2  RM.S)

Rs was subtracted  from both impedance curves.

In the presence of a net anodic current, the impedance decreases significantly

(Fig.  22). As the current density increases, the  size of the arc observed at high

frequencies  decreases while the low frequency arc does not change to the same

extent (Fig.  23). Eventually, at high current densities (cd >200 Amp/m 2) the high

frequency arc vanishes and only one arc  related to diffusion in the anode boundary

layer is observed. Thus, it appears as if  during the anodic dissolution of lead the

polarization  created by the addition  agents  decreases  as the current density

[113]

Page 140: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 140/392

 Impedance spectra obtained  in electrolytes containing  addition age

increases  *' a. The decrease in the  size of the low  frequency  arc may be the  result

of a defined boundary layer whose size has  compacted due to the  presence  of a

fixed electric field created by the  passage of a net  Faradaic current3

  .

I

a91

£

•p.

 N

.see  A r i d / t i c.863

• .31

 _•

1 .587.91

. 168

-

•4

39 .63

199 .a 996 .

— O 4991 .• 9959 .

. 128 -*

15783.

. 888

.848

.888

In  the  p r e s e n c e  of a c d = 58  Anp/n>

In  the  p r e s e n c e  of   a c d = IBB  fthp/h'

I I l

.888 . 868 TJ 128 .188

Z r e a l  ft-CM*

, 248 . 388

Fig.  23  Detail of the Impedance diagrams obtained In the presence of a net Faradaic current(in the presence of addition agents)

Experimental conditions: As described  in Fig. 18.

The AC amplitude was the same in both cases (21.3 Amp m"2 R.M.S)

R, was subtracted  from both impedance curves.

1

 The exchange current density is also a function of the concentration of the electroactive ion in the

electrode surface [22-24].

2 Notice how the radius of the high frequency arc

 obtained in

 the presence of a net Faradaic current

(^-.08 Qcm2

 , Fig. 23)  is at

 least

 20 times smaller than under

 rest

 potential conditions (Ret~1 -6 Qcm

2

,

Fig.

 21). The "apparent" charge transfer resistance decreases until at high current densities R ct ~0. The

term "apparent" charge transfer resistance refers to the R* values that

 may be observable

 upon

 passage

of

 a net Faradaic current

 when

 studying irreversible systems

 using AC techniques.

3 Notice

 that

 addition agents are also dispersed by the anodic process because: (A) the interface is

retreating, and (B)

  there

 is a flux of Pb

+2

  in

 the opposite

 direction.

 Thus, decreases

 in

 the size of the low

frequency arc as the current density increases can be due to a depletion of addition agents in the anode

boundary

 layer.

[114]

Page 141: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 141/392

Chapter  6 Ele ct roc hem ic al Behavior of Lead bul l i on Electrodes  in

the Presence  of Sl i mes

I.  Introduct ion

In the previous Chapter it was shown that in the absence of  addition agentsin  the bulk electrolyte, the  Pb/Pb + 2  system behaves  nearly reversibly (i.e.

PboPb+2

+2e~ with i,,-**0

). The presence of addition agents in the bulk electrolyte

decreases the reversibility of  the system through small increases in the activation

overpotential. Moreover, the addition  agents  were  found to enhance the

concentration gradients at the electrode/solution interface through the formation

of  specifically and/or electrostatically absorbed films. This Chapter deals with the

establishment of concentration gradients within the  slimes  layer and their

relationship to the anodic overpotential observed in the presence and in the

absence of a net Faradaic current.

All experiments shown in this Chapter were performed at T= 40±l .5°C . using

the beaker electrochemical cell (Fig. 3.1) and the Solartron equipment  (Fig.  3.8).

Data acquisition and control of the experiment were performed using an IBM XT

personal computer via the IEEE interface  (Fig.  3.7). Electrodes were prepared from

the same anode1  (anode A, Fig.  3.3) as described in section 3.1 .B. Electrolyte was

recirculated continuously at 6 rnl/min (cell volumes varied between 300 and 320

ml).  The geometrical area of the electrodes2

  was used to compute the current

density and  the impedance per unit area. In experiments  in which addition agents

were added to the electrolyte, any insoluble precipitates  were removed prior to

the introduction of the electrolyte to the cell. The assumed concentration of

addition agents prior  to the filtering operation was 2 g/1  aloes and 4 g/1 lignin

sulphonate. The compositions of the electrolytes used in the various experiments

presented in this Chapter are shown in Table  1.

1

 Anode composition: 0.01% Sn, 0.02% Cu, 0.14% Bi, 0.25% As, 1.12% Sb, 81 oz/ton Ag.

2

 The

 geometrical area

 of the

 electrodes

 was 1.44±0.02 cm

2

.

[115]

Page 142: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 142/392

 Introduction

T a b l e 1  Characteristics of the experiments presented in chapter 6

ExperimentNumber

Bulk  Electrolyte Composition Bulk

electrolyte

Conductivity,K ,atT=40

#

C,

mmhos/cm

Characteristics ofthe experiment

ExperimentNumber

ElectrodeFace

AdditionAgents

[PbSiF6]mol/1

[HaSiFe]mol/1

[SiOJmol/1

Bulk

electrolyte

Conductivity,K ,atT=40

#

C,

mmhos/cm

Characteristics ofthe experiment

CA2 mould yes 0.27 0.69 0.14 300 Galvanostaticdissolution at1=200 Amp/m

2

CA4 mould yes 0.45 0.77 0.14 315 Potentiostaticdissolution at

Econtn>l=220  mV

CA5 mould yes 0.45 0.76 0.14 315 Galvanostatic

dissolution at1=800 Amp/m2

CA6 mould yes 0.45 0.73 0.14 320 Galvanostaticdissolution at1=200 Amp/m

2

CC1 air no 0.35 0.84 0.09 345 Galvanostaticdissolution at1=200 Amp/m2

CC2 air no 0.36 0.83 0.09 345 Galvanostaticexperiment.

In the presence of a net Faradaic current the impedance spectra were obtained under galvanostatic control

except in Exp. CA4 in which the curves were obtained under potentiostatic control. Under current

interruption conditions all the impedance spectra were obtained under Galvanostatic control.

The  A C   impedance was obtained in a wide frequency range (0.063<co<4xl05

.. rad/sec)  1

  under either potentiostatic or galvanostatic control. The amplitude of

the applied  A C   waveform was set to 5 mV  R.M.S.  and 35  Amp/m2

  R.M.S.

respectively. In either case, 20 data points were obtained per decade of frequency

swept2. All impedance spectra are reported with respect to the time at which the

A C measurement started. Typical A C  measurement  times are shown in Table 2.

1

 Under galvanostatic conditions application

 of AC

 frequencies in excess of

 3x10

4

 rad/sec often resulted

 in

phase shifts

 produced

 by the Solartron Electrochemical Interface due to bandwidth limitations. On the

other hand, under potentiostatic control, frequencies as high as 4x10

s

 rad/sec could be applied without

observing phase shifts.

 A  phase shift is a displacement of the capacitative component of the impedance

curve towards negative values  [1-3].

2 For example if 0.063<ox6300 there are l og^j = 6 decades of frequency swept and the impedance is

measured at

 6x20=120

 discrete points.

[116]

Page 143: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 143/392

 AC  Impedance Characterization of  the Starting  Working  Electrode

T a b l e 2 Average times required to measure the AC  impedance spectrum

Frequency Range

Time, HrsO W  rad/sec o w .  rad/sec Time, Hrs

0.063 408407 l . l

0.63 408407 .30

n.  A C  Impedance Charac ter izat ion  of the  Sta rti ng Work ing

Electrodes.

Prior to the anodic dissolution of  lead bullion electrodes their impedance was

obtained under rest potential conditions. Table 3 summarizes the characteristicsof   the obtained spectra  1 . The differences  between  the various spectra are

explained in the next paragraphs.

Table 3  Summary of the values of the electrical analogue parameters obtained under rest potential conditions

Frequency Range Derived Analogue Parameters

Experiment Addition Pot/Gal R., Ra,

On, ^zc

and Sweep Agents Control rad/sec rad/sec Qcm2 Qcm2 u F c m 2

Qcm

2

 sec'

Amp/m2

Number

CA2-7 yes Gal 560 99588 1.42 0.501 64 23.71 0.64 269

CA4-7 yesllltllll

315 250159 1.02llliill iilslii! 1X45 0.39 72

CA5-7 yes Pot 560 111740 1.19 0.725 65.30 23.90 0.64 186

CA5-4 yes Gal 560 111740 48.9liiiilll

0.56 157

CA6-2 yes Gal 177 157834 1.20 1.916 32.6 35.5 0.55 70

CC1-5 no Gal 628 15783 0.90 llliill 0.57

CC1-6 no Gal 628 44482 0.89 - :

2.88 0.45

CC2-7 no Gal 560 17709 0.85 1.88 0.59

CC2-2 no Gal 560 28067 0.85 1.88 0.59

Different electrodes were used in every experiment.Impedance curves were obtained either under Potentiostatic (Pot) control or Galvanostatic (Gal) Control.

Changes in the R, values reflect differences in the distance between the reference electrode and the working

electrode.

The spectra obtained in the absence of  addition agents were curve fitted to the impedance function described by

Eq.  1 while the spectra obtained in the presence of  addition agents was fitted to the function described by Eq. 2.

1 The statistical parameters related to the quality of the

 curve

 fitting

 procedure

 are

 presented

 in

Appendix 9.[117]

Page 144: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 144/392

AC behaviour

  in the

 absence of addition agents

  in the bulk

 electroly

 A. AC  behaviour  in the absence of  addition agents in the bulk  electrolyte

The AC impedance spectrum of  a typical lead anode (in the absence of  slimes)

under rest potential conditions and in the absence of  addition agents is presented

in Fig.  1  a * 3 . The uncompensated ohmic resistance,  Rg, has been removed in this

impedance diagram by subtracting it from the component of the impedance  4 .

This  impedance spectrum is similar to the obtained using a pure lead electrode

(see  Fig. 5.16) and can be described by a Warburg serni-infinite diffusion element

which follows the response of a CPE element  5 :

The impedance curve shown in Fig. 1 was curve-fitted to Eq. 1 to obtain the

Bi  and values. B x and *¥zc were found to be equal to 2.88  Q. cm2  sec*Vzc

 and 0.45

respectively. By comparing these values with those obtained when pure lead was

studied (Bi-0.14 Qcm2sec"M'ZC7 and ^^-0.5) it is seen that remains practically

unchanged, while Bj shows a marked increase in its absolute value  5 . The increase

1 Due to software limitations in the graphics program the axes of the Argand plots  are not marked  and

-Zj as

 in

 the main

 text

 but as

 Zreal

 and -Zimag respectively.

2 An impedance diagram is also known as an Argand plot.

3 FL=0.90

 Qcm

2

.

 R

s

 was obtained from the high frequency interception of the impedance

 curve

 with

 the

real axis.

4 For a description of the relationship between the CPE element and the semi-infinite Warburg

impedance see Chapter 5 (section III.B, Eqs. 6 to 9).

5 Different CPE analogues may

 have

 the same slope but quite different B, values. By

 using

 de Moivre's

theorem, the impedance of the CPE analogue can be expressed as follows:

thus,

Z a ^ w ^ c o s ^ V z c  Z 3 = -B 1 (o"

¥ z c

ysin^ 2 c

and  the slope, m, between  Zj, and -Zj is given by:

Jt

m =  tan-Yzc

from which:

2 i

V z c  = -tan  m

Thus, it can be seen

 that

 *P

ZC

 does not depend on B, which is only a multiplying factor (i.e. the impedance

curve

 shrinks or contracts according to its

 value).

[118]

ZaB  =  Bl V0i)*   =  Bl <Q

Page 145: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 145/392

 AC  behaviour  in the absence of  addition agents in the bulk  electrolyte

.  1 38 p i t 8

.  128 —

E x p e r i M e n t a l — • f l n a l o o u t  nodel

A.

aa0

628.

1117.

1987.

3533 .

£ 2 8 3 .

11173

19869

33333

28866

44482

.888

.888

J   L

'  • • '  I • • ' I '  ' ' I  ' ' ' I

.1 28 . 168 .288

Zred, Qcm 2

Fig. 1 Impedance diagram of a typical lead  bullion electrode (Exp. CC1-6) under rest potential conditions and  In the absence of addition agents.

R, was subtracted  from the Z* component of the impedance (Fv=0.89 Qcm 2).Some frequencies (in rad/sec) are shown for both the experimental (solid  line) and  the curvefitting data (dotted  line).The impedance curve was fitted to a CPE element from  which the following values were obtainedB!=2.88 Qcm 2sec"* ^=0.45.

in the B x value is attributed to differences in the roughness and electjochemically

active surface areas between these electrodesl.  Also, the distinct electrochemical

characteristics of  the impure lead bullion electrodes may account for the observed

increases in the B x  values. As indicated in Table 3 (see  sets CC1  and CC2),  the

Bj values change significantly from one experiment to the next but remain within

0.2  iicm 2  during the same experiment. The relatively constant values of the

exponent  (0.40<*FZC<0.60) is a clear indication that diffusional processes are the

only ones being observed in the impedance spectra. While quantitative values of

1 As a result of surface irregularities at the micrometer level, the thickness of the electrode boundary layer

may not be uniform

 and

 that

 results in increases

 in

 the

 B,

 value.

1119]

Page 146: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 146/392

 AC  behaviour  in the presence of addition agents in the bulk  electroly

the diffusion coefficients cannot be obtained  1

 the shape of  the impedance curves

unequivocally indicates that there  are no  charge transfer limitations  for the

dissolution/precipitation of  Pb + 2

 from/to the lead bullion electrodes.

B. AC  behaviour in the presence of  addition agents in the bulk  electrolyte

The  AC spectrum obtained  in the presence of  addition agents is  shown in

Fig. 2. Three different regions can be identified depending on the frequency range:

a) A high frequency  arc (co>4000 rad/sec) assigned  to the  charge transfer

process taking place across the electrode Helrnholtz double layer. The point where

the arc intercepts  the Z% axis is equal to the Rg value.

b) A distorted  arc observed  at  medium range frequencies  (100<co<4000

rad/sec) assigned  to addition agents effects in the diffuse double layer.

c) A quasi-linear impedance region (at ox 100 rad/sec) assigned to diffusionalprocesses in the hypothetical Nernst boundary layer.

r a d / s e cA  * 06 3

*  .40

*  2 .50•  15 .78

•  9 9 . 5 8

4  6 2 8 .

a  3 9 6 5 .

O  2 3 8 1 3 .

•  6 2 8 3 2 .

*  9 9 5 8 8 .

I  I I  I

  I  I  I

  I

  I  I I  I

  I  I

  l_l  I

  I I  I  I I I  I  I I  ' I  I  ' ' I ' ' ' I  i i  ' I1.28  1.88 2. 48 3. 88 3. 68 4.2 8

Fig.  2 Impedance diagram (Argand plot) of a typical lead bullion electrode (Exp. C A2-7) under rest potentialconditions and in the presence of  addition agents (R, was not subtracted from Z^)

 A   .  D O

1 .68

S  i

. 48 8

ana

1 The

 lack

 of knowledge of the electrochemically

 active

 surface area poses a serious hindrance

 for

 the

computation of the

 diffusion

 coefficient: the penetration depth of the AC wave and the thickness of the

boundary layer have to be uniform across the electrode in the whole range of frequencies for meaningful

diffusion

 coefficient

 values

 to be obtained.

[120]

Page 147: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 147/392

 AC  behaviour  in  the presence ol  addition agents in the bulk  electrolyt 

Analysis of the impedance spectra obtained at co>200 rad/sec was  carried

out using the electrical analogue shown in Fig. 5.20. The impedance of   this

analogue can be described by the following equation  l - 2 :

Z(/co) =/?,+-^ e ,  + fl1(/Q>)

The Rg values were obtained directly from the high frequency intercept of the

impedance curves with the axis. The four remaining parameters in Eq. 2 (R^,

C^,  B l t and  zc). were obtained by curve fitting the experimental data to Eq. 2.

Su

aSo

1csf

3 6 8  .

11.17 .

2 2 2 9 .

a

4 4 4 8  .

• 8 B 7 6  .•* 1 7 7 B 9 .

a 3 3 3 3 3 .

o 71364.>• 6 2 B 3 2 .

* 9 9 3 3 9 .

a a  ' ' ' ' _L_i_

J  I I  I  I I I  I  I  L_ '

  . . . ' . . . I

. 42

,2

Z^,,  Qcm2

Fig. 3 Detail of the high frequency region of the Impedance diagram  shown in Fig. 2

Rg was subtracted from  the Z* component of the impedance (Rs=1.42 Qcm 2).

Some frequencies (in rad/sec) are shown for both the experimental (solid  line) and  thecurve fitting data (dotted  line).

The impedance curve was fitted  to the analogue circuit shown in Fig. 5.20 from  whichthe following values were obtained  B,=23.71 Q cm

2

 sec'*^.  =0.64, Fc^O.501 Qcm 2, and  0^=64

uF cm'2.

As can be seen in Figs. 3 and 4, the analogue model describes accurately

the experimental data. The values of the analogue parameters varied from  one

1

 For

 a

 description of the characteristics

 of

 this circuit

 see

 Chapter 5 section

 III.c.

2 Again, it

 is worth repeating  that the presence of

 a

 CPE in the circuit shown in Fig. 5.20 does not

represent a purely diffusional process and is included only to aid in

 the curve

 fitting procedure to obtain

the

 R

d

 and

 C

d

,

 values.

[121]

Page 148: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 148/392

 AC  behaviour  in the presence of  addition agents in the bulk  electroly

G B  I — x E  B

Ol

8

r A d / f i c

sea.*

1 1 1 7  .

3 3 3 9

  .

D

4 4 4 8  .

• 8 8 7 6

  .

4 1 7 7 B 9 .

a 3 3 3 3 5 .

a 7 8 9 8 4 .

7 0 3 8 4 .

*

1 1 1 7 4 0 .

x E  8

-J— 1—I — l — l — l— 1 —l—l—l  I  l I 1  I  I  I  I  I  l l  I  I  l  l l  I  l  l  l I  l  l  l  I  l l  i _ J. 0 0  . 2 0 . 4 8 . 6 8 . 8 0 l . O

Fig. 4  Detail of the high frequency regions of the impedance diagrams obtained  underrest potential conditions

(A) Exp. CA4-I  fB) Exp. CA5-J

The values of the derived  analogue values are shown In Table 3.

experiment to the next.  Nevertheless,  the impedance curves reproduced within

10% the  indicated  parameter values in the  same experiment (i.e. for the  same

electrode and electrolyte composition).

[122]

Page 149: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 149/392

 AC  behaviour  in the presence of  addition agents in the bulk  electrolyt 

In  experiments  CA4, CA5,  and CA6 the electrolyte composition was kept

constant, yet, the derived kinetic parameters varied widely \  These variations

can  be attributed to differences in the electrode roughness among the different

electrodes  a

. In any case, the exchange current densities were not lower than 70

Amp/m

2

  (70<io<270 Amp/m

2

) while the double layer capacitances varied between25 and 66  |±F/cm

2  3

. These large values of  ^ indicate that dissolution of the lead

present in the lead  rich phases takes place under nearly reversible conditions

and  that the noble impurities present in the lead  bullion  are not significantly

affecting the kinetics for lead dissolution (or deposition).

a a rad/se o

. B63

. 4 a•

2  . 30

- IS  . 78

e a - • 99 . s ee a- 4

£28 .

 z 3965 .

O 238 13.

»- 63833.

-*- 99388.

.  4 o e

 —   Potvirit i os-t.-axt.ic:  Control

-  GAIvAnosiatlo  Control

Zrea,, Qcm2

Fig. 5  Impedance spectra obtained  under potentiostatic (solid  line) and  galvanostaticcontrol (dashed  line).

From  Exp. CAS (Sweeps CA5-1 and  CA5-4 in Table 3).

Finally, the impedance spectrum obtained under potentiostatic control was

found  to be a variation of that obtained under galvanostatic control (Fig. 5). As

in the pure lead case, the observed changes are related to different concentration

1 The same electrolyte was used in Exps. CA4, CA5,  and CA6 but since the amount of solids filtered prior

to the introduction of electrolyte to the cell varied in each case, the final addition agent content may vary.

2 Small

 changes in the bulk electrolyte recirculation rate, electrode microstructure, and cell temperature

may also produce the observed changes in the parameter values.

3 Notice

 that

 large capacitance

 values

 are associated with high exchange current densities indicating

 that

electrochemically

 active

 surface

 areas

 are different in

 every

 case.

[123]

Page 150: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 150/392

Variation of  trie anodic overpotential  as a function of  the electrolysis time and the current interr 

waves  created by the different amplitude of the perturbating signal \ The

parameters obtained  from  both curves are close  to each other indicating that

similar information was obtained  from both techniques (see  Table  3, Exp. CA5

sets 1 and 4).

HI.  DG and AC Studies  i n Corroded E lect rodes

 A. Studies under  galvanostatic, potentiostatic, and  current  interruption

conditions.

1. Experimental results

Lead  bullion  working  electrodes were  either galvanostatically or

potentiostatically dissolved. The movement of the anode/slimes interface was

computed assurning that 100% of  the current flow was at that interface

  2

. Duringthe dissolution process, the  A C  impedance was measured at preset  slimes

thicknesses.  After dissolving the electrodes up to a certain slimes thickness the

overpotential decay was followed as a function of  time. During this decay, the AC

impedance was also measured. The  D C  current and anodic overpotential recorded

during  the  A C measurements  were analyzed to obtain the components of the

concentration overpotential.

(a) Variation of the anodic  overpotential as a function  of  the electrolysis

time and  the current interruption time

Fig.  6A  shows  the anodic overpotential response observed  during  the

galvanostatic dissolution of lead at a current density of   194.44  Amp/m 2

(Exp. CA2  in Table  1). The cell potential follows closely the recorded anodic

overpotential values (Fig. 6B).  Upon  subtraction of the  initial  T ]Q  from  both

measurements, it is  seen  (Fig. 6C) that  even  though a net current was being

passed through the counter electrode (a pure lead cathode), it can act very well

as a reference electrode due to the high reversibility of lead in this system.

1

 Theoretically both curves

 should

 have

 been identical if the processes under study behaves linearly.

Instrumental

 artifacts (i.e. Potentiostat bandwidth) may also contribute to the observed discrepancies.

5 mV R.M.S does not exactly produce a sinusoidal current waveform of 35 Amp/m

2

 of amplitude and

 vice

versa.

2 The fraction of electronic current

 going through

 the slimes filaments was assumed to be negligible

compared to the amount of current

 crossing

 the anode/slimes interface. The validity of this assumption

was confirmed by measuring the distance between the anode/slimes electrolyte interface and the

slimes/bulk electrolyte interface at the end of the experiment

 which

 was in agreement with the computed

value. Furthermore, the slimes

 composition

 does not seem to change much

 with

 slimes thickness.

[124]

Page 151: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 151/392

Variation of the anodic overpotential  as a  function of the  electrolysis time and the  current  interrupt 

(A) (B)

1

acu-Mo

&1>

o

o

1.88 3.SB 3.4B  7.28  9.88 -.BBS 1.88 3.68 3,48 7.28 9.88

mm  Slimes(C)

mm  Slimes

I73

C-Mo

&Sio

o

o

70B .

360

420

200 . —

140 . —

. 00

Fig.  6 Overpotential response of a typical lead  bullion anode as a function of the slimesthickness (Exp. CA2).

The  AC impedance was measured  at preset slimes thicknesses indicated  by the spikesshown in the curves.

CA) Anodic overpotential as a function of the slimes thickness (uncorrected for initial

(B) Cell potential as a function of the slimes thickness (uncorrected  for initial T IJ.(C) Anodic overpotential measured  by the counter and reference electrodes as a function

of the slimes thickness (corrected  for Initial TIJ.

[125]

Page 152: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 152/392

Variation of  the anodic overpotential  as a function of  the electrolysis time and the current interr 

Further analysis of  Fig. 6 shows that as the anode dissolves,  T|

A

  increases

quasi-linearly  up to the point at which impurities dissolution occurs at a

significant rate (at ~8 mm slimes and -350  mV) \ At this point, increases in riA

are also the result of the precipitation of secondary products (such as PbF2 and

SiCy  which hinder the movement of ions and increase the concentrationgradients across the slimes layer.

In  Fig. 6, the small departures of the anodic overpotential (so-called

"spikes") result  from the application of the AC waveform used to measure the

impedance of the  system  at preset  slimes  thicknesses. Such overpotential

changes were detected  only at low AC frequencies  (ox6.3  rad/sec). Potential

variations produced by the AC waveform at higher frequencies  were either very

small or were undetected by the potentiostat digitized readings  a

.

Fig.  7 shows  the anodic overpotential changes (corrected  from initial  rj J

observed  during  the dissolution of lead at a current density of 800  Amp/m 2

(Exp. CA5 in Table  1) . By comparing the r|A response at low and high current

densities (Figs. 6C and 7 respectively), it can be seen that increasing the current

density resulted in decreasing the time  required  for impurities to dissolve at

excessive rates  3

. Moreover, increases in current density do not appear to have

a significant  effect on the  critical point at which the anodic overpotential rises

exponentially. This indicates that if impurities are to dissolve to a large extent,

a minimum overpotential value must be overcome.

The large T|

A

 values obtained at high current densities as compared to those

values obtained at lower current densities, arise  primarily  as the result of

changes  in the concentration of the  slimes  electrolyte.  Also, at high current

densities steeper concentration gradients become established.  This results in

potential differences that increase monotonically with the concentration

gradients. Steeper concentration gradients develop larger potential differences

1

 Abrupt

 dissolution

 of phases containing noble impurities was not observed in the case study presented

in Chapter 4 because a low

 current

 density was applied, the electrode was larger, only a 14 mm thick

slimes layer was formed, and the maximum value of T|

a

 was <200 mV.

2

 The potentiostat follows continuously (among other parameters) the difference in potential

 between

 the

reference

 electrode and the current. At finite sampling

 times

 (i.e once every 3

 min.),

 these data are

digitized

 and saved as  "DC" data.

 If

 during the digitization process the AC waveform was being applied,

 a

net DC overpotential and DC current

 may be observed as "spikes".

3 A 400% increase in the

 current

 density (from 200 to 800 Amp/m

2

) resulted in

 a corresponding

 reduction

in the amount of lead that

 could

 be removed before impurities dissolve at an excessive rate (i.e. at similar

T1 A  values, the

 equivalent

 amount of

 lead

 dissolved is

 ~4 times smaller).

[126]

Page 153: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 153/392

Variation of   tie anodic overpotential  as  a function ol  the  electrolysis time and the  current  interrupti

.88.aa

.68 1.2 1.8

rnrn Slimes2 . 4 3 . 8

 Fig. 7  Anodic overpotential (corrected for initial  TIJ measured  by the counter andreference electrodes as a function of the slimes thickness (Exp. CAS).

Galvanostatic conditions 1=800 Amp-m 2

Detween the  slimes and the electrolyte promoting their earlier dissolution. In

addition, passage of larger currents increases the "ohmic" drop component of

the anodic overpotential \

Fig.  8A  shows  the  changes  in current density as a function of the

electrolysis time  during a potentiostatic experiment (Exp. CA4  in Table 1). In

this experiment the dissolution of noble impurities present in the  slimes layer

was restricted by  liiinting the potential difference between the reference electrode

and  the lead anode to 220 mV. From  the numerical integration of the data

presented in Fig. 8A,  the amount of  lead dissolved as a function of   the electrolysis

time was found  (Fig.  8B). At  short electrolysis times, large current densities can

flow because ionic transport proceeds relatively unhindered. As  the slimes layer

thickens, its presence restrains the flow of  current up to the point at which only

very small currents can flow through the cell. These decreases in current are

1 See

 section

 III.2.a

[127]

Page 154: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 154/392

Variation ol the anodic overpotential  as a  function of the electrolysis time and the current interrupt 

( A )  ( B )

2.S  <r£'3<

. 0 0  . E a  1 .2  JL . 8 2 . 4  3 . amm  Dissolved

Fig.  8 Current density changes as a function of the electrolysis time and  of the amountof lead dissolved  (Exp. CA4. potentiostatic conditions Econtrol=220  mV)

IA) Changes in the anodic current density as a function of the electrolysis time(B) Changes in the amount of lead dissolved  as a function of the electrolysis time. This

curve was obtained  from  numerical integration of the data presented  in CA)(C) Current density changes as a function of the amount of lead dissolved

[128]

Page 155: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 155/392

Variation of  the anodic overpotential  as a function of  the electrolysis time and  the current inte

also the result of  the presence of  secondary products which block  the movement

of  ions even further until the lead dissolution process is nearly halted (Fig. 8C).

At  long electrolysis times, lead ions are still being generated  whereas

concentration overpotential no longer  changes  and the precipitation of

secondary products must take place for rjc

 to remain constant.During experiment CA4 the difference in potential between the reference

and working electrodes was kept constant and equal to 220 mV  (£ ^^,=22 0

mV). As a result of the presence of  r|n between such electrodes, the potential

difference applied between the working electrode and the slimes/bulk electrolyte

interface is not constant. The anodic overpotential changes as a function of  Rg

and of the current density can be described by the following equation:

TjA  changes  as a function of the amount of lead dissolved are shown in

Fig. 9  1

. The anodic overpotential increases continuously as the current density

decreases, up to the point at which current flow is negligible and r|A = Eco , ^.

Fig.

 9 Changes in the anodicoverpotential (corrected foriln)

 as a function of theamount of lead dissolved(Exp. CA4).

mm Dissolved

1

 R„

 was

 obtained from AC impedance measurements

 at

 preset electrolysis times.

1129]

Page 156: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 156/392

Variation

 of the anodic overpotential  as a function of the electrolysis time  and the current interruptio

(B)

786

548

1f-H

S <uo

&

I

u

o

228

68.1

-188

788

568

428

281

148

.88 .32 .64 .96 1.3 1.6

.u.!...,.»M;  f  M

24.8 48.8 72.8

Time,  Hrs.

( C )

I73

fi<u-MO

&IT3

O

.88 18. 28. 38. 46. 38.

Time,  Hrs.

Time,  Hrs.

Fig. 10 Anodic overpotential changes upon current interruption (Exps. CA2, CA5, and CA4).

T | n prior to current interruption was not subtracted  from  these measurements

The AC impedance was measured  at preset times indicated  by the spikes shown in the curves.

(A) From  Exp. CA2 (B) From  Exp. CA5  (C)

 From  Exp . CA4

[130]

Page 157: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 157/392

Variation of  the anodic overpotential  as a function ol tie electrolysis time and the current interru

Changes in anodic overpotential upon c u r r e n t i n t ecases described previously (Exps. CA2. CA5, and CA4) are shown in Fig.  10. A

steep  decrease in the overpotential is observed at the beginning of the

interruption cycle. This steep change is followed by a quasi-exponential decrease

in the r|A value.  On  the other hand, the shape of the r\ A

 decay at times smallerthan  1.6 Hrs is different for the three  cases  shown in Fig.  10.  This  indicates

that upon current interruption, processes with different time constants can

take place. The presence of  these processes appears to be a function of the r\ A

value and the electrode's history.

In the three previous cases AC impedance measurements did not seem to

affect the pseudo-equilibrium present within the slimes layer. On the other

hand, when the impedance measurements were made more frequently, transient

excursions in the anodic overpotential were observed (in Exps.  CA6 and CC1,see Fig. 11). As in the  case  study presented in  Chapter 4,  these  potential

excursions cannot be unambiguously explained. These excursions in potential

were reproducible and indicate that the changes created by the AC waveform

induce a shift of part of the  Faradaic current towards the slimes filaments  l

.

The  fraction of the current going to the slimes filaments may be insignificant;

yet it increases the corrosion potential of the electrode. The  transient character

of   these  excursions and the fact that after a certain time the overpotential

decreases to a value that can be obtained by extrapolation of the r|A curve (see

Fig.  1 IA),  indicates that the reaction at the anode/slimes interface was taking

place at its normal rate even during the excursions in potential. Finally, upon

current interruption, the anodic overpotential decay did not indicate any abrupt

changes related to the potential excursions observed  during  the  passage of

current (Fig. 12).

1 The AC wave

 may

 have

 changed the conditions at the anode/slimes electrolyte interface by promoting

precipitation

 and/or

 hydrolysis reactions

 at that

 interface. Under

 these conditions, Faradaic currents can

divert

 to the slimes

 filaments

 and

 cause

 the excursions in potential

 shown

 in Fig. 11.

[131]

Page 158: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 158/392

Variation of the anodic overpotential  as a function  ol the electrolysis time and the current intenvpti 

(A)

7 8 0 c -

(B)

7 B B  . pr

5 6 8 ,

4 2 0

e*»oa.

01  2 8 0

»

O

9 . 0

. 0 0 0t

 — L

. 0 0 0

_J

  I

  I I  I  I  1_

i .  . 8 0 3 . 6 0 S . 4 0

S l l n e s T h i c k n e s s ,  nn

Fig. 11  Anodic overpotential (corrected for initial r\^j as a function of the slimesthickness (Exps. CA6 and CC1).

(A) From  Exp. CA6  (B) From  Exp. CC1

[132]

Page 159: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 159/392

Changes in the impedance as  a function ol  the slimes layer  thickness  and of the current interruptio

788   r

560< r

 Z   428

SI

¥

0

J  288

J

0

1481

668 .

548'

428

388

189;

68..88 .82 .84 .86 .88 .18

Fig. 12 Anodic overpotential

changes upon current

interruption (From Exp. CA6)

T|Q prior to currentinterruption was notsubtracted from thesemeasurements

The AC impedance wasmeasured at preset timesindicated by the spikes shownin  the curves.

128

Tine,  Hrs

(b) Changes in the impedance as a function  of the slimes layer thickness

and of the current interruption time

The  AC  spectra obtained at different  slimes  thickness are presented in

Fig.  13 (Exp. CA2).  Each spectrum was taken in the p r e s e n c e of  a net Far

current and at different  stages of the electrolysis cycle (see Fig. 6).  Both  the

reactive (Z*) and the capacitative (-Zg) parts of the impedance increase as the

slimes layer grows.

The  impedance spectra in Fig.  13  show the presence of a low frequency

arc  which at high frequencies bends quasi-linearly towards the axis.

AC impedance spectra obtained in the overpotential region above 350 mV

are shown in Figs.  14 and 15 . These spectra are significantly different  from

those presented in Fig.  13. The presence of  high frequency arcs (i.e. arcs whose

time constant is at least of the order of  msec) shown in the respective Bode plots

(Figs.  14B and 15B) indicates that reaction of noble compounds present in the

slimes layer takes place in this region.

1133]

Page 160: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 160/392

Changes in the impedance as a function olthe slimes layer  thickness and  ol  the current interrup

I

ft

c

 N

I

4 . 0 r* ad/s e c

 —

•m- .31

1  . 56

• 7.91

3 . 2 a 39  . 65

<

199 .

£* 996 .

O 4991 .

»- 15783.

25015.2 . 4

1 . 6

M M SI i ne -s

A 0 . 8B 1 . 6C 2 . 2

n 3 . 1E 3 . 7F 4 . 7

G 5 . 3H 6 . 0

I 6 . 6

 J 7 . 2K 7 . 8

000 5  . 40

ft-CM*

00

F i g . 1 3  Impedance spectra obtained during Exp. CA2 at slimes layer thicknesses between 0.8 and 7.8 mm.

Each impedance curve was obtained at a different slimes thickness as indicated in this Argand plot

[134]

Page 161: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 161/392

Changes in  the impedance as a  function ol   the slimes layer thickness and ol the current  interruptio

(A)

2  . a a

x . 6 8

Y  1 . 2 B

a

Dl

t

 N  . 8 0 0

r a d / s e  a.  0 6 3

*

.  3 5

• 1 . 3 9

a 1 1 . 1 7

a 6 2  . 8 3-« 3 5 3  .

1 9 8 7  .

O 1 1 1 7 4 .3 9 6 4 7 .

6 2 8 3 2 .

1 . 2 8

.  4 0 0

8 0 0  1 — 1  » '— 

I

 — I—I—1—1

 —I—I—I 1  I I I I I I I I I I I I I I  I  I

  1_

(B)

-  . 8 3 0

1 5 8

•0

1

u

91

Fig. 14 Impedance spectra obtained during Exp. CA2 at a slimes layer thickness of 8.4 mmi

(A) Argand  plot  (B) Bode plot

1 In a Bode plot, the

 high

 frequency

 arcs

 are

 better

 resolved by

 analyzing

 the

 variations in

 the phase

angle (dotted

 line, right

 vertical axis)

 as a function of the logarithm of the frequency.

[135]

Page 162: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 162/392

Changes in

 the impedance

 as a

 function

 ol

 the slimes

 layer

 thickness a nd

  of

 the current interruptio

(A)

2 . 0 0

 X .  6 0

M

U  1 . 2 8

r A d / l • c

A  . 0 6 3

» . 4 4

•  3 . 1 3

n  2 2 . 2 9

a  1 5 8 .

4  1 1 1 7 .

ti   7 9 1 1 .

O  3 6 8 8 2 .

¥•  2 2 2 9 3 3  .

*  3 5 3 3 5 4 .

1 bi4E

 N  . 0 0 0

1

s

~ ~~^

  /

.  4 0 0

.  0 0 0

2 .

\• i l i i i l

i i

  1

  i i i

  1

  i i i

  1

  i i i

  1

  i i i

  1

  i i i

  1

  i i •

  1

  i i i

.  0 0 0

2 . 4 0 4 . 0 8 5 . 6 8 7 . 2 8 8 . 8 8 1 8

Z r e a l  ft-CM*

(B)

.  4

1 0 .

"i "  —   ^ .  0 3 0

8 . 8  _

M

5  T •  21

a

 N

a  . 6

- » ^ ^ '

*

t1

-  1 - ' '

-  . 0 3 0 /

f

~   "~ "  '

"  - ^ _ \ -  -  o^fo-  X .  t

x  **  X .  t

X  /

X .

  - . , 1 5 0x

  >^ '                             1 

     1 

     1 

     1 

     1 

     1 

     1 

   1 

   P   h  a  s  e

   A  n  g   l  e ,

  r  a   d

4 .  a

%

  — > \ '

S  1

*  \ . '

 — 

  *- ^ ' ^                            1 

I

I

 

2 . 4

- 1 . - 1  1 1  1  1 1 1  1

•  i i i  i i i i  i i i i  i i i

  t

  t i i i  i i i i  i i i i  i i i

2 . 4

- 1 . 4 8 - . 8 8 8 1 . 4 8 2 . 8 8 4 . 2 0 5 .

L O G  <  F r e < i ,  r a d / s e c  )

6 0

Fig.  15 Impedance spectrum  obtained during Exp. CA2 at a slimes layer thickness of8.65 mm   l.

CA) Argand  plot  (B) Bode plot

1 In a

 Bode

 plot, the high frequency

 arcs

 are better

 resolved

 by analyzing the

 variations

 in the

 phase

angle (dotted line, right vertical axis) as a function of the logarithm of the frequency. Thus, for example, in

Fig.

  15B a hump can be observed at log

 oo

 =

 4.20.

 Thus,

 x=

 6.3x10

s

 sec (t is the

 time

 constant,

 x =

 co"

1

).

[136]

Page 163: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 163/392

Changes in the impedance as a function of  the slimes layer  thickness and  ol  the current interruption

The high frequency intercept of the impedance curves with the axis was

used to find the changes in Rg as a function of the slimes thickness. As Fig.  16

indicates, the  Rg values measured by AC  impedance were in agreement with

those obtained by current interruption  l i 2 . Discrepancies between the Rg values

were only observed at slimes thicknesses larger than 8 mm.

s Xo•0

41

<

*stl&seoe

3.90  1 —

3 .38 —

2 .70

2 . 10

1 . SO

* F r a n  OC  D * t *O  F r o n C u r r e n t I n t e r r u p t i o n

•=  ft 6 6 6 6

i.90S- .000 1.80  3.60 5.4 0

S I i n e s  T h i c k n e s s ,  n n

7 .20 9 . 00

 Fig.  16 Changes In the value of  R,, as a function of the slimes thickness (Exp. CA2).

From  the AC and DC data obtained in Exp. CA2 .

A C  impedance measurements done while the anode was being

galvanostatically dissolved at 800  Amp/m 2

  (Exp. CA5)  are shown in Figs.  17

and  18. Changes in Rg as a function of  the slimes thickness are plotted in Fig.  19.

Rg changes the most at slimes thickness larger than 2 mm where dissolution

of  noble impurities takes place. The small changes in the  Rg values at small

slimes thickness are partially due to changes in the concentration of the

electrolyte  between  the reference electrode and the slimes/bulk electrolyte

interface as a result of the large current density applied.

1

 Current interruption was done

 prior

 to obtaining the

 AC impedance spectrum. Appendix 6 describes how

the current interruption measurement was implemented.

2 The invariability of the

 R,

 values at slimes thicknesses smaller than 8 mm

 confirms

 the results obtained

in Chapter 4 in

 which

 upon

 current interruption

 t\a

  remained constant (Fig. 3.8).[137]

Page 164: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 164/392

Changes in the impedance as a function ol  the slimes layer  thickness and  ol the current  interwpti

1 . 2

I

ft

c N

I

. 96

72

 A. 6 . 3

- *

±7 . 7

—•

49 . 9

• 141 .

396 .

1117 .

— & 3149 .

 — O 8876 .

•> 14067 .

-*

22295.—

48

n n S  I i  M G  S

ft 0 . 64B 1 . 20C 1 . 76D 1 . 89

-  J * 0.63  rad/sec

000 400 800 1.20

Zreal , ft  —CM  2

1 . 60 2 . 00

Fig.  17  Impedance spectra obtained during Exp. CA5 at slimes layer thicknesses between 0.64 and 1.89

mm.

Each impedance curve was obtained at a different slimes thicknesses as indicated in this Argand plot. R,

was subtracted from the Z„ component of the impedance.

[138]

Page 165: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 165/392

Changes in the impedance as a function of the slimes layer  thickness  and of the current interruptio

(A) (B)

.Mr-

;

riJAtc

-A 63> J.M

.64

-

• 9.96

.64

D

  39,63

•a  158.

 _4 628.

•& 2381.

0  9959,

.48 •  39646.

t

  S68B2.

3.8 r-

Q

 f   I  I  I  I

  I  I I  I

  I  I  I  I

  I I I  I

  I  I  1 I

  I  I  I  I  I  I t  I I   I I  I  I I I  I

  I I I I

.888 .248 .488 .728 .968

,2

1.28

1.8

L

-.588

4.58588 1.58 2.58 3.58

Z^j,  flcm2

  Log  (Freq, rad/sec)

Fig. 18  Impedance spectra obtained during Exp. CA5 at a slimes layer thickness of 2.2 mm (R, was subtracted  from  the Z* component of the Impedance).

(A) Argand  plot fB) Bode plot

Fig. 19  Changes in the  valueof   R,  as a function of the

slimes thickness (Exp. CA5).

From the AC  data obtained  inExp. CA5.

i.ee.eee .6ee l.ae l.se

Slimes Thickness, mm2.48

3.98

[139]

Page 166: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 166/392

Changes  in the impedance as a function  ol the slimes layer thickness  and of the current intanvptio

(A)

I—   r a d l / s e c

1  . 68

1  . 28

. 888

. 488

.888

.63

• A .99

• 6 .28

• 19 . 87

a 62 . 834 199  .

628 .

O 1987 .

6284 .

*

7911  .

n n D i s •» o I v e dl

ft 8 . 87B 1 .39C 1 .77n 2 . 86E 2 . ISF 2 . 52

. 888 1  . 28 2 . 48 3 . 68

Z

real. ftcm*(B)

4 . 88 6 . 88

688  ,

- nn D i t t o l  va«1

_

G 2 . 76— H 2 . 834 — I 2 . 837

 J 2 . 841K 2 . 865

368  .

248  . A. . 863

. 44

• 3  . 15

• 22 . 29

• 158 .

4 1117 .

tk

7911  .

O 56882.

»- 396469.

4> 488487.

I I I 

_L

208 . 880  ,488. 608.

Fig.  20 Impedance spectra obtained during Exp. CA4 at slimes layer thickness between0.87 and 2.87 mm.

Each impedance curve was obtained  at a different slimes thickness as indicated in this Argand  plot. Ft, was subtracted  from  the Z* component of the impedance.

[140]

Page 167: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 167/392

Changes in tie impedance as a function of  the slimes layer  thickness and  of  the current mtemiptio

While the impedance curves obtained during Exps. CA2 and CA5 increased

uniforrnly with the  slimes thickness,  those obtained  during Exp. CA4  showed

marked increases and variations in their magnitude and shape (Fig. 20).  This

different behaviour is believed to be the result of the precipitation of secondary

products across the  slimes layer. Thus,  impedance arcs whose time constantis large are present throughout the whole electrolysis cycle 1. The absence of

high  frequency arcs is a clear indication that  Faradaic  dissolution of noble

impurities did not occur in this experiment.

1.30  r-

"aU

  1.24o

a

8  1.18

cj

O  J . . J . 2

T 3

IoC

1.06

1.00

Fig. 21  Changes in the valueof  the R, as a function of theslimes thickness (Exp. CA4).

From the AC data obtained inExp. CA4.

j  i_  _]  L J

  l_ I I

.000 .600 1.20 1.80

mm Dissolved2.40 3.00

Changes in Rg as a function of the amount of lead dissolved are shown in

Fig. 21  2 .  Again, minor variations in the  Rg values result  from changes in the

concentration of the electrolyte  between  the reference electrode and the

slimes/bulk electrolyte interface. As lower currents go through the cell Rg

returns to its original value because such variations in concentration disappear.

1 As indicated by the frequency values at which the capacitative

 pan"

 (i.e. the imaginary part) of the

impedance

 reaches a maximum value,

 the

 relaxation

 processes

 nave very

 large time

 constants

 (of the

order of sec).

2 These changes in

 R

9

 were

 used

 to compute the anodic

 overpotential

 as a function of the amount of

 lead

dissolved

 (Fig. 9).[141]

Page 168: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 168/392

Changes in  tie impedance as a function  of the slimes layer  thickness and of the current interruptio

2 .00 r a d / s e c17 .7

• 62 .8•

223 .

791 .

1 .£0 • 2807 .

- 4 99S9 .— a 3S33S.

a 125375.— • 222953.

- 353354.1 .28

.880

.488

.000

 A A f t e r 8 . 17 Hrs

B  A f t e r 86 .9 Hrs

 A

6-  4 - - - - ' - Q -

J  l_I  • • •

 I

2 .88 2 .68 3.28  3.88

Z r e a l  ft-CH*4.48 5 .88

Fig.  22  Argand plot showing the changes in the impedance spectra obtained in the presence of  a layer

of  slimes and in the absence of  a net Faradaic current (Exp. CA2).

The  anode was corroded up to the formation of -8.7 mm of  slimes (Fig. 6). Subsequently, current was

halted for -115 hrs (Fig. 10A). During this period, impedance spectra were obtained at preset times asindicated in this Argand plot.

Curve A was obtained -0.17  Hrs  after current interruptionCurve B was obtained -86.9  Hrs  after current interruption

The  AC  impedance spectra obtained in  the a b s e n c e of  a net Faradaic cu

(i.e. under current interruption conditions) are significantly different from those

obtained during the passage of  a net D C

 current. The  impedance curves indicate

the presence of a linear region which bends towards a small arc as high

frequencies are approached (Fig. 22,  Exp. CA2).  The impedance decreases as a

function of the current interruption time and the anodic overpotential. Also,  Rg

decreases up to a liiniting value often higher than observed at the beginning ofthe experiment (compare Figs. 16 and 23). Such a difference arises partially as

a result of the  prior  reaction of the  slimes  compounds which changed the

microstructure of the slimes layer.

The  impedance spectra obtained at the end of Exp. CA5 (Fig.  24) are siinilar

to those obtained in Exp. CA2  (Fig. 22). The decrease in Rg  in this experiment

follows the pattern previously explained because dissolution of the slimes layer

also took place in this experiment (Fig. 25).

[142]

Page 169: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 169/392

Changes in the impedance as a function of tie slimes layer  thickness and  of  the current  interrup

o , . s .

OJ4-1

CO

s.

6

o

o

3 .28

2.98

O  2.68i

2.38

2.88 S  .888

Fig. 23 Changes in thevalue of  R, as a functionof the current interruptiontime (Exp. CA2)

From AC data obtained inExp. CA2.

24.8  48.8 72.8

Time, Hrs.96.8 128 .

. s a r a d / s e  a. 6 3

*

2  . 5 0

:

• 9  . 9 63 9  . 6 5

. 4 0 •4

1 3 8  .

6 2 8  .

 _ 2 5 0 1  .

o9 9 5 9  .

3 9 6 4 6 .

. 3 0*

4 4 4 8 5 .

.  2 8

.  1 0

. 0 0

A A f t a r 0  . 6 3 H r s

BA f t e r

7  . 8 8H r s

C A f t e r 3 8  . 4 H r s

1 . 4 1 . 7 2 . 0 2 . 2 2 . 5 2 . 8

Z^u, Qcm 2

Fig. 24 Argand plot showing the changes in the impedance spectra obtained in the presence of  a layer of slimesand in the absence of  a net Faradaic current (Exp. C A5).

The anode was corroded up to the formation of  -2.2 mm of slimes (Fig. 7).  Subsequently, current washalted for -46 hrs (Fig. 10B). During this interval, impedance spectra were obtained at preset times as indicated

in this Argand plot.

Curve A was obtained -0.63 Hrs after current interruption

Curve B was obtained -7.88 Hrs after current interruption

Curve C was obtained -38.4 Hrs after current interruption

[143]

Page 170: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 170/392

Changes in the impedance as a function of  the stones layer  thickness and  of  the current interrup

In experiment CA4 slimes dissolution was restricted by holding the anodic

overpotential at values lower than 220 mV (Fig. 9).  This  resulted in nearly

constant  Rg values  during both the potentiostatic dissolution (Fig. 21) and the

current interruption cycle1

.  During current interruption,  ionic concentration

gradients within the  slimes  layer relax.  This  results in re-dissolution ofprecipitates and in ensuing impedance decreases (Fig.  26 Exp. CA4). The  shape

and magnitude of  the impedance arcs are different from those observed in Exps.

CA2  and CA5 as the precipitated products can generate an electrical double

layer which affects the dielectric properties of the slimes filaments and of the

lead electrode through changes in their relative permittivity  a

. This results in

impedance arcs with a large capacitative component.

Fig. 25  Changes in the valueof R, as a function of thecurrent interruption time(Exp.

 CA5)

From AC data obtained inExp. CAS.

18.a 2a.a  3e . e

Time, Hrs.48.a se.e

1 During current interruption conditions, R, remained nearly constant (1.09<R,<1.13 Qcm2 ).

2 The (static) relative permittivity is

 defined

 as t„=§-C   is the capacitance of a parallel

 plate

 condenser

with

 plates

 of large area separated by

 a

 small gap, the whole

 being

 in a

 vacuum

 whereas

 C 0 is the

capacitance of

 a

 parallel plate

 condenser

 when an isotropic material is present between the

 plates [5].

[144]

Page 171: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 171/392

Changes in the impedance as a function of  the slimes layer  thickness and  ol  the current  interruptio

Fig. 26  Argand  plot showi ng the  changes  In the  Impedance  spectra obtained In the  presence  of a layer of slime s and In the  absence  of a net F ara dai c

curr ent (Exp. CA4)

T he   anode  was corrode d up to the for mation of -2. 8 mm of slimes (Fig. 9). Subseque ntly, cur ren t was halt ed for -2 3 hrs (Fig. IOC). D u r i n g  this

interval,  impedance spectra were obtained at  preset  times as indicat ed in this Argand  plot.

Curve  A  was obtained -0. 27 Hrs  after   current interrupt ion

C u r v e  B  was obtained -2.08 Hrs  after   current interruption

[145]

Page 172: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 172/392

Changes in the impedance as a function of  the slimes layer  thickness and of  the current mtenvption 

(A)

a .  e

s

a1 . 2

.  8 0

.  4 0

r a d / s e c.  6 3

» 2  .  s a

9 . 9 6

a 3 9 . 6 5

a

1 5 8 .

4 6 2 8 .2 5 8 1 .

a

9 9 5 9  .

*- 1 V 7 8 9  .

• 2 8 8 6 8 .

r t n S I t n e sA .  4 3B .  9 8

1 . 4 7C.  9 81 . 4 7

D 2  . 3 9E 3 . B 6F S . 3 7G 5 . 7 9H 6 . 3 2I 6 . 6 4

 J 7 . 8 6X 7 . 4 9

 J i i  i  L — J  i i  L

5 . 0

(B)Z^,  Ocm

2

(C)

Zreai, Qcm 2

 Fig. 27  Impedance spectra obtained during Exp. CA6 at slimes layer thicknesses between 0.43 and  717   mm.

Each impedance curve was obtained at a different slimes thickness as indicated  in this Argand  plot. R, was subtracted  from  the  component of the impedance.

(A) Impedance spectra acquired  in the region where potential excursions where not observed(Fig. 11A).OB) Impedance spectrum  obtained at ~3.7 mm   of slimes(C) Impedance spectrum  obtained at ~7.7 mm   of slimes

[146]

Page 173: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 173/392

Changes in

 the

 impedance

 as a

 function

 of the

 slimes layer thickness

 an d of the

 current interw

As previously described, In Exps.  CA6 and  CC1  excursions in potential

appeared to be triggered by the AC measurements (Fig. 11)  1  . The impedance

spectra obtained in Exp. CC1  are shown in Fig. 27 while  those  obtained in

Exp. CA6 are shown in Fig. 28. The spectra measured in the region in which

no potential excursions were observed increase uniformly as the  slimes layerthickens (Figs. 27A and 28A). On the other hand, the impedance spectra

measured in the region where the potential excursions were observed indicate

the presence of arcs whose time constant is of the order of 10"5  sec  2 . These

spectra were reproducible and did not show any large changes in magnitude at

different electrolysis times. Such high frequency phenomena can only be related

to very fast processes  such as found across the Helmholtz electrical double

layer.

In  Exps.  CA6 and CC1, changes  in Rg were observed only in the regionwhere the anodic overpotential excursions occur (Fig. 29).  Upon  current

interruption, the impedance spectra show the presence of high frequency arcs

whose size decreases as the current interruption time increases  (Fig.  30). Also,

Rg decreases as a function of  the current interruption time up to a limiting value

which in the case of  Exp. CA6 is nearly equal to that observed at the beginning

of  the experiment (compare Figs. 29A and 31).

1 Exps. CA6 and

 CC1 were

 performed using working electrodes from different sides of the lead anode

and

 in

 the presence and absence of addition

 agents

 (see Table 1). In both experiments the potential

excursions appeared at about the same slimes thickness (-3.2 mm). Consequently, the outset of the

excursions in potential must be related to changes in the slimes electrolyte rather than in the slimes layer

or

 in

 the anode.

2 In Figs. 27B, 27C, 28B and 28C, the maximum of the imaginary part occurs at 2x10

4

<co<3x10

3

 rad/sec,

thus

 5x10"

5

 <T<3.3

X10^

 sec.

[147]

Page 174: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 174/392

Changes in the impedance as a function olthe slimes layer  thickness and of  the current  interrupt

(A)

1.08  r—

.880

S  .608

a

.480

.280

i

r«d/sec A 6.3

• 17 .7• 49 .9• 141 .

• 39 6 .4 11 17 .3149 .

O 8876 .• 11174 .

*

17789.

nn  S i t  H I S

 A . 14

B .51C 1 .37D 2 .22E 3 .50

«i 8.63  r a d / s e c

.8884 •  i  I  i i i  I  i i i  I  i i i  I

. 00 0 .330 .640 . 960 1 . 28 1 .60

sCJ

C

8.68

rid/sec

6.3

• t 25.8

•99.6

• 396.

6.48

0

1378.

4 6283.

625813.

0 99582.

•396463,

* 488487

4.88

3.28

  -

1.68

  -

(B)

AC

 tueei dene it 4.5  m Slinei

Z ^ .  Qcm2

a

a

8,88

rid/sec

6.3

«25.8

•99.6

• 396.

6.48

0

1378.

4 6283.

• 0 2581S.

0 99582.

•396463,

* 488487

4.88

3.28

1.68

(C)

AC  tvtep  dene

  it 5.3  nn  Slinet

12.8

I  I  I I I I

12.8

Z ^ .  Qcm2

Fig. 28  Impedance spectra obtained during Exp. CC1 at slimes layer thicknesses between 0.14 and 5.3

,800

1

  1 1 1 1

  '

  1

  '

  1

  ' ' '

  1

  ' ' '

 1

  ' ' ' '

  1

  '

  1 1

  ' ' '

  1

  ' ' '

.888

  2.48 4.88 7.28 9.68

mm.Each impedance curve was obtained at a different slimes thickness as indicated in this Argand plot. R,

was subtracted from the  component of  the impedance.

(A) Impedance spectra  acquired in the region where potential excursions where not observed (Fig. 11B) (B)Impedance spectrum obtained at -4.5  mm of slimes (C) Impedance spectrum obtained at -5.3 mm of slimes

[148]

Page 175: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 175/392

Changes in the impedance as a  function of the slimes layer  thickness  and of the current  interruptio

Fig. 29  Changes in the value of the R, as a function of the slimes thickness (Exps. CA6and CCD.

(A) From  the AC and   DC data obtained  in Exp. CA6

(B) From  the AC data obtained  in Exp. CC1

[149]

Page 176: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 176/392

Changes in the impedance as a

 function

 oltte

 slimes

 layer

 thickness

 and of the

 current interruption

CJ

. 3. 6 3

-*

3 . I S

•1 3 . 7 87 9 . 1 1

. e

n4

3 9 6 .1 9 8 7 .

 — 9 9 3 9  .

o 4 9 9 1 8 . — 1 3 7 8 3 4 .

. s

3 3 8 1 3 2 .

1 . 8

. 8 8

A A4> t « r- 8 . 6 3 H r .

B A f   t e r 2 . 4 4 H r s

C A f   t a r 1 1 2 . 8 H r »

Fig. 30  Argand  plot showing the changes In the Impedance spectra obtained in the presence of a layer of slimes and  in the absence of a net Faradaic current  [Exp. CA6).

The  anode was  corroded   up to the formation  of -8 mm of slimes  (Fig. 11A).Subsequently, current was halted for -113 hrs (Fig. 12). During this interval, impedancespectra were obtained at preset times as indicated  in this Argand  plot.

Cury.e A was obtained   -0.63 Hrs after current interruptionCurve B was obtained   -2.44 Hrs after current interruptionCurve C was obtained  -112.8 Hrs after current interruption

M

6 9 ee  ;

ua

o 4 0 8 !

s

3 ea i

  O  h r

  j 

\•a 2 ea  r

V

ea  r

 n s 

UP .

S 1

oCJ '

aP

.08 2 4 . 48 . 72.

Time.  Hrs.96. 120

Fig. 31  Changes in the valueof  R, as a function of thecurrent interruption time(Exp. CA6).

From AC data obtained in

Exp. CA6.

[150]

Page 177: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 177/392

 Relationship between the DC anodic overpotential and the DC current density

2. Analysis  of  the experimental  data

In  the study of the establishment.of concentration gradients across the

slimes layer an electrical analogue could be used to describe how these gradients

affect the dissolution of noble impurities present in the  slimes  layer.  This

analogue has to evolve from fundamental  D C  and A C  studies and must include

parameters that provide a physico-chemical insight of  the system.  In the following

section the main characteristics of such a model are introduced. The  D C

 data are

analyzed prior to the  A C  data to provide a framework for the elaboration of the

analogue model. Subsequently, this model is used to relate the experimental  D C

and  A C  behavior of lead bullion electrodes covered with a layer of slimes.

(a) Relationship   between the DC  anodic  overpotential and  the DC  current

density

As  shown in Chapter  4, concentration gradients produce concentration

overpotentials which can be linked to the resistivity of the electrolyte present

within the slimes layer. Concentration overpotential is also the major component

of  the r)A curves presented in this Chapter.

According  to Newman  123,24]

 concentration overpotential can be defined

as follows  x > 2 :

Eq.  4 can be expressed as a linear equation:

T ]c=IRm  + b

  ...5

With

1 Despite the different definitions of concentration overpotential available

 in

 the literature

 there

 is no

conclusive evidence

 that

 any of them describes accurately the physical phenomena involved, yet,

 there

 is

an agreement that because of the presence of concentration gradients, an ohmic drop is included in the

concentration overpotential measurement (Compare refs.

 [23-24] and

 [8-9]).

2 The ohmic part in Eq. 5

 of

 TI0

 has more physical meaning

 when

  it is equal to /

I = 0

t h a n

  when

 it is

equal to  i  Jj^-^dx

[151]

Page 178: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 178/392

 Relationship between the DC

 anodic overpotential and

 the DC

 current density

Eq.  4 indicates that rjc is composed of at least 2 contributions: (A) an ohmic

drop due to variations of  conductivity in the diffusion layer and (B) the potential

difference of a concentration cell.

In Chapter 4 the determination of the electrical conductivity of the slimes

electrolyte was attempted by using current interruption techniques. Suchmeasurement was not really applicable because as Eq.  4 indicates, even though

the ohmic term ought to disappear upon current interruption  (I-»0),  the

relaxation of concentration gradients creates a counter  E.M.F.  that avoids the

direct measurement of the conductivity of the  slimes electrolyte \

Under steady state conditions  a , Eq. 4 indicates that small changes in the

applied current density ought to result in changes in TJc due exclusively to the

ohmic component of  the slimes electrolyte  3 . If  linearity between applied current

density and the observed concentration overpotential is observed, the averageresistivity of  the slimes electrolyte, F^, could be obtained from Eq.  5. In addition,

the parameter b should provide complementary information about the extent

to which concentration gradients vary across the slimes layer4.

The validity of  Eq. 5 in the determination of the resistivity of the  slimes

electrolyte is studied in this section by analyzing the current and anodic

overpotential  changes  observed  during  the application of a small amplitude

sinusoidal waveform  5 .  Thus,  these changes are analyzed according to  Eq. 5

using the following assumptions:

1)  Upon  subtracting TJq  from the anodic overpotential observed upon the

dissolution of lead, the main component of the remaining overpotential is due

to the presence of concentration overpotential.

1 As explained in Chapter 4, even though the external current may had been halted, processes that

support

 the passage of internal currents may still be present after current interruption.

2 Steady state conditions

 are

 such that

 the concentration gradients across the slimes layer remain

constant

 during

 the measurement of the

 T|C-I relationship.

3 As Eq.

 4 indicates, Ohm's law is not useful in

 a region where

 concentration gradients are present.

Nevertheless, in such

 a

 region, an integral value of the changes

 in

 conductivity can be obtained.

4 Notice

 that R

m

 and b are a function of the local electrolyte conductivity and concentration gradients

across the slimes layer.

5 AC and  DC currents and overpotentials are terms

 that

 can easily be

 confused: An AC wave

 varies

sinusoidally

 as

 a

 function of time and can be

 described

 by the following equation:

/(f,a)) = M<)sin((iM + (|))

where:

 M

e

 is the amplitude of the waveform, co is its frequency,  *  is the phase angle, and t  is the time. By

knowing M

0

,

 ©,

 and

 <B,

 the

 DC "instantaneous" component of the AC

 waveform

 can be obtained.

[152]

Page 179: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 179/392

 Data analysis

2) Upon application of  a small amplitude sinusoidal current waveform (less

than 35 Amp/m 2) at low frequencies  (ox6.3 rad/sec) and for a short period of

time, ionic concentrations and concentration gradients throughout the slimes

electrolyte remain unchanged \

3)  The only overpotential increase that results in a linear dependancebetween  potential and current is that due to the ohmic drop of the  slimes

electrolyte  (Rn, term in Eq. 5).

4) The restriction to ionic flow caused by the slimes can be obtained from

the  R, , , value and its dependance with the electrolysis conditions.

5) The part of  the overpotential that does not depend on the current density

is due to the presence of concentration gradients across the slimes  electrolyte

(b term in Eq. 5) and to related increases on the corrosion potential of the lead

anode.

6) The lead dissolution process proceeds urihindered ( R ^ O )  whereas the

slimes layer remains unreacted  (Ret-***)2

7) Ionic concentration gradients are present throughout the  slimes layer

(i.e. 5 is equal to the thickness  of  the slimes layer). Furthermore, these gradients

are only observed in the direction normal to the anode.

(I) Data  analysis

The steps that were followed to analyze the  rjA spikes produced by the ACcurrent waveform are as follows:

A) From the  TJ a readings obtained during the application of the AC current

waveform, r)n

  3 , was subtracted *.

B)  The resulting anodic overpotential and the current density  were

curve-fitted to a straight line according to Eq. 5.

1 The exact values

 for

 the amplitude and frequency of the waveform may change depending

 on

 whether

a oc current is applied or not.

2 This is equivalent to

 implying

 that all the current flow is at the anode/slimes interface without any

significant Faradaic current

 crossing

 the slimes/electrolyte interface.

3 R, is known prior

 to

 and after the application of the current steps. An average Ft, value can be used to

correct the r\

 

readings.

4 Notice

 that

 the anodic overpotentials shown in Figs.

 6C, 7, and

 11 are all corrected only

 for the

  initialr\

a

Onn=IR«)-

 The approach

 in

 this section is to analyze the anodic overpotential corrected forr|

n

 present

 at

the

 local

 time

 the current sweeps

 were

 applied.

[153]

Page 180: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 180/392

 Data analysis

(A) (B)

268.

236.

2 1 2 ,

C

cu

Qti

U

188,

164.

 M.lr

i

  i i  t  I  i  i  i  I  i  i i  I  i  i  i I  i  t i  I  i  i  i  I  i  i  i  I  i  i i  I  i i  i I

12,1  1 2 . 3 1 2 . 6 1 2 . 9 1 3 . 2

Time, Hrs.(C)

13 .5

3 8 . 8

33,0'  i i  i  i  i  i  i  i  i i i i i  i  i

1 2 . 8  1 2 . 3 1 2 . 6 1 2 . 9 1 3 . 2 1 3 . 3

Time, Hrs.

38.8

  r

>-> 48.8

•a

C  38.8

<U

o&

I...O

^ 11"

*  *

MI r   1111111

11111 ' ' ' ' ' ' 1 1 1 1 1 1 1 1

1

1 1 1 '

.888 52.8 184. 156.

288.

268.

Current Density,  Amp/m 2

Fig. 32 Detail of the "spikes" observed at -0.8  mmslimes (Exp. CA2, Table 4).

From Exp. CA2 (see  Fig. 6)

The data points shown in (A) and (B) were linkedusing cubic splines interpolation. Had more pointsbeen available these curves would have looked likedistorted sinusoidal waveforms with equalamplitudes.

(A) Variation of the anodic current density as a

function of time(B)  T | A  variation as a function of time (corrected for

tin)-

(C) Current density vs anodic overpotential curve[obtained from the data shown in (A) and (B)]

[154]

Page 181: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 181/392

 Data analysis

The  current density changes observed during the application of  one  of   the

A C sweeps (Exp. CA2)  are shown in  Fig.  32A. The anodic overpotential spikes

(corrected for TJQ) that result from variations in the cell current are shown in

Fig.  32B. The linear relationship between these two quantities can be seen in

Fig.  32C. This relationship was found to be frequency independent, indicatingnearly  steady state  conditions.  Further  analysis of the  r\ A spikes produced

during the application of   the A C  waveform at different slimes thickness showed

that linearity was observed only up to anodic overpotentials smaller than 250

mV  (Fig. 33).

2 4 0  .  r

2 0 0  . -

1 6 0  . h

1 2 0  .

8 B .  e

4 0  . 01 4 0  .

3 6 0  . r 

3 2 0  .

2 8 0  .

2 4 0  .

2 0 0  .

1 6 0  .

1 6 4 .  1 8 8 . 2 3 6  . 2 6 1

1  i  I • i •

2 3 6  . 2 6 0 . 1 4 0  . 1 6 4 , 1 8 8 .  2 1 2 . 2 3 6 . 3 6 0 .

Fig. 33  Variations in the anodic overpotential as a function of the anodic currentdensity at various slimes thickness (Exp. CA2, Table 4).

X  axis: Anodic current density, Amp/m 2

Y  axis: Anodic overpotential (corrected  for T IJEach curve corresponds to the analysis of the spikes observed  at the following slimes

thickness: (A) 1.6 mm   (B) 4.7 mm   (C) 6.6 mm   (D) 8.6  mm

[155]

Page 182: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 182/392

 Data analysis

Table 4 Analysis of the spikes produced during the application of the  A C  waveform,

in  the presence of a net DC current (Exp. CA2,  Figs. 32 to 35)

Parameters Derived from RegressionAnalysis Computations

From Eq. 4 Experimental

SlimesThickness

mm

SlopeQcm 

2 Intercept,b, (mV)

|y r|

2

,mv

3

b_

IR,

p

m

, QcmIR.. mVmV mV

0.80

2.23

3.10

5 33

5.95

6.56

7.18

7 79

8.41

8 65

0.62

1.45

2.15

3 93

4.57

5 23

5.71

7 22

4.96

9 40

30.8

45.8

54.4

75.3

82.4

93.1

113.9

124.9

361.0

360.6

0.850

0 986

0.988

0.981

0.961

0.920

0.905

0888

0.051

0.558

6.8

6.4

12.6

59.8

163.7

375.1

633.5

1192.5

4386.0

5688.7

2.54

1.63

1.30

098

0.93

092

1.03

089

3.74

1.97

7.78

6.48

6.93

7.38

7.68

7.98

7.95

9.27

5.90

10 86

12.1

28.1

41.8

76 5

88.8

1017

110.9

140 3

96.5

1827

42.9

73.9

96.1

151.8

171.2

194.8

224 8

265.2

457.5

543 3

41.9

73.3

95.5

150.4

170.0

193 3

221.8

2614

436.0

520.0

Between 18 and 20 experimental points were used to obtain the regression coefficient. These points

were collected during -55  min and correspond to digitized samples taken when the frequency of the applied

AC waves was between 0.063 and 6.3 rad/sec.

Abstracted  from Table 4, Appendix  9

As  seen in Table 4, both R , and  b  increase as a function of the  slimes

thickness (see  Eq. 5 and Fig. 34A) indicating that larger concentration

gradients across the slimes layer generate larger ohmic drops. Thus, the ohmic

drop generated by these concentration gradients can promote the dissolution

of   the  slimes  layer only if large concentration gradients are  also  present.

Furthermore, the ohmic drop generated by the slimes electrolyte  (IRJ is smaller

than the "current  independent'  term b only up to -5.3  mm  slimes (i.e. ^- reaches

a value of -1 at 5.3 mm slimes). After this slimes thickness, the  IR™  term not

only becomes larger than the  b term, but it increases at a faster rate. The large

variations in the values of  these terms above -5.3 mm slimes are related to

the precipitation of secondary products. Precipitation of secondary products

changes both local ionic concentrations and local electrolyte conductivities.

Moreover, the  changes in the pm value, (Fig. 34B)1  also indicate increases in

its value towards the end of the electrolysis cycle. Dissolution of   slimes

compounds at  slimes  thicknesses  larger than 8 mm results in non-linear

1 p

m

 is the resistance of the slimes electrolyte per

 cm

 of slimes:

 Rm  [Qcm2 ] pm[Qcm] =SlimesThickness[ cm ]

[156]

Page 183: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 183/392

M e

  h

i

  i

  I  i

  •

 I

  •

  i  I

  i

  i  I

  i

  i  I  i i  I •  i  I  i  i  I  i  • I  i

  •

 I

  .

  M

  i i

  i  I  i  i  I  i  i

  I

  i i  I

  i  i  I

  i i  I  i i  I  i

  i  I  i

  i

  I

  i

  i.eaa l.sa s.se

  s

.4 a  7.2a  9.ea

  .aaa l.sa  3.6a  3.4a  7.2s  9.aa

 mm   Slimes  mm   Slimes

Fig. 34 Changes In the value of the resistance of the slimes electrolyte as afunction of the slimes thickness (Exp. CA2, Table 4)

(A) R,,, (Qcm 2) changes (B) p m  (Qcm) variations

. e e e  I . S B  3 . 6 a  s . 4 e  7 . 2 a 9 . 0 0

mm  Slimes

Fig. 35 Changes in the parameters b and IR™ with relationship to the experimentalvariations of the anodic overpotential (Exp. CA2, Table 4).

[157]

Page 184: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 184/392

 Data analysis

relationships between overpotential and current \  Under these conditions,  D C

current enters the  slimes  electrolyte from both the anode/slimes electrolyte

interface and the slimes/slimes electrolyte interface and this produces

non-uniformities in the distribution of current across the slimes layer.

The relationship between r|

a

,  b, and IRm is graphically presented in Fig.  35.The  jump in the value of  b  at slimes thicknesses larger than 8 mm indicates

that noble compounds have reached the potential at which they can react

Faradaically. By adding the value of  IRn, to the b value, the experimental r|A

  is

obtained 2

. This is a very important  relationship: It links the slimes solution

properties to the  changes  taking place in the lead anode and in the  slimes

layer.  Thus,  for different electrolysis conditions and anode compositions,

optimum parameters for lead electrorefining can be obtained by studying the

variations in the b and  IRm values at different  slimes thickness. Moreover, itappears as if by merely applying a sinusoidal galvanodynamic scan (i.e. one

scan  whose  amplitude is -20  Amp/m 2

  at  co~0.1  rad/sec) at preset  slimes

thickness, the  same information obtained using the  FRA can be derived  3

.

Table  5  .A Analysis of the spikes produced during the applicat ion of the  AC waveform.

in  the presence of a net  DC current (Exp. CA6)

Parameters Derived from Regression From Eq. 4 Experimental

Analysis ComputationsSlimes Slope Intercept, r2 |y r|

2, b pm, Qcm » » , mV

Thickness Rn.. b,  (mV) mV2

mV mV

mm Qcm 2

il? m m m 0.170.14

3.561.96

5.144.75

32.057.8 m

3.065.37

1.52189 m 0.99

0.850.4015.64

1.592.55

4.983.52 m 76.6

130.578.31341

6.647.49

2.703.13

113.6140.9

0 880.97

10 164.09

2162.31

4.064.18

52.560.9

166.1201.9

168.2,205.2

4 experimental points were used to obtain the regression coefficient These points were collected during

-12  min and  correspond to digitized samples taken when the frequency of the applied AC waves was between

0.63  and 6.3 rad/sec.Abstracted from Table 5.a, Appendix 9

1

 Non-linearities

 are

 identified when

 |y| increases and r

2

 decreases.

2 e.g.  compare columns

  IRm+6) and  TIa

  in Table 4.

3 Use of linear

 polarization techniques such

 as SACV (small

 amplitude cyclic

 voltammetry)

 should

 provide

the same results

 [10-13].

[158]

Page 185: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 185/392

 Data analysis

Table 5.B Analys is of the spikes produced during the application of the AC waveform,

under current interruption conditions (Exp. CA6)

Parameters Derived from RegressionAnalysis Computations

FromEq.4

Experimental

Tune, hrs Slope R m,

Qcm2

Intercept, b,

(mV)

r2

|yrr\mv

2 pm, Qcm TR^+b, mVmV

0.63

2.44

3.83

43.07

112.8

2.23

3.62

3.83

1.64

0.99

60.8

i i i i^ i i i i ; :

44.5

lllliiliillli0.2

0.89

0.91

0.95

88

21.95

41.19

62.43

22.09

21.63

2.82

4.57

4.84

m

60.8

48.4

44.5

5.3

0.2

82.1

WmmMi44.0

9 experimental points were used to obtain the regression coefficient These points were collected

during -27 min and correspond to digitized samples taken when the frequency of the applied AC waves was

between 0.63 and 6.3 rad/sec.

Abstracted from Table 5.b, Appendix 9

The TJ a spikes observed in Exps. CA6 and CC1 were also analyzed according

to Eq. 5. The results obtained from such an analysis are shown in Tables 5A

and  6. A linear relationship between overpotential and current was only found

in  the region where  the potential excursions  were absent.  Furthermore, a

quasi-linear relationship  between  overpotential and current was  also  found

under current interruption conditions (Table 5B, Exp. CA6) *.

Table 6  Analysis of the spikes produced during the application of the AC waveform,

in  the presence of a net DC current (Exp. CC1)

Parameters Derived from Regression

Analysis Computations

From Eq. 4 Experimental

Slimes

Thickness

mm

Slope R „

Qcm2

Intercept,

b, (mV)

r2

|y rl2

,mV

2

b

lRm

pm, Qcm IRm.mV IR .,+6,

mV mV

1.37

1.79

2.22

2.65

3.07

3.50

0.52

0.63

0.74

0.81

0.92

0.96

32.4

38.0

42.8

48.0

52.4

58.4

0.98

0.97

0.98

0.95

0.93

0.93

0.1

0.3

0.4

1.1

1.7

2.3

3.21

3.11

2.97

3.06

2.94

3.12

3.80

3.51

3.34

3.05

2.99

2.74

10.1

12.2

14.4

15.7

17.8

18.7

42.6

50.2

57.2

§Mmm70.3

i l 7

! l l l :

42.8

50.6

57.8

64.4

70.9

78.1

5 experimental points were used to obtain the regression coefficient These points were collected during

-12 min and correspond to digitized samples taken when the frequency of the applied AC waves was between

0.63 and 6.3 rad/sec.

By  comparing the data presented in Tables 4, 5A, and 6 it can be seen

that:

1 In Table 5B, r2

 and |y|

 vary widely

 yet the predicted (IR

m

+o) and experimental (T|a

) overpotentials are

nearly

 equal.

[159]

Page 186: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 186/392

 Data analysis

i) The anodic overpotential values observed at slimes thicknesses lower

than 3.5 mm  (before potential excursions appeared in Exps. CA6 and CC1) are

different in the three analyzed experiments: T |A  (Exp CA2) > rjA (Exp CA6) > r|A

(Exp CC1). This  results in differences among the computed RQ, and b values

ii) The  smallest and b values obtained at a fixed slimes thickness are

observed in  Exp. CC1. The fact that in this experiment p m  decreases as the

slimes layer thickens is significant.

iii) A relationship that relates the slope b to the average slimes electrolyte

resistance.  Rn , ,  and to the local electrolyte concentrations cannot be  inferred

yet \

The  observed differences in the values of the r|A components  (IRn, and b)

at a fixed slimes thickness are related to the bulk  electrolyte composition, to

the presence of addition agents, and to the changes in the slimes

physico-chemical properties (i.e. porosity, tortuosity).

Addition  agents  appear to play an important role in the anodic

overpotential increases  . This was also observed in the sulphamic acid system

1251a

. Thus, in Exp. CC1 the distinct R^, and b values indicate that the addition

agents increase n A mainly by restricting the flow of ions 3

. In the presence of a

Faradaic current,  I, this restriction can be related to the  ratio: The largerm

this ratio, the smaller the restriction for the movement of electrolyte across the

slimes layer and  the lower the observed overpotential. In Exp. CC1 the ^- ratio

is ~3 and remains nearly constant. On the other  hand,  at  similar  slimes

thickness, for the other experiments this ratio shows marked decreases (from

2.5 to 1.3 for Exp. CA2 and from 3.4 to 1.6 for Exp. CA6).

1

 i.e. b values cannot be derived from

 R

m

 values and

 vice

 versa

 :

 Average electrical conductivities may be

equal yet local concentrations may be different.

2 The amount and nature of addition agents incorporated

 during

 the refining of Pb

 using a

 sulphamic acid

electrolyte has also been shown to have a

 strong

 impact

 on

 the permeability of the anode slimes

 [25].

3 Notice that whereas Exps. CA2 and

 CA6

 were carried out

 using

 the lead anode

 "mould" cooled

 face,

Exp. CC1 was

 performed

 using the "air" cooled face. The microstructures of

 these

 electrodes were found

to be similar.

 Thus,

 the anodic overpotential variations can hardly be

 related

 to microstructural differences

between

 the different electrodes.

[160]

Page 187: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 187/392

 Proposed analogue representation of a lead  bullion electrode covered  with a layer  ol  s

Analysis of  the TJ a spikes obtained upon current interruption also indicated

a linear relationship  between  rjA and current (Table 5B).  Under  current

interruption conditions 1=0 and rjA does not have an ohmic component, yet, by

slowly displacing the dynamic pseudo-equilibrium observed  during  the

relaxation of the concentration gradients, it was possible to obtain the integralvalue of the resistivity of the  slimes electrolyte,  Rn ,  \ As seen in Table 5B this

value decreases as the concentration gradients relax. Furthermore, at the end

of  the current interruption cycle, T]A~0, yet, as indicated by the finite  Rn , value,

the electrolyte present within the  slimes  was found to have a different

conductivity than the bulk   electrolyte.

(b) Proposed analogue representation of  a lead  bullion electrode covered

with a layer of  slimes.

So far in this thesis it has been shown that the response  of  electrochemical

systems  to  AC

 waveforms can be used to obtain kinetic and diffusional

parameters. Resistors, capacitors, and CPE's have been used to link  changes

in  the  A C

 spectra to associated physico-chemical parameters. A general model

is to be proposed to analyze the observed  A C   impedance spectra. This model is

based on a set of assumptions.  From  this model and from  the experimental

data,  several  electrical  analogues are developed to examine the  A C

  impedance

data and to find the link  between these analogues and the physical phenomenathey may represent.

Fig.  36 shows a general analogue model of a lead bullion electrode covered

with a layer of slimes. Six interfaces can be identified in this figure. Each  one

of  these interfaces has an associated impedance 2  :

1 i.e. the pseudo-steady state observed during the relaxation of the concentration gradients in the

entrained

 electrolyte

 was

 slowly

 displaced by applying a sinusoidal current waveform.

2 The impedance of the

 reference

 electrode is neglected

 in

 this

 analogue.

[161]

Page 188: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 188/392

 Proposed  analogue representation of a lead  bullion electrode covered  with a layer  of  s

za/se = Faradaic impedance at the lead anode/slimes electrolyte interface.

= Faradaic impedance at the  sltaes/slimes electrolyte interface.

Zgi/be = Faradaic impedance at the slimes/bulk electrolyte interface.

Z a / 8 ,  = Electronic impedance at the lead anode/slimes interface.

Zw  =  Warburg  ionic diffusional impedance throughout the slimeselectrolyte.

 Zyj„ = Warburg ionic diffusional impedance in the slimes electrolyte/bulk

electrolyte interface.

The value and mathematical expressions that each of  these  impedances

can adopt is a function of  the current density, the slimes electrolyte composition,

the slimes layer microstructure and composition, and the electrode's thermal

history and composition.  Thus,  a single mathematical representation of the

overall impedance may be too difficult to determine unambiguously. Moreover,some of  these impedances are distributed (i.e. their value changes as a function

of  the position) and coupled (i.e. they change only if other impedances change).

Despite the complex interrelationships existing among the different impedances,

their individual contribution to the total impedance can be assessed by analyzing

each of them separately.  From  this analysis and from experimental data, the

relative magnitude of each of   these  impedances with respect to the total

impedance can be  inferred.

The  individual analysis of the components of the impedance has to start

from  the simplest scenario.  This  will  be the  case when only a DC

 current is

applied to the electrode. In this case the total impedance of the system has only

a real component  [Z DC  = Z(j(a)(O=0 ].  Thus, while the impedance is not an explicit

function of time, if measured in a system where changes are taking place, its

value at a fixed frequency will be a time dependent quantity. Thus at (0

=0 the

changes in impedance as a function of time, Z^f), can be defined as follows:

where:

TJ (t) = overpotential (compensated for rid observed upon passage of  current

as a function of the electrolysis time. By using a reference electrode reversible

to Pb + 2 no corrections for liquid junction at the reference electrode/electrolyte

interface have to be incorporated in the T\(t) values.

[162]

Page 189: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 189/392

 Proposed  analogue representation of a lead  bullion electrode covered  with a layer ol s

During the galvanostatic dissolution of a lead bullion electrode, rj increases

as the slimes layer forms. Thus, all the information on the impedance comes

from knowledge of  the changes in rj as a function of  time. By subtracting T|

Q

  1

from the r\(t) values one of the most obvious contributions to the impedance has

been identified  and subtracted  from  the overall impedance. However, othercontributions to the overall impedance cannot be as easily identified and/or

quantified.

By  analyzing the path of  the DC current on its way from the anode to the

bulk  electrolyte a deeper insight in the Z^. components can be obtained. Thus,

as shown in Fig. 36 there are two main paths for the DC current: One through

the anode/slimes electrolyte interface and the second through the anode/slimes

interface. If  current enters the slimes filaments it can either leave them through

the bulk  electrolyte (path A) or through the slimes electrolyte (path C). On theother hand if  any current crosses the anode/slimes interface it can either go

across the slimes electrolyte (path B) or return to the anode via a ground loop

(path D).

For current to go through the slimes filaments it will first have to overcome

a  resistance associated with  Z a / S l .  As the  slimes filaments were found to be

grounded  to the  anode  2

  such resistance must  be negligible.  Any  current

entering  the  slimes filaments  can  only produce  Faradaic  work   at the

slimes/slimes electrolyte interface if  and  only if the activation energy barrier of

such process is overcome. This requires large overpotentials and  ionic gradients

across the slimes layer. If  any current diverts towards the slimes filaments it

can  either go across the slimes/slimes electrolyte interface (path A) or across

the slimes/bulk electrolyte interface (path C). The experimental evidence is that

Faradaic reactions of the slimes compounds are insignificant at overpotentials

less than 200 mV. For example, the amount of  bismuth corroded is less than

30 ppm,  too small to account for significant Bi corrosion currents crossing the

slimes filaments.  Thus,  during most of the electrorefining cycle, any current

going through the  anode/slimes interface  can only result in charging of the

1  T j a  is equal to the current density, I,

 times

 the

 uncompensated

 ohmic resistance, R, (nn

=IR

9

).

2

 See

 Chapter

 4

 section

 II.A. 1

[163]

Page 190: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 190/392

 Proposed  analogue representation ola  lead  bullion electrode covered  with a layer  of  s

A node/ S l i mes  Interfacei

i

S l i m e s  •: f i l amen t

z

Sl imes/Electro lyte  Interface

ii

f

Zsl/be

sl/se

W

5 * a/se

L e a d    A n o d e  S l i m e s  E l e c t r o l y t e

llllllllllillllllllllllllll  .  >• ;

:

?.;

:

?/

:

S

;

1 irnne"•• ^H&ihneshii

Bulk

Electro ly te

S l i m e s  L a y e r

Fig. 36  Proposed  analogue model representation of a lead  bullion electrode covered with a layer of slimes.

[164]

Page 191: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 191/392

 Proposed  analogue representation of a had   bullion electrode covered  with a layer  ol  sl

electrical double layer of  the slimes filaments  *and are insignificant. Thus, from

this analysis it can be assumed that for the  D C  case, up to  r\(t) values equal to

200 mV: Za/ ai->0,  Z ^ - ^  , and  Z a l / b e -*>° .

From  the previous description it can be assumed that almost all of the

applied  D C

 current flows across the anode/slimes electrolyte interface andcontinues in its way towards the bulk  electrolyte by overcoming the diffusional

impedance  Z^ r

 (path B). All this current is transferred to the electrolyte mainly

as a result of the Faradaic transfer of  Pb + 2 to the slimes electrolyte.  For such a

transfer to take place, an energy barrier associated with Z a / s e has to be overcome.

Such impedance is small (lead dissolves almost reversibly), yet it can increase

if  conditions at the interface change (i.e. as a result of  the presence of  secondary

products blocking the interface). Once Pb + 2  ions are transferred to the slimes

electrolyte, an ionic current is established. The resistance that the ions find intheir movement across the slimes is a function of  Zw which is an intensive and

position dependent quantity. The larger the effective distance the ions have to

travel  before reaching the  bulk   electrolyte the larger this impedance. The

complex migraUonal/diffusional processes  taking place across the slimes

electrolyte can be described by Z ^.  Furthermore, if as a result of the movement

of  ions across the slimes electrolyte/bulk electrolyte interface a diffusion layer

is established, a semi-infinite Warburg impedance has to be included as well,

although for well mixed bulk  electrolytes its presence can be neglected. Once

the  Pb + 2 ions reach the bulk  electrolyte they are transferred to the cathode by

convection, migration and diffusion.

Thus, the analysis of the  D C  experimental data presented in Section III.2

of  this chapter can now be related to the analogue model shown in  Fig. 36. In

the  DC analysis of the anodic overpotential changes, the lead dissolution

processes were assumed to proceed unhindered whereas the slimes layer was

assumed to remain unreacted. This is equivalent to assuming that  Z a / s e - » 0 and

that Zsj/ae- oo , and Z s ] / b e — w h i c h  is in agreement with the statements on the

characteristics of the electrical analogue here presented.  Thus,  the  Rm value

obtained  from  the analysis of the changes in overpotential as a function of

1 Notice that under

 DC conditions a

 capacitor

 will act as an open circuit and will have an infinite

impedance. The impedance of a capacitor, Zc, is given by: z c=^,

  thus at co=0, Z,.-*».

[165]

Page 192: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 192/392

 Proposed  analogue representation ola lead  bullion electrode covered  with a layer  of  s

current can only be related to changes in the value of  Z^. A relationship between

the observed  b values and Zy, may also exist, yet, impedance values obtained

at frequencies other than zero have to be provided (see  Eq,  9).

The  previously introduced  D C   model also must be consistent with the

experimental evidence observed under current interruption conditions.Depending on the extent to which concentration gradients had been established

prior to the current interruption, an overpotential decay will always be observed.

Eventually, the electrolyte compositions inside and outside the slimes electrolyte

equilibrate, ionic movement virtually stops, and the impedance disappears as

the overpotential vanishes (i.e. as n .^ -» 0). On the other hand, as a result of

the ionic concentration differences  between  the slimes electrolyte/bulk

electrolyte and the anode/slimes electrolyte interfaces, a series of  concentration

cells may be established because electronic current can flow across the slimesfilaments (path D). This  process may consist of (as an example) continued

corrosion of the lead anode, accompanied by deposition of noble elements in

the electrolyte, as B i + 3 , SbO+, or Ag* on slimes filaments. These internal currents

may  be too small or difficult to measure, however, they can affect the

characteristics of the overpotential decay and consequently of the impedance.

As  concentration gradients disappear, the rate of   these  internal processes

declines, up to the point at which they become negligible.

The phenomena associated to the current interruption case  can also be

represented by the analogue circuit shown in Fig. 36. Diffusional processes

can be represented by Zy, and Z^^. However, as concentration gradients within

the slimes layer relax, Z^ describes diffusional processes  that resemble more

semi-infinite diffusion than diffusion in a bounded region. As described

previously, Z^ is linked to the components of the concentration overpotential,

and for a purely diffusional process,  Rn , should be equivalent to the diffusion

resistance Ro (i.e. to the value of  Z^ at co=0).

In the analysis of the components of the  A C   impedance, the same line of

thought followed  during the  D C  analysis will be used: First, the different paths

that the A C  wave can follow will be traced. Then the relative contribution of each

of  the associated impedances to the overall impedance will be estimated. On

the basis of this and from experimental evidence, simplifications of the general

[166]

Page 193: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 193/392

Proposed analogue representation ol

 a toad

 bullion electrode covered

 with

 a layer o

analogue model will be proposed. The validity of the proposed model will be

tested by analyzing the changes in impedance in the presence and in the absence

of  a net Faradaic D C  current.

In the previous analysis it was found that all the applied  D C  current can

be assumed to flow across the anode/slimes electrolyte interface. On the otherhand, a superimposed AC  wave can either cross the same interface and/or divert

through the slimes filaments. If it diverts to the slimes filaments, it can cross

the slimes/slimes electrolyte interface without actually perfonriing any Faradaic

work.  This  will  happen if the slimes layer can be considered to have only a

capacitative component. For these processes to take place, the A C  waveform will

have to produce alternating potential fields at the slimes/slimes electrolyte

double layer interface. This will result in large capacitative effects being observed

in the impedance spectrum. Thus,  if  any A C  current crosses the slimes/slimeselectrolyte interface, equivalent impedances related to the capacitative part of

the slimes impedance should be observed even in the absence of a net Faradaic

current.  As the experimental impedance spectra obtained under current

interruption conditions did not indicate the presence of large interfacial areas,

A C current transfer across the slimes layer in the presence of a net  Faradaic

current can be neglected.

The experimental data indicate that while a net D C  current is being applied,

formation of  Pb + a is the preferred reaction. Such a reaction takes place without

a significant energy expenditure and is the path of  least resistance for the flow

of  current. If this is the path for least resistance for D C  current, it can also be

assumed to be the path of  least resistance for the A C

 current. Thus,  assurning

that all the  A C   current crosses this interface, the overall impedance will have

only three components:  Z a / a e ,  7^,, Zw„  (notice the similarity between the D C  and

the A C  cases)1. Accordingly, in the absence of a net Faradaic current, the polarity

of   the double layer can be switched and/or its potential difference changed

simultaneously in the slimes/electrolyte and the anode/slimes interface. Only

then, the capacitative and resistive process associated with these impedances

can  be observed as changes in the impedance of the system. Consequently,

1 Notice that in the worst scenario in

 which

 in the presence of a DC current the AC current actually crosses

the slimes/slimes electrolyte interface and causes

 Faradaic

 reactions, a

 wide non-uniform current

distribution

 can result.

 If

 this had taken place the system would had been changed to the extent that

steady state concentration gradients during the AC measurements would not have been observed, the

system would

 have

 oscillated to the extent

 that

 the impedance measurement

 could

 not have

 been taken.

[167]

Page 194: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 194/392

 Proposed  analogue representation of a lead  bullion electrode covered  with a layer  ol  sl

other  processes overlooked by the anodic overpotential measurements under

current  interruption conditions may be better analyzed by  A C

  impedance

techniques.

Basically, the main difference between the  D C  and the  A C   experiments is

that while D C  currents cannot cross the slimes/slimes electrolyte interface at r\lower than 200  mV,  A C  waveforms can cross such an interface and by doing so

induce changes in the measured A C

 impedance. However, in the presence of a

net  Faradaic  current such process may be hindered to the  extent  that such

transfer does not take place at all. If this is the  case,  then all the  D C   and  A C

current flow is at the anode/slimes electrolyte interface. Nonetheless, if any A C

current flows across the slimes layer it may result in impedance changes only

in the high frequency region of the impedance spectrum at which point charge

transfer phenomena are isolated  from  diffusional  processes  in the slimeselectrolyte. The situation changes at overpotentials at which Faradaic reaction

of   the slimes filaments can take place 1  . Under these conditions, both D C  and

A C

 currents will cross the slimes/electrolyte interface and in doing so, at that

point, abrupt changes in impedance will take place. On the other hand, in the

absence of a net Faradaic current (i.e. under current interruption  conditions)

the hindrance for the current flow across the slimes layer disappears (as the

whole electrode can change polarity and/or act as a corrosion or concentration

cell) and impedances associated with the slimes filaments  will be observed in

the total impedance.

Summary of assumptions used  in the development of the analogue model:

1) A one dimensional representation of the lead bullion electrode covered

with a layer of slimes.

2) Electrolysis takes place under isothermal conditions 2 .

3) The Warburg diffusional impedance can be used to describe the ionic

mass transfer processes that take place across the slimes electrolyte.

4)

  The  A C

  impedance measurement is obtained without significantly

affecting the  quasi-equilibrium conditions witJiin the slimes layer.

1

 These abrupt impedance changes upon

 Faradaic

 reaction of the slimes

 filaments

 can be seen by

comparing Figs. 13 and 14.

2  Isothermal temperature of the slimes electrolyte can be assumed on the basis of sufficient thermal

conductivity of H

2

SiF

6

-PbSiF

6

 solutions and of the

 large

 porosity of the slimes layer, contributing to

convection.

[168]

Page 195: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 195/392

 Data analysis

5) In the presence of a net Faradaic current the lead anode and the slimes

layer are equipotential.

6)

 Changes in the microstructure of  the slimes layer as a result of  blockage

of  ionic flow (i.e. by the precipitation of  secondary products) can be incorporated

within the  Warburg  diffusional impedance or by additional impedancesconnected in series with it \

7)  Blockage of the anode/slimes electrolyte interface (i.e. by the

precipitation of secondary products) inhibits charge transfer  processes and

increases the Faradaic impedance,  Z a / s e .

8) Dissolution of noble impurities present within the  slimes  layer takes

place only at overpotentials larger than 200  mV.

9)  In the presence of a net Faradaic current and at overpotentials values

smaller than 200 mV, 100% of the current transfer occurs across theanode/slimes electrolyte interface and:  Z a / s e -»0 ,  Z9l/se-**>,  and  Z 8 l / b e-»oo.

1 0 )  In the presence of  a net Faradaic current capacitance effects associated

with the slimes layer are prone to be observed only in the high frequency region

of  the impedance spectrum  a .

11 ) The impedance changes attributed to the presence of addition agents

can  be incorporated within the proposed Faradaic and diffusional impedances.

1 2 ) Impedances associated with the reference electrode can be neglected.

(I)  Data analysis

In  this section, several electrical circuits derived  from  the proposed

analogue model are introduced. These electrical circuits were formulated so

as to follow the assumptions used in the development of the general analogue

model. Among all the analyzed circuits, only those that actually matched the

experimental data are presented and discussed. The characteristics of  these

circuits are established by comparing their parameter values with

physico-chemical processes taking place across the slimes layer.

1 Non-uniform porosity across the slimes layer can be expected when secondary products precipitate or

re-dissolve.

2 Capacitance effects associated with the noble

 compounds

 present

 in

 the slimes layer are more

significant as the TIa

 approaches values larger than 200 mV (i.e.

 in

 the region where their Faradaic

reaction can occur).

[169]

Page 196: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 196/392

(i) Case I:  impedance spectra obtained  in the presence of a net  Faradaic current

The  impedance spectra obtained in Exps.  CA2 . CA5 . CA6, and CC 1

were found to be described accurately  1

 by two different yet related electrical

circuits (see Fig. 37). The values  of the parameters  associated  with the

proposed electrical circuits were obtained by curve fitting  3 the experimental

data to the theoretical impedance functions.

The Jirst of  these circuits is a ZzARd-ZzARea-CPEo analogue (circuit A . 1,

Fig.  37)   3 . The impedance of each of the components of  this circuit is given

by the following equations :

 Z CPEL

  = b,m^'  ZCPE , = Wmf*

1  Z CPEO  =  Kijnf™

From which the total impedance,  Z A , can be obtained as follows:

with

 Rj   W

z

A

=

  -ir+

  2 —-+ B 0 U^'  ...io

 Rl   /?2

D 1=—   and  D 2   = —

The overall impedance of the circuit A . 1 was re-arranged as described

in Eq. 10, so that the relaxation times can be obtained  from the  D; and D 2

parameters. The relaxation time associated with each one of  the ZARC circuits

can be obtained as follows:

•  i

x,  and  \  =  D!^

1 As presented in the various Tables shown in Appendix 9  described accurately means

 that

 from a

statistical

 regression

 analysis

 perspective, good correlation existed

 between

 the experimental and the

curve-fitted data. The number of parameters involved

 in

 the

 curve

 fitting routine was

 never in

 excess to

that

 required to obtain significant

 fits

 according to

 statistical

 rules

 (i.e. as

 derived

 from  ANOVA statistical

tables).

2 This process required the use of complex non-linear square fitting routines . The Zj component of the

total

 impedance was

 used to

 obtain the

 values

 of individual parameters in the different electrical circuits.

Once an

 initial

 set of

 values

 was

 obtained, they were

 used to compute the

 Z„

 component of the

impedance and improve the accuracy of the fitting process.

3 For an in-depth

 review

 of the characteristics of the

 ZARC circuits see ref.

 [is].

[170]

Page 197: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 197/392

 Data analysis

Circuit A . l

ZARCl

CPE,—,

 —Wv—

ZARC2

ZCP E

n

 W   Ffgwrey  tewree I I   F r W 7  "PP™ |  | Bthaon

CPE,-,

 Wr—

-CPE.

Circuit A . 2

•ZARCl

  ZARC2

Fig. 37  Electrical circuits used to analyze the impedance spectra

The  electrical parameters associated with circuit A . 1 were correlatec

with the  individual  impedances shown in Fig.  36  1

.  Thus,  the first  ZARC

circuit was used to represent high frequency phenomena

 2

  associated withthe Faradaic impedances Z a / s e  and Z s l / s e . The second

  ZARC

 circuit was used

1 R

1

 was chosen to represent charge transfer resistances associated with the lead

 dissolution

 processes,

while R

2

 was related to the DC conductivity of the slimes electrolyte. CPE, represents the distributed

nature of the anode/slimes and the slimes/slimes electrolyte interface while CPEa represents the

presence of a distributed capacitance generated by the concentration gradients present in the slimes

electrolyte.

2 The high frequency

 term refers

 to the

 part

 of the impedance

 that

 was observed at

 co>

 100 rad/sec.

[171]

Page 198: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 198/392

 Data analysis

to represent the low frequency response associated with ionic diifusion

across the slimes layer (i.e. with Zy,). The third component of this circuit, a

CPE  element was introduced to represent diffusional processes (i.e.  Zw,.).

The  second  analogue circuit was indirectly assembled by finding an

electrical circuit whose  impedance matched the impedance of circuit A.Such a circuit is shown in Fig. 37B (Circuit B . l ) . The impedance of each of

the components of this circuit can be described as follows:

 Z r   =r Z.  =r.z

c

> = QO'co)

From these  components the total impedance, Za, can be obtained as

follows:

A  direct correspondence  between the parameters in this circuit and

those  in the analogue model shown in Fig. 36 is not immediately evident.

Yet,  this circuit was found to reproduce the experimental data and it was

considered worthwhile to try to  find  some analogies among both circuits.

Thus,  it was found that the  Zy,,- component could be associated with the

CPEB  component and that the RC circuit could be associated with the

Faradaic impedances  Z a / s e  and Z s l / s e .  Diffusional processes can be included

in both R x and CP EA  components.

When diffusional processes in the bulk electrolyte are neglected (i.e.

when Zw „.-»()) \ the two proposed electrical analogue circuits can be related

through their impedances at co=0 (by their D C

 resistances).  Thus, the total

D C

  resistance of  these circuits can be obtained as follows 2  :

Z A (oo

z*,

»((,

1

 Notice

 that

 by neglecting Z

w

„,

 in

 circuits

 A and

 B the only elements

 that

 disappear are

 CPE„

 and CPE

B

respectively.

2 Once the parameter values were obtained the impedance at co=0 was

 found

 to be nearly equal for the

two electrical circuits shown in Fig. 37.

[172]

Page 199: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 199/392

 Data analysis

In the analysis of the experimental impedance spectra, the impedance

values at  co=0, were related to the total  D C

  resistance, obtained  from

analysis of the spikes obtained during the application of the A C   waveform.

The values of the parameters obtained by curve fitting the impedancespectra obtained in Exp.  CA2  to the  Z?ARcrZrzARC2  analogue (circuit A.2  in

Fig.  37) are shown in Table 7. The characteristics of this circuit stressed

the fact that the impedance spectra are composed of  at least two distributed

components with different time constants. The presence of two humps in

the impedance spectra was clearly observed at slimes thicknesses lower

than 3 mm. At larger slimes thicknesses the separation of  these humps was

not hnmediately evident, yet,  from the curve fitting process, it was found

that the spectra could be deconvoluted to produce two arcs whose center

lay below the axis (see  Fig.  38).

1173]

Page 200: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 200/392

Page 201: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 201/392

Data analysis

Table 7  Parameters derived from the fitting of the impedance data obtained

In Exp. CA 2 to the Z ^ - Z ^  analogue  (Circuit A.2,

  Figs. 38,39)

High Frequency Parameters Low  Frequency Parameters R A^I -

R, + R 2

Slimes ^zci b„ \  ,sec ^ZC2- b2, ,sec

RA,IOUI»

Thickness Q c m2 i i  c m 1  sec   1

Qcm2 i i

  cm  secQ c m

2

nun

0.80 0.21 0.73 33.50 0.0010 0.44 0.77 5.55 0.037 0.65

2.23 0.42 0.64 14.09 0.0042 1.17 0.69 3.84 0.176 1.58

3.10 0.64 0.59 9.39 0.0102 1.62 0.69 4.11 0.260 2.265.33 1.06 0.60 10.19 0.0225 3.17 0.71 4.60 0.592 4.23

5.95 1.54 0.51 IllBili 0.0373 iilill!llllll 4.06 0.795 4.99

6.56 4.70 0.56 iiiillliiii 0.3323 iiMil 0.98 0.82 1.583 5.99

7.18 5.13 0.55 0.3593 2.08 0.96 1.992 7.21

7.79 4.30 0.59 i i . i l 0.2030 4.65 0.90 2.05 2.484 8.95

* All measurements refer to the geometrical area of  the electrode.

** Low and high frequency terms refer to the ranges of  frequencies used during the deconvolution

process.

***  Low and high frequency arcs were fittedto the whole frequency range (0.063<(IK 30000 rad/sec)

Abstracted  from Table 7, Appendix  9

Analysis  of the  parameter values shown  in Table 7  indicate  the

following relationships (see also  Fig. 39):

a)  The  impedance obtained at co=0,  R ^ t o u i .  w a s

 found to be similar to

Rn, (see Table 4). This correspondence provides an import ant l in k between

the DC and the A C expe riments \

b)  Xg

i

 values are small (of the order of msec) while x Ri  values are large

(of the order of  sec). The  separation in the magnitudes of  these time constants

decreases  as the slimes layer thickens .c) The  largest changes in the values of  the derived analogue parameters

appears at slimes thicknesses larger than 6.5 mm. These changes can be

1 R totai is expected to be larger than

 R

m

 because in addition to include ionic processes it also includes

resistances associated

 with

 charge transfer processes.

[175]

Page 202: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 202/392

 Data analysis

associated with the precipitation and hydrolysis of secondary products.

Moreover,  changes in these  parameters correspond to changes in the

ratio  a

.

Among the previously drawn relationships, one of the most significant

appears to be that related to the precipitation/hydrolysis of secondary

products. If the hydrolysis point actually took place at ~6.6 mm of slimes,

that would have resulted in blockage of the reacting interface (the

anode/slimes electrolyte interface) and in ensuing increases in Za / s e

.  This

appears to be in agreement with the observed increases in R t  at slimes

thicknesses larger than 6.6 mm. On the other hand, upon precipitation of

secondary products, an increase in Zw (i.e. in the impedance associatedwith ZARC2  ) should have been observed had the movement of ions been

blocked by these products. As observed in Table 7, even though R2 and b 2

decrease between 6 and 6.6 mm of slimes,  x  R  increases almost a 100% in

the same interval. Thus,  increases in x  Ri  seem to be inversely proportional

to R 2 and b 2 because the fractional exponent ^zcz  is also changing. The large

values of  x  R  observed after 6.6 mm are an indication that movement of ions

across the slimes layer proceeds more slowly because such movement is

being hindered by precipitated products.

1 See Table 4 and focus on the changes in  R

m

, and p

m

, between 6.6 and 7.8 mm of slimes.

[176]

Page 203: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 203/392

Dataanafysa

(A) (B)

J

.M

O

CO

4J

3 . U *XR I

o

TR

2

1.31

Sl .N

.318

o  LitCJ

o

 w

o

•4-4

8aCO

7.21

4.81

2.48

.881

3.68  3.48 7.28

mm Slimes

(C)

12.8

*P A ,  total

o

Pi

X P2

'  I I  I  I I I  I

  I I

,888  1.88  3.61 3.48 7.28

mm Slimes

I B . B r

8 .81

a

u

t »

2.88

* R A .  total

0 R i

X Ra

9,88

3.68  3.48 7.28

mm Slimes

9.68

Fig. 39  Variation of the derived electricalanalogue parameters as a function of the slimesthickness (Exp. CA2, Circuit A.2, Table 7)

From the parameters value presented in Table 7

(A) Changes in the relaxation times tR 1  and x^.

(B) Changes in the resistance values R At oai . Ri andRj. [toon*](C) Changes in the specific resistance  P  A , ^ , PI

and p2. [Qcm] as obtained from:

 /?,  [Qcm2 ]0,

  [Qcm] = —   = — ;

  ; rK 

'  Slimes Thickness [cm]

Compare RAil0U i  with Rm (Fig. 34k)

I i i  I i i  I i i9.88

[177]

Page 204: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 204/392

Data   analysis

.7(0A .063

• .31• 1.S8• 7.91

.560a

39.63

- 4 199.6 996.0 4991.

c

• 250IS.

c

* 28068.c 420

a

2 8 0

.140

.080'

*t ,89 nn Stines

Experimental

Anilogue noJel

. 8 8 8 700

Fig. 40  Detail of the impedancespectrum obtained in Exp. CA2 at0.80  mm of  slimes (Exp.  CA2,

circuit B.l).

Circuit B. l  was used to fit theexperimental data. The derivedanalogue parameters are shown inTable 8.

Analysis of the experimental impedance spectra obtained in Exp. CA2

using the electrical circuit B.2 resulted in the parameter values shown in

Table 8.  Only  the impedance spectrum obtained at 0.80 mm  slimes

thickness was fitted to circuit B.l  (see  Fig.  40).  This was possible because

at very low frequencies  (less than 1 rad/sec) a tail related to diffusion in

the bulk electrolyte (i.e. to  Zy, J was observed in this impedance spectrum1, 2

1 This tail was found to be described by the CPE

a

 element shown

 in

 the analogue circuit B.1.

2 Notice

 that

 B

a

 is nearly equal to the B,

 value

 obtained under rest potential conditions and

 in

 the

absence of addition agents [B

a

~1.9

  Q

 cm2 sec y 2 C

 while

 B,~2-3 Q. cm2 sec'yzc

 (see Table 3, Exps.

 CC1-5

 to

CC2-2)]

[178]

Page 205: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 205/392

Data analysis

Table 8 Parameters derived  from  the fitting of the impedance spectraobtained  in Exp. CA2 (Circuit B.2, Figs. 40, 41)

Slimes

Thickness

r a

Qcm 2

r b

Qcm

2

cb

F  cm"

2

B a

Q cm1

  sec'^

^ZCa Ratotal

Qcm2

mm

0.80

2.23

0.43

1.150.230.49

0.0260.102

11.487.46

0.580.53

0.661.64

3.10„ , . , , ^ , , , , , , .

1.64, , , , , , , , , ™ „ , . , . . „ .

0.66

0.90

0.146

0.398

8.59 — § - j f —

0.56

0.602.304.25

5.956.56

i i i i i i i i i !

4.361.131.60

0.5700.749

9.8810.48

0.610.61

5.005.96

7.18

7.79

4.80

5.29

2.403.82

0.9751.35

11.2512.61

0.620.64

7.209.12

For the AC sweep done at 0.8 mm slimes: B b= 1.92 f2 cm 2 sec""*, and 4/

ZC b= 0.78 (this was the only

sweep fitted to circuit B . l , all the other sweeps were fitted to circuit B.2)

Abstracted  from Table 8, Appendix  9

(A)  (B)

 mm   Slimes  mm   Slimes

Fig. 41  Variation of the derived  electrical analogue parameters as a function ofthe slimes thickness (Exp. CA2. Circuit B.2, Table 8)

CA) Changes in the resistance values,'[Qcm 2],  Ra.totai

 (marked  with • ), r a (marked with O) and  r b (marked  with X).

(B) Changes in the specific resistance, [Qcm],  pB

, totai (marked  with •), pa (marked with O), and  Pt (marked  with X).

[179]

Page 206: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 206/392

 Data analysis

As  seen  in Fig. 41, r a and r b  increase continuously  during  the lead

dissolution process. Moreover, it was found that at  slimes thicknesses

smaller than 6 mm, r a=R2 and r^R x   (see Tables 7 and 8). This correspondence

agrees with the assigned physical meaning of the parameters present in

the electrical circuit. Thus,  r a is related to the DC resistance of the  slimeselectrolyte while r b is related to the charge transfer resistance associated

with the lead dissolution process. The only parameter that indicates

significant  changes  in its value as the  slimes  layer thickens is r b. These

changes are observed at slimes thicknesses larger than 5.4 mm and indicate

a restriction in the charge transfer process for lead dissolution. Such a

restriction  agrees  with the proposed mechanism of precipitation of

secondary products and ensuing increases in  Z a / s e .

The two electrical circuits shown in Fig. 37 were also used to analyze

the impedance spectra from exp.  CA5. The parameters obtained  from  the

curve  fitting process are shown in Tables 9 and 10.  From  the analysis of

the data presented in  these  tables, precipitation of secondary products

appeared to take place between 1.2 and 1.76 mm of slimes. Furthermore,

the large R x  value at 1.89 mm of   slimes  and the small time constant

associated with it, appear to indicate that charge transfer processes were

strongly hindered as a result of the continuous precipitation of secondary

products (see  Table  10).

By comparing the results obtained in Exp.  CA2 with those obtained in

Exp.  CA5,  it can be  seen  that increases in current density resulted in

corresponding  increases in r a and decreases in r b  (compare Tables 8 and

10). This indicates that higher current densities produce larger diffusional

Impedances which can induce precipitation of secondary products and

earlier dissolution of impurities present in the slimes layer.

[180]

Page 207: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 207/392

Data

 analysis

Table 9 Parameters derived  from  the fitting of the impedancedata obtained  in Exp CA5 to the Z-J^-ZZJ^  analogue (Circuit A.2)

High Frequency Parameters Low Frequency Parameters RA^DHI  -

R ,  + R2

Slimes Ri. ^ Z C l bi, \ ,sec  b2,  X  Ri  ,sec R A ^ O U I

Thickness

 mm

Qcm2Q. cm 2 sec 1

Qcm 2 £2 cm sec Qcm 2

0.64

1.20

1.76

1.89

0.101

0.017

0.069

0.817

0.91

0.68

0.83

0.58

75.04

1.47

0.35

13.64

0.0007

0.0015

0.1423

0.0079

0.32

0.83

1.61

0.99

0.68

0.59

0.53

0.81

8.19

11.10

9.26

6.77

0.00880.0121

0.0373

0.0934

0.42

0.85

1.68

1.81

* All measurements refer to the geometrical area of the electrode.

** Low and  high frequency terms refer to the ranges of frequencies used  during the deconvolution process.*** Low and  high frequency arcs were fitted  to the whole frequency range (6.3<ox23000 rad/sec)Abstracted  from Table 9, Appendix  9

Table 10 Electrical analogue parameters derived  from  the fitting of the impedancedata obtained in Exp. CA5 (Circuit B.2)

Slimes r b c b

B a ^ZCA Re.total

Thickness

 mm Qcm

2

Qcm

2

F  cm'

2

Q cm

2

 sec' Vzc

Qcm

2

0.64 0.38 0.04 0.017 16.10 0.65 0.42

1.20 0.72 0.08 0.036 16.10 0.64 0.801.76 0.16 0.063 11.39 0.57 1.60

1.89 1.50 0.32 0.062ifiliilllllf

0.62 1.82

The impedance spectra obtained in Exp. CA4 was not analyzed directly

by any of the two proposed electrical analogues  because  of the complex

characteristics of the observed spectra. On the other  hand,  enough

information  on the precipitation of secondary products was obtained bysolely plotting the maximum and -Zg values as a function of the slimes

thickness, as obtained from the following relationships:

-Z„  =[Z3]•hnax J

  at a> = a><)

[181]

Page 208: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 208/392

Data

 analysis

1888. er {

 —*  Zraal  (nax)

 —o  -Zinag  (nax)

Fig. 42 Variation of  themaximum values of  the real, Z*,and the imaginary parts, -Z«j , ofthe impedance as a function ofthe amount of  lead dissolved(Exp. CA4)

From the data presented inFig. 20

1 '  I ' ' I ' ' I '  i I ' ' I ' ' I ' ' I

1.28 1.88 2.48  3.88

mm DissolvedAs can be seen in Fig. 42, both components increase at the same rate

up to @2.1 mm, after which sudden increases in their values are observed.

This point appears to mark  the onset of  precipitation of secondary products

This precipitation is continuous and produces exponential increases in the

impedance towards the end of the electrolysis cycle. These impedance

increases result  from  both charge transfer and diffusional restrictions

created by the presence of  these products. Secondary products act as a

barrier for ionic movement across the whole layer of  slimes and create a

nearly motionless region in which only very small currents can flow. Thus,

this represents the lirrutlng case in which Z^-***. As there is no other path

for current flow (see  Fig. 37) other than through Path A \ the dissolution

process has to stop (so called "anode passivation").

1

 Exp.

 CA4 was

 performed under

 potentiostatic

 conditions and,

 as

 found

 by

 analyzing

 the

 cathodic

deposit, impurity dissolution did not

 take

 place.

[182]

Page 209: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 209/392

Data analysis

(ii) Case II: impedance spectra obtained  in the absence of a net  Faradaic cu

Upon  current interruption the impedance spectra were found to be

capable of  being described by the modified Randies analogue circuit 1

 shown

in Fig. 43. Such a circuit has the following impedance :

Z

( / 'G>)=-

/?c(+51(/'u))".14

c

DL

G-

l — wv-CPE

 - 0

Fig. 43 Modified  Randies AnalogueCircuit

The  CPE circuit shown in Fig. 46 represents seim-irifinite diffusiona

processes.  is the charge transfer resistance and is the double layer

capacitance.

From the analysis of the data obtained in Exp.  CA2  (see Table  11 and

Fig. 44) it can be seen that:

1

 Notice that the fact that the impedance

 could

 be fitted to Randies

 circuits

 implies that:  Z ^ - * - ,  and

Zjiybe-^oo  while

  and

  Z w

 have

 finite

 values.

[183]

Page 210: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 210/392

Data

 analysis

(A) (B)

6

6

77.

1

443.

•1117.

28(7.

g

Ttn .

4

17781

t

44483.

a 111741

•28MU

* 333334

• -Aml t f i i  no4tl

i

• 6M r*4

/stc•

177.

• • 396.

4 888.

• 1987.

.48*

a

4448.

4

9939.

a 22293.

- a 49914.

•78384.

. •111748,

.3tB

1

' '1

>1 1 1 1 1 1 I  l i i

. i i .

1.28

  l.M

,2

.248

.128

.888'

* Eiy«rtMnt*1• A IM 10«utftfl4tl

Fig. 4 4  Correlation between the experimental and theoretical Impedance spectra(Exp. CA2, current Interruption conditions. Table 11).

From the  A C  data presented in Fig. 22The Randies circuit shown in Fig. 43 was used to fit the experimental data. The

derived analogue parameters are shown in Table 11(A)  From the Impedance spectrum obtained -0.17  Hrs after current interruption(B)  From the impedance spectrum obtained ~86.9  Hrs after current interruption

Table  1 1 Parameters derived  from the fitting of the impedance dataobtained in Exp. CA2 to the Randies analogue circuit (Figs. 43, 44)

Time, Hrs R,t. ilcm 2

Cdj,  U.F cm"2

B L  Qcm 2sec" Vzc ^zc

0.17 0.044 23.75 3.83 0.190.64 0.112 167.42 i!§i6l?:

:

aiii;: i 0.3312.03 0.070 206.32 3.i3 0.3186.90 0.048 274.37 2.23 0.30

 Abstracted  from Table 11, Appendix 9

a) Charge transfer resistances, R^, are very small and do not seem tochange significantly during the current interruption cycle. This  indicates

that only highly reversible processes are present and that charge transfer

phenomena associated with the noble elements present in the slimes layer

do not contribute to the measured impedance spectra.

[184]

Page 211: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 211/392

 Data analyse

b) Double layer capacitances, increase only during the first hour

after the current interruption. The small values do not indicate the

presence of large electrochemically active surface areas  x . Consequently,

Ca values in excess of  those observed in the absence of slimes, are mostly

due to changes in the relative permittivity of the anode/slimes electrolyteinterface as a result of  the presence of  secondary products at that interface

 2

.

c) B x decreases the most at the begmning of the current interruption,

to reach a limiting value after -70  Hrs.  These decreases are the result of

the relaxation of concentration gradients across the slimes layer  3

.

d)  is nearly constant4

  .

From  these  relationships it can be concluded that both and C^

represent only phenomena associated with  Za / s e

  (i.e. with the  Pb/Pb + 2

equilibrium).  This is a very i mpor tant relations hip because it proves thatcharge transfer and capacitative phenomena related to the slimes filaments

are not affecting significantly the impedance of the system. In addition,

processes that support the passage of internal currents do not appear to

result in characteristic contributions to the impedance, except at very short

current interruption times, at which large C^ changes were found. Finally,

diffusional  processes  across the slimes electrolyte can be successfully

described by a single  CPE element because upon current interruption no

more Pb + 2 ions are being generated at the anode/slimes electrolyte interface

(i.e. ionic concentrations are fixed only at the slimes/bulk electrolyte

interface).

The  electrical analogue parameters obtained by analyzing the spectra

obtained in Exp. CA5 are shown in Table  12 (see also Fig.  45).  From these

parameters the following relationships can be observed:

1 Remember that both the t\ and C

d

, measurements are given with respect to the geometrical  area of the

electrodes.

2  Ro, and C

d

| are also a function of ionic concentrations at the anode/slimes electrolyte interface and the

roughness of the anode.

3 B

1

 decreases also as a result of the re-dissolution of secondary products and ensuing tortousity and

porosity changes.

4 For ionic

 diffusion

 across

 a

 porous electrode O.S^^O.25

  [13,16,19-21]

[185]

Page 212: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 212/392

Zmu. "cm 2

  Z^j.  flcm2

Fig. 45  Correlation between the experimental and theoretical impedance spectra(Exp. CA5, current interruption conditions. Table 12).

From the  A C  data presented in Fig. 24The Randies circuit shown in Fig. 43 was used to fit the experimental data. The

derived analogue parameters are shown in Table 12(A) From the Impedance spectrum obtained -0.63  Hrs after current interruption(B) From the Impedance spectrum obtained -34.6  Hrs after current interruption

T a b l e  1 2  Electrical analogue parameters derived from the fitting of theimpedance data obtained in Exp. CA5 to the Randies analogue circuit

(Fig. 45)

Time, Hrs Ret, Qcm2

Cd,, uF cm'2

B „  Qcm2sec'Vzc

^zc

0.6311.6734.59

m

0.023

804.671588.191308.61

J'.710.70

0.210.250.25

 Abstracted   from Table 12, Appendix  9

a) 1^ values are small and of the  same order of magnitude as  those

obtained in Exp.  CA2.

b) Even though the  slimes layers are not as thick as  those formed in

Exp.  CA2,  double layer capacitances are larger.  This  indicates that in

Exp.  CA5  secondary products precipitated to a larger  extent  than in

Exp.  CA2.

[186]

Page 213: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 213/392

Data

 analysis

c) Bj values are smaller than in Exp.  CA2 because the region over which

concentration gradients span is ~3 times smaller.

d)  values  are smaller than in Exp. CA2. Thus,  due the larger

presence of secondary products there is a larger blockage for ionic flow and

a reduction in the available  space for ionic diffusion.

7.Br -xE-2

5.6

6  4.2

ci

2.8

 —   Expertnental

 —   Analogue  node I

rad/sec

A

6.3

t 14.1

• 31.5

• 78.5

D 158.

4 353.

0 791.

0 1771.

• 2229.

* 3533.

2.8 3.8

 Z^y, Qcm 2

Fig. 46 Argand plot of  a typical lead bullion electrode (Exp. CC2) in the presence of  a 2.2 mm layer ofslimes

AC impedance spectra obtained under rest potential conditions 20 Hrs after current interruptionR, was subtracted from the Zj, component of  the impedance

The impedance curve was fitted to a CPE element from which the following values were obtained Bj=

0.14  cm2 sec'**, ^^.4 2.Compare with Figs. 5.16  and  Fig. 6.1

[187]

Page 214: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 214/392

Data

 analysis

Similar experiments in which neither noble impurities dissolution nor

secondary products precipitation took place, provided analogous spectra

that could be fitted to a modified Randies circuit, from which very small R^

and Cdi values were obtained. Thus, for example, the impedance spectrum

obtained with an electrode that had been previously dissolved (up to -2.2mm  at 200  Amp/m 2  , riA  -55 mV) shows  only a straight line which

indicates the presence of a purely diffusional controlled process that

proceeds without kinetic limitations (Fig.  46). Moreover, the derived BY  value

is nearly equal to that obtained when pure lead was studied 1. The absence

of  a charge transfer arc confirms that the  slimes layer is not contributing

to the measured impedance. Furthermore, as no secondary products were

precipitated, the equilibrium Pb/Pb + 2

 was not hindered to the  extent that

significant capacitances could be observed.

In  Exp. CA4  large amounts of secondary products precipitated and

this resulted in impedance spectra that could be fitted to circuits A. 1 and

A . 2  (see Table  13). The physical meaning assigned previously to each of  the

impedance components was found to be valid also under these conditions.

This  correspondence is due to the enhanced restriction in ionic flow

produced by the large amount of precipitated products. Furthermore, these

products create a nearly stagnant environment in which bounded

diffusional processes can take place 2 .  Additionally, these products block

the anode/slimes electrolyte interface and increase the charge transfer

resistance  for the Pb/Pb + 2 equilibrium. Thus, as ionic concentrations across

the  slimes  layer diminish, secondary products re-dissolve and the

impedance in the whole frequency range decreases as a function of time

1 In the absence of slimes, the  A C impedance spectra

 were

 also fitted to a Randies circuit

 from

 which a B,

value

 of 1.88 Ci  cm2 sec'**  was obtained (see Table 3). Thus, as a result of the uniform corrosion of the

electrode, surface irregularities observed at the slimes/bulk electrolyte interface diminish at the

anode/slimes electrolyte interface and this results in equivalent B,

 values

 for lead bullion and pure lead

working electrodes (see section

 II.A).

2 Upon current interruption concentration gradients relax and local ionic concentrations decrease. This

results in re-dissolution of the precipitated products. Upon re-dissolution ionic species are released

creating an environment in which bounded diffusional processes take place (i.e. the precipitated products

during their re-dissolution maintain a fixed Pb*

2

 concentration at the slimes/slimes electrolyte interface).

[188]

Page 215: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 215/392

 Data analysis

(see Fig. 47). These phenomena can be followed by analyzing the variations

in the analogue parameters as a function of the current interruption time

(see Table 13).

(A) (B)

l.M

 ExpurtiMitil

' f h u l omc  na<lel

tl 2.1 Hri

r*4/t*c

.63

a.St•

3.96

D 39.63

0

138.

4 628.

6 2381.

0 9939.

•25813.

»39646.

I

«t  9.3 Hri

r«4/«ic

& .63

l 2.38

» 9.96

a 39.(3

a

138.

4

628.

2381.

a 9939.

•22293.

33333.

, r  i.  1 1 1 1 1 1 1 1i ' '

1

1

1

' '  i

1

  • •

  i

1

'

1

1

1

1 1 1 1 1 1

1 •

11

1

(D)

1.21  I  68  I.I2

1.88  r

r

*4/ttc

.863

• .33

• 1.99

a

11.17

a 63.834 333.

ft 1987.

a 11174.23813.

»

39647.

.(88

i i i   I t i i  I  i  t i  I i  i i I i  i i  I  i i  i I  i t i I  t i t 1  i i i I i i i  I

I .488 .888 1.28 1.(8 2.88

*

 ExperineiWI

- Amloiut nodtl

r*4/tic

.863

•33

» 1.99

• 11.17

0

62.83

4 333.

6

1987.

0 11174.

•23813.

39647.

DM*

'  i  i  I  i  i i   I  i  i i   I  i  i  i I i i i  I  i i  i I   i  i i I i  i  i  I i  i  i I  i i i   I

.888

  .

 488

  .

 888

  1.28 1.(8

  2.1

,2

Z ^ ,  i i c n r  Z ^ . Qcm

Fig. 47  Correlation between the experimental and  theoretical impedance spectra(Exp. CA4, current Interruption conditions. Table 13).

From  the AC data presented  in Fig. 26. Circuits A, 1 and  A.2 (Fig. 37) were used tofit the experimental data. The derived  analogue parameters are shown in Table 17

Each spectrum  was obtained at the following current interruption times:(A) 2.1 Hrs CB) 9.3 Hrs (C) 11.2 Hrs (D) 19.6 Hrs

[189]

Page 216: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 216/392

Data   analysis

Table  13  Electrical Analogue Parameters derived from the fitting AC impedance data

obtained in Exp. CA4 to the Z^^-T^^ analogue (Circuit A.2, Fig. 47)

High Frequency Parameters Low Frequency Parameters

Ri + R 2

Time, Hrs ^zci bi, \  ,sec R 2,  V R  * Z C 2 - b2, x Ri ,sec

Qcm2 il cm2

  sec

  1

Qcm2 O cm sec Qcm

2

2.08 0.87 0.73 l iPii i i 0.00167 1.77 0.43 0.77 2.64

9.33 0.32 0.79 108.92 0.00062 """'""l.26:"""""" 0.47 0.56 1 58

11.18 034 0.73 lllllillll 0.00057 0.99 0.55 111111111 0.34 1.33

19.55 0.32 0.72 75.11 0.00052 0.99 0.59 1.70 0.40 1.31

The A C sweeps obtained at current interruption times longer than 11 hrs were fitted to the

ZZARCI-ZZARC2-CPEO analogue (circuit A .1). Thus, 2 additional parameters were obtained:

Time, Hrs b„,

Q. cm2  sec

^ Z C o

11.18

iiiiiiiiiiiiiii0.050

0.046

0.74

0.79

* All measurements refer to the geometrical area of  the electrode.

** The regression coefficients  r/9,2 and r 3

2 were larger than 0.99

Abstracted  from Table 13, Appendix  9

[190]

Page 217: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 217/392

Introduction

Chapter  7  Physico-Chemical Propert ies  of  HaSiFe-PbSiFe

Electro lytes  and their Relat ionship to the Tran spor t Processe s

Across  the S l imes  Layer

I.  Introduction

In the previous chapters, the electrochemistry of lead bullion electrodes and

of   the  phases and compounds present in the  slimes was shown to be linked to

the ionic concentration gradients across the  slimes layer. The extent to which

these gradients change was found to be a function of  the current density and the

bulk   electrolyte composition.  From  an analysis of the ohmic and diffusional

components of the anodic overpotential, increases in riA  were linked to changes

in  ionic composition across the  slimes  layer. riA  changes were also  related to

precipitation of secondary products and to hydrolysis of the  acid. Precipitated

products hinder the ionic movement across the  slimes  layer, increase  TJa, and

thereby enhance the dissolution rate of noble impurities.

In this chapter lead and acid concentration gradients within the slimes layer

are related to hydrolysis of the acid and precipitation of secondary products. The

mean ionic compositions present within the  slimes layer during  the industrial

operation of the BEP are used to indicate the magnitude of such gradients.

Additionally,  Eh-pH diagrams are used to describe the conditions under whichsecondary reactions across the  slimes  layer can take place. The shape of the

concentration gradients and their effect on the anodic processes are assessed by

solving numerically the Nemst-Planck flux equations in their fundamental form.

Some of the experimental data required to  solve these equations  were derived

from an analysis of the physico-chemical properties of  H2SiF6-PbSiF 6  electrolytes

(pH, viscosity, density, and electrical conductivity) and from data available in the

literature.

n.

 Average  S l imes  E lectrolyte Composit ion

Table  1  shows the range of electrolyte compositions found within the slimes

layer at the end of the electrorefining cycle during normal industrial operation of

the BEP x .  Pb + 2

 concentrations within this electrolyte are between 5 and 10 times

1 In-situ electrolyte concentrations of the slimes electrolyte are likely to be smaller than the reported

compositions shown in Table 1. During the extraction of electrolyte samples

 from

 the separated slimes,

some re-dissolution of precipitates

 (mainly

 of

 PbF

2

)

 may

 have

 taken place.

[191]

Page 218: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 218/392

Average Slimes Electrolyte Composition

larger  than their corresponding  bulk   electrolyte values while  H 2SiF 6

concentrations are between 2 and 6 times smaller . Thiet et al. U.21 and Wenzel

et al.  [3-51 found similar mean ionic concentrations.  Furthermore, Thiet Ul also

found that increases in current density result in corresponding increases in ionic

concentrations \

Table 1 Composition of the electrolyte samples extracted from anode slimes obtained under

industrial operation of the BEP  (Cominco Ltd.)

Lead electrorefining test conditions:

Refinery cells, cd =  220 ATTI2

, 5 days, T=35-40*C,

Bulk

 electrolyte composition:  0.31 M  PbSiF

e

,

  0.59 M  H2

SiF

8

Test

Anode Composition

Anode

Slime

 Cake

Anode Slimes

 Filtrate

Current

Number

wt%

Face

Assay, wt% M  (mol l

1

)

m M

(mmol l

1

)

Efficiency

i l l i l l i l l l I l l l Ag

Bi 111 I l l l Pb Pb

HjSiF,

Sb

Bi As

%

#1 Compo

1.51

0.42 0.07

0.01 0.31

0.14 air

mold

49.8 11.8

121

82

82

1.86

1.98

0.24

0.21

0.046

0.034

0.043

0.048

0.17

0.20

84

#1 Anode 9

1.49 0.47 010 001 0.28 0.11 air

mold

491

50.6

12.2

12.6

7.8

7.3

2.03

2.20

0.17

0.14

0.038

0.028

0.048

0.033

0.15

0.11

#2 Anode 22

1.65

054 o.n 001 031 012

air

mold

50.0

48

 5

14.9

14 8

6.9

7.1

1.28

1.83

0.28

0.17

0.038

0.031

0.057

0.029

0.21

0.29

#2 Anode 6 H I 042 III m 031

0.14

air

mold

47

 5

482

12.5

111

12.3

101

2.15

2.63

0.21

0.14

0.018

0.032

0.048

0.033

0.16

0.15

#3 Compo

1.57

0

 57

0.12

001 0.36 015

air

mold

49.2

49.2

14.3

i l l

7.5

7.6

2.24

2.24

0.21

0.17

0.040

0.037

0.043

0.043

0.43

0.45

79

#3 Anode 3

i.65

0.6 i l l H I 0.36 0.16

air

mold

48

 4

47.8

14.7

i l l

7.6

7.5

1.98

2.15

0.21

0.17

0.038

0.036

0.014

0.033

0.27

0.13

#4 Compo

149

047 010

001

028 011 air

mold

517

51.3

14.7

14 6

7.8

7.2

1.52

1.52

0.28

0.28

0.052

0.037

0.043

0.038

0.17

0.20

77

103-1

1.5

0.44

0.09 0.02 031 0.10

air

mold

45.1

515

10.3

11.7

21.0

9.5

2.97

3.04

0.14

0.10

0.016

0.023

0.038

0.038

0.03

0.04

96

103-2

144

0.37 008

0.01

0.29 0.10

air

mold

46 9

54.3

10.3

116

22.6

9.7

2.24

2.44

0.21

0.17

0.031

0.010

0.033

0.038

0.13

0.08

76

104-1

1.5

0 30 0.09 001 0 35 011

air

mold

47 3

53.4

10.0

11.1

20.8

9.1

2.05

2.10

0.24

0.21

0.018

0.014

0.029

0.033

0.08

0.07

78

104-2

144

0.38

008

0.01

0.36 0.11

air

mold

45

 2

53 7

97

11.1

21.3

9.0

2.53

2.20

0.17

0.17

0.027

0.014

0.033

0.029

0.12

0.05

94

In the BEP the only cause for lost current efficiency  Is cathode-to-anode short circuits and  current lost to ground.

 Without shorts, a lead  bullion electrorefining cell gives  100% current efficiency  152).

1 Thiet [1] found the following mean ionic concentrations within the slimes layer:

at

 200 A /m

2

  1.75 M   Pb*

2

 and 0.20 M  H2

SiF

6

at 250 A /m

2

  1.85 M   Pb*

2

 and 0.12 M  H2

SiF

6

at

 300 A /m

2

  2.23

 M   Pb*

2

 and 0.02

 M  H

2

SiF

6

[192]

Page 219: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 219/392

Average Sbnes Bectrofyte Composition

As shown in Table  1, the concentration of noble impurities (As, Sb, and Bi)

in the entrapped electrolyte is very small. The indicated Bi and As  concentrations

are of the  same  order of magnitude as found from  insitu measurements (see

Section 4.2.B Chapter 4) while Sb concentrations are larger \  Within the slimes

layer the concentration of noble impurities is small because the noble phases donot react to a significant  extent  and cementation reactions maintain their

concentration at small  levels  (see Eq. 1.1). Furthermore, the presence of

equilibrium  quantities of  these  impurities in the recirculating electrolyte (see

Table  1.1, Electrolyte composition row) indicates that  these  impurities can be

tolerated up to a certain level without serious impairment of the cathode quality.

This was also indicated by Thiet Ul and others 16-91, who showed the relationship

between the concentration of  noble species in the bulk electrolyte and the cathode

composition.

The mean Pb + 2 concentration across the slimes layer for all the data presented

in Table 1 is ~2.15  M  while the mean acid concentration is ~0.20  M  . Assuiriing

linear concentration gradients across the  slimes layer  2 , the maximum amount

of Pb + 2  at the anode/slimes electrolyte interface can be considered to be close to

4  M  while the H 2SiF 6 concentrations at such an interface can be considered to be

smaller than 0.10  M  . Even at this large  Pb+ 2  concentration,  PbSiF 6.4H 20  is not

expected to crystallize because of the low acid concentrations  3 . Furthermore, the

presence of small amounts of acid at such an interface aids in the stabilization

of PbSiF6 by suppressing its hydrolysis.

In  an acid depleted environment  PbSlF6  can undergo hydrolysis and

decomposition according to the following equations:

 PbSiF 6  + 2H 20 <=>PbF 2 + Si02 + 4HF   ...I

 PbSiF 6 <^>PbF 2 + SiF 4  '   ...2

As  indicated by Eq. 1 the hydrolysis of   PbSiF6  will be buffered by theformation of the weakly dissociated  HF. On the other hand, as soon as  PbF2  is

1 Larger Sb concentrations shown in Table

 

as compared to those shown in section 4.2.B can be

attributed to partial re-solution during the filtering process of antimony oxides present

 in

 the slimes layer.

2 Because of migrational-diffusional effects,

 H*

 concentrations are expected to decrease exponentially

rather

 than

 linearly.

3 The maximum solubility of pure PbSiF

6

.4H

2

0 at 40

 'C is

 ~5

 M  (see Appendix

 7).

[193]

Page 220: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 220/392

Eh-pH Diagrams

formed, Pb local concentrations will decrease to a steady-state value determined

by the combination of   Pb + 2

  precipitation and its continuous generation at the

anode/slimes interface.

In the context of lead refining by the Betts process, hydrolysis of the S1F6"2

ion  in moderately strong acid  solutions  (pH between  1 and 2 ) can be betterdescribed by the following equation *•a:

Both PbF2 and Si0 2 have been identified and quantified in the  slimes layer

(e.g. see Table 1.2)  3  [5.11,12]. As early as 1908  Betts  [ i l l  already indicated the

presence  of Si0 2 in the  slimes layer and related it to H2S1F6 decomposition. He

found that -2% of Si0 2 in the slimes could correspond to ~1 kg of  H2S1F6 loss per

ton of lead produced. In 1966 Cominco Ltd. reported Si0 2 assays in well  washed

slimes 4

  that were of the order of 1.6% [131. Thus, according to Eq. 3 and assuming

a production of  slimes of ~25 kg per ton of lead, an estimated  loss of  H2S1F6 of

-0.96 kg/ton of  Pb  can be obtained. This can account for as much as 50% of the

acid losses. Furthermore, PbF2  in the  slimes  can be as high as 19.6% and can

account for most of  the lead found in the slimes layer. In Table  1.1 only one refinery

(Cerro del Pasco) reports SiOa assays in the slimes layer. From their reported value

(0.4%  SiOJ an estimated  loss of  H 2 SiF 6 of ~0.13 kg/ton of  Pb was obtained  5 .

HI.  E h - p H  Diagrams

The  Eh-pH diagrams shown in this section were generated using the c.s.i.RO.

THERMODATA8

 computer program [14,151 . A list of the  INPUT (*.inp) files used In

the generation of  these diagrams is provided in Appendix 11. Also, a list of the

1 Hydrolysis of the SiF

6

"

2

 ion takes place in 3

 steps

 which involve intermediate splitting of F" and formation

of

  SiFsIHaO]" (see section lll.a).

2 At 25 "C the maximum

 solubility

 of

 monosilicic acid

 H

2

Si0

3

 is 10"

3

 M while the

 solubility

 product for

 PbF

2

is

 7.8x10"

8  [10].

3 Notice that in

 Table

 1.2  f 7-).,,%  is

 between

 4.1 and 5 while in PbF

2

 (

7-L*

  is 5.45.  Some

 fluorine

 may

be

 present

 in

 compounds other

 than

 PbF

2

 but most of it can be

 accounted

 as

 PbF

2

.

4 As shown in section lll.b washing of the  slimes can  lead to

 further

 hydrolysis of the acid and removal or

formation

 of

 precipitates.

5 This

 number

 was

 obtained

 assuming that 1.4 kg of

 slimes

 are

 produced

 per ton of

 lead.

6 c.s.i.R.o.  means Commonwealth

 Scientific and

 Industrial

 Research Organization

 (Mineral Engineering

Division,

 Port

 Melbourne,

 Australia).

3Pb+1 + SiF? + 3H 20 <=> 3PbF 2+H^iOj + 4H +

...3

[194].

Page 221: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 221/392

(F)^hH

 ,0  system

species considered and their free energy values is provided  \

 A. (Fj-Si-H 3 0  system

As  can be  seen  in Fig. 1 the stability region of   SiF 6~ 2  extends  over a

considerable pH range. At pH values larger than 6.75,  SiF 6"2

  hydrolysis takes

place according to the following reaction  a > 3

  :

5tf

6

"

2

 + 3H

2

0 <=> //jS/O, + 6F "

 + 47/

+

  .. .4

The equilibrium constant of  reaction 4 is a function of  the ionic strength U91.

Moreover,  it has been shown [19]  that in the presence of  F"  ([F] > 6[SiF6"2

]) the

maximum thermodynamic stability of  SiF 6'2

 occurs at a pH between 2.6 and 2.7.

In  dilute solutions, hydrolysis of the hexafluosilicate ion  takes  place in

elementary  steps which involve splitting of one  F" and formation of   SiF 5[H20]"(reaction 5).  This  species losses  a  F"  ion in a second  step forming SiF 4  which

subsequently undergoes hydrolysis towards H 2 Si0 3 (reactions 6 and 7) [18,20-231:

SiF~

 

+2H

2

0

<=>SiF

5

[H

2

OT  + F~

...5

SiF

5

[H

2

OT

  +H

2

0

<=>SiF

A

  + F~  +2H

2

0

...6

SiF

4

  +

  3H

2

0

<=>H^iOs

  + AHF

...7

In the acidic range (pH<l) formation of  SiF 5[H 20]' and SiF 4[H 20] 2 takes place[24]:

Si

 F;

2

 +

 H

2

0

 +

 H

+

 <=> SiF

5

[H

2

0

  ]~+HF  ... 8

SiF

5

[H

2

0

  ]~  + H

2

0

 +H

+

<* SiF

A

[H

2

0

  \

 +

 HF  .. .9

Conductometric  and cryoscopic measurements have shown that the

solubility of  Si0 2 in H 2SiF 6 is due to the formation of  SiF 4[H 20] 2 [25]. This compound

behaves as a strong acid [26]:

1 The diagrams were drawn assuming

 unit

 activities for all

 the

 solid species species and

 T=25

 °C.

2 Either

 H

2

Si0

3

 or Si(OH)

4

 can be formed during

 the

 hydrolysis of

 the

 acid [16,17]. The polymerization of

orthosilicic acid, Si(OH)

4

, has

 been

 shown to be

 very

 slow [18].

3 The dashed

 vertical lines in

 Fig.

 

extend

 the

 region

 in which

 HF, HF

2

\ and

 F

 may be

 present.

[195]

Page 222: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 222/392

 P b-Fj-Si-HjO  system

Fig .  1  System  (FJ-Si-HaO at 2 5  C

A  SiF 4(H 20) 2 + HF

B  SiF5(H20)- + HF

C  HF + SilL, (g)

D  HF2- + SiH,(g)

E  F j O ^ + HjSiO,

F  SiF6"2

G  H 2Si0 3 + F

H  F + SiH*(g)

Activity of  all species =1

J

-U -3 " -2 - 1 0 L 2 3 U B E 7 B 9

PH

25/F

6

-2

 + Si02 + 4H 30+

  «• 3SiF 4 [H 20\  ... 10

Thus, depending on the  equilibrium position of reaction 10, F to SI ratios,

£ ,  other than 6 can be obtained [25-29].

F

=

6 - [ i/2

S t F

<

J

 +

  [//f]

 Si   [H-SiFJ  + iSiO-]

B. (Pb-F)-Si-H 2 0 system

The  stability region of  SiF6"2 decreases significantly in the presence of  Pb + 2

according to Eq. 3 (see  Fig.  2):

3Pb+2 + SiF~2 + 3H 20 »  3PbF 2 + H-SiO^ + AH*   .. .3

The  rninimum pH at which PbF2 precipitation can take place is a function

of  the activities of the species indicated in Eq.  3. The thermodynamic equilibrium

constant for this reaction can be described as follows:

A 3 - —   —  ...IZU 

»~0 a

siF?

  a

Pb

+2

[196]

Page 223: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 223/392

(Pb-F )-Si-Hfi  system

Assuming  that  0^ 0 = 3 / . ^ = % ^  = 1. the pH  values  above which  PbF2

precipitation can take place are given by the following equation (see  also Fig. 3):

 pH  = 1.78 - 0.25 l o g [ ^  • ... 13

Thus,  the larger  a$iF -2  and  a pb+2  the smaller the pH at which  PbF2

precipitation can occur.

F ig .  2  Sys tem  (Pb-F) -S i -H 2 0 at 25 C

F 2 0 (g) + U-SiO- +Pb02

SiF 4(H 20) 2 + HF + Pb0 2

SiF 5(H 20)-

 + HF + Pb0 2

SiF6-2

 + Pb0 2

F +  PbOj + H j S ^SiF 4(H 20) 2  + HF + Pb*4

F ^ G O + Pb*4

SiF 4(H 20) 2 + HF + Pb

SiF 4(H 20) 2 + HF + P b +2

SiF s (H 2 0)+HF + P b +2

SiF 5(H 20)-

  +HF+Pb

SiF6-2

 + P b +2

PbF 2+H 2Si0 3

F  + PbSiOj

SiF6'2

 + Pb

F  + Pb + HjSiOj

HF + Pb + S i ^ (g)HF 2  + Pb + SO^ (g)

F  + Pb + SiH,  (g)

Activity of all species =1

Once the activities of the individual species are known, Eq.  13 can be usee

to obtain an upper limit for the ionic concentrations across the  slimes layer to

avoid obstruction of the ionic flow due to Si0 2 and PbF 2 precipitation

1 The extra weight of these precipitates can also lead to falling slimes.

[197]

Page 224: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 224/392

(Pb-Fj-Si-HjO system

1.2 1.4 1.6 1.8 2 2.2

PH

Further analysis of  Eq.  3 indicates the difficulties encountered during the

washing of the slimes to obtain accurate PbF 2 and Si0 2 assays. Depending on the

pH and ionic strength of  the washing solution, PbF 2 and Si0 2 may either precipitate

and/or re-dissolve indicating erroneous  assays.  Only by slowly displacing the

concentrated electrolyte with solutions  of  varying PbSiF 6-H 2SiF 6 composition and

matching pH but different strength, can the  extent  to which  these  secondary

reactions take place be diminished1.  This  process involves a  trial  and  error

procedure using "slices" of  slimes taken at different  slimes thickness. In a first

try the composition of  the slimes electrolyte is measured and solutions with similar

pH but diminishing ionic strength are prepared. The slimes are put in contact

with these solutions until all the  SiF 6"2  and Pb + 2  are extracted. Once these  ions

are removed, the  slimes can be washed with dilute HN0 3  solutions at the same

pH as before.

1 Notice that for the washing

 process to be

 successful, activities of

 Pb*

2

, H*,

 and

 SiF

6

"

2

 are

 required

 to

remain

 in

 a

 fixed

 ratio

 given

 by the following equation

 (see Eq.

 12):

[198]

Page 225: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 225/392

(Sb-FySi-Hfi, (As-F)-Si-H,0,

 and (Bi-FJ-St-HjO systems

C. (Sb-F)Si-H 3 0, (As-F)Si-H 2 0, and(Bi-F>SiH 2 0   systems

As  shown In Fig.  4, Sb, As, and Bi are noble with respect to lead and their

dissolution will not take place unless  the potential and/or the pH rises permit

the formation of  oxides and/or soluble  species \ Sb is the  least noble of  these

three elements and is expected to react earlier than the others. Upon dissolution,

Sb  forms soluble oxides some of  which have been detected in lead slimes (e.g. see

Tables  1.2 and 4.2)  [301

3.  Arsenic also forms highly soluble  oxides such as the

amphoretic arsenious anhydride, As 4 0 6 1311

s

. When As is exposed to moist air it

becomes  covered with oxidation products  [31].  This  poses  a problem in its

identification in the slimes layer. Bi does not form oxides to the  same extent as

Sb and As,  but rather, forms polynuclear complexes such as ByOH)^*6

  [301.  These

ions have been found to be the predoiriinant species  at pH=1.5 and total Bi

concentrations of 0.01  M [301.

Sb + SiFV2

Sb + SiF5(H2

0)- + HF

SbO+

 + SiF6-2

SbtT + SiF^j OY + HF

Sb4

0

6

 + SiF6"2

Sb2

0

4

 + SiF6-2

 + HF

S b A  + S i F ^ O V + HF

Sb 2Os + SiF,1

 + HF

Sb + HF

Activity of Sb soluble

species = 10"*

1 The fat dashed lines in

 Figs.

 4A, 4B, and 4C

 mark

 the stability region of Pb*

2

 according to Fig. 2.

2

 In the pH range between 0 and

 1, Sb

 in solution

 is

 present mainly

 as

 SbO*  [30].

3

 The

  solubility

 of As (as

  As

4

0

6

)

 at

 25*C

 is

 -0.17

  M  [31].

[199]

Page 226: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 226/392

Page 227: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 227/392

 pH, density,  viscosity,  and  activity of  HjSiF, solutions

IV.  Phys ico- Chemi cal Propert ies of H 2 S i F 6 - P b S i F 6  E lectrolytes

To  model the concentration  changes  across the  slimes  layer, data on the

physico-chemical properties of  H 2SiF 6-PbSiF6 electrolytes are required. In the next

section, the experimental data generated in this work are analyzed alongside data

available in the literature.

 A. pH, density, viscosity, and  activity  qfH 2 SiF e  solutions

The  pH of  H 2SiF 6  solutions is shown in Fig.  5. These pH values agree with

those reported in the literature [20,32].

44

33

- Fig. 5 Changes in pH as a function

of  the electrolyte composition

1 1  2CL

  Z T=25"C

Initial Electrolyte Composition:

[H2SiF6]=2.040 M, [SiOJ=0.40 M

1 1  2CL

  Z

-

T=25"C

Initial Electrolyte Composition:

[H2SiF6]=2.040 M, [SiOJ=0.40 M

1

01C

T=25"C

Initial Electrolyte Composition:

[H2SiF6]=2.040 M, [SiOJ=0.40 M

1

01C

-

:  ;

1

01C"5  10"4  10"3  10~2  10~1  10°

[H

2

SiF

6

],

  mol/l

H 2SiF 6  and  H 2 S 0 4  are very similar in their electrolytic properties  [20,33].

H 2SiF 6  is an acid of moderate strength similar to that displayed by  H 2 S 0 4

solutions .The  first and second dissociation  constants of  H 2SiF 6  at 25  °C are as

follows [341:

 H 2 SiF 6 <=> HSiF; + H + ...14

HSIF; <=> SiF;2

  + H +

 pK 2=\.19 ...15

[201]

Page 228: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 228/392

 pH, density,

 viscosity,

 and activity ol HgiF, solutions

Arkhlpova et al. [27,28] have indicated that the pH of  H 2SiF 6  solutions (among

other properties) is a function of   j.  and varies according to the way the acid was

produced.

Leonte et al. [351 measured the density, viscosity, specific heat, and electrical

conductivity of solutions containing between 0.3 and 2 M   H 2SiF 6 . They showedthat due to the technique under which their acid was produced, minor impurities

such as P 2 0 5 and S04~ 2 were present in concentrations that increased with the

acid composition. On the other hand, no  j t   values were reported in their samples.

Leonte et al. derived empirical equations for the density and viscosity  changes

as a function of the acid composition  1 :

p = 0.9982 + (8.53 • 10"3 -1.96  • 10"5r)w - (2.99 •  IO"

1

 + 8.06 •  lO^w) (t  - 20)  ... 16

c

 x\=AeT   ...17

 A and  Q = empirical coefficients which depend on the solution composition (see Table 2).

T = temperature Kt = temperature "C

Table

 2  Values of  the coefficients A and Q in Equation 17 [35]

[H 2SiFJ, M Q

0.00 1.219X10"3 1965.93

0.334 1.908x10* 1857.05

0.663 2.027xlO'J

1860.40

0.972 2,434xlOJ

1834.361.298 2.937X10'1 1803.40

1.708 2.485X10-1 1884.70

Folov et al. [361 measured the osmotic and activity coefficients of  H 2SiF 6

solutions at 25°C using isopiestic measurements and H 2 S 0 4 as standard. As can

be seen in Table 3, y± do not change significantly with ionic strength.

1

 Sohnel

 et

  al. [37] also

 present

 a p-[H2

SiF

6

]

 correlation

 from which

 the apparent partial

 molar

 volume of

HgSiFs at

 infinite

 dilution,

  ,

 was obtained:  <J>v =23.5 cm

3

 mol"

1

 at

 17.5"C.

[202]

Page 229: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 229/392

 Density, viscosity, and  electrical  conductivity o/H£iF,-PbSiF,

 electrolytes

Table 3  Changes in the osmotic and activity coefficients as a function of  the molal ionic strength,  [36]

molality, m molal ionic strength Osmotic Coefficient,  <p Mean Activity

Coefficient,  y±

0.10 0.30 0.931 0.611

0.20 0.60 0.577

0.30 0.90 0.927 0.562

0.40 0.934 0.555

0.50 1.50 0.944 0.553

0.60 1.80 0.954 0.553

0.70 2.10 0.964 0.559

0.80 0.975 0.559

0.90 2.70 0.987 0.564

1.00 3.00 0.999 0.571

1.20 3.60 1.026 0.588

1.40 4.20 1.060 0.612

B. Density,  viscosity,  and   electrical conductivity   of   H 2 SiF e-PbSiF g

electrolytes

Some  of the  experimental data obtained  from  measurements  of the

physico-chemical properties  of  H2SiF 6-PbSiF6  electrolytes are shown in Table 4.

Each sample was analyzed for H 2SIF6, PbSiF6, Si0 2, and HF  3 - 3  \

Two different values of  j. are indicated in Table 4, and each one of them can

be related to the presence or absence of Si0 2 or HF in H 2SlF6-PbSlF 6  electrolytes:

1 H

2

SiF

6

-PbSiF

e

 electrolytes

 were prepared by neutralizing H

2

SiF

6

 solutions with PbO.

2 The dynamic viscosity, TJ   is the ratio between the applied shear

 stress

 and rate of shear.The cgs

 unit

 of

dynamic viscosity is one

 gram

 per

 centimeter

 per

 second

 and its called one poise (symbol P). One

centipoise,

 1 cP

 =

 10'2

 P.

3 The kinematic viscosity, v, i s a measure of the resistive flow of a fluid under gravity, the pressure head

being proportional to the density of the fluid [44]. The cgs unit of kinematic viscosity is one

 centimeter

squared per

 second

 and it is called one

 Stoke

 (symbol

 St).

 1 centistoke,

 cSt

 =

  10"2

 St.

[203]

Page 230: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 230/392

 Density, viscosity, and  electrical conductivity o/H,SiF,-PbSiF, electrolytes

Table 4  Physico-chemical properties of H2SiF6-PbSiF6 electrolytes Experimental Results

Electrolyte Composition,  M £  ratio Electrical Conductivity, Dynamic Kinematic Density,

JC, mmhos cm'1

Vfecosfty, Viscosity, p. g cm"3

TJ.CPv

.cSt

p. g cm"3

Solution [PbSiFd

[HaSiFJ

[SiOJ [HF] (a (51 T=40'C To25.5 "C T-40"C T-40'C T» 23 -

C

s1 0 2040 0.4 0 5.0 5.0 525.1 443.7 1.229

From mother solutions pre

pared using acid sample S1 (Technical

 HaSiFg

 supplied by Cominco

 Ltd.):

v17 0 0.215 0.04 l i i bl l i l l i i o l i 5.0 128.1 108.7 0.697 0677 1029v18 0 0.332 0.05 o 5.2 5.2 190.2 160.5 0.724 0.699 1.036

v19 0 ilblMOlI 0.06 l l lbl l l :111211

l l l s i l l l 215.9 183.1 0754 0.714 1056 v20 o 0.847 0

.13 """""" 'S'"""""""" 5.2 ,,,,,g,^,,,,,. 359.6 303.9 0.822 0.753 1.091

V21

01

.017 0.20 0 l l i i i i 5.0 400.0 341.9 0.893 0.7961

122k6 0.27 0.692 0.09  b " " 5.5 5.3"" 293.7' 245.3

v13 032 iioi»ii 0.09lllblll

i 4llll l l i i l l 237.4 1990 0.843 0.726 1.161vii

0.32 0.837 0.13 5.4 """

354.4 297.9 0.962 0.791 1.216

v12 0.34 0934 011 i i lbl l l l l i M i illliill

i l $ p l i 3312 1.016 0.827 1.228zl4 0.35 0.795 0.07 o 5.7 5.5

331.8 282.4 0.961 0.79 1.217

V14

0.36 l l o M i l 0.04 l l l b l l l iiisliiillellll

1391 0773 0 712 1.085K2 0.36 0.830 0.09 o 5.6 5.4 345.6 290.9 1.215

kt I l K l l 0792 lilolli Iilbll l l l i i i i ; l l l i i l l llililf 295.4 v4 0.36 0.067  b""' 6.0 6.0 80.2 63.9 0.778 0.681 1142

 v100.59 1.010 0.15 llf&Ill 11P11i i i s i i i i lliwsill 363.5 1.137

0.861 1320 v9 0.64 0.849 0.14

5.5 •""""•'•5:2  "  v  " 345.1 2844 1.084 0.831 1.304

v16 l l l i i i l 0 363 005 l i l o l i l i i s l l il lSlll

i l p p l 1971 0.989 0757 1.306

v15

0.81 0.165 0.02 o 5.9 5.4 173.8 143.8 0.935 0.73 1.281

 v3 096 0.083 l i l o l l i 0 lllbli•loll11150111

123.4 0977 0  737 1.325 v8 0.98 0.716 0.12 o 5.6 5.2 300.7 251.2 1.170 0.831 1.408

 v7 Itilili 0.331 0.06

lllbllllltllil l i i f l l 231.1 lll  ill

1.109 0807 1.374

 v2 1.21 0.097 o o 6.0 6.0 177.2 144.1 1.090 0.771 1.414

v6 1.21 0.156 0.00 o iiiiii lllSiii l i b l l l l 157.2 1.115 0  785 1421

ALIO

1.45 0.446

0.09 5.7 5.0 249.3 205.8 1.209

AL1 1.46Ilb5i4ill

010 l i i b l l i l l 5 l t l : l pllspll 11 :711i i p p l 1 546k4 1.53 0.317 o o 6.0 6.0 256.2 213.5

v5 0.306 0 0 6.0 l l l i i l l :|l236l5ll:

196.1 l l l i i l l 0.887 1570

vi 1.61

0.092 ob

6.0 6.0 201.3 163.9 1.300 0.846 1.537

sol 42 1.62 0.069 l i i i l l ! l l l i i l l ll&ii l l l i i i i l i w i i l 170.6

pbaOl

1.75 0.119

0 6.0 6.0 209.6 171.6

vO 1.75 0.124 l l i b l i f l l l i i l l ll&ii l i i i l l lliilili llliil 1.387llliill

1582sol  6 1.8 0.151

ij,,,,,.

6.0 6.0 211.5 173.0 1.612

w71 0 3.064 0 0.40 6.1 6.1 1.397

From mother solutions pre

pared using acid sample VV71  (Technical Reactive BDH Chemicals):

w65llllbllili i lbl l l l 0.22

llMii

132.0 108.5 0.923 0.714 1  293w62 1

.46 o b 0.07 6.0 209.9 174.9 1.153 0.785 1.469

w61 0 Iilbllll lioloalll WMtim i iMi i lilblieli 1.500 0.895 1.676

w60 2.58 0 o 0.12 6.0 247.7 203.0 1.958 1.066

1.837

w64 2.74 0 0 0.63 iiifci! llaSSIIl 170.0 1.979 1.064 1860w50 2.88 0 0.66 6.2 241.8 196.7 2319 1.199 1.934

w63ll ll

0 0 llolsfllli ll&all 1:4:207.91:::!!!l67t6lll II'PSSII 1.942w51 3.25 0 .................g, .............. 0.15 6.0 203.5 161.3 2.520 1.26 2.000

Dynamic viscosity

 values were

 obtained by assuming that p13 .c = p v p

[204]

Page 231: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 231/392

Density, viscosity, and electrical conductivity

 0i,iSSiF,-PbSiF,

 electrolytes

(- 6

 • {[H-SiFJ + [PbSiFJ} + [HF]

[HzSiFJ

 + iPbSiFtl + lSiOt]

...18

 [HJiFJ   + lSiO-]

As can be seen in Table 4, for pure H2S1F6 solutions, the amount of dissolved

SiO a  increases with acid strength without significant  changes in  (samples

VI7  to V21). This relationship holds even in the presence of  PbSlF6. The amount

of   dissolved Si0 2  appears to  decrease  with the  PbSlF6  concentration but by

comparing the  j. values it can be seen that  (ji)b remains close to 5 even in the

presence  of  large amounts of  PbSiF6  (e.g. compare and in samples  V13,

V7,  and  AL1).  This  indicates that soluble silica is present as  H2S1F6  reaction

products such as those shown in Eq.  10. Similar Si0 2 solubilities for H 2SiF 6-PbSiF6

electrolytes are reported in the literature  [io]. In the  absence  of  H2S1F 6,  minor

amounts of  HF are required to avoid PbSiF6 hydrolysis (Samples W50 to W65).

As  seen in Table 4 only when  HF is present can  j.  reach values larger than 6.

By neglecting the presence of Si0 2 and HF  \  empirical equations were used

to correlate  K, p, and v, as a function of the  H 2 SiF 6  and PbSiF6  concentrations.

These correlations are as follows  2 l 3

:

1

 The presence of Si0

2

 appears to increase p and

 v. On

 the other

 hand,

 HF appears to have

 a

 larger

effect on K  than on p or v.

2 From these correlations K , p, and v,  values that are within 6% of the experimental measurements can

be obtained.

3 A simple relationship between K 

,

 [PbSiF

6

]

 and

 [HjSiFJ,

 for the range of

 compositions

 shown in Fig. 6A

could

 not be

 found

 because of the changes in K  at [H2

SiF

6

]>0.4

  M .

 Eq.

 19

 although cumbersome

describes accurately the electrical conductivity changes as a function of

 [PbSiFj

 and

 [H

2

SiF

6

J.

[205]

Page 232: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 232/392

 Density, viscosity, and  electrical conductivity ofHSiF.-PbSiF, electrolytes

-T-AKJX^+^11^3+A 1 2x 3  + A13x3 +  A1 4XJXJ+A1 5x 2.x 3  ...19

p ^ A ^ A ^ + A j ^  ...20

v^A^AjV.+Ajvf+A^  ...21

 Where:

K „ = electrical conductivity at 40 "C, [mmhos cm'1]

v a - Kinematic viscosity ( coefficient  of) at 40 °C. |cSt)Pb = density at 23 'C. [g cm"3]

xlf  X2, x3, y l f y2, y 3: variables related  to the H 2SiF 6 and  PbSlF 6 concentrations as follows:x, = [PbSiFg]  Xj = [PbSiF6]+ [HaSiFd   x 3 = 2 x [H 2SiF 6]y, = [PbSiF6]  y 2 = [H2SiF6l  y 3 = [PbSiF6]x[H2SiF 6] Aj to A 1 5 are constants whose value is given in Table 5.

Table 5  Coefficients in the empirical electrical conductivity, viscosity and density correlations

Coefficient Electrical Kinematic Viscosity,

conductivity, K, (Eq. 19)

Density, p. v., (Eq.21)

(Eq. 20)

A, -1.212E+08

9.951 E-01

6.423E-01

l i i f i i t i i i l i i i i i i i i i

5.666E+01

3.223E-01

4.340E-02

A,2.244E+07 1.668E-01 4.320E-02

A* 1.473E+07 1.606E-01

As2.981 E+07

Ae 1.212E+08

A7 -3.090E+02

Ae -3.717E+07

Ag-2.713E+01

A101.273E+01

A,,-6.062E+07

A121.677E+02

A13

9.293E+06

Au3.563E+00

A15 1.129E+01

Eqs.  19 to 21 can be used to compute  K , p, and v of   solutions  whose

composition range within 0<[PbSiF6]<2 M and 0<[H2SiF6]<l M.

Fig.  6 shows changes in   K ,  p, and v as a function of  the electrolyte composition.

Both p and v increase uniformly with [PbSiFg] and [H 2SiF 6] while  K  shows a decrease

in value with PbSiF6 additions at  [H 2SiF 6] larger than 0.4 M.

[206]

Page 233: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 233/392

Density,

 viscosity,

 and electrical

 conductivity

 o/H,SiF,-PbSiF,

 electrolytes

T=  40°C

Fig.  6  Electrical

 conductivity, density, and viscosity of

H

2

SiF

6

-PbSiF

6

 electrolytes

Data points were obtained from the empirical

correlations

 shown

 in Eqs. 19,20, and 21.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.B 2

[PbSiF6

],  mol/l

[207]

Page 234: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 234/392

 Density,  viscosity, and  electrical  conductivity ol  H£iF,-PbSiF,

 electrolytes

Further analysis of  the conductivity changes as a function of  the composition

of  the individual salts, indicated that the equivalent conductivity of H 2SiF6-PbSiF6

mixtures can be represented by the following relationship:

= xA PbSiFt   + (1 -x)A H  iFt   .. .22

 where:

 Kg*   W  _ Ke W /,

^mixt -  n  r r D i , c , T i  ,  r i / c . T i i  A

J W .

  _  - —   A H_. W P .2{[PMiF6] + [/W 6]}  w

«  2[PbSiF 6  ] lt   2-[/72S/F6]/,

 x - -

Thus, for example, for an electrolyte mixture containing 0.36  M  PbSiF6 and

0.252  M  H 2 SiF 6 at 40  °C:

It = 2.196  I {PbSiF  j  = 1.44  x = 0.66

[PbSlF6]It = 0.549  W ^8 7

-8  A  miF=80.0

[H2SlF 6]It= 0.732 % W /=334.9 A  WjOT=228.8

 A^BO^xSO  + il -0.66)  x228.8 = 131.2  1 ^  = 2x0.612x131.2=160.6

obtained  from  Eq. 22 is within  ~4% of the  experimentally measured

value \  In general, Eq. 22 could be used to obtain A ^  values that are within 6%

of  those experimentally measured. This indicates that both PbSiF6 and H 2SiF 6 are

highly dissociated.

The validity of  Eq. 22 to describe A ^ changes in strong electrolytes has been

related  to a  lack   of  simple dependance  of the  ionic mobilities  on  electrolyte

concentration [45] and is a reflection of  Walden's rule  2

 :

•nX, = constant  ...23

X, and m   are related through the following relationship:

1 This

 iwvalue

 compares

 well with

 the experimental K  value shown in Table 4 (K^=  160.6 vs K =167.1

mmho crrr for solution V14).

2 Walden's rule is based on a model for ionic mobility that obeys

 Stokes

 law in the laminar flow region

[51].

[208]

Page 235: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 235/392

 Density, viscosity, and  electrical  conductivity ofH,SiF

(

-PbSiF,

 electrolytes

H . = -  ...24

The validity of  Walden*s rule has been confirmed in a variety of  systems [46].

Recently, Peters et al. 1471 have shown that in strong chloride mixtiires, Walden's

rule is not followed by H+ because its movement in electrolytic solutions  is not a

function of  the viscosity of the medium but of the activity of water.  Similarly, in

H 2SiF6-PbSiF6  electrolytes Walden's rule is expected  to be followed by Pb+ 2

  and

SiF 6~ 2 while T  )X  H + values should decrease with increasing ionic strength as the water

activity decreases.

To  obtain  ^  values  from  electrical conductivity measurements  In

H 2SiF6-PbSiF6  electrolytes  the following assumptions  were made:

1) H 2SiF 6 and PbSiF6 are completely dissociated and the formation of  ion-pairs

can  be neglected.

2) Only three ions contribute to the total electrical conductivity: Pb+2

, SiF6"2

,

and FT.

3) The electrical conductivity in concentrated H 2SiF 6-PbSiF 6 electrolytes can

be represented by the following relationship:

K=iic1.zixk

-l

  •••

25

i

4) The individual equivalent conductivity of  SiF6"2 is equal to the individual

equivalent conductivity of  Pb+ 2  (i.e.  X  Sif -2  = X  pb+2 )  \

5)  Xi  values  in pure H 2SiF 6  and  PbSiF6  solutions  are the same as those of

H 2SiF 6-PbSiF 6  iriixtures of equivalent ionic strength:

=

  2

 •

 C  pb+2  • X  pb+2  + 2

 •

 C  SiF -2 • X  SiF  _2 --=   4[PbSiF 6  ] lt  .X  pb+2..26

%lSP ,6l/ l

  = =   C  H+-X  H+  + 2-C  SiF;2-X  SiF -2  = 2

 [HiSiF^-X   +  l-iHJiF^-X^..27

thus, should be equal to:

1  Individual equivalent conductivities at infinite dilution and at 25 °C  reported in the literature are:

[209]

X

OT

_

2

 =

 59[53] and  X

pt

,

2

=65 [46]

Page 236: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 236/392

 Density, viscosity,  and  electrical  conductivity ot   H£iF , -PbS iF , electrolytes

C  pb+1' Kb+  2

  ' '

  +  C

H

+

 '

 V ...28.a

=

 2

• X  pb+2  +

 2 •  [HJiFJ   • V +  2  • { t * W J + [PbSiF 6  ]} • ...28.6

=

 2 V+  (2

 •

 [Z/^/FJ

 +

 4 •

 [ / W J }

  •

 X  pb+2

...28

.c

Assumptions 1 and 2 can be considered to be fair approximations of the real

behavior of   H 2SlF 6-PbSiF6  electrolytes  as indicated by the validity of   Eq.  22.

Assumptions 3, 4, and 5 are linked through Eqs. 26 to 28 . They are valid only

to the  extent to which X, values from binary solutions (i.e. from Eqs. 26 and 27)

can be used to obtain the conductivity of  ternary mixtures (i.e. from Eq. 28). Such

correspondence has  been  found to occur in chloride electrolytes 148] for which

V =

 Kr  •Thus,  to obtain X, values  and their dependance with concentration, the

following steps have to be followed:

1) Given [PbSiFg] and [HaSiFg] in the mixture obtain the total ionic strength,

It= 4x[PbSiF6] + 3x[H2SiF6]

2) Obtain the composition of pure H 2SiF 6  and PbSiF6  solutions at the total

ionic strength and the specific conductivities of  these solutions (From Eq.  19):

[PbSiFJn = \ with  K   =

[H2SiF6]It=  \ with  K   = %2stf -6]/i

3) Obtain  X  pb+2  and  X  H + from Eqs. 26 and 27 respectively:

 KiPbSiFfo  KwjpJn ~  2 '  -H -$ iF 6 -u  • Kb*1

r»+1  =  4[PbSiF 6  ] 

 It   "  + =  2[H 

2 SiF 

6  ] 

h

4) Introduce  X  pb+2  and  XH+ in Eq. 28.c and compare the K ^with the obtained

from Eq.  19.

For example, for an electrolyte mixture containing 0.36  M PbSiF6 and 0.252

M H 2 SiF 6 at 40  °C ( r ^  = 0.769):

[210]

Page 237: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 237/392

 Density, viscosity,  and  electrical conductivity ol  HSiF,-PbSiF, electrolytes

It = 2.196  IPbSWJ= 1.44

[PbSIF6)It = 0.549 =87.8 = 40.0

[H2SiF6]

lt=  0.732  K,W /=334.9

= 2 x 0.252 x 188.8 + {2 x 0.252 + 4 x 0.36} x 40.0 = 172.9

= 188.8

TUA* = 0-769 x 188.8 = 145.2 .  = 0.769 x 40.0 = 30.8

Thus, it can be seen that obtained from Eqs. 26 to 28 is only -4% different

from the experimentally measured value  \  For other electrolyte compositions,

the maximum deviation between the experimental and predicted values  is -8%

(see Table 6). Finally, transference numbers, tj, were also obtained as follows:

Changes in Walden's product as a function of/,"2

 are shown in Fig. 7. Large

decreases in X H+  as the  ionic strength increases  are due to decreases in water

activity.  At high  It less  water  is  available  for H+

 to  move  via a  proton jump

mechanism  and this reflects  in lower X H+ . On the  other hand,  Pb + 2

  transport

depends mostly on the viscosity of  the medium rather than on the water activity2

.  Furthermore, by comparing Figs. 7A and 7B it can also be seen that in binary

solutions  nX* values  are nearly equal to those obtained  in ternary solutions of

equivalent ionic strength (see also Table 6).

1 This twvalue compares well with the experimental

  K  value

 shown in Table 4 (K nM  = 172.9 vs K =167.1

mmho

 crrr for

 solution

 V14). The difference between these values is partially due to innaccuracies in the

computation of  K  values using Eq. 19.

2

 Water activities

 for this

 system are not available. Yet, by analysis of similar phenomena taking place

 in

other systems [47] this analogy can be drawn.

[211]

Page 238: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 238/392

 Density, viscosity,  and  electrical  conductivity ol  H£iF,-PbSiF, electrolytes

Table 6 Changes in the individual ionic mobilities as a function of the electrolyte composition

T=40'C  X  Sir   =  X m t J  Theoretical Results

Solution Solution Properties lllfifl Binary Individual Walden's Transport

Composition, u From Eqs. 20,21, and Properties Properties Equivalent Product numbers

22 Strang* (PbSlF6]=J [H2S1F6

1

=J Conductivities

[PbSiFJ [H,SiFJ rrrtxt Pmtxt It [PbS.F.1 K [HjSiF,] K

WMmV Eq. 29.C w

200 0.00 I i i ! 0.902 1.640 i i b i i i liool?mi llell izlil 954 I269I1 38.7 .

141.1 0.50 0.00

1.88 0.06 208 0.887 1.6107

.72 1.93

208 2.57

624 27.0 94.1 218 38.6 134.5 0.47 0.05

1.52 0.849 1.517 i i i i iilfiiWMW

IliSl l;;

564:lWWii

I9I2II IIMI :l37.9lf 1213 llioii 0.20

1.17 0.43

249 0.823 1.429 6.00 1.50 189 2.00 526 31.5 100.0 262 37.0 117.6 0.33 0.33

0.85 0.61 mm 0.808 1345 liill Ural 174 I I M I 332 110.4

WmW

120.0 0.27 0.47

0.35

0.87 350 0.802 1.2184

.00 1.00  ' 143 1.33

456 35.6 135.0 346 34.8 131.9 0.16 0.68

0.10 0.10 0.663 1.040 0.70 0.18 34 0.23 48.3 238.4, , , , ™ , , , ,

33.3

164.4 0.19 0.62

0 25 0.25 iisi! 0.695 1106 1.72 1614311liii WMW

l i i i 41.7 205.1 Ileal: 321 Islil Iiiii 0.620.49 0.49

248 0.753 1.2153.43

0.86 ' 126 ' 1.14 427 36.8 150.2 25533.7 137.4 0.21 0.58

0 76 liiiii lisnll 0.828 1.3465.47 WMmlire!ll&fwww

32.6 106.4 36.4 118.7 0.24 0.520.88 0.86

337

0.855 1.390 6.16 1.54

192 l05 ' 532 31.1 98.6 338 37.0 117.1 0.24 0.51

0.98 0.98 liii Iflff. 1.434 IIPIlltllIH!iiiii iiiii IS!Illl!wWliiPii1111110.24 0.52

000 007 l l a l l 0.653 l i i i 0.21 005 Ilil l i i i WwW56.0 245 8 367 161.2 019 0810.00 0.48 248 0.720 1.056 1

.45

0.36 62 0.48 249 43.0 214.6 249 32.7 163.1 0.17 0.83

000 0.90 0.786 1.109 11691111616711l i 6 i l 16:9611Wmw

38.6 1378:1 33.6 Isolli 0.18 0.820.00 1.10 421 0.820 1.135

3

.31 0.83 123 1.10 421 37.1 153.6 421 34.5 142.8 0.19 0.81

0.00 1.38 l:;

46i!l 0.664 1 17011111 l-iiil

iilii1.38 iiiii 35.3 131 8 35.7 133.2 iiiii: 0.79

0.00 1.66 491 0.908 1.2054

.97 1.24 167 1.66 49133.7

114.6 491 36.9

125.4

0.23 0.77

0.00 1.86 511 0.941 1.2315.59

1.40 181 1.86 511 32.4 104.9 511 37.5 121.6 0.24 0.76

0.00 Iflll Illl! 1.249

11!?! Illlllwww Mil IllllllUti 120.4 Illl! 0.76

0.10 000 i i i 0.647 1.027 0.40 lito-l Illllll i i f l wWii52.1 :|24|il iiiii Wmw162.8 Iiiii 000

0.40 0.00 66 0.667 1.124 1.60 0.40 68 0.53

268 42.3 209.3 68 31.7 156.8 0.50 0.00

0.90 0.00 0.716ImM

.60 illol&il 131 120 l lal l 36.4 1455 l lal l 335 laMil 0.50 0.00

1.00 0.00 143 0.729 1.3174

.00 1.00 142 1.33

455 35.6 135.1 142 34.2 129.8 0.50 0.00

1.25 0.00 169 0.764 1.3985.00 1.25 168 1.67 492

33.6 114.0 168 35.9 121.7 0.50 0.00

1.50 0.00 189 0.805 1.479 6.00 1.50 189 2.00 526 31.5 100.0 189 37.4 119.0 0.50 0.00

In  Table 6 it can be observed that as the electrolyte  gets concentrated in

PbSiF6 and depleted in H2SiF 6, tH+

 —> 0 while /  2  0.5. Thus, at the anode/slimes

interface most of  the current should be carried by Pb + 2  and SiF 6

 2

  while at the

slimes/bulk electrolyte interface most of  the current should be carried by  H + . This

should create significant concentration gradients as Pb+ 2

 and SiF6"2 are ~5  times

less mobile than H+

.

[212]

Page 239: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 239/392

 Density, viscosity, and  electrical  conductivity ol  H£iF,-PbSiF,

 electrolytes

(A) (B)1

  300

O

0101

• H  

250

1

  300

o

CD

01•p'

 250

1

  300

O

0101

• H  

250

•  i •  1  • i  • i  1  • 1 •

 A   2.0 <[PbSiF„]< 0.1 , 0.0 <[H2SiF,]< 1.0

.«  0.1 <[PbSiF6]< 1.0 . 0.1 <[H,SiF6]< 1.0.

1

  300

o

CD

01•p'

 250

i  .

*  [PbSiFg] = 0.0, 0.1 <[H2SiF6]< 2.0

«  0.1 <[PbSiF6]< 1.5. [H2SiF 6] = 0.0

ZfV

9•p"

  200

-y ' 200

G G

£

  150

o

£

  150

cj

-CM   1 0 0

|

o\

  50

-

o\

  50

"

  77^2

< r.

3 0.5 1 1.5 2 2.5 3 ^ (

3 0.5 1 1.5 2 2.5 3

Ii* It"

Fig. 7 Changes in Walden's product as a function of  the square root of  the ionic strength

(A) Changes in Walden's product for H2SiF

6-PbSiF

6 mixtures of different compositions

(B) Changes in Walden's product for binary H2SiF6 and PbSiF6 solutions

The  Nernst-Einstein relationship [49] can be used to obtain diffusion

coefficients  from ionic mobilities1 :

 D: =&RT   _\RT

.30

Thus, for a solution conteining 0.35  M  PbSiF6 and 0.84  M  H 2SiF 6, at 40 "C,

^  = 35.8 and ^ =  137.1,  from  which:  D H+ = 3.8 x 10"5

  and £ ^ = 5.0x10^.  This

diffusion coefficient for  Pb + 2

  is nearly equal to that obtained  from

chronopotentiometric measurements (seeTable  1 Chapter 5). The correspondence

between these values and the validity of Walden's rule for species other than H +

support the assumptions and the model used to derive Individual equivalent

conductivities  from electrical conductivity measurements.

1 As shown in Appendices  and 2 this equation can be modified to include  the

 effects

 of the effective

charge of species i exposed to the electric field,  Z*. When

 such modification is included: D, = D/".

[213]

Page 240: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 240/392

 Mathematical  Model: Numerical  Solution of the Nernst-Planck  Flux  Equati 

V. Mathemat ical Model :  Numerical Solut ion of the Nernst -Plan ck

F lux  Equations.

To obtain local ionic concentrations and potential gradients across the slimes

layer as a function of the electrolysis conditions the Nernst-Planck  flux equations

were solved using a finite interval numerical technique (see Appendix 1). The

differential equations that were solved simultaneously are as follows [50]:

1  dlna„  d

 <D  /(r)

 —CD c  - + U . c — = — —  ...rn N a

  a a

  dx * a

  "dx Z aF   1 1

1  d\nab  rfq>

1  dlnac  dQ>

 Z aC a+Z bC b+Z cC c=0  ...[/v]

Eq.  i  states that the only species being generated at the anode is Pb + 2

 whereas

Eqs.  if and  iii  indicate that H+

 and  SiF6"2

  do not react and their  equilibrium

concentrations are only a function of the migration and diffusion gradients  2

-3

.

Eq.  iv is the electroneutrality condition.

As presented  in Appendix  1, to solve Eqs.  [i]  to [iv], relationships between the

involved variables fy, 2>it  u,) and the electrolyte composition  (Ca, C b , and CJ have

to be known in advance.  Thus,  subroutines to compute the values of  those

variables as a function of the electrolyte composition were incorporated in the

computer  program.  In  these  subroutines,  individual  ionic mobilities, |i„ were

1

 ©

;

=D?+D E : D E   is the eddy diffusion constant

 which

 can be considered to be equal for all the ions.

Furthermore, it can be modified so as to incorporate changes in porosity and tortuosity of the ionic

 flow

across the slimes layer for different anode compositions and/or electrolysis conditions.

2 Notice that when the molecular

 diffusion

 coefficient is smaller than the eddy diffusion constant, the

overall

 diffusion coefficient is nearly the same for all the components. In

 this

 case, eddy diffusion

practically equalizes the

 effective

 diffusivities for all the components [so,p. 238]

3 Dp and pn can be linked using the Nernst-Einstein relation:

D? =  ?h-

Z;F

where Z* is the

 effective

 charge of species i exposed to the electric field, z* <Z,.

[214]

Page 241: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 241/392

Cass A: constanty,

 values

obtained  from  \ values (see Eqs. 25 to 27) \  From  the computed ^ values D"

values  were obtained using the Nernst-Einstein relationship (Eq. 30). To these

values,  D  E   were  added to obtain corresponding 2} values  3

. Individual ionic

coefficients  were  assumed to remain constant  3

  in the whole range of

concentrations. Changes in y,as a function of  the ionic strength require knowledgeof  activity changes  (and water activities) in H 2SiF6-PbSiF6  iriixtures unavailable

in the literature.

The solution of  the Nernst-Planck  flux equations was obtained by increasing

the number of  variables analyzed. This was done by first neglecting eddy diffusion,

then incorporating it in a  re-run.  Potential and ionic concentration terms are

represented by the following symbols:

[M+n] = Ionic concentration of ions M, [M].[NT"!,, =  Ionic concentration of ions M, at the slimes/bulk electrolyte interface, [Ml.[M

+n

]e =  Ionic concentration of ions M, at the anode/slimes electrolyte interface, [Ml.{M*

n

}r  = Concentration of ions M at the anode/slimes interface with respect to theirconcentration at the slimes/bulk electrolyte interface.

<J>e = Maximum value of the migration potential, mV

 A . C a s e A ; constant y( v a l u e s

If  activity coefficients are assumed to remain constant  4

, the Nemst-Planck

flux equations can easily be solved numerically or analytically. This also allows

the numerical procedure to be compared with the analytical solution  5

.  This

comparison indicated that the numerical method provides the same concentration

and  potential profiles if the  step size  is chosen to be between 25 and 100 |im.

Therefore,  step  sizes  of this order of magnitude  were  used in the numerical

solution.

1 By using

 the X, values obtained at

 40

 °C, concentration and potential profiles are also obtained at that

temperature.

2D E   changes also must be known in advance. D 

 E 

  is not only a function of the electrolyte composition

but of the slimes thickness as well. In the initial computation of the concentration profiles this number can

be assumed to be

 zero.

 This value can be changed once local concentrations are known (i.e. as

 a

 result

of changes in v  and

  p

 as a function of the slimes thickness).

3

 As shown in Table 3

 y

±

 does not change significantly with ionic strength and therefore this assumption

is not unreasonable.

4 This is equivalent to assuming

 that

 \ =  y b  =  y c  = 0

 in Eqs. A1.1  to A1.8 (Appendix 1).

5

 The analytical solution for the case

 when

 activity coefficients are constant, and mobilities and diffusion

coefficients are independent of concentration is presented

 in

 Appendix

 2.

[215]

Page 242: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 242/392

Case A: constant  f  values

(A)

s . 6a

E O

•a

33

E Socuc

o

13

Distance from the Slimes/Bulk Electrolyte  Interface,  mm

(B)

o5

fio

e

<uoao

o

7 . 3 6

43 .  0

33 .  0 -

i

i

0 0 0

2 3 . 0 -

1 3 . 0 -

3 .  0 0 -

i  i i1.2

ocuc

o

Distance from the Sli me s/Bulk Electrolyte  Interface,  mm

Fig. 8  Variation in the slimes electrolyte composition as a function of  the distance  from the slimes/bulk

electrolyte interface, assuming no changes in activity coefficients (Case A).

[PbSiF6]b = 0.2 M   [HzSiFJb = 0.8 MRight scale: Changes in <& Left scale: Changes in [Pb+2L [SiF6'

2], and [H+](A) cd = 50 A m"2.  Derived ratios: <&e= 22.0 mV,  {Pb**J =22.1, {SiF6"

2

l = 4.71, and {H+}=0.38(B) cd = 200 A m

2

.  Derived ratios: Oe= 40.8 mV, {Pb+2)r=76.3 , {SiF6

2}r= 15.4, and {H+}=0.19

[216]

Page 243: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 243/392

Case B: constant   values

 in the

 presence

 of eddy diffusion

Fig. 8  shows  the concentration and migration potential  1

  changes across the

slimes layer for two different current densities. Both [Pb+2] and [SiF6

2] increase

linearly  as the slimes layer thickens. These increases are accompanied by a

quasi-exponential decay in [H+

]. As a direct consequence of the presence of

concentration differences across the slimes layer, a migration potential becomesestablished. Variations in  d> are given with respect to the bulk  electrolyte (<I> = 0

at the slimes/bulk electrolyte interface). The larger the slope of  d> with respect to

the distance from the bulk  electrolyte, the larger the electric field.

By comparing Figs. 8A and 8B, it can be seen that: (a) increases in current

density result in corresponding changes in {Pb+2}r, {SiF6"2

}r,  {H+}r, and <X>e;  (b) the

concentration values found at normal slimes thickness are impossibly high.

B. Case B: constant y< v a l u e s in the presence of  eddy   diffusion

In  the current interruption experiments discussed in  Chapter  4, ionic

concentration gradients were found to be present throughout the slimes layer.

The  largest decays in overpotential obtained upon current interruption were

observed in the vicinity of the slimes/bulk electrolyte interface (see Figs. 4.7 to

4.11). Correspondingly, the closer the potential probes were to the anode/slimes

interface the smaller the potential decay. The smaller decays were associated with

larger amounts of  Pb + 2

  and SiF6"2

 near the anode/slimes interface as compared

to  those  found near the slimes/bulk electrolyte interface. The difference inmagnitude of the overpotential decays can also be attributed to the presence of

natural convection.

During  lead dissolution  from  lead bullion electrodes, different convection

patterns may be present. These convection patterns change local concentrations

and  potentials across the slimes layer. An estimation of  these variations can be

obtained by re-plotting the data presented in Fig. 4.12 with respect to the distance

from the anode/slimes interface and as a function of the electrolysis time (Fig.  9).

The anodic overpotential for a fixed position within the slimes layer decreases as

the slimes layer thickens.  This  indicates that small yet significant changes in

1

 The electric

 field, X, at

 any

 point

 within the slimes layer is equal

 to

 the

 negative

 gradient of the

electrostatic potential at

 that

 point:

v -  d ° X 

~~dx

Thus,

 the electrical field increases

 in

 the

 opposite

 direction to the electrostatic

 potential.

 Likewise, positive

charges move

 in

 the direction

 of

 the

 electric field

  [51, p.348].

[217]

Page 244: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 244/392

Cass B: constant  values in the presence

 of

 eddy diffusion

153. ,_

8.8 1 . . . I •2  4

i .

•  I •  ' I  I

  J

I I L J _ J

8 6 8 18  12 14 16

Di s t a n c e  from  the Anod e/s l i mes Inte rf ac e, mn

Fig. 9 Changes in the potential of  the slimes electrolyte as a function of  the distance from the anode/slimesinterface.From the experimental data presented in Chapter 4, Fig. 4.12.

As the slimes layer thickens the potential for a fixed point away from the anode/slimes interface decreases.

concentrations are continuously taking place. These changes are not only

associated with natural convection but also with precipitation of secondary

products. This changes the physico-chemical properties of the slimes layer and

significantly hinders the ionic movement. Thus, from the data presented in Fig.  10,

it can be inferred that precipitation of secondary products takes place after -10

mm of slimes have been formed: While the difference in potential in the middle

of  the slimes remains nearly constant, a steep increase in the potential difference

between  the inner B and inner C reference electrodes can be observed after a

slimes thickness of  ~  10 mm. As a result of  the precipitation of  secondary products,

the inner potential rises because ions can no longer move at the same rate.

The predicted ionic concentration ratios presented in Fig. 8 are several fold

larger  than  those  experimentally measured (e.g. see  Fig. 4.21, and  13,41).

Furthermore,  their magnitude indicates that large differences in viscosity and

density across the slimes electrolyte can be present. These differences lead to the

development of  natural convection. The extent to which natural convection can

[218]

Page 245: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 245/392

Cass B: constanty, values in the presence of  eddy diffusion

8I\3

00

c0

a,

25

28

15

18

8  j  i i_

*  fiiiter-  1

0  I * n e r  A -

l i n e r  A

• Inner B

 X   i n n e r  B - • i n n e r C

J I l_

J L J  1__L

J I l_  _1 1_

8 2 4 6 8 18 12 14 16

Distance  from  the Slimes/Bulk  E l e c t r o l y t e  interface) mm

Fig. 10 Changes in the potential difference between the outer and inner reference electrodes as a function of the

distance from the

 slimes/bulk

 electrolyte interface.

From the experimental data presented in Chapter 4, Fig. 4.12.

The difference in potential between the inner reference electrodes was divided by their separation distance and

plotted in this figure.

be established is a function of the current density, electrolyte concentrationgradients, geometry and  size of  the electrode, porosity and tortuosity of  the slimes

layer, thickness of the slimes layer, and viscosity gradients.

Mixing  of electrolytes as a result of the presence of  natural  convection is

incorporated in the solution of the flux equations through the eddy diffusivity

term, D E 

 .  For a fixed amount of lead dissolved (i.e. for a fixed slimes thickness),

changes in D E  were assumed to comply with the following relationship l:

 x ; + aD

£

  = | p l n -  1 ...31

1 Eddy

 diffusion

 as expressed by Eq.

 31,

 incorporates

 mixing

 of slimes electrolytes as a result of both

natural

 and forced convection. It becomes extremely small at the anode/slimes

 interface

 and reaches a

maximum

 value (in this model) at the slimes/bulk electrolyte interface. At a

 fixed

 distance from the latter,

the contribution of eddy diffusion increases with time, because this point becomes more remote from the

anode/slimes interface. Therefore, eddy

 diffusion

 leads to an unsteady-state electrolyte

 composition

 and

thus to a time-dependent polarization at points within the slimes layer that are at a fixed distance from the

slimes/electrolyte interface.

[219]

Page 246: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 246/392

Case B: constant^ values in

 the presence of

 eddy diffusion

where:

x to ta i= Total slimes thickness, [mm)

x, = distance from the slimes/bulk  electrolyte interface at which point D  E   is to be computed,

[ x, <  XfetJ,  [mm]

a and P = arbitrary positive constants whose value depends on the electrolysis conditions:

a  [mm] and p [cm2

 sec"1

]

4 .  ee  i — xE-3

, ee a. 0 8 0 4 . 0 0 8 . 0 0  1 2 . 0

Distance from the Slimes/Bulk  Electrolyte Interface, mmFig. 11 Variation of  the Eddy diffusion constant, D  E , as a function of  the distance from the slimes/bulkelectrolyte interface, (a=lxl0"

2 mm and P=5xl0"* cm2 sec"1)

D  E  values were computed for three x, values (4,10, and 14 mm) using the following equation:

F   ~   *, + aD

£

  = IP-ln^_-1

1 6 .  e

Eq. 31 can be used to obtain D E 

 values across the slimes layer for a fixedslimes thickness. As shown in Fig. 11,  D

  E   decreases  logarithmically from  the

slimes/bulk electrolyte interface towards the anode/slimes interface. For a fixed

point away  from  the anode/slimes interface, the thicker the slimes layer, the

smaller D E 

. This is equivalent to implying that because of  the increasing thickness

of  the slimes,  natural convection will not penetrate deep within the slimes layer,

even though large density differences can be found there (i.e. even in the presence

of  large [Pb+2]e and [SiF6"2]e). Wenzel's [3,4] experiments indicate that such patterns

in convection are operative during the dissolution of lead by the  BEP.

[220]

Page 247: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 247/392

Cass

 l:

 cons

 tan

 J-J values

 in the presence

 of eddy

 diffusion

z i . e  -

H p i**t  i i  I  i  i i i  i  i i i i  i  i  i i i i  i i i i  I  i  i  i i  i  i i  i i  l i i i  i  I  i i  i  i i i i

  I I

e e e  2 .36  4 . 7 2  7 . 0 8  9 . 4 4  1 1

Distance from the Slimes/Bulk Electrolyte Interface, mm

(B)

I

•a

i 6

o

C

o

33

1 .

  e e

1 .  4 4

1 .  08

o

B

.720

oU

.  360

=_   CS1F6-2]

r

[SiF6-2]

e e e ^ ' ' 1  1

.  0 0 0

7 2 . 0 -

36 . O

 b * a i « B .  0 -

24.0

8 . 00

1 1 1

i

•ai•s

g

2

1 2 . 0

Distance  from  the  Slimes/Bulk   Electrolyte Interface,  mm

Fig. 12  Variation in the slimes electrolyte composition as a function of the distance from the slimes/bulk

electrolyte interface, when changes in eddy diffusion are accounted for (Case B).

[PbSiF6]b = 0 .2M  [H 2SiF6]b = 0.8M

Right scale: Changes in 4>  Left scale: Changes in [Pb*2

], [SiF6'2], and [H

+

]

(A)  cd = 50 A m"2.  a=lxl0~ 2  mm  p = lxlO~*  cm2

sec"1

Derived ratios: <De= 21.6 mV,  [Pb+2)=3.80,  {SiF6

2

}r= 1.30,  and {H*}r=0.68

(B) cd = 200 A m"2. a=lxl0" 2

  mm  P = 5xKT*  cm2

sec'1

Derived ratios: <D = 71.6mV, {Pb+2

} =4.51, {SiF6'2} = 1.35,  and {H*} =0.56

[221]

Page 248: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 248/392

 Anodic overpotential  values derived  horn the mathematical  mo

Fig.  12  shows  the  concentration  and  potential gradients obtained  by

incorporating  eddy diffusion  in the  overall diffusion term,  CD* . The local

concentrations and potential differences shown in this figure are those predicted

to be present at the point at which the slimes layer has reached a thickness of

10 mm. By incorporating eddy diffusion, large decreases in the magnitude of thepotential gradients are obtained (compare Fig.  12 with Fig.  8) . Furthermore, the

calculated mean  slimes  electrolyte concentrations  are  closer  to  those

experimentally found than  those  predicted without incorporating  an  eddy

diffusion  term  \

C. Anodic  overpotential values derived  from the mathematical model

The  experimental d ata used in Exp. 1X2 (see Chapter 4) will be used to show

how the mathematical model can be used to predict anodic overpotentials.

1 . 60

1 . 28

\  . 9 6 0

1g*33

  . 640

i

V

Q

  . 320

[SiF6-2

]

i

000-k  1 1 1

. 0 0 0

8 . 00

I  I I  I   I I I  I  I I I  I  i i i  I  i i i

4 . 0 0  8 . 0 0  12 .0   16

Distance from the Slimes/Bulk Electrolyte Interface,-  mm

Fig. 13

 Variation

 in the

 slimes electrolyte

 composition as a

 function

 of the

 distance

 rom

 he slimes/bulk

electrolyte interface, when changes

 in eddy diffusion are accounted for

 (Case

 C).

1E e

ii

-  c

 z   1

[PbSiFg]^0.28M  [HzSiFJfc = 0.74M  a=lx l0 "

2

  mm   P = 5xlfX

4

  cm

2

sec

1

Right scale: Changes in

 <>  Left scale: Changes in

 [Pb+2], [SiF

6

'

2

], and [H+]

cd = 139 A m

2

.  Derived

 ratios: «D = 72.0 mV, {Pb+2

}=3.48, (SiFy

2

}

 = 1.38, and {H+} =0.57

1

 The

 predicted

 mean

 ionic concentrations within

 the

 slimes

 layer

 can

 be

 made

 to

 match

 those

experimentally measured by changing the eddy diffusion parameters

 a and p.

[222]

Page 249: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 249/392

 Anodic overpotential  values derived  from he mathematical  mo

(A)

400 .

360 .

320 .

IO

3

"SoO1

BCJ

V

3

280 .

240 .

200 . _L _L

.00O 4.00 8.00 12.0

Distance  from  the Sli mes/Bulk Electrolyte Interface, mm

(B)

16.0

1 . 40  i — > « E  0-

^1.20 —

Q

i .

  0 0

CJ

CO

4J

800

600

-  Density g/cm3

Kinematic Viscosity,  cm2

/sec

i  i i  _i  i i i i i i_

K  E  :0

•  • i

.000 4.00 8.00 12.0 16.0

Distance  from  the Slimes/Bulk Electrolyte Interface, mmFig. 14 Variation in physico-chemical properties of  the slimes electrolyte as a function of  the distance from theslimes/bulk  electrolyte interface.

From the data presented in Fig. 13

(A) Variation in electrical conductivity K  (B) Variation in density  p, and in kinematic viscosity, v.

[223]

Page 250: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 250/392

 Anodic overpotenial  values derived  from the mathematical  mod 

The  migration potential and concentration profiles shown in Fig. 13 were

obtained for the  initial bulk  electrolyte composition and current density used in

the  case  study presented in Chapter 4 (Exp. LC2). To simulate the presence of

eddy diffusion, the following values were assumed: a = lxlO'2

 mm and P = 5x10  4

cm

2

  sec"

1

.From the data presented in Fig.  13, changes in  K ,  p, and v, as a function of

the distance from the slimes/bulk electrolyte interface were obtained (see Fig. 14) \

As shown in Fig.  14A,  K  decreases continuously as the slimes electrolyte gets

depleted in H+ and enriched in Pb + 2  and S1F6"

2. From these data, the total ohmic

drop across the slimes layer was computed using the following equation:

The  results of the numerical integration of the data presented in Fig. 14A,

according to Eq. 32, are shown in Fig.  15. The concentration overpotential shown

in this figure was computed according to the following equation:

RT

  a

nM

Tlc = ™—Trin  ——  ...33 Z  PB+1F   a^+2(bulk)

Using  Eqs. 32 and 33, and the computed d> values, the total anodic

overpotential can be obtained as follows:

'H>ri>rilf e r t + q>  ...34

As shown in Fig.  15, the computed anodic overpotential, r^, is smaller than

that experimentally measured,  ri A. The difference in potential between ru and rjA

decreases as the slimes layer thickens until it practically disappears towards the

end of the electrorefining cycle (at -14 mm of slimes). The smaller values with

respect to TJ a at smaller slimes thicknesses,  are due to the fact that TJ a was measured

as a function of time, (i.e. with respect to a moving interface)  whereas ru was

obtained from concentration gradients computed at a fixed time (i.e. with respectto a fixed interface). That is, the model predicts anodic overpotentials only after

a pseudo-steady  state  has been established.  Thus,  the  lowest experimental rjA

values shown in Fig. 9 (those obtained at the end of the electrorefining cycle) are

nearly equal to the computed shown in Fig.  15. The small differences between

1

 Changes in

 K ,

 p,

 and

 v

 were

 computed

 from the local ionic concentration changes using Eqs. 19'to 21.

[224]

Page 251: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 251/392

 Anodic overpotenial  values derived  from the mathematical  mod

the computed and experimental overpotentials can be related to variations in the

corrosion potential of the lead anode as the slimes layer becomes exposed to wide

ranges of  electrolyte  compositions.

. e e e  4 . e e  8 . e e  1 2 . e  l e . a

Slimes Thickness, mmFig. 15 Comparison between the  experimental (unsteady-state) and predicted (steady-state) anodic

overpotentials.

Experimental anodic overpotential from Exp. LC2 (outer reference electrode measurements corrected foruncompensated ohmic drop).Predicted anodic overpotential from the solution of  the  Nemst-Planck  flux equation and  from the data presentedin Fig.  13.

The computed overpotential contains contributions from ohmic resistance, concentration overpotential (of  Pb*1),and migration potential (caused by unequal diffusivities of  anions and cations). The ohmic and concentrationoverpotentials are shown.

[225]

Page 252: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 252/392

Summary

The Betts electrorefining process  (BEP) for lead is successful  because it

retains most noble impurities in adherent anode slimes while depositing rather

pure (>99.99%) lead cathodes. The anode slimes account for only 1 to 4% of the

weight of dissolved lead, and so represent an enrichment of a factor of 25 to

100 in the noble impurities (particularly precious metals) present in lead

bullion.

A review of the Betts Process as described in the literature was presented

in C h a p t e r  1.  From this review, important attributes of the Betts process w

identified:

1) The anode slimes formed upon selective removal of lead from the impure

bullion  electrodes are adherent and thick (> 1 cm).  X-ray diffraction on  theseslimes has identified mainly oxides and lead fluoride, but these results may have

been compromised by accidental oxidation of samples. The actual (in-situ) slimes

are more likely electrically conducting filaments of noble metals and intermetallic

compounds,  sometimes  supplemented by precipitated  PbF2  and Si0 2  (both of

which have been  detected in anode slimes precipitates).

2) It is well known that anode polarization must be limited to less than 200

mV  to avoid bismuth dissolution and transfer to the cathodic deposit.  This,

together with the reported X-ray diffraction data provides evidence that in-situslimes contain metallic bismuth.

3) Electrolyte extracted  from within slimes layers shows that it is markedly

enriched in lead fluosilicate and somewhat depleted in fluosilicic acid. The change

in  the inner  slimes  electrolyte concentration is more abrupt towards the

slimes/anode interface and accounts for the hydrolysis of  SiF6"2

  ions:

3Pb* 2

 + SiF;2 + 3H 20  ->  3PbF 2 + H 2 Si03  + AH*

4)  Fundamental electrochemical  studies  have evaluated the  effects  of

additives such as lignin sulphonates, glue, and aloes extracts as levelling agents

in cathode deposition. The presence of  these additives in the electrolyte for lead

refining may affect both the cathodic and the anodic overvoltages.

Among the most important processes in Betts refining are those which take

place within the slimes layer. Thus, across this layer, ionic concentration gradients

become established and depending on the electrolysis conditions  (anode

composition, current density, electrolyte properties) secondary reactions

[226]

Page 253: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 253/392

 Summary

(hydrolysis, secondary products precipitation, dissolution of  noble impurities) can

take place. This research studied these processes from a fundamental perspective

in order to get a better understanding of  the industrial operation of  the BEP. Some

of  the fundamental questions this study addressed were:

a ) What are the components of the anodic polarization and how do theyrelate to the hydrolysis of the acid and the precipitation of secondary products?.

b)

  Under which thermodynamic conditions can noble compounds present

in the slimes layer dissolve?

c)

  Are the filaments of noble  metals  in the  slimes  layer electrically

conducting?

d )  What effect do the addition agents have on the anodic process?

Furthermore, this study was directed to the formulation of a mathematical

model to describe the changes in concentration and potential across the  slimes

layer.

In C h a p t e r s 2 a n d 3  the experiments designed to address  so

questions  were presented. In the electrochemical experiments, the use of a high

purity  lead wire as a reference electrode was rationalized based on the high

reversibility  of lead in  H 2SiF 6-PbSiF 6  electrolytes and the  absence  of a  liquid

 junction  . Also the components of the anodic polarization were individually

analyzed and the use of transient electrochemical techniques was proposed to

assess their magnitude and impact on the anodic processes.

The electrochemical processes taking place at open circuit or during anodic

dissolution of lead electrodes were studied using "in-situ" transient techniques

which include:

a ) Single potential and current step  (i.e. potentiostatic and galvanostatic

dissolution including chronopotentiometry).

b)

  Current interruption.c)  A C  impedance in the presence and in the absence of  a net Faradaic current.

d )  A variation of the Small Amplitude Cyclic Voltammetry (SACV) technique:

during the A C  impedance measurements the transient variations of potential and

current were measured simultaneously.

[227]

Page 254: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 254/392

 Summary

The  results obtained  from  electrochemical measurements  were

supplemented with physico-chemical data on experimentally measured electrolyte

properties (electrical conductivity, kinematic viscosity, and density) and with data

from  "in-situ"  and "industrially recovered"   slimes electrolyte compositions. Also

scanning electron microscopy and  X-ray  diffraction were  used to analyze thephases and compounds present in the slimes obtained during dissolution of lead

bullion electrodes as used in the Betts refining process.

C h a p t e r  4  is a  case  study in which a lead bullion electrode

galvanostaticaUy dissolved. Reference  electrodes  within the lead anode  were

incorporated  to follow the difference in potential between the  slimes  electrolyte

and  the lead anode. Measurements on the  slimes  electrical conductivity were

made by following the difference in potential between a bare Pt wire inserted in

the  slimes layer and the lead anode. In these measurements, it was found thatthe difference in potential between the Pt wire and the lead anode was negligible.

The  Pt wire and the anode appeared to be short-circuited indicating the high

electrical conductivity of the slimes  filaments.

Samples of the  slimes  electrolyte  were  withdrawn  in-situ  and their

composition was related to the transport  processes  across the  slimes  layer.

Chemical analysis of  Si and F at a fixed point in the slimes electrolyte,  show that

their total concentration decreases as the slimes layer thickens. These decreases

were related to time dependent  processes such as changes in convection due to

movement of the anode/slimes interface and/or gradual precipitation of

secondary products. The noble impurity concentrations was very small

(SbO+~0.2mM, AsO+~0.2mM, and BiO+~0.01mM) and did not change significantly

during the refining cycle.

Upon  galvanostatic dissolution, ionic concentration gradients become

established and the anodic overpotential increases as the slimes layer thickens.

On the other hand, upon current Interruption the anodic overpotential decays,

first abruptly, (as the uncompensated ohmic drop, Tj

n

, disappears) and then slowly

(due to the presence of a back   E.M.F.  created by ionic concentration gradients

that decay slowly). The uncompensated ohmic drop is caused by ohmic resistance

of  the mixed electrolyte between the reference  electrodes and the solution within

the  slimes  layer. Across the  slimes  layer there is not any measurable

uncompensated ohmic drop  because  of the presence of ionic concentration

gradients.

[228]

Page 255: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 255/392

 Summary

Current interruption measurements showed that (A) concentration gradients

exist across the slimes layer, (B) inner solution potentials within the slimes layer

can be larger than those measured from reference electrodes located in the bulk

electrolyte (C) secondary products can shift the inner solution potential to negative

values which reverse upon re-dissolution (D) ionic diffusion is seen upon currentinterruption  but it is complex and difficult to model due to the presence of

processes that can support the passage of  internal currents.

X-ray diffraction and scanning electron microscopy analysis on the  slimes

layer indicated that secondary reactions took place: near the anode/slimes

interface the "cellular" microstructure was infiltrated with smca-contoining

products.

I n C h a p t e r 5 further studies on the components of the anodic polar

were performed by using "pure" lead (>99.99%) working electrodes. When pure

lead dissolves, the uncompensated ohmic drop increases as the

electrode/interface retreats. Concentration overpotential accounts for the

remairiing polarization (activation overpotential is negligible) and it is a function

of the electrolysis time and the current density. On the other hand, in the presence

of a net anodic current, dissolution of  Pb + 2  does not proceed urihindered when

addition agents are incorporated in the bulk electrolyte. Because of the addition

agents,  a finite activation overpotential  (rjac<10 mV), was observed using

chronopotentiometry. The DC results  were  confirmed by AC impedance

measurements which indicated unambiguously that addition  agents  have an

impact on the anodic and rest potential behaviour of lead electrodes.

I n C h a p t e r  6 the components of the anodic polarization measured

dissolution of lead bullion electrodes were resolved. The polarization components

were  obtained by analyzing the potential and current dependance upon

application of  a small amplitude sinusoidal waveform. This dependance was found

to be linear in the low overpotential region (< 250mV). Thus, upon subtraction of

the uncompensated ohmic  drop,  the remaining polarization is due to the

"apparent" ohmic drop of the  slimes  electrolyte and to  liquid  junction and

concentration overpotentials. These components are directly linked to the

electrolysis conditions and to the slimes layer structure. Furthermore, the ratio

of  these  terms can be used to obtain the point at which secondary products

precipitation starts. Changes in this ratio can also be related to the anodic effects

caused by the presence of addition agents

[229]

Page 256: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 256/392

 Summary

A C  impedance measurements performed in the presence of a net  Faradaic

current  showed that the impedance increases uniformly as the slimes layer

thickens up to the point at which noble impurities start to react.

The  difference in the magnitudes of the impedance arcs measured under

galvanostatic and potentiostatic conditions was attributed to the presence ofsecondary products blocking the anode/slimes interface and the ionic transport.

After  a certain electrolysis time under potentiostatic conditions, secondary

products precipitate continuously. This significantly increases the impedance of

the system which can reach values as high as 1000  Qcm 2.  Under  galvanostatic

conditions concentration gradients are not as  steep and this results in smaller

impedances (of the order of 10 Qcm 2).

Under  current interruption conditions the impedance  decreases  as the

concentration gradients relax and secondary products re-dissolve. The change in

shape of the impedance curves as compared to  those  obtained while in the

presence of  current, permits a distinction to be made between the contribution

from the slimes filaments and that from ionic concentration gradients and charge

transfer  at the anode/slimes interface. It was found that charge transfer and

capacitative phenomena related to the slimes filaments do not contribute

significantly to the impedance of the system.

Three  electrical analogue models were used to describe the  A C   impedance

measurements. Two of  these analogues were used to model the impedance changes

observed while in the presence of a net Faradaic current while the third was found

useful in describing the phenomena observed upon current interruption. These

models were derived from a proposed analogue representation of a lead bullion

electrode covered by a layer of slimes, as developed  from a set of assumptions.

Each of  the components in the derived electrical circuits has a reasonable physical

meaning. Changes in the analogue parameters present in the electrical circuits

were related to: (A)  the  D C  conductivity of the slimes electrolyte, (B)  the charge

transfer  resistances associated with the lead dissolution process,  ( c )  the

distributed1  nature of the anode/slimes and the slimes/slimes electrolyte

interface, and (D) the distributed capacitance generated by concentration gradients

present In the slimes electrolyte.

1 A "distributed element" in an analogue model represents properties of the system distributed over

macro distances, such as ionic gradients in solution across the slimes layer, or such as slimes

filament/electrolyte interfaces distributed

 from

 the anode/slimes to the bulk electrolyte/slimes interface.

[230]

Page 257: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 257/392

 Summary

Overall,  A C   impedance measurements were found useful in describing the

presence of  concentration gradients and the onset of  the precipitation of  secondary

products.

In Chapter 7 a thermodynamic analysis of the processes that can take place

across the slimes  layer was presented. Thus, Eh-pH diagrams for the quaternarysystems  Pb-Si-F-H20, Sb-Si-F-H20, As-Si-F-H2O t  and Bi-Si-F-H20  were found

useful in describing the  sequence  of reactions that can take place across the

slimes layer. In the recirculating electrolyte  for lead refining and In the electrolyte

samples extracted from the slimes layer, the compositions  of  the noble impurities

agree with the predictions of the  Eh-pH diagrams ([Sb]>[As]>[Bi]). The nature of

these elements and related secondary products (such as  PbF2 and Si02) can be

assessed experimentally only if the slimes are properly washed and then kept in

a dry atmosphere.

From  changes in  K   as a function of composition for pure H 2SiF 6 and  PbSiF6

solutions,  individual equivalent conductivities (A,) in H2SiF6-PbSiF 6 mixtures were

obtained by assuming that A,  2 = X  pb + 2 . From  the ^ values and ionic

concentrations, transference numbers were obtained. Changes in transference

numbers as the slimes layer thickens can then be derived  from  local ionic

concentrations. Moreover, the diffusion coefficient for  Pb+ 2  obtained  from X  pb+2

values  {D ph+2 = 5.0x IO"6 cm2/sec)  agrees  with that obtained  from

chronopotentiometric measurements  [D pb+2 = 5.3±0.%x  IO"6

 cm2

/sec).

Finally,  based on the experimental and thermodynamic findings, a

mathematical model based on the Nemst-PIanck flux equations was developed.

The  resulting set of simultaneous differential equations was solved using a finite

interval algorithm so that adjustments in A , y,  and £>, can be incorporated  \

The  model predicts steady  state  ionic concentrations and potential gradients

across the slimes layer (i.e. it does not predict local concentration changes as the

slimes thicken). Experimentally, this steady state is not observed, with the result

that a convective (eddy diffusion) component must be invoked in order to account

for  an unsteady  state,  that is, for decreasing local lead concentrations and

polarization at a fixed point in the slimes electrolyte as the anode/slimes interface

retreats.

1 a), is the overall diffusion coefficient for species i, and includes the contributions of molecular and eddy

diffusion.

[231]

Page 258: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 258/392

 Summary

The  inclusion of mixing due to eddy diffusion (equal for all ions) accounts

for the unsteady-state observations if the eddy diffusion contribution increases

at a fixed distance  from  the slimes/electrolyte interface as the anode/slimes

interface retreats. The  form  of the proposed eddy-diffusion component

 D  = | p • In—  |  contains this provision even though it is a simple  empirical

equation. If a and  P in this equation are adjusted so that the model fits the

polarization across the whole slimes layer, it also predicts quite accurately the

polarization of  intermediate sections, even though these polarizations decline (i.e.

are in unsteady state) with respect to the outer reference electrode measurements.

The  mathematical model can be used to predict  (a)  ionic concentration

gradients (b) total polarization values across anode slimes. The thermodynamics

of   the system can be incorporated to predict the  onset of hydrolysis and the

dissolution of noble elements.

[232]

Page 259: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 259/392

 Summary

Table  1 Summary of   information that  can be  derived

from using transient electrochemical techniques

 Addition

 Agents

DC

Faradaic

Current

Slimes Secondary

Products

DC/AC

Analysis

Comments

No No No No A C

Nearly reversible

  Pb/Pb

+2

  equilibrium

 (tiac- 0):  Ra and C

d

, not

measurable.

 Impedance

 can be described by a CPE analogue.

Diffusion coefficients cannot be obtained unless the electrode

surface is smooth and the hydrodynamic conditions are

 controlled.

No No Yes No A C

Under

 rest potential conditions and in the

 absence

 of

 concentration

gradients

 within

 the slimes electrolyte:  (Tia.,-^0) for the

 Pb/Pb

+2

equilibrium.

 The  analogue parameters derived from analysis of the

impedance spectrum were similar to those obtained

 when

 pure

lead was being studied. The slimes

  layer

 does not appear to

contribute significantly to the measured impedance.

Yes No No No A C Addition agents decrease the

 /

0

 values

 for the

 Pb/Pb

+2

 equilibrium.

Ro and

 C

d

can be obtained from analysis

 of

 the impedance curve.

Yes/No

Yes Yes Yes/No

D C

The components of the anodic overpotential  (n

A

=frflRJ were

obtained by

 superimposing

 a low amplitude

 sinusoidal

 waveform

at preset slimes thickness. Changes in the resistivity of the

entrained electrolyte and of the liquid junction and corrosion

potentials  were  used to analyze the conditions under which

hydrolysis can take place. In the absence of addition agents

m

values

 remain nearly

 constant whereas

 in the presence of addition

agents  JJ- decreases. This indicates  that addition agents can

enhance the concentration gradients

 within

 the slimes electrolyte.

Yes/No No Yes Yes/No D C

Upon  current interruption concentration gradients relax and

secondary products re-dissolve. Changes in  T|

a

  as a function of

time were complemented

 with b and IR

m

  data obtained at preset

current times. Upon current interruption the entrained electrolyte

resistivity decreases monotonically with the corrosion (or "rest-

potential).

Yes/No

Yes Yes Yes/No

A C

The impedance in the

 whole

 frequency range increases as the

slimes

 layer thicken.

 These increases are uniform only up to the

point at which noble compounds dissolve. R

s

  obtained from the

high

 frequency end of the impedance spectrum is nearly

 equal

 to

that

  obtained from current interruption measurements. Two

electrical circuits were used to fit the experimental data. These

circuits were derived from a general analogue model

 that

 was

based on a set of assumptions derived from empirical data. The

derived electrical analogue parameters  were  linked to the

resistance of the entrained electrolyte, the charge transfer

resistance for the Pb*

2

 dissolution

 process,

 and to the capacitative

phenomena

 associated to the slimes filaments and the slimes

electrolyte. The extent to which ionic concentration gradients

become established and their relationship to the hydrolysis point

were analyzed using these electrical analogues.

Yes/no

No Yes Yes/No

A C

Upon current interruption the impedance decreases. These

decreases were modelled by a modified Randies circuit. R

d

  and

C

d i

 were small indicating

 that

 capacitative phenomena associated

to the slimes filaments can be neglected.

[233]

Page 260: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 260/392

Conclusions

1)  A tJiennodynamlc analysis of  the system indicates that the slimes electrolyte

being depleted in acid and enriched in PbSiF6 can cross a threshold which

marks  the  onset of precipitation of secondary products, namely  PbF2 and

Si0 2.

2)  Addition agents s i g n i f i c a n t l y affect the anodic process

layer (In lead electxorefiiiing addition agents are added for cathodic purposes

and ideally should have no anodic effect).

3)  The filaments contained wit±iin the  slimes layer are highly conductive and

are grounded to the anode.

4)  Upon  galvanostatic dissolution, ionic concentration gradients become

established and the anodic overpotential increases as the  slimes  layer

thickens. Abrupt increases in overpotential can be observed when hydrolysis

and  precipitation of secondary products (such as  PbF2  and  SiOJ  occur.

Overpotential  increases of sufficient magnitude are accompanied by

dissolution of noble impurities present in the proximity of the slimes/bulk

electrolyte interface.

5)  Upon current interruption the anodic polarization decays first abruptly (as

the uncompensated ohmic drop disappears) and then slowly ( due to the

presence of  a back  E.M.F. created by ionic concentration gradients that decay

slowly).

6)  The anodic polarization has four contributions that can be obtained

experimentally using transient electrochemical techniques:

1) Uncompensated ohmic drop

2)  "Apparent" ohmic drop of the slimes electrolyte.

3) Liquid Junction or "Migration" potential4) Concentration Overpotential

7)  A mathematical model based on the Nemst-Planck flux equations was

developed. This model can be used to predict (a) ionic concentration gradients

(b) total polarization values across anode slimes. The thermodynamics of  the

system  can be incorporated to predict the  onset  of hydrolysis and the

[234]

Page 261: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 261/392

Conclusions

dissolution of noble elements. Thus, the mathematical model could be used

industrially as a control criterion for modifying the current density as the

slimes layer thickens.

These studies show that the process could be "improved" (in a performance

sense) if precipitation of secondary products were prevented or limited. To

do this, the current density could be adjusted as the slimes layer thickens

and the H2SiF 6 content of  the electrolyte could be increased. Further, methods

of  decreasing the final slimes  thickness might be devised, such as casting

txiinner or corrugated anodes.

[235]

Page 262: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 262/392

Recommendations

 fo r

 Further Work

Recommendations  for Fur ther  Work

1) The Nernst-Planck  model should be tested and modified to make it predict

the concentration and potential gradients observed in the industrial operation of

the Betts electrorefining process.

2) The eddy diffusion coefficient witiiin the  slimes layer is a function of the

electrode height, as well as  slimes permeability and slimes thickness. Its value

should be measured and related to electrode polarization for various electrode

heights, especially practical heights found in the industry.

3) The experimental procedures generated in Chapters 4 to 6 can be used to

expand the applicability range of the mathematical model here proposed. An

experimental separation of the parameters accounted for in the model calls for

the use of a horizontal anode  (below the cathode) configuration. The immediate

effect  of this change  will  be the presence of large ionic concentrations

approximating  those  computed  from  the model in the  absence  of natural

convection. Furthermore, current interruption decays  will have time  constants

related strictly to molecular diffusion and migration without the confusion

introduced by natural convection. Vertical electrolysis using electrodes of  different

height should also provide information on the presence of  natural convection and

its relationship to the establishment of concentration gradients. Studies using

rotating disk  electrodes at very low rotation speeds (to avoid detachment of  slimes)can also be used to improve the predictions of the model. All  these studies can

be complemented by measuring, at preset times, the resistance of the  slimes

electrolyte and the liquid junction and concentration overpotentials (e.g. by using

a superimposed small amplitude cyclic waveform as described in  Chapter  6,

section III). These values can be compared directly with those predicted by the

mathematical model.

4) The transport processes witxiin the  slimes layer could be related to the

Navier-Stokes equation as an ultimate goal in modelling.

5) The extent to which concentration gradients become established across

the  slimes layer can be further studied by adjusting the flow of current to avoid

precipitation  of secondary products and impurities dissolution. Periodic

interruption of current together with periodic current reversal can be used to

accomplish those  objectives.

[236]

Page 263: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 263/392

Recommendations

 for  Further Work

6) In the industrial operation of the BEP the components of the anodic

overpotential could be deterrnined "in-situ" using superimposed low amplitude

 AC  currents at  preset slimes  thickness.  This  should provide with enough

information for modulating the current density or changing the  bulk   electrolyte

composition (including concentration and nature of  addition agents).

[237]

Page 264: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 264/392

BIBL IOGRAPHY   Chapter 1

[I]  AT. Hodge, Sci. Am., 252 (6) (1985) 114.

[2]  N.H. Gale and Z. Stos-Gale, "Lead and  Silver  in the Ancient Aegean", Sci. Am., 244(6) 176-192 (1981) .

[3]  D.H. Ward,  "Scientific And  Technological   Developments In Lead Smelting  And Refining",  The  AusIMM  G.K. Williams Memorial Symposium,  Scientific AndTechnological  Developments  In Extractive Metallurgy [Proc. Conf.], SymposiaSeries No. 43, Australia, p. 25-32 (1985).

[4]  S.J. Pedley. R  Widmark, AO. Adami, H. Maczek, G. Althabegoity, J.D. Bendit,and S.A Hiscock,  "Lead: report  of  the Seventh Annual Commodity Meeting", Tr.Inst. Min. Met. A, 92,  135-150A (1983).

[5]  C A Sutherland,  "Modernization of Zinc Plant  and  Lead Smelter  at  Trail, BritishColmnbid', CHM Bull.. 81 (912), 85-89 (1988).

[6]  T.RA  Davey."The Physical  Chemistry Of Lead  Refining", Lead-Tln-Zinc '80, [Proc.Conf.],  J.M . Cigan,  T.S. Mackey, And T.J. O'Keefe Eds.,  AIME  Symposium,p. 477-507 (1980).

[7]  Anonymous,  "The Refining   of   Lead   Bullion  by the  Electrolytic Method  andComparison  with Thermal Refining", United  Nations,  Industrial  DevelopmentOrganization Vienna: Technological Developments in Lead and Zinc Products andtheir significance to Development Countries  (1969) Chapter 7.

[8] R  Kleinert," Current  Status of  Lead-Refining  Process", Erzmetall, 22 (7), 327-338(1969). (Translation National Translations Center,  NTC  11F-81-22057).

[9]  T. Nakamura, F. Noguchi. Y. Ueda, and H. Ito, "A Basic Study on the Oxidation

Smelting   of   Lead Sulphide",  The AusIMM  Adelaide Branch,  Research andDevelopment in Extractive Metallurgy [Proc. Conf.], Australia, p. 85-94 (1987) .

[10]  G.C. Quigley and J.V. Happ. "Kinetics of  Arsenic Removal from Lead  Bullion:',  TheAusIMM Adelaide Branch, Research and Development in Extractive Metallurgy[Proc. Conf.], Australia,  p. 187-193(1987).

[II]  J.N. Greenwood,  "The Refining  and  Physical  Properties of Lead',  Metall. Rev., 6(23), 279-351 (1961).

[12] L. Gmelln, "Handbuch  der  Anorganlsche Chemie", Verlag  Chemle-GMBH,Weinheim/Bergstrasee, Germany, System No. 47 Pb [B2], (1972) p. 364-369.

[13] I. Molnar, Z. Horvarth, and I. Meszaros, "Preparation of Extreme Purity Metals",Magy. Alum., 21 (11-12), 413-420 (1984)  and 22 (5), 189-192 (1985).

[14]  M. WadaandT. KobayasM,"Treatrnento/SUmes fromI adElectrorefining;',  NipponKogyo Kaishi, 90 (1035), 370-373 (1974).

[238]

Page 265: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 265/392

 Bibliography  Chapter  1

[ 15]  S. Tasai  And T.  Tanaka, "Removal  Of  Arsenic From Lead Anode Slime",  Bull.  F

Eng.  Hokkaido  Univ.,  122, 1-7 (1984).

[16] M . Fujimori,  H . Imazawa,  T. Osawa,  and K. Baba,  "Current   Investigations  by Sumtmoto  into  the Treatment of Slimes", Mineral  Processing  and  Extractive

Metallurgy [Proc. Conf.], T he  Institution of  Mining and  Metallurgy, M.P. Jones  and

P. Gill  eds., London, p. 421-426  (1984) .

[17] L. Chuanyan  and Z.  Peihua,  Mineral  Processing  and   Extractive Metallurgy [Pr Conf.],  The Institution  of  Mining  and Metallurgy,  M.P.  Jones and P.  Gill  eds.,

London,  (1984) p. 699.

[18]  T.  Tanaka, "Studies On Oxidizing  Roasting  Of  Lead Anode Slimes",  Bull.  Fac. E

Hokkaido Univ.,  48. 25-37 (1968).

[19] Y. Hoh, B. Lee, T. Ma , W. Chuang and W. Wang,"Anode Slime Treatment Process",

European Patent Application, Applic. No. 81301045.1, Filed  March  12, 1981, Int.

CL  C22 B 3/00,  C22  B B/ 04 .

[20] R   Guerreiro.  E .  Sentiment!  and I.  Vittadlni,"Metal  Recovery",  U.K. PatentApplication  GB  2118536A  filed  Mar.  23, 1983.

[21]  T.  Tanaka  and T.  Midorikawa, "Oxidation  Kinetics of  Antimony  in Lead Antimo Melts",  J . Less-Common  Met.,  15, 201-205(1968).

[22] S.  Dianbang,  "Lead   Electrorefining   at   Shenyang   Smelter,  Chind',  Miner

Processing an d  Extractive Metallurgy  [Proc.  Conf.],  The  Institution of  Mining and

Metallurgy,  M.P.  Jones and P. Gill  eds., London, p. 599-605 (1984).

[23]  D.S.  Flett "Hydrometallugy of Lead',  Trans.  Instn.  Min.  Metall. C , 94C,  232-234

(1985).

[24]  M .M . Wong,  F.P.  Haver And R G .  Sandberg,"Ferric Chloride Leach Electrolysis ForThe Production  Of  Lead",  Lead-Tin-Zinc  '80,  J . M .  Cigan,  T.S.  Mackey,  And T.J.

O'Keefe Eds.. AIME  Symposium, p. 445-454 (1980).

[25] J . M . Demarthe  And A  Gorgeaux,  "Hydrometdllurgical   Treatment Of   LeaConcentrates",Lead-Tin-Zlnc '80, J . M .  Cigan,  T.S.  Mackey,  And T.J. O'Keefe  Eds.,

AIME Symposium,  p. 426-444 (1980).

[26]  A Y . Lee.  A  Wethlngton. and E . Cole Jr. , "Hydrometalturgical  Process for  Producin Lead  and   Elemental  Sulfur  from Galena Concentrates",  U.S.  Bureau  of  Mines, 

9055 (1986).

[27]  A G .  Betts.  "Lead Refining  B y  Electrolysis".  J .  Wiley and  Sons.  New  York,  1908.[28]  A G .  Betts,  "Electrolytic Refining   of  Lead   and   Lead Alloys",  U.S. Patent  71327

January  9, 1902.

[29]  A G .  Betts,  "ElectrodepositedLead',  U.S.  Patent  713278.  October  9. 1902.

[30]  A G . Betts. "Treating  Anode Slimefromthe Electrohj  tic Refining  of Lead',  U.S.  Pa

918647. J a n 23, 1907.

[31]  A G . Betts, "Treating  Slimesfrom Electrolytic Refining  of Lead',  U.S.  Patent 8913

Dec  8 , 1906.

[32]  A G . Betts "Electrodeposited  Lead',  U.S.  Patent  126576,  October  9, 1902.

[239]

Page 266: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 266/392

 Bibliography  Chapter  1

[33]  D.L. Thomas.  C .J .  Krauss  and R C .  Kerby, "Betts Lead  Electrorefining  at  Cominc", TM S  paper selection A81-8,  TMS-AIME,  Warrendale.  PA  (1981).

[34]  P.F.  Mclntyre. "Electrolytic Lead  Refinery, Betts Process,  The  Consolidated  M and  Smelting  Company of  Canada Limited',  Trans. Amer. Inst. Min.  Metall. Engrs.,

121,  271-282 (1936).

[35]  Anonymous, "The Diamond  in the Lead  Refinery", Cominco Magazine, 23 (8), 17-21(1962).

[36]  J .B.  Hull.  "Froducing  Lead at Trait',  Eng. Min. J..  139 (6), 34-38 (1938)

[37]  L. Zhenya, "Theory and  Practice in Lead  Refining", Non-Ferrous Metals (China), 3

(4), 53-59 (1985).

[38] W. Mao-Chuan,"The  Technical  Development  of  the  Lead  Process  in the Peopl 

 Republic of  Chind',  Metall  (Berlin). 35 (5), 425 (1981).

[39]  N.K.  Thiet,"The Electrolytic Refining   of  Lead  at  High  Current  Densities",  P

Dissertation, Bergakademie  Freiberg,  East  Germany,  1982.

[40]  E . R   Freni,"Electrolytic Uad  Refining   in Sardinia",  J . M e t , 17 (11),  1206-121

(1965).

[41]  G. Tremolada and L. Abduini, "Lead  Refining  with Sulphamate Bath at  The A. Tone C",  Symposium on Sulphamic  Acid and its Electrometallurgical Applications,

Milan,  p 353-366 (1967).

[42] E.P.  Freni,"Electrolytic  Refining   of  Lead  at the San Gavino  Plant   in  Sardinia",Erzmetall,  22 (7), (1969) p 312; also i n supplement volume same year, p. 128.

[43] E . Nomura,  A  Aramaki,  and Y. Nishimura,"Electrolytic  Lead  refining   and Its Mechanization at  Takehara Refinery",  TMS  paper  selection A74-21,  TMS-AIME,

Warrendale.  PA  (1974).

[44] S.  Hirakawa,  E .  Nomura,  T. Mori,  and Y.  Hirayama, "Mechanization of  Lead  Cell Room Operation and   Slime Treatment at  Kamioka Smelter",  TMS  paper  sele

A78-14,  TMS-AIME,  Warrendale,  PA  (1978).

[45] E . Nomura,  Y . Nakamura,  K. Takahashi,  N. Ueda, "Recent  Lead  Electrorefining Practice at  Mitsui's Kamioka Lead  Plant',  TMS  paper selection A81 -7, TMS -AI ME,

Warrendale,  PA  (1981).

[46] A  Ohta, A  Ichinose  and T.  Kohno, "Lead Electrolysis With High Current  DensatHarimaWorks", TMS paper selection A81-21. TMS-AIME, Warrendale, PA (1981).

[47]  K. Tadao  and K.  Yoshiaki,"Operation  of  Lead  Refining  at  Chigirishima Smelter"TMS  paper selection A81-9,  TMS-AIME,  Warrendale,  PA  (1981).

[48] M .  Wada,  K.  Hashimoto,  K.  Ono-ike,"Lead   Process  Electrorefining   Practice(Chigirishima Smelter  and   Refinery)",  Nippon Kogyo  Kaishi,  97 (1119).400-40

(1981).

[49]  Y.  Sugawara  and  S. Ishii,"Current  Operations at  Takehara Refinery",  Metall.  Rev.

MMIJ,  2 (1), 90-101  (1985).

[50]  N . Hamabe,  S.  Kawakita,  and E. Oshima."Recent  Operation at  Naoshima SmelterandRefinery",  Metall.  Rev. MMIJ,  2 (1), 102-117 (1985).

[240]

Page 267: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 267/392

Bibliography Chapter 1

[51] J . Minoura and Y.  Maeda, "Current  Operations at  Kosaka Smelter  and  Refinery",

Metall. Rev. MMIJ, 1 (2), 138-156 (1984).

[52]  T.E. Harper."The Betts Process at  OroyaPeru S.A.", Trans. Amer. Inst. Min. Metall.Engrs.,  121,  283-288 (1936)

[53]  T.E. Harper And G. Reinberg,"Modified   Betts Process Yields Refined Lead  Bullion",

Eng. Min. J.,  136 (3), 119-120 (1935).

[54]  C A Aranda and P.J. Taylor,"Electrolytic Lead  Refining  as Practiced  by the Cerro

de Pasco Corporation at  La Oroya, Peru",  AIME World Symposium of  Mining and

Metallurgy ofLead and  Zinc, C H . Cotterilland J.M. Cigan eds., p. 891-915 (1970).

[55]  J.S. Jacobi,"Presenr Trends  in Electrolytic Refining  of  Copper  and  Lead',  Refining

Process in Metallurgy [Proc. Conf.], Verlag Chemie, Weinheim, p. 12-20. (1983).

[56]  Anonymous, "Electrolytic Refining  of  lead',  Chem. Proc.  (London), 15 (9), 18-19

(1969).

[57]  E. Lach and M. Kwarcinski, "Electrolytic Refining  of Lead in the Non-Ferrous World

 Industry",  Rudy i Met.  Niezelaz.. 29 (6). 258-260 (1984).

[58]  M. Barak,"The Technological  Importance of  the Electrochemistry of  Lead',  Chem.

and Ind.  (London), 871-876 (1976).

[59]  J. Encev, "Electrorefining  ofLead   in Russid'  .Metalurgija (Sofia), 4, 25-29 (1973).

[60]  CL . Mantell, " I n d u s t r i a l E l e c t r o c hp. 314-322.

[61]  K. Emicke, G. Holzapfel and E. Kuiprath,"Lead Refinery and  Auxiliary By-Product

 Recoveries at  Norddeutsche Affinerie", AIME World Symposium of  Mining andMetallurgy ofLead and  Zinc, C H . Cotterill and  J.M. Cigan eds., p. 867-890 (1970).

[62]  K. Emicke, G. Holzapfel and E. Kuiprath, "Lead  Refining  at  the  Norddeutsche Affinerie",  Erzmetall, 24 (5), 205-256 (1971) .(Translation National TranslationsCenter, NTC  11F-81-11544).

[63]  Private Communication, Dr. Kartenbeck  and Dr. Traulsen, Norddeutsche Affinerie,

January 19, 1988.

[64]  AS. Kafka, "Lead',  Eng. Min. J.,  190 (3), 27-29 (1989).

[65]  C. J. Chen and C.C. Wan.  "Electrochemical  Synthesis ofLead  FLuoborate by Anodic

 Dissolution of  lead  in Fluoboric Acid Solution",J. of  Fluorine Chem., 27, 167-175

(1985).

[66]  F. Beck, "The Corrosion ofLead  in Fluoboric Electrolyte Solutions", Werkst. Korros.,

28  (10). 688-696 (1977).

[67]  H. Silman,  "The Uses of'Hydrofluoric, Fluoboric and  HuosiUcic Acids and  their Salts

in Electroplating  Practice",Galvanotechnisches Kolloqium.,  6th, p. 79-88 (1980).

[68]  U. Dacati, P. Cavalloti and D. Colombo,  Electrochemical  Process and  Plant Design

 [Proc.  Conf.],  R C Alkire. T.R  Beck  and RD. Varjian eds., The Electrochemical

Society, p. 110-117 (1983)

[69]  U. Ginatta,"ElectroIytic Process for  the Recovery ofLeadfrom Spent  Electric Storage

 Batteries",  TMS paper selection A85-29, TMS-AIME Warrendale, PA (1985).

[241]

Page 268: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 268/392

 Bibliography  Chapter  1

[70]  M. Maja, N. Penazzi.  P. Spinelli,  M.V. Ginatta. U. Glnatta. and G. Orsello. "The Electrolytic Recovery of  Lead from  Spent  Storage Batteries", IChem SymposiumSeries No. 98. p. 173-189 (1986).

[71]  M. Glnatta."Anode  Systemfor Use in Extracting  Lead'.  U.K. Patent Application GB2121826A  Filed May 13. 1983 . Published Jan. 4, 1984.

[72]  M. Ginatta, "Supporting  Spent  Accumulations During  Electrochemical Extraction of Metal  Therefrom",  U.K. Patent Application GB 2121437A Dec. 21, 1983.

[73] E.R   Freni,  "Electrolytic Lead Refining with Sulphamic  and   Ftuorosilicic Electrolyte",in  Symposium  on  Sulphamic  Acid  and its  ElectrometallurgicalApplications.  Milan. (1967) p. 367.

[74]  P.M. Strocchi, R  Peruzzi, A Rozzoli, D. Sinigaglia and B. Vicentini, "Tensiodynamic Behavior  of  some Metals and Alloys in Sulphamate Baths", Electrochim. Met., 2,95-103 (1967).

[75] A La Vecchia, P. Pedeferri, R  Peruzzi, A Porta, and D. Sinigaglia,  "Anodic Behavior

of  Various Materials in Sulphamic Acid', Electrochim. Met., 1 (2), 255-257 (1966).[76] P. Pedeferri  and A  La Vecchia,  "Insoluble Anodes  in Sulphamic Acid Baths",

Electrochim. Met,  1 (1), 112-114 (1966).

[77]  P.M. Strocchi, R  Peruzzi, A Rozzoli, D. Sinigaglia, and B. Vicentini, "Tensiodynamic Behavior  of  some Metals and Alloys in Sulphamic Acid', Electrochim. Met., 2 (1),95-103 (1967).

[78]  T. Konada, Y. Tenmaya, and K. Yamaguchi, "Control  of Anode Quality at  Kosaka Lead  Smelter", CIM Symp. on Quality Control in Non-Ferrous PyrometallurgicalProcesses [Proc. Conf.], Vancouver B.C., p. 2-13 (1985).

[79]  E. Nomura, M. Aramaki and Y. Nishimura,"Method for  Producing Electrolytic High Purity Lead  Using  Large Sized  Electrodes", U.S. Patent 3960681. June  1. 1976.

[80] L.  Gmelin, "Handbuch  der  Anorganische Chemie", Verlag  Chemie-GMBH,Weinhelm/Bergstrasee, Germany, System No. 15 Si  [B], (1959) p. 614-653.

[81]  C.J. Krauss. "Cathode Deposit  Control  in Lead  Electrorefining:', J. Met., 28 (11), 4-9(1976).

[82]  Private Communication,  H. Shouyi, Shenyang Smelter, January 21, 1988.

[83]  Private Communication,  C.J. Krauss, Cominco Ltd., February 15, 1988.

[84]  Private Communication, Dr. Wegerdt, "Albert Funk" Metallurgical Complex, March2, 1988.

[85]  Private Communication.  N. Cordova S.,  Empresa Minera del Centro  de Peru,January 28. 1988.

[86]  Private Communication,  H. Kubo, Kamioka Mining Co. Ltd.. January  10, 1988.

[87]  C.J. Krauss "Electrolytic Lead  Refining", Canadian Patent 1020491, Nov. 8, 1977.

[88] I.D.  Entchev, N.T. Kuntchev, G A Haralampiev,  A.D.  Milkov, B.Y. Sotirov, andD.A Petrov,"Electrolytic Lead  Refining", Canadian Patent 928246, June  12, 1973.

[89]  Bulletin of  Alloy Phase Diagrams,  1 (2), (1980) 56.

[242]

Page 269: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 269/392

 Bibliography  Chapter  1

[90]  Bulletin of  Alloy Phase Diagrams, 1 (2), (1980) 62.

[91]  Bulletin of  Alloy Phase Diagrams, 2 (1), (1981) 81.

[92]  Bulletin of  Alloy Phase Diagrams. 2(1). (1981) 86.

[93]  M. Hansen, "Constitution of  Binary Alloys",  2nd ed..McGraw Hill Book  Co., New

York, 1958, p. 41, 173, 325 and  1101.

[94]  T. Tanaka, "Adhesion of  Anode Slime on the Anode Surface in the Electrolytic Ref ofLead', Metall. Trans.  B, 8B,  651-660 (1977).

[95] R  Elliot,  "Eutectic Solidification Processing", Butterworths and Co. Ltd., U.K.

(1983).

[96]  Y.  Nishimura, "Method  for  Casting  a Large Lead Anode Plate",  Canadian Pate1019132, Oct.  18, 1977.

[97]  F. Wenzel and K. Hein, "Jn/luence of  the Anode Sludge  on the Purity of  the Cathode Metal   in the  Electrolytic Refining  ofLead',  Neue Hiitte,  19 (5), 263-267 (1974).

(Translation National Translations Center, NTC  11F-81-11594).[98]  H.J. Lange, K. Hein and N.K. Thiet."ElectroIytfc Lead  Refining  at  Increased  Current

 Densities",  Neue Hiitte, 28(4),  136-141 (1983).

[99]  H.J.  Lange,  K. Hein and D. Schab,"Anodic Processes  in Electrolytic  Refining",Freiberg. Forschungsh. B.. B195.  29-49 (1977). (Translation NRC 2873873).

[ 100] K. Hein, "Electrode Processes During  Electrorefining ofNon-Ferrous Metals in A Solutions",Chem Technol   (Leipzig), 36 (9), 378-381 (1984).

[ 101] H. Bombach, K. Hein, J. Korb and H.J. Lange, "Investigation on the Chemical  Stabilit of   LeadElectrolytes ContainingHexafltuyrosilicicAcid',  Neue Hiitte, 31 (9).  347-35

(1986). (Translation MTNTEK  TR-1265).[102] B.G.  Ateya and H.W.  Pickering, "Effects of  Ion Migration  on the  Concentrations and

 Mass Transfer   Rate in the Diffusion  Layer  of  Dissolving   Metals", J . Appl.Electrochem..  11,  453-461 (1981).

[103] J.M.  Hornut. G. Valentin and  A Storck,"The Film Model  for   Determining   the EffectofIonic Migration in Electrochemical  Systems",  J. Appl. Electrochem.,  15, 237-2

(1985).

[104]  O.  Wein,  "The Effect   of   Migration  on  Ixuninar  Diffusion Layers",  Collect. CzecChem. Commun., 53,  697-720 (1988).

[105]  M.  Jaskula,"Behauior of  The  Platinum-Group Metals  in Copper   ElectrorefininErzmetall, 42 (3), 117-124 (1989).

[106] M. Maeda.  "Anodic  Formation  of  Lead  Sulphate  Film and its Properties", Electrochem. Soc. Jpn  (Overseas Suppl. Ed.)  26 (1-3). E 21-25 (1958).

[107]  L.Klss, "Kinet ics of Electrochemical Metal Dissolution", Studies in Physical  and

Theoretical Chemistry 47, Elsevier, Hungary 1988.

[243]

Page 270: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 270/392

Bibliography Chapter

 1

[108] G A  Kuznetsova,"Rules Governing  the Electrochemical  Behavior  of  Impurities Dthe Electrochemical  Production of  High-Purity Lead', Tsvetn. Metall., 8 (7). 69-(1967).

[109] L.I. Reznichenko and AD . Pogorelyi," Relationships Governing  the Dissolution of the Metals of the Anode Slime During  Electrolytic Refining", Sov. Non-Ferrous Met. 

(Engl. Transl.), 4 (6), 226-229 (1976) .[110] L.I. Reznichenko, "Separation of Metals During  the Electrolysis of  Bismuth-rich 

 Alloys", Sov. Non-Ferrous Met. Res. (Engl. Transl.), 5 (6), 245 (1977).

[111] W. Eisert,"Electrolytic  Refining  of  Lead  by the Betts Process",  Neue Hiitte, 4 (129-35 (1959).

[112] I. Pajak. M. Kwarcinskl. A. Bojanowska and B. Kwarcinska,"Electrolytic Refining  of

 Lead  Having  a High Bi  Content',  Pr. Inst. Met. Nieze. 5 (3), 121-130 (1976).

[113]P.Mechenov,"ElectroreJ^nlngo/Lead,,. Mlnno DeloMet. [Sofia], 17 (6). 30-35 (1962).chemical Abstracts: 57 [1962]- 14776.

[114] F. Wenzel,"Contribution to the Clarification of  the Anodic Process in the Electr  Refining  of Lead', Neue Hiitte,  18 (6), 374-375 (1973).

[115] F. Wenzel,"Contribution  to the Clarification  of the Anodic  Processes  in  L Electrorefining'',  Ph.D. Dissertation, Bergakademie Freiberg, East Germany, 1971.

[116] M.  Isawa and T. Tanaka, "Fundamental  Studies on the Treatment of  Anode S  from Lead Electrolytic Refining",  Nippon Kogyo Kaishi,  77 ,  483-490 (1961) .

[117]  M.  Isawa and T.  Tanaka,"Research on the Anode  Slime  From Electrolytic Lea Refining",  Nippon Kogyo Kaishi,  78, 519-526 (1962).

[118] F. Miyashita and  G.  Miyatani,"On the Anode Phenomena on the Lead Electroly Refining",  Technol. Rep. Kansai Univ..  13. 81-92 (1972).

[119] F. Miyashita and G. Miyatani, "On the Influence of  the Impurities in the Elect on the Anode surface in the Lead Electrolytic Refining", Technol. Rep. Kansai14, 61-71 (1973).

[120] F. Miyashita and G. Miyatani, "Theoretical Analysis of  the Surface Reaction on L Electrode",  Technol. Rep. Kansai Univ.,  18, 87-95(1977).

[ 121] F. Miyashita and G. Miyatani, "The Influence of  Surface Active Agent  on the P 

of  the Electrolytic Deposition ofLead', Nippon Kogyo Kaishi, 9 0 (1039), 617-620(1974).

[122] F. Miyashita and G. Miyatani, "The Influence of  Dissolved Oxygen and  Surface Act  Agent  on the Electrode Reaction ofLead  Electrolytic Refining",  Nippon Kogyo 92  (1060), 431-437 (1976).

[123] F. Miyashita and G.  Miyatani, "Jn/Iuence of Electrolytes and  Surface Active Agenon the Surface Reaction of  Lead Electrode",  Nippon Kogyo Kaishi,  94 (1085)485-489 (1978).

[124] S. Hirakawa and R   Oniwa,"Memod/or Producing  High Purity Lead  by Removin Bismuth',  Canadian Patent 1023691. Jan. 3, 1978.

[125] G. Baralis,"The Production of  High Purity Lead', Lead 65  [Proc. Conf.], Amhem,

[244]

Page 271: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 271/392

Bibliography Chapter 1

p. 317-323 (1967) .

[126] G. Baralis and M. Marone,"Production of  99.9999%  Ag, Pb, Sb, and Sn",  Metall.Ital., 7, 494-501 (1967) .

[127] RC. Kerby and H.E. Jackson,"Organic  Levelling   Agents for Electrolytic Lead

 Refining",  Can. Metal. Quart., 17, 125-131 (1978).

[128]  RC. Kerby. "Addition Agents  inLeadElectrodeposition", Canadian Patent 1115658,

January 5. 1982.

[129]  C.J. Krauss and G. Shaw, "Electrolytic Lead  Refining",  Canadian Patent 988879,

May  11, 1976.

[130]  T.N.  Andersen, RC. Kerby,  and T.J.  O'Keefe."Control  Techniques for   Industrial

 Electrodeposition from Aqueous Solutions",  J . Met, 37 (1), 36-43 (1985).

[131] RC. Kerby and  C.J.  Krauss, "Continuous Monitoring  of  Zinc Electrolyte Quality at

Ctiminco by Cathodic Overpotential  Measurements", Lead-Tin-Zinc '80 [Proc. Conf.],

J.M. Cigan, T.S. Mackey, and  T.J. O'Keefe eds.,  AIME Symposium, p. 187 (1980).

[132] J . Ambrose and B. Conard,"A Review on Addition Agent  Control  Techniques in the

 Electrorefining  and  Electrowinning   of  Metals", CANMET Contract serial No. ISQ

85-00148, Sept. 15, 1986.

[133]  "Applications  of   Polarization  Measurements in The  Control  of   MetalDeposition", I.H. Warren ed., Elsevier Science Publishers, Amsterdam (1984).

[134] C.T. Wang,"The  Influence of Additives and Their Interaction on Copper

 Electrorefining",  Ph.D.  Dissertation, The University of  Missouri, Rolla,  1983.

[135] J .A Gonzalez-Dominguez "The effect   of  Thiourea in the Cu-CuS04  Polarization

 Behaviour",  M.ASc.  Dissertation, Universidad Nacional Autonoma de Mexico,

1985.

[136]  D.M.  Hembree Jr. ."Linear  Sweep Voltammetry  to Determine Lignin Sulphonate in

 Lead  Plating  Baths", Plat. Surf. Finish., 73 (11). 54-59 (1986).

[137] S.  Tokunobu, "Method for   Continuously  Manufacturing  Endless Lead  Sheet   and

 Apparatus Therefore",  Canadian Patent  1001379, Feb. 18, 1974.

[138]  H.J.  Lange and D. Kappler,"Improvements  in Lead  Electrorefining  at  High Current

 Densities",  Freiberg. Forschungsh. B, B210, (1979) 171.

[139]  RC. Kerby and C.J. Krauss, "Bipolar Refining  ofLead',  U.S. Patent 4416746, Nov.

22, 1983.

[140]  RC.  Kerby."Electrolyte/or Bipolar Refining  ofLead',  Canadian Patent  1174198,

September 11, 1984.

[141]  RC.  Kerby, "Bipolar Refining OfLead',  Canadian Patent 1126684, June 29, 1982.

[142] RC. Kerby and RD.H. Willans,"The  Cominco Bipolar Process for Lead

 Electrorefining'',  TMS paper selection A84-15, TMS-AIME, Warrendale, PA (1984).

[143]  M. Kwarcinski, A Bednarek, T. Nalawajek, and A  Kurzeja, "Electrolytic Refining  of

 Lead  With High Silver Content', Rudy i Met.  Niezelaz.,  29 (7),  (1984) 295.

[144] J.O'M. Bockris and  AK.N. Reddy, "Modern Electrochemistry", V. 1 and 2, Plenum

Press, New  York,  1970.

[245]

Page 272: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 272/392

 Bibliography  Chapter 2

[ 145] K. J . Vetter, "Electrochemical Kinetics, Theoretical and  Experimental Aspects",

Academic Press, New  York  (1967).

BIBL IOGRAPHY   Chapter 2

[I]  V.  Marecek  and Z. Samek,  "Evaluation  of  Ohmic Potential  Drop  and   Capacity  Interface Between Two Immiscible Electrolyte Solutions By The Galvanostatic Method', J. Electroanal. Chem..  149.  185-192 (1983).

[2] S.  Bruckenstein.  "Ohmic  Potential   Drop  At  Electrodes  Exhibiting  Steady-S

 Diffusion Currents", Anal. Chem., 59 (17), 2098-2101 (1987).

[3]  J.D.E.  Mcintyre and W.F.  Peck  Jr,  "An Interrupter  Technique For  Measuring   TheUncompensated  Resistance of  Electrode Reactions Under  Potentiostaic ConElectrochem. Soc. 117  (6), 747-751 (1970).

[4] P.He and L.R  Faulkner,  "Intelligent,  Automatic  Compensation  of   Solut  Resistance", Anal. Chem., 58 (3), 517-523 (1986).

[5]  D.  Britz and W.A  Brocke, "Elimination oflR-Drop  in Electrochemical  Cells By T Use  of  A  Current-Interruption Potentiostat',  J . Electroanal.  Chem.,  58, 301-31(1975).

[6] D. Britz,  "iR Elimination  in Electrochemical   Cells",  J . Electroanal.  Chem., 88,309-352 (1978).

[7]  J. Newman, "Ohmic Potential  Measured  By Interrupter  Techniques" , J. Electroc

Soc, 117  (4). 507-508 (1970).

[8]  M. Hayes and AT.  Kuhn,  "Techniques  For The Determination  of  Ohmic Drop  Half-Cells and   Full  Cells: A Review", J. Power Sources, 2, 121-136 (1977/78).

[9] Z. Nagy  and  J.T.  Arden,  "Error   Analysis of  The  Coulostatic  Technique  anComparison To Other  DC Relaxation Techniques For The Measurement  of  Kinet  Electrode Reactions", J. Electrochem. Soc, 130  (4), 815-822 (1983).

[10] K.J. Vetter,  "Electrochemical  Kinetics,  Theoretical  and  Experimental

Aspects" , Academic Press, New  York  (1967).

[II] I. Epelboin.  C. Gabrielli,  and M.  Keddam,  "Non Steady State  Techniques",  inComprehensive Treatise of  Electrochemistry,  E. Yeager,  B.E.  Conway, J . O'M.Bockris, and S. Sarangapani eds., Vol.  9, Chapter 3, Plenum Press,  New  York(1983).

[12] Z. Nagy,  "On The  Effect   of  The  Uncompensated Solution  Resistance On T 

 Applicability  of  The  Galvanostatic Relaxation  Techniques  and  Compariso Steady-State Techniques For  Electrode Kinetic Measurements",  Electrochim. 28,  557-563 (1983).

[13] P.  Delahay,  "Fundamentals  of  Coulostatic  Analysis",  Anal.  Chem.,  34 (10)1267-1271 (1962).

[14]  D.D.  MacDonald. "Transient  Techniques  in Electrochemistry", Plenum Press,  U

1977.

[15]  W.J. Lorenz and F. Mansfeld, "Itetermination of  Corrosion Rates by ElectrochemDC  and  AC Methods", Corros. Sci.,  21 (8), 647-672 (1981).

[246]

Page 273: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 273/392

 Bibliography  Chapter  2

[16]  J. R   Macdonald ed.,  "Impedance Spectroscopy". John Wiley and  Sons, New  York,1987.

[17] J .R   MacDonald,  "Simplified Impedance/Frequency-Response  Results f  Intrinsically Conducting  Solids  and   Liquids",  J.  Chem. Phys., 61 (10), 3977-396(1974).

[18] D.D.  Macdonald  and  M.C.H.  Mckubre,  "Impedance  Measurements  In Electrochemical  Systems",  In  Modem Aspects of  Electrochemistry V.  14, Chapter2, J.O'M.  Bockris, B.E.  Conway, and RE.  White Eds.,  Plenum Press, New  York,1982.

[19]  M.  Sluyters-Rehbach and J.H.  Sluyters,  "A.C.  Techniques",  in ComprehensiveTreatise of  Electrochemistry,  E. Yeager,  B.E.  Conway, J . O'M.  Bockris, and S.Sarangapani eds., Vol.  9, Chapter 4, Plenum Press, New  York  (1983).

[20]  Ewalk  Heitz and G. Kreysa. "Principles of  Electrochemical Engineering", ExtendVersion of A DECHEMA Experimental Course, VCH Publishers, Weinheim, 1986.

[21]  "Electrochemical Corrosion  Testing  With Special  Consideration  of   Practi  Applications"  [Proc.Conf.], E. Heitz, J.C. Rowlands, andF. Mansfeldeds., DechemaMonographs V. 101, VCH, Germany 1986.

[22] A Hickling, Trans. Faraday Soc,  33,  1540 (1937).

[23] S.  Bruckenstein and B. Miller,  "An Experimental  Study  of  Nonuniform  Curren Distribution at  Rotating Disk Electrodes", J. Electrochem. Soc,  117  (8),  1044-104(1970).

[24]  B.V. Tilak  and B.E. Conway, "Overpotential  Decay Behavior  - J. Complex  Electro Reactions Involving Adsorption:', Electrochim. Acta, 21 ,  747-752 (1976).

[25]  B.V.  Tilak.  CG.  Rader,  and B.E.  Conway,  "Overpotential  Decay Behavior   -  II. Pathways Involving  Discharge, Recombination  and   Electrochemical  Desorpt  Adsorbed  Intermediates", Electrochim. Acta, 22,  1167-1178 (1977).

[26]  P.C  Milner, "Interpretation of  Measurements of  Potential  Decay  on Open Cir J. Electrochem. Soc. 107  (4), 343-347 (1960).

[27] W.J. Wruck,  RM . Machado,  and T.W. Chapman,  "Current   Interruption: Instrumentation and  Applications", J. Electrochem. Soc, 134 (3), 539-546 (1987).

[28]  J. Gsellmann and K. Kordesh, "An Improved Interrupter  Circuit   for  Battery Testi J. Electrochem. Soc. 132 (4), 747-751 (1985).

[29]  Z. Nagy, "Comparison of  Computer  Curve-Fitting  and   Graphical  Data EvaluatioThe  Galvanostatic  Relaxation  Technique  For The  Measurement   of  Kinetics Electrode Reactions", Electrochim. Acta, 26 (5), 671-679 (1981).

[30]  C.K. Dyer and  J.S.L.  Leach, "Electrode Impedance Measurements At  Short  Ti  By Square-Wave Technique", Electrochim. Acta,  19 ,  695-700 (1974).

[31]  J. S. Newman, "Electrochemical  Systems", Prentice-Hall Inc., USA  1973.

[32]  RP.  Buck, "Diffuse Layer  Charge Relaxation At The Ideally Polarized Electrod Electroanal. Chem., 23,  219-240 (1969).

[247]

Page 274: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 274/392

Bibliography Chapter 2

[33]  N.  Ibl, "Current Distribution",  in Comprehensive Treatise of  Electrochemistry.  E.Yeager. J .  O'M. Bockris. B.E. Conway and S. Sarangapani eds.. Vol. 6, Chapter 4,Plenum Press, New York  (1983).

[34] B.  Elsener  and H. Bohni,  "Computer-Assisted   D.C. and  A.C.  Techniques  in Electrochemical  Investigations of  the Active-Passive Transitions",  Corros. Sc

(4). 341-352 (1983).[35] I. Epelboin and M.  Keddam, "Electrochemical  Techniques For  Studying  Passiv

and  Its  Breakdown",  Passivity of  Metals  (Proc.  Conf.],  RP.  Frankental  and J .Kruger, Eds.,  The Electrochemical Soc,  Corrosion Monograph Series,  U.SA,P. 184-222, 1978.

[36]  A. A. Pilla, "Laplace Analysis of  Electrode Kinetics" , in Electrochemistry, Computerin Chemistry and Instrumentation, Vol 2, J.S.  Matsson,  H.B.  Mark, and H.C.Macdonald Eds.. P. 139-181, Marcell-Dekker, New York. 1972.

[37]  A A  Pilla, "Laplace Plane Analysis of  The Impedance of  Faradaic and  Non-Fada Electrode Processes", J.  Electrochem. Soc. 118 (8), 1295-1297 (1971).

[38]  A A  Pilla, "A Transient  Impedance Technique For  The Study of  Electrode KineJ. Electrochem. Soc, 117 (4), 467-467 (1970).

[39]  RV.  Rybalka and M.Etman, "Application of  The Operational  Impedance Method   Investigation of  The Electrochemical   Behavior   of  Lead  In Sulfuric  Acid', Electroanal. Chem., 148, 73-78 (1983).

[40]  S.D. Stearns, "Digital Signal  Analysis", Hayden Book  Company, Inc., USA 1975.

[41]  K.G. Beauchamp and C.K. Yuen, "Digital  Methodsfor  Signal Analysis", George Alle& Unwin, Great Britain, 1979.

[42]  W.D. Stanley, "Transform Circuit  Analysis for  Engineering  and  Technology", Ed., Prentice-Hall Inc. USA 1989.

[43]  CD.  McGillem and G.R   Cooper,  "Continuous and Discrete  Signal  and  Syste Analysis", 2nd ed., Holt Rinehart and Winston, USA 1984.

[44] R   Kohlrausch,  "Theorie Des Electrischen Ruckstandes In Der Leidener  FlasPogg. Ann. Der Phys. und Chemie, 91, 179-214, (1854).

[45] R  Kohlrausch, Wied. Annalen. Phys., 60. 315, 1897.

[46]  E. Warburg, "Uber  Das Verhalten Sogenannter  Unpolarisierbarer  Electroden Wechselstrom", Ann. Phys. Chem., 67, 473-499 (1899).

[47]  J.E.B. Randies, "Kinetics of  Rapid Electrode Reactions", Disc. Farad. Soc, 1, 11-1(1947).

[48] C.  Gabrielli,  "Identification  of   Electrochemical  Processes  by  Frequency

Response  Analysis",  Monograph Reference 004/83, Solartron InstrumentationGroup, Farnsborough, England, 1981.

[49]  J. R  Macdonald, "Comparison and  Discussion of  Some Theories of  The Equilib Electrical  Double Layer  In Liquid  Electrolytes" ',  J.  Electroanal.  Chem.,

  223,

  1-(1987).

[248]

Page 275: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 275/392

 Bibliography  Chapter 2

[50] P.R  Sorensen and T.  Jacobsen,  "Conductivity,  Charge Transfer  and  Transpo Number  - an Ac-Investigation of  the Polymer Electrolyte LiSCN-PolyfEthyleneElectrochim. Acta. 27 (12). 1671-1675 (1982).

[51] J .R   Macdonald..  "Impedance  Spectroscopy  and Its Use In Analyzing   Th Steady-State AC Response of  Solid  and  Liquid  Electrolytes", J. Electroanal. Ch

223. 25-50 (1987).[52]  G.W. Walter," A Review of Impedance Plot Methods Used  For  Corrosion Perfor 

 Analysis of  Painted  Metals",  Electrochim. Acta, 26 (9). 681-703 (1986).

[53]  Z. Stoynov, "Impedance Modelling  and  Data Processing: Structural  and  Param Estimation", Electrochim. Acta, 35 (10), 1493-1499 (1990).

[54] F. Mansfield,  "Electrochemical  Impedance Spectroscopy  (EIS) As A New To Investigating Methods of  Corrosion  Protection",  Electrochim.  Acta,  35 (1533-1544 (1990).

[55] S. Venkatesh and D.-T.  Chin, "The AUernating  Current  Electrode Process",  Isr

Chem.,  18, 56-64 (1979).[56] "Instrumental Methods in Electrochemistry", Southampton Electrochemistry

Group, Ellis Horwood Ltd., Great Britain, 1985.

[57]  J.R  Macdonald, "Impedance Spectroscopy: Old  Problems and  New DevelopElectrochim. Acta, 35 (10), 1483-1492 (1990).

[58]  T.H. Glisson, "Introduction to System Analysis", McGraw-Hill Book  Company, US

1985.

[59]  RD. Strum and J.R   Ward, "Electric Circuits and Networks", 2nd ed.,Prentice-HInc., USA 1985.

[60]  W.H.  Smyrl,  "Digital  Impedance For  Faradaic Analysis I.  Introduction To  Signal  Analysis and  Impedance Measurements For  Electrochemical  and  Cor  Systems", J. Electrochem. Soc, 132 (7), 1551-1555 (1985).

[61]  W.H. Smyrl, "Digital  Impedance For Faradaic Analysis II.  Electrodissolution inHCl',  J. Electrochem. Soc, 132 (7), 1555-1562 (1985).

[62]  W.H.  Smyrl and L.L.  Stephenson, "Digital  Impedance For Faradaic Analysis  i Corrosion in Oxygenated  .1  N   HCl',  J . Electrochem. Soc, 132 (7), 1563-156(1985).

[63]  "Techniques  in  Electrochemistry,  Corrosion  and  Metal  Finishing,  A

Handbook", AT.  Kuhn ed., John Wiley & Sons, Great Britain 1987.[64]  M. Hayes, "Ohmic Drop", Chapter 4 in ref. [63].

[65]  B. Elsener and H. Bohni, "Significance of  Ohmic Resistance Measurements In Case of  Localized  Corrosion", Paper 25 In Ref  [21].

[66]  K. Jiittner, "Electrochemical  Impedance Spectroscopy (EIS) of  Corrosion Pr On Inhomogeneous Surfaces",  , Electrochim. Acta, 35 (10). 1501-1508 (1990).

[67]  D.D. Macdonald, "Review of  Mechanistic Analysis by Electrochemical  Imped  Spectroscopy",  , Electrochim. Acta, 35 (10), 1509-1525 (1990).

[249]

Page 276: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 276/392

Bibliography

 Chapter 3

[68] D. Schuhrnann,  "Progress  Since  The 1960'S   In The Treatment   of   Compl Mechanisms and  Concentration Overpotential  For  Metal Electrodes", ElectroActa, 35 (10). 1527-1532 (1990).

[69]  M. Kuhn, K.-G. Schiitze,  G. Kreysa, and E. Heitz, "Principles and  Applications ofComputer  Controlled Electrochemical  Measurements With Elimination of  IR

Paper 24 in ref 

 [211.[70]  H. Shih and H.W. Pickering. "Analysis of  Small Amplitude Cyclic Voltammetry 

 Measuring  Polarization Resistance and  Interfacial  Capacitance",  J.  ElectrocSoc.  134 (8). 1943-1949 (1987).

[71] R  Francis," The use of  Small  amplitude Cyclic Voltammetry to Study the Cor of  Copper  and  Copper Alloy s" , Paper 19 in ref  [21].

[72]  D.D.  Macdonald,  "Some Advantages and  Pitfalls  of  Electrochemical  Impeda

 Spectroscopy", Corrosion-NACE, 46 (3), 229-242 (1990).

B I B L I O G R A P H Y    Chapter 3

[I]  "Fluosilicic Acid', Dechema Data Sheet, Serial No. 49.235.050.1, October 1959.

[2]  "Trail  Operations", A basic description of  the Main Production Facilities, Pamphlet#2101,  Cominco Ltd., Trail, British Columbia.

[3]  LG.  Ryss and V.N. Plakhotnik, "Solubility of  Si02 in Hydrogen Hexafluorosilica(W,  Russ. J.  Inorg. Chem.,  15 (12) 1742-1745 (1970).

[4]  K. Kleboth, "Fluorine Complexes of  Silicon in Aqueous Solutions", Monatsch. Ch99  (3), 1177-1185 (1968).  (Translation Associated  Technical  Services, Inc.,

55E148G).

[5] K.  Kleboth  and B.  Rode,  "Semiempirical   MO Calculations  on  FkiorosilicoCompounds  and  their  Hydrolysis  Products",  Monatsch.  Chem.,  105,  815-82

(1974).  (Translation National Translations Center 82- 13494-07b)

[6]  K. Kleboth, "Fluoro Complexes of  Silicon in Aqueous Solution - Part 2 : For and  Properties of  Tetrafluorosilicic Acid' ,  Monatsch.  Chem.  100  (3), 1057-106(1969).  (Translation Associated Technical Services Inc., 41W119G).

[7]  V.M. Masalovich, G JV. Moshkareva and P.K. Agasyan, "Study of  Complex  FormationinSokitions ofHydrofluoric and  Silicic Acid', Russ. J. Inorg. Chem., 24 (2), 196-19

(1979).

[8] G. Schwarzenbach and H.  Flaschka,  "Complexometric Titrations",  2nd ed.,

Methuen and Co.. London, 1969.

[9] A Vogel, "Textbook  of  Quantitative Inorganic Analysis", 3rd ed., Longman Inc.,UK. 1978.

[10] R A  Mostyn  and AF.  Cunningham,  "Determination  of  Antimony  by  Atomi  Absorption  Spectrometry", Anal. Chem., 39(4), 433-435 (1967).

[II]  G.J.  Davies and M.A  Leonard, "Semi-micro Determination of  Fluorine in Orgacompounds  by  Oxygen  Silica-Flask   Combustion  and  Gran-type  Potentio

Titration of  Fluoride with IxaUhonum Nitrate", Analyst,  110,  1205-1207(198

[250]

Page 277: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 277/392

 Bibliography  Chapter  4

[12]  KJi. Phillips and C.J. Rix, "Microprocessor-Controlled   termination OJ  Fluoride  Environmental And  Biological  Samples By A Method  Of  Standard Additions Fluoride Ion Selective Electrode", Anal.  Chem.. 53 . 2141-2143 (1981).

BIBLIOGRAPHY Chapter 4

[1]  A R   Spurr. J .  Ultrastructure Research. 26 , 31 (1969).

[2]  A R   Spurr and W.M. Harris, Am. J . Botany, 55 , (1968).

[3]  AS. Gioda. M.C. Giordano, and V.Z. Macagno, "The Pb/Pb+2 Exchange Reaction In Perchlorate Acidic Solutions", J.  Electrochem. Soc, 124 (9), 1324-1329 (1977).

[4]  S.H. Glarum and J.H.  Marshall,  "An Admittance Study of  The Lead Electrode",  JElectrochem. Soc. 131 (4), 691-701 (1984).

[5]  C.J. Bushrod and N.A  Hampson, "Anodic Behavior ofLead  in Perchloric Acid  Continuous and  Interrupted  Polarization1', Br. Corros. J., 6, 87-90 (1971).

[6]  R.M.  Slepian,  "Improved  MetaUographic Preparation of  Lead  and  Lead Allo

Metallography 12,  195-214 (1979).

[7]  J.  Haernaez, A Pardo and M.I. Aja, "Improved  MetaUographic Preparation ofLe

by Electropolishing'', Metallography 19, 5-17 (1986).

[8]  V. Patzold and H. Langbein, "An Economical  Process of  Lead Metallography", NHiitte,  22  (1) 40-43 (1977).  (Translation  British  Industrial  and ScientificInternational Translation Service. BISI 16109. August 1979.

BIBL IOGRAPHY   Chapter 5

[1]  S.H. Glarum and J.H.  Marshall. "An Admittance Study of  the Lead Electrode", Electrochem. Soc. 131(4), 691-701 (1984).

[2] RC. Kerby,  "Addition  Agents in Lead Electrodeposition",  Canadian  Patent1,115,658, January 5, 1982.

[3] K.J. Vetter,  'Electrochemical  K i n e t i c s ,  Theoretical  and  Experimental

Aspects" , Academic Press, New York  (1967).

[4]  AS.  Gioda. M.C. Giordano, and V.Z. Macagno, "The Pb/Pb* 2 Exchange Reaction i  Perchlorate Acidic Solutions",  J.  Electrochem. Soc. 124 (9), 1324-1329 (1977).

[5]  Z.  Kovac, "The Effect  of  Superimposed  A.C. and  D.C.  in Electrodeposition of   Alloys", J. Electrochem. Soc,  118 (1), 51-57 (1971).

[6]  B. Breyer and H.H. Bauer, "Alternating Current Polarograpby and  Tensametry",Chemical Analysis V. Xin, Interscience Publishers, USA 1963.

[7]  J .R  Macdonald ed., "Impedance Spectroscopy", John Wiley and Sons, New York,1987.

[8] J.R   Macdonald.,  "Impedance  Spectroscopy  and its use in Analyzing   th

 Steady-State AC Response of  Solid  and  Liquid  Electrolytes", J.  Electroanal. Che223 , 25-50 (1987).

[9] S. Venkatesh and D.-T. Chin, "The Alternating Current  Electrode Process",  IsrChem., 18. 56-64 (1979).

[251]

Page 278: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 278/392

Bibliography Chapter 5

[10]  Z. Stoynov, "Impedance Modelling  and  Data Processing: Structural  and  Parame Estimation", Electrochim. Acta, 35  (10), 1493-1499 (1990).

[11]  E. Warburg," Uber  Das Verhalten Sogenannter  Unpolarisierbarer  Electroden G Wechselstrom", Ann. Phys. Chem.,  67 ,  473-499 (1899).

[12]  G.W. Walter, "AReview of Impedance Plot  Methods Used  For  Corrosion Perfor 

 Analysis of  Painted Metals", Electrochim. Acta, 26  (9), 681-703 (1986).

[13]  J.C.  Wang,  "Realizations  of  Generalized   Warburg   Impedance  with  RC   La Networks  and  Transmission Lines",  J . Electrochem.  Soc,  134 (8), 1915-1920(1987).

[14]  W. Scheider, "Theory of  Frequency Dispersion of  Electrode Polarization. Topol  Networks with Fractional  Power  Dependence", J . Phys.  Chem., 79 (2), 127-1(1975).

[15] R  de Levie, "On the Impedance of   Electrodes withRough Interfaces", J. ElectroaChem., 261 ,  1-9 (1989).

[16]  J.E.B. Randies, "Kinetics ofRapid  Electrode Reactions", Disc. Farad. Soc, 1,  11-1(1947).

[17] F. Miyashita and G.  Miyatani,  "On the Anode Phenomena on Lead Electrolyt  Refining", Tech. Rep. Kansai Univ.,  13, 81-92 (1972).

[18]  F. Miyashita and G. Miyatani, "Influence of  Electrolytes and  Surface Active AgeontheSurfaceReactionofLeadElectrode", Nippon Kogyo Kaishi, 94 (1085), 485-489(1978).

[19] R  Winand,  "Electrocrystallization",  in Applications of Polarization Measurementsin the Control of  Metal Deposition, I.H. Warren ed., Elsevier Science Publishers,

Amsterdam, p. 47-83 (1984).[20] R  Winand,  "Fundamentals of  Electrometallurgy- Part  B",  in Fundamentals a

Practice  of   Aqueous  Electrometallurgy, Short Course  Notes, 20th  AnnualHydrometallurgical Meeting, CIM, Montreal, Canada  (October, 20-21,1990).

[21] C. Gabrielli "Identification of  Electrochemical  Processes by Frequency Resp Analysis",  Monograph  Reference  004/83,  Solartron  Instrumentation  Group,Farnsborough, England, 1981.

[22] J .  Reid  and AP.  David,  "Impedance  Behavior   of a  Sulphuric  Acid-Cupri  Sulphate/Copper  Cathode  Interface",  J . Electrochem. Soc,  134  (6), 1389-1394(1987).

[23] Z. Nagy and D A Thomas,  "Effect   of  Mass Transport   on the Determination  oCorrosion Rates from Polarization Measurements", J.  Electrochem. Soc, 133 (12013-2017 (1986).

[24]  J. S. Newman, " E l e c t r o c h e m i c a l S y s t[25]  D.D.  Macdonald,  "Some Advantages  and  Pitfalls  of  Electrochemical  Impeda

 Spectroscopy",  Corrosion-NACE. 46 (3), 229-242 (1990).

[252]

Page 279: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 279/392

Bibliography Chapter 6

BIBL IOGRAPHY   Chapter 6

[I]  M.  Kendig,  F.  Mansfeld,  and T. Tsai, "Determination of  the Long  Term Corrosi  Behavior  of Coated  Steel  withA.C. Impedance Measurements", Corros. Sci., 23317-329 (1983).

[2]  F. Mansfeld, M.W. Kendig, and S. Tsai "Recording  and  Analysis of  AC Impedance Data  For   Corrosion Studies II.  Experimental Approach and Results",Corrosion-NACE, 38 (11). 570-580 (1982).

[3]  M. Kendig and F. Mansfeld, "Corrosion Rates From Impedance Measurements:  Improved  Approach For  Rapid  Automatic  Analysis",  Corrosion-NACE,  39 (1466-467 (1983).

[4] A A  Zaki  and R   Hawley,  "Dielectric Solids",  Solid  State  Physics,  Dover

Publications Inc., USA 1970.

[5]  N.E.  Hill,  W.E.  Vaughan,  AH.  Price,  and M.  Davies, "Dielectric Properties and Molecular  Behaviour", Van Nostrand Reinhold Company, London 1969.

[6]  M. Rueda, M. Sluyters-Rehbach, and J.H. Sluyters, "The Theory of  the Interfacial Impedance in the Case of  the ECE  and  the ECEE  Mechanism and  its Applicathe Electrochemical  Reduction of  Nitromethane on Mercury from Aqueous 1

 At  pH  9' J.  Electroanal. Chem., 261 . 23-38 (1989).

[7] D.D. Macdonald,  M.C.H.  Mckubre,  and M. Urquidi-Macdonald,  "Theoretical Assessment  of  AC   Impedance  Spectroscopy for  Detecting   Corrosion  of Reb Reinforced  Concrete",  Corrosion-NACE, 44  (1), 2-7 (1988).

[8]  K.J.  Vetter,  "Electrochemical Kinetics, Theoretical  and  ExperimentalAspects", Academic Press. New York  (1967).

[9]  J.N. Agar and F.P. Bowden, "The Kinetics of  Electrode Reactions I and  II', Proc.Soc.  169A 206-234, (1939).

[10]  S.L. Granese, "Study of  the Inhibitory Action of  Nitrogen-Containing  CompoCorrosion-NACE. 44  (6), 322-327 (1988).

[II]  "Electrochemical Corrosion  Testing  with Special  Consideration  of   Practi  Applications"  [ProcConf.], E. Heitz, J.C. Rowlands, and F. Mansfeld eds., DechemaMonographs V.  101, VCH, Germany 1986.

[12] R  Francis," The Use of  Small  amplitude Cyclic VoUammetry to Study the Cor of  Copper  and  Copper  Alloys" , Paper 19 in ref   [in.

[13]  D.D.  Macdonald,  "Some  Advantages and  Pitfalls  of  Electrochemical  Imped  Spectroscopy", Corrosion-NACE, 46  (3), 229-242 (1990).

[14]  B. Breyer and H.H. Bauer, "Alternating Current Polarography and Tensametry",Chemical Analysis V. XIII, Interscience Publishers, USA 1963.

[15] J .R   MacDonald.  "Simplified   Impedance/Frequency-Response  Results Intrinsically Conducting  Solids and  Liquids", J.  Chem. Phys., 61 (10). 3977-39(1974).

[253]

Page 280: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 280/392

Bibliography Chapter

 7

[16]  C.  Gabrielli,  "Identification of  Electrochemical  Processes by Frequency Resp Analysis",  Monograph  Reference  004/83,  Solartron  Instrumentation  Group,Farnsborough, England, 1981.

[17]  C. Deslouis, I. Epelboin, M. Keddam, and J.C. Lestrade. "Impedance De Diffusion D'Un Disque Tournant  En Regime Hydrodynamique Laminaire. Etude Experim

 EtComparisonAvecLeModeleDeNernst', J. Electroanal. Chem., 28,57-63 (1970).[18]  Z. Stoynov, "Impedance Modelling  and  Data Processing: Structural  and  Parame

 Estimation", Electrochim. Acta. 35 (10). 1493-1499 (1990).

[ 19]  W. Scheider, "Theory of  Frequency Dispersion of  Electrode Polarization Topol  Networks with Fractional  Power  Dependence", J. Phys.  Chem., 79 (2). 127-1

(1975).

[20]  H. Reiser, K.D. Beccu. and M.A  Gutjahr, "Abschatzung  DerPorenstruktur  Porosen Electroden Aus Impedanzmessungen", Electrochim. Acta,  21 , 539-543 (1976).

[21] S.  Atlung  and T. Jacobsen,  "On The Ac Impedance of  Electroactive  Powders

 y-Manganese Dioxide"Electrochim. Acta, 21 , 575-584 (1976).[22]  J.  R. Macdonald, "Comparison and  Discussion of  Some Theories of  the Equilibr

 Electrical  Double Layer  in Liquid  Electrolytes",  J.  Electroanal.  Chem.,  223 ,  1-(1987).

[23]  J. S. Newman, " E l e c t r o c h e m i c a l S y s t[24] J . Newman. "The Effect  of  Migration in Laminar Diffusion Layers",  J.  Heat M

Transfer,  10, 983-997 (1967).

[25]  G. Tremolada and L. Abduini, "Lead  Refining  with Sulphamate Bath at  The A. ToneC", Symposium on Sulphamic  Acid and its Electrometallurgical Applications,

p. 353-366, Milan (1967).

BIBLIOGRAPHY Chapter 7

[1]  N.K. Thiet, "The Electrolytic Refining  of  Lead  at  High Current  Densities",  PDissertation, Bergakademie Freiberg, East Germany, 1982.

[2]  H. J. Lange. K. Hein and N.K. Thiet, "Electrolytic Lead  Refining  at Increased  Curre Densities", Neue Hiitte, 28 (4), 136-41 (1983).

[3]  F. Wenzel and K. Hein, "Influence of  the Anode Sludge on the Purity of  the Cat  Metal   in the Electrolytic Refining  ofLead', Neue Hiitte.  19 (5), 263-67 (1974).

(Translation National Translations Center, NTC  11F-81-11594).

[4]  F. Wenzel, "Contribution to the Clarification of  the Anodic Process in the Elec Refining  ofLead', Neue Hutte,  18 (6). 374-5 (1973).

[5] F. Wenzel,  "Contribution  to the Clarification  of  the  Anodic  Processes  in  L Electrorefining;', Ph.D. Dissertation, Bergakademie Freiberg, East Germany, 1971.

[6] E. Nomura, A  Aramaki,  and Y.  Nishimura,  "Electrolytic Lead  Refining  and its

 Mechanization at  Takehara Refinery",  TMS paper selection A74-21, TMS-AIME,Warrendale, PA (1974).

[7] S. Hirakawa and R. Oniwa, "Method  for  Producing High Purity Lead  by Remov Bismuth', Canadian Patent 1023691, Jan. 3, 1978.

[254]

Page 281: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 281/392

Bibliography Chapter

 7

[8]  G. Baralis, "The Production of  High Purity Lead', Lead 65 [Proc. Conf.]. Arnhem, p317-323. 1967.

[9]  G. Baralis and M.  Marone. "Production of  99.9999% Ag, Pb, Sb, and  Sn",  MItal.. 7, 494-501 (1967).

[10]  H.  Bombach,  K.  Hein. J . Korb and H.J.  Jange. "Investigation on the Chemica

 Stability of  Lead  Electrolytes Containing Hexafluorosilicic Acid', Neue Hiitte, 3347-351(1986).  (Translation MINTEK  TR-1265).

[11]  AG. Betts, "Lead Refining By Electrolysis", J. Wiley and Sons, New York, 1908.

[12]  W. Eisert, "Electrolytic Refining  of  Lead  by the Betts Process", Neue Hiitte, 29-35 (1959).

[ 13]  Unpublished Cominco Report, "Lead Tenor  and  Current  efficiency", December 11966.

[14]  AG.  Turnbull  And  W.A  Wadsley,  "Predominance-Area Diagrams By  Comput  Methods", csnto  Division  Of  Mineral  Chemistry,  Research  Report,  1984, p.

108-110.

[15]  AG.  Turnbull,  "A General  Computer  Program For  The Calcultion And  Plotti Thermodynamic-Stability Diagrams",  Joint Australian  Institute  Of   Mining AnMetallurgy/University  Of  South Wales, Extractive Metallurgy Symposium, Sidney1977, 10 pp.

[16]  J.R  CookeandM.J. Mlnski, "Kinetics and  Equilibria of  Fluorosilicate Solutions  Special  Reference to the Fluoridation of  Water  Supplies", J. Appl. Chem., 123March 1962.

[17]  CE .  Roberson and T.B. Barnes, "Stability of  Fluoride Complex  With Silica and  

 Distribution in Natural  Water  Systems", Chemical Geology, 21, 239-256 (1978).[18]  RH.  Busey,  E. Schwartz,  and RE.  Mesmer,  "Fluosilicate Equilibria  in Sodium

Chloride Solutions  from 0 to 60'C, Inorg. Chem., 19 (3), 758-761 (1980).

[19]  N.N.Golovnev, "The Influence of  pH  on the Formation ofSiF 6 ' 2 in Aqueous Solu

Russ. J.  Inorg. Chem., 31 (3), 367-368 (1986).

[20]  V.N.  Krylov and  E.V.  Komarov, "Some Properties of  Ftuorosilicic Acid',  Russ. Inorg. Chem., 16 (6), 827-829 (1971).

[21]  V.M. Masalovich, G .A Moshkareva and P.K. Agasyan, "Study of  Complex  FormatioinSolutions of   Hydrofluoric and  Silicic Acid', Russ. J. Inorg. Chem., 24 (2), 196-19

(1979).[22]  V.N. Plakhotnik, "The Concentration of  Hexafluorosilicate Ions in Hexaftuor 

 Acid  Solutions  Saturated   with  Silicic  Acid', Russ.  J .  Inorg.  Chem.,  48 (10),1550-1551 (1974).

[23]  P.M. Borodin and N.K. Zao. "Equilibria in the Li^iF 6 -HCl04-H 20  by the 19F  Nuclea Magnetic Resonance Method', Russ. J.  Inorg. Chem., 16 (12). 1720-1722 (1971).

[24]  V.N.  Plakhotnik,  "Equilibrium  Constant  of  the  First  Stage  of  Hydrolysis  of   Hexafluorosilicate Anion", Russ. J.  Inorg. Chem., 48 (11), 1651-1653 (1974).

[255]

Page 282: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 282/392

 Bibliography Chapter  7

[25]  K. Kleboth, "Fluorine Complexes of  Silicon in Aqueous Solutions", Monatsch. Ch99  (3), 1177-1185 (1968).  (Translation Associated  Technical  Services. Inc..55E148G).

[26]  K.  Kleboth, "Fluoro Complexes  of  Silicon  in Aqueous Solution  - Part  2 : Formand   Properties of  TetrqfluorosiUcic Acid'',  Monatsch.  Chem.  100  (3). 1057-106

(1969).  (Translation Associated Technical Services Inc.,  41W119G).[27]  L.N. Arkhipova and S.Ya.  Shpunt, "Some Properties ofFluorosilicicAcid', Tr. NIUIFa,

208,  88-103, (1965).  (Translation National Translations  Center.  NIC -99D-85-22456).

[28]  L.N. Arkhipova and S.Ya.  Shpunt, "Hydrolysis of  Calcium Silicofkioride in Water  a25'C,  Tr. NIUIFa, 208.  69-88 (1985).  (Translation National Translations Center.NTC  - 99D-85-22457).

[29]  I.G.  Ryss and V.N.  Plakhotnik. "Solubility  of  StO a  in Hydrogen HexafluorosilicatfVT. Russ. J.  Inorg. Chem.,  15  (12) 1742-1745 (1970).

[30]  "Standard Potentials in Aqueous Solutions" , A J. Bard, R  Parsons and J. Jordaneds.,  Marcel Dekker, Inc., New  York  (1985).

[31]  M.  Pourbaix.  "Atlas of Electrochemical Equilibria",  Pergamon  Press,  GreatBritain (1966).

[32]  "Comprehensive Inorganic Chemistry", J.C.  Bailar, H.J.  Emeleus, R  Nyholm,and AF. Trotman-Dickenson, ed.,  Pergamon Press.  V.  3 p. 1465.

[33]  E.M.  Morgunova.  N.P.  Okuntsova.  AE.  AleshechMna,  LB.  Bulycheva,  and T.I.Bogun,  "Solubility  of   Sodium Hexafluorosilicate  in  Aqueous Solutions  Hexafkiorosilicic Acid' ', Russ. J.  Inorg. Chem.,  24  (12), 1895-1896 (1979).

[34]  T.N.  Sudakova. V.V.  Krasnoshchekov and Yu. G.  Frolov,  "Determination of   the Ionization Constants of  Hydrogen Hexafluorosilicate inAqueous andOrganicM Russ. J.  Inorg. Chem.. 23  (8), 1150-1152, (1978).

[35]  C. Leonte, A Talaba, N. Aelenei, and R  Smocot, "Real  Properties ofHexafluorosilici  Acid  Solutions", Revista de Chimie, 36  (12), 1125-1129 (1985).

[36] Y. Folov,  T.N.  Sudakova,  A A Agcev,  and V.  Kransnoscherv,  "Properties and Behavior  of  Fluosilicic Acids  in  Aqueous Solutions",  Doklady Tirninyaze VskaSelskokhozya. p. 154-158, 1977.  CA  89:2050908.

[37]  O. Sohnel and P. Novotny, "Densities of  Aqueous Solutions of  Inorganic SubstanV. 22 Physical Sciences Data, Elsevier, Czechoslovakia, 1985.

[38]  H.P.  Meissner  and J.W.  Tester,  "Activity  Coefficients  of  Strong Electrolytes  Aqueous Solutions'', Ind. Eng.  Chem. Process Des.  Develop., 11  (1),  128-133 (1972).

[39]  H.P.  Meissner and C.L. Kusik, "Double Salt  Solubilities",  Ind. Eng.  Chem. ProcessDes.  Develop..  18  (3), 391-394 (1979).

[40]  C.L.  Kusik   and  H.P.  Meissner,  "Electrolyte  Activity  Coefficients  in  Inorga Processing", AIChE Symposium Series,  173  (74), 14-20 (1978).

[41]  C.L. Kusik  and H.P.  Meissner. "Calculating  Activity Coefficients  in Hydrometallu-AReview",  Int. J. Miner. Process., 2, 105-115 (1975).

[256]

Page 283: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 283/392

Bibliography Appendix

 1

[42]  "Handbook   of  Aqueous Electrolyte Thermodynamics",  J.F.  Zemaitis, D.M.Clark, M. Rafal, N.C.  Scrivner eds., AIChE, USA 1986.

[43]  K. Tozawa. Anf   K. Sakaki, "Effect  of  Coexisting  Sulphates On Precipitation of  FeOxide From Ferric Sulphate Solutions At   Elevated  Temperatures",  Iron ContHydrometaUurgy.  [Proc.  Conf.],  J.E.  Dutrizac  and AJ.  Monhemius  Eds.,  Ellis

Horwood Ltd.,  Chichester UK,  1986. p. 455-476.[44]  "Kinematic Viscosity  of  Transparent   and   Opaque Liquids  (and the  Calculatio

 Dynamic Viscosity)", ASTM Standard, D445-82.

[45]  G.T. Hefter, "Calculation of  Liquid  JunctionPotentials For  EquiUbriumStudies", AChem..

 54 (14), 2518-2524 (1982).

[46]  AL. Horvath, "Handbook  of  Aqueous Electrolyte Solutions", Ellis Horwood Ltd.,Chichester UK, 1985.

[47]  H. Majima, E. Peters, Y. Awakura. S.K.  Park, and M. Aoki, "Electrical  Conductivity

of  Acidic Chloride Solutions", Metall. Trans. B , 19B,  53-58 (1988).

[48]  R A  Robinson and RH.  Stokes, "Electrolyte Solutions", Butterworths ScientificPublications, London (1955).

[49]  J. S. Newman, "Electrochemical Systems", Prentice-Hall Inc., USA  1973.

[50]  AS. Roy, "A Perspective  On Electrochemical Transport Phenomena:',  In AdvaIn Heat Transfer, T.F.  Irvine and J.P.  Harnett Eds., V.  12, p. 196-282, AcademicPress, New  York, 1976. (also see references Appendixes 1 and  2)

[51]  J.O'M. Bockris and AK.N. Reddy, "Modern Electrochemistry", V. 1 and 2, PlenumPress, New  York, 1970.

[52]  C.J. Krauss, "Electrometallurgical Practice: Zinc and  Lead", in Fundamentals  and

Practice  of   Aqueous  Electrometallurgy, Short  Course  Notes,  20th  AnnualHydrometallurgical Meeting, CIM, Montreal, Canada  (October, 20-21,1990).

[53]  N.T.Crosby,  "Equilibria of  Fluorosilicate Solutions  with Special  Reference t Fluoridation of  Public Water  Supplies",  J. Appl. Chem., 19. 100-102 (1969).

BIBLIOGRAPHY  Appendix  1

[1] I. Rousar, K. Micka, and  A Kirnla, "Electrochemical Engineering I (Parts  A -Q",

Chemical Engineering Monographs V. 21A Elsevier, Amsterdam 1986.

[2]  N. Ibl and O. Dossenbach, "Convective Mass Transport', in Comprehensive treatise

of  Electjochemistry, E. Yeager, J. O'M. Bockris, B.E. Conway and S. Sarangapanieds., Vol.  6, Chapter 1, Plenum Press, New  York  (1983).

[3]  E. Peters, Transport in Electrolytes, to be published.

[4]  K.S.  F0rland, T. Forland, and S.K.  Ratkje, "Irreversible Thermodynamics", JohnWiley and  Sons, New  York, 1988.

[5]  B.G.  Ateya and H.W.  Pickering, "Effects of  Mass Transfer  In The Aqueous PhasOn Repassivation  of  Activated  Surfaces and  The  Stability  of   Protective FilmPassivity  of  Metals [Proc.  Conf.],  RP. Frankental and J.  Kruger,  Eds., TheElectrochemical Soc,  Corrosion Monograph Series, U.SA,  P.350-368. 1978.

[257]

Page 284: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 284/392

 Bibliography  Appendix  2

[6]  B.G. Ateya and H.W. Pickering, "Effects of Ion Migration on the Concentrations and Mass Transfer   Rate tn the Diffusion  Layer  of  Dissolving   Metals",  J .  Appl.Electrochem.,  11 , 453-61 (1981).

[7]  AS. Roy,  "A Perspective On Electrochemical  Transport Phenomena",  In AdvaIn Heat Transfer, T.F. Irvine and J.P.  Harnett Eds.. V.  12, P.  196-282, AcademicPress, New  York, 1976.

[8]  J.J.C.  Janz,  "Estimation  of  Ionic Activities  in Chloride Systems  at  Ambient   Elevated  Temperatures", Hydrometallurgy,  11 ,  13-31 (1983).

[9]  C.L.  Kusik   and H.P.  Meissner,  "Electrolyte  Activity  Coefficients  in  Inorga Processing", AIChE Symposium Series,  173  (74), 14-20 (1978).

[10]  H. Majima and Y. Awakura, "Measurement  of the Activity of  Electrolytes  and the Application  of  Activity to HydrometaUurgical  Systems",  Metall. Trans. B ,  12141-147 (1981).

[11]  C.Y. Chan and  K.H. Khoo, "Re-determination of  mean Ionic activity coefficient 

the system HCl+KCl+H 20  at  298.15  K and   correlations between Horned  and  Pi  Equations",  1371-1379.

[12]  "Handbook  of  Aqueous Electrolyte Thermodynamics", J.F. Zemaitis. D.M. Clark, Ratal, and N.C. Scrivner eds., AIChE, USA 1986.

BIBL IOGRAPHY  Appendix 2

[1]  E. Peters, Transport in Electrolytes, to be published.

[2]  B.G. Ateya and H.W. Pickering. "Effects of  Mass Transfer  In The Aqueous PhaseOn Repassivation of  Activated  Surfaces  and The Stability of  Protective Films",Passivity of  Metals [Proc. Conf.], R.P.  Frankental and J. Kruger, Eds.. The

Electrochemical Soc,  Corrosion Monograph Series, U.SA,  P.350-368, 1978.

[3]  B.G. Ateya and H.W. Pickering, "Effects of Ion Migration on the Concentrationsand   Mass Transfer  Rate in the Diffusion Layer  of  Dissolving  Metals", J . Appl.Electrochem.,  11 . 453-61 (1981).

BIBL IOGRAPHY  Appendix 3

[1]  W.D.  Stanley, "Transform  C i r c u i t  Analysis  for  Engineering  and Technology" ,

2nd Ed.,  Prentice-Hall Inc., USA 1989.

[2] RD.  Strum  and J.R   Ward,  "Laplace Transform  Solution  of   Differential

Equat ions" .  Prentice-Hall Inc., USA 1968.[3] D. Britz,  "D ig i t a l  Simulation  i n Electrochemistry",  2nd Ed.  Springer-Verlag,

Germany 1988.

[4]  T.F.  Bogart Jr.,  "Laplace Transforms:  Theory  and  Experiments", John Wiley &

Sons, New  York, 1983.

[5] T.  Young,  "Linear   Systems  and  D ig i t a l  Signal  Processing",  Prentice-Hall

Inc.USA 1985.

[6]  K.L. Su, "Time-Domain  Synthesis  o f   l i n e a r    Networks", Prentice-Hall Inc.USA

1971.

[258]

Page 285: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 285/392

 Bibliography  Appendix  3

[7]  AK. Walton, "Network An al ysi s and Practic e",  Cambridge University Press, GreatBritain, 1987.

[8]  T.H.  Glisson, " In t roduc t ion  to Sys t em  Analys is" .  McGraw-Hill Book  Company,USA  1985.

[9]  A A  Pilla and G.S. Mar gules, "Dynamic Interfacial  Electrochemical Phenomena 

 Living  CellMembranes: Application to the Toad  Urinary Bladder  Membrane SysJ. Electrochem. Soc. 124  (11), 1697-1706 (1977).

[10] A A  Pilla,  "Influence  of the  Faradaic Process on  Non-faradaic  ResistanCompensation inPotentiostaic Techniques", J . Electrochem. Soc,  118  (5), 702-7(1971).

[ 11] A A  Pilla, "Laplace Analysis of  Electrode Kinetics", in Electrochemistry, Computein  Chemistry  and  Instrumentation, Vol  2, J.S.  Matsson,  H.B.  Mark, and H.C.Macdonald Eds.,  P.139-181. Marcell-Dekker, New  York. 1972.

[12] J . Ye and K. Doblhofer,  "Some Practical  Aspects  of the Numerical   Laplace

Transformationfor  Impedance Analysis ofElectrochemicalSystems", J. ElectroChem.. 261,  11-22 (1989).

[13] D.D.  Macdonald  and  M.C.H.  Mckubre,  "Impedance  Measurements  in Electrochemical  Systems",  in Modern Aspects of  Electrochemistry V.  14, Chapter2, J.O'M.  Bockris,  B.E.  Conway, and RE.  White Eds.,  Plenum Press, New  York,1982.

[ 14] A A  Pilla, "Laplace Plane Analysis of  the Impedance of  Faradaic and  Non-Fada Electrode Processes", J.  Electrochem. Soc, 1 18  (8), 1295-1297 (1971).

[15]  A A  Pilla, "A Transient   Impedance Technique for the Study of  Electrode Kinet J. Electrochem. Soc, 117  (4), 467-467 (1970).

[16] K. Doblhofer  and  A A  Pilla,  "Laplace  Plane  Analysis of the Faradaic  and Non-Faradaic Impedance of  the  Mercury Electrode",  J . Electroanal.  Chem., 91-102 (1972).

[17]  W.H. Smyrl, "Digital  Impedancefor  Faradaic Analysis I. Introduction to Digital Analysis  and Impedance  Measurements  for   Electrochemical   and   Corro Systems", J. Electrochem. Soc, 132  (7), 1551-1555 (1985).

[18]  W.H.  Smyrl, "Digital  Impedance for   Faradaic Analysis II. Electrcdissolution of  HCV,  J. Electrochem. Soc, 132  (7), 1555-1562 (1985).

[19]  W.H.  Smyrl and L.L. Stephenson.  "Digital  Impedance for   Faradaic Analysis

  II Corrosion  in Oxygenated   .1  N   HCV,  J . Electrochem. Soc,  132  (7). 1563-1567(1985).

[20]  H. Gerisher, Z. Phys. Chem.,  198,  286 (1951).

[21]  D.C.  Grahame. J. Electrochem. Soc. 107.  452 (1960).

[22] C.  Gabrielli,  "Identification  of   Electrochemical  Processes  by  Frequency

Response  Analys is" ,  Monograph Reference 004/83, Solartron InstrumentationGroup, Farnsborough, England, 1981.

[259]

Page 286: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 286/392

Bibliography Appendix

 3

[23]  J. R  Macdonald, "Comparison and  Discussion of  Some Theories of  the Equilib Electrical  Double Layer  in Liquid  Electrolytes",  J.  Electroanal. Chem., 223,  1-2(1987).

[24] I.  Epelboln,  C. Gabrielli,  and M.  Keddam,  "Non Steady State Techniques",  iComprehensive Treatise of  Electrochemistry,  E.  Yeager,  B.E.  Conway, J . O'M.

Bockris, and S. Sarangapani eds., Vol.  9, Chapter 3, Plenum Press, New York(1983).

[25]  G.W. Walter," A Review of Impedance Plot  Methods usedfor  Corrosion Perfor  Analysis of  Painted  Metals", Electrochim. Acta. 26 (9), 681-703 (1986).

[26] R  de Levie, "On the Impedance of  Electrodes withRough Interfaces", J. ElectroChem., 261,  1-9 (1989).

[27] R De Levie and L. Pospisil,  "On  the Coupling   of  Interfacial   and   Diffusiona Impedances, and on the Equivalent   Circuit   of an Electrochemical   Cell', Electroanal. Chem., 22, 277-290 (1969).

[28]  J.R  Macdonald ed., "Impedance Spectroscopy", John Wiley and Sons, New York,1987.

[29]  J.R   Macdonald, "Impedance Spectroscopy: Old  Problems and  New DevelopmElectrochim. Acta, 35 (10), 1483-1492 (1990).

[30]  D.D.  Macdonald,  "Some  Advantages and  Pitfalls  of  Electrochemical  Impeda Spectroscopy", Corrosion-NACE, 46 (3), 229-242 (1990).

[31]  K.J.  Vetter.  "Electrochemical Kinetics, Theoretical  and  ExperimentalAspects", Academic Press. New York  (1967).

[32]  "Electrode Kinetics: Principles and Methodology,".  C H.  Bamford  and  RG.

Compton eds., V.  26 in series Comprehensive Chemical Kinetics, Elsevier, TheNetherlands, 1986.

[33]  F.P. Dousek, "Behavior  of a Potassium Electrode Pretreated   with Water  VapGaseous Solution!',  Electrochim. Acta, 32 (7), 1079-1086 (1987).

[34]  D. Britz and W.A  Brocke, "Elimination oflR-Drop in Electrochemical  Cells by Use of a Current-Interruption Potentiostat",  J . Electroanal.  Chem.,  58, 301-3(1975).

[35] D. Britz,  "iR  Elimination  in Electrochemical   Cells",  J . Electroanal.  Chem..  8309-352 (1978).

[36]  M.  Hayes and AT.  Kuhn,  "Techniques for  the Determination of  Ohmic Drop  Half-Cells and  Full  Cells: A Review",  J. Power Sources, 2,  121-136 (1977/78).

[37]  M.  Kuhn, K.-G. Schutze, G.  Kreysa, and E.  Heitz, "Principles and  Applications ofComputer  Controlled  Electrochemical  Measurements  with Elimination of  IRPaper 24 in ref  [49].

[38]  "Techniques  in  Electrochemistry,  Corrosion  and  Metal  Finishing,  aHandbook", AT.  Kuhn ed., John Wiley & Sons. New York, 1987.

[39]  E.J. Muth, "Transform Methods", Prentice-Hall Inc., USA 1977.

[260]

Page 287: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 287/392

Bibliography Appendix   4

[40]  S.J.  Orfanidis.  "Optimum Signal Processing", MacMlIlan Publishing Company.USA  1988.

[41]  AJ .  Bouwens,  "Digital Instrumentation",  McGraw-Hill  Book  Company,  USA

1984.

[42]  F.  Mansfeld, "Recording  and   Analysis  of  AC  Impedance Data for   Corrosion Stud 

 I.Background  and  Methods ofAnalysis", Corrosion-NACE, 37  (5),  301-307 (1981).

[43]  F.  Mansfeld,  M.W.  Kendig, and  S. Tsai "Recording  and   Analysis  of  AC Impedance Data  for   Corrosion Studies II.  Experimental Approach  and Results",Corrosion-NACE,  38  (11), 570-580 (1982).

[44] J .R   MacDonald,  "Simplified   Impedance/Frequency-Response  Results Intrinsically Conducting  Solids  and   Liquids",  J.  Chem. Phys.,  61  (10), 3977-396(1974).

[45]  M.W.  Kendig, E.M. Meyer, G. Lindberg, and F. Mansfeld,  "A Computer  Analysis of

 Electrochemical  Impedance Data", Corros. Sci.,  23  (9), 1007-1015 (1983).

[46]  S.D.  Stearns, "Digital Signal Analysis". Hayden Book  Company. Inc., USA  1975.

[47]  K.G. Beauchamp and C.K. Yuen, "DigitalMethodsforSignal  Analysis", George Allen& Unwin, Great Britain, 1979.

[48]  CD.  McGillem and G.R   Cooper,  "Continuous and  Discrete Signal   and  System Analysis",  2nd ed..  Holt Rinehart and  Winston, USA  1984.

[49]  "Electrochemical   Corrosion  Testing  with Special  Consideration  of   Practi  Applications"  [Proc.Conf.], E. Heitz, J.C  Rowlands, and F. Mansfeld eds.,  DechemaMonographs V. 101. VCH,  Germany 1986.

[50]  F. Mansfeld, "Monitoring  of  Atmospheric Corrosion Phenomena with Electroche

 Sensors", J. Electrochem. Soc, 135  (6). 1354-1358 (1988).

[51 ]  W.J.  Lorenz and F. Mansfeld, "Determination of  Corrosion Rates by Electrochemi DC andAC Methods",  Corros. Sci.,  21  (8), 647-672 (1981).

BIBL IOGRAPHY  Appendix 4

[1]  V.N.  Krylov and E.V.  Komarov, "Some Properties  of   Fluorosilicic Acid',  Russ. Inorg. Chem.,  16  (6), 827-829 (1971).

[2]  P.M.  Brinton,  L.A  Sarver,  and AE.  Stoppel,  "The Titration  of  Hydrofluoric  and Hydrofluosilicic Acids  in Mixtures  Containing  Small  Amounts  of  Hydrofluo

 Acid',  Ind. Eng.  Chem..  15  (10). 180-1081.[3]  C A  Jacobson, "Fluosilicic Acid  IE: Method  of  Titrating   and   Properties",  J.  Che

Soc.  119.  506-509 (1921).

[261]

Page 288: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 288/392

 Bibliography Appendix  4

[4]  V.N.  Plakhotnik.  "Equilibrium Constant   of  the  First  Stage  of  Hydrolysis  of   Hexafluorosilicate Anion", Russ. J.  Inorg. Chem.. 48 (11). 1651-1653 (1974).

[5J  P.M. Borodin and N.K. Zao, "Equilibria in the Li2SiF 6 -HCl04-H 20 by the 19F Nucle Magnetic Resonance Method', Russ. J.  Inorg. Chem..  16 (12). 1720-1722 (1971).

[6]  H. K5nig, "Indirect   termination of   Silicic Acidby Titration", Z. Analyt. Chem..  19

401-406 (1963).

[7]  H.  Bombach,  K.  Hein,  J . Korb and H.J.  Jange, "Investigation on the  Chemica Stability of  Lead  Electrolytes Containing Hexafluorosilicic Acid' , Neue Hiitte, 3347-351(1986).  (Translation MINTEK  TR-1265).

[8]  S.M. Thomsen, "Acidimetric Titrations in the Fluosilicic Acid  System", Anal. 23 (7), 973-975 (1951).

[9]  T.N.  Sudakova,  V.V.  Krasnoshchekov and Yu.  G.  Ftolov,  "Determination of  the Ionization Constants ofHydrogenHexafluorosilicate inAqueousandOrganicMeRuss. J.  Inorg. Chem., 2 3 (8), 1150-1152, (1978).

[10]  W. Lange. "The Chemistry of  Fluoro Acids", in Fluorine Chemistry, J.H. Simons ed.,Vol.  1, p. 125-188, Academic Press (1950).

[11]  L.N. Arkhipova and S.Ya. Shpunt, "SomeProperties ofFLuorosilicicAcid', Tr. NIUIF208 ,  88-103, (1965).  (Translation  National  Translations  Center,  NTC -99D-85-22456).

[12] Y. Folov.  T.N.  Sudakova,  A A  Agcev,  and V. Kransnoscherv,  "Properties and Behavior  of  Fluosilicic Acids  in Aqueous Solutions",  Doklady Timinyaze Vsk Selskokhozya. p. 154-158, 1977.  CA 89:2050908.

[13] Gmelins Handbuch der Anorganische Chemie.  E.H.E.  Pretsch ed.. V.  15 Si [B], •

p. 614-653, Verlag Chemie, Germany (1959)[14]  L.N. Arkhipova and S.Ya. Shpunt, "Hydrolysis of  Calcium Silicofluoride in Water  

25'C, Tr. NIUIFa, 2 0 8 . 69-88 (1985).  (Translation National Translations Center,NTC - 99D-85-22457).

[15]  K. Kleboth. "Fluorine Complexes of  Silicon in Aqueous Solutions", Monatsch. C99  (3), 1177-1185 (1968).  (Translation  Associated  Technical  Services, Inc.,55E148G).

[16]  K. Kleboth, "Fluoro Complexes of  Silicon in Aqueous Solution  - Part 2 : For and  Properties of  Tetrafluorosilicic Acid' ', Monatsch.  Chem.  100  (3). 1057-106

(1969).  (Translation Associated Technical Services Inc.. 41W119G).

[17]  S.Ya. Shpunt and O.V. Vasileva, "Physico-ChermcalStudies on the Reaction betwFluorides during  the Treatment  with Phosphate Acids" ,  Tr. NIUIFa, 228 ,  12(1976).  (Translation to Spanish: ICYT 76-4982).

[262]

Page 289: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 289/392

 Bibliography  Appendix   7

[18]  K. Kleboth, "Concerning  the Theory of  the Distillation of  Fluorine as  Fluosilicic AcMonatsch. Chem. 100.1494-1498(1969).  (Translation to Spanish ICYT: 69-4762).

[ 19] V.M. Masalovich, G A  Moshkareva and P.K. Agasyan. "Study of  Complex  FormationinSolutions of   Hydrofluoric and   Silicic Acid', Russ. J. Inorg. Chem., 24  (2),  196-198(1979).

[20]  RH.  Busey,  E. Schwartz,  and RE.  Mesmer,  "Fluosilicate Equilibria  in SodiumChloride Solutions  from 0  to 60'C,  Inorg. Chem!,  19  (3), 758-761 (1980).

[21]  V.N.  Plakhotnik,  "The Concentration of  Hexafluorosilicate Ions  in Hexafluorosil  Acid  Solutions  Saturated   with  Silicic  Acid', Russ.  J .  Inorg.  Chem..  48 (10),1550-1551 (1974).

[22]  N.T.Crosby,  "Equilibria of  FUiorosilicale Solutions  with Special Reference  toFluoridation of  Public Water  Supplies",  J. Appl. Chem..  19 .  100-102 (1969).

[23]  J.R   Cooke and M.J. Minski, "Kinetics and  Equilibria of  Fluorosilicate Solutions w Special Reference  to the  Fluoridation of  Water  Supplies", J. Appl. Chem., 123-1

March 1962.[24]  W. Lange, "The Chemistry ofFluoroacids",  in Fluorine Chemistry, J.H.  Simons  ed.,

V.  1, Academic Press, 1950.

[25]  N.N.Golovnev, "The Influence of  pH on the  Formation ofSiF 6 ' 2 in Aqueous Solutio

Russ. J.  Inorg. Chem., 31  (3), 367-368 (1986).

[26]  O.P.  Subbotina,  L.N.  Arkhipova,  and M.N.  Tsybina, "Composition  and  Propertiesof   Fluosilicic Acid',  Tr. NH  Po Udobr.  i Insektofungitsidam,  228,  56-60 (1976).(Translation to Spanish ICYT: 5933).

[27]  C. Leonte, A Talaba, N. Aelenei, and R   Smocot, "Real  Properties of   Hexafluorosilici 

 Acid  Solutions", Revista de  Chimie. 36  (12), 1125-1129 (1985).[28]  A A  Ennan, V.E. Blinder, and T.S.  Borisenko, "The Properties of  Fluosilicic Acid  (A

 Review)", Russ. J. Physical Chemistry. 51  (8), 1255, (1977).

[29]  CE.  Roberson and T.B.  Barnes, "Stability of  Fluoride Complex  with Silica and I  Distribution  in Natural  Water  Systems", Chemical Geology, 21,  239-256 (1978).

[30] E . Hayek   and K. Kleboth,  "Concerning   the Solubility  of  Silicon  Dioxide  i  Hexafluorosilicic Acid', Monatsch. Chem. 92  (5), 1027-1034 (1961).

[31]  Fluorine,  "Determination of  Fluosilicic Acid, Hydrofluosilicic Acid, Lead  and  S in Lead  Refinery Electrolytes", Cominco Report, Laboratory Section 17,  Report  No.

18.  July 18, 1973.[32]  G.  Schwarzenbach and H.  Flaschka,  "Complexometric Titrations",  2nd. ed.,

London, Methuen and Co.,  1969.

[33] A Vogel,  'Textbook of Quantitative Inorganic Analysis", 3rd ed..  Longman  Inc.,

1978.

BIBLIOGRAPHY   Appendix 7

[1]  M.  Broul, J . Nyvlt, and O.  Sdhnel,  "Solubility in Inorganic Two-ComponentSystems",  V. 6, Physical Sciences Data, Elsevier, Czechoslovakia, 1981.

[263]

Page 290: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 290/392

Biography

 Appendix

 8

[2]  K.K. Worthington and M. Haring, "Methods for  Determining  the Solubilities of SoFUiostiicotes",  Ind. Eng.  Chem. Anal. Ed..  3 (1). 7-9 (1931).

[3]  W.F.  Linke,  "Solubilities of Inorganic and Metal-Organic Compounds".  Van

Nostrand. New  York. 1958.

BIBL IOGRAPHY  Appendix 8

[1]  M.  Sluyters-Rehbach and J.H.  Sluyters. "A.C. Techniques", in Comprehensive

Treatise of  Electrochemistry.  E. Yeager,  B.E.  Conway, J . O'M.  Bockris, and S.Sarangapani eds., Vol.  9, Chapter 4, Plenum Press, New  York  (1983).

[2]  C.J.  Bushrod  and N.A  Hampson. "Anodic Behavior  ofLead  in Perchloric Acid   I.Continuous and   Interrupted  Polarization",  Br.  Corros. J., 6, 87-90 (1971).

BIBLIOGRAPHY  Appendix 1 0

[1]  D.D.  Macdonald,  "Some Advantages and  Pitfalls  of  Electrochemical  Imped  Spectroscopy",  Corrosion-NACE,  46  (3), 229-242 (1990).

[2] M.  Urquidi-Macdonald.  S.  Real,  and D.D.  Macdonald,  "Application  of Kramers-Kronig  Transforms  in the  Analysis of  Electrochemical  Impedance DTransformations in the Complex  Plane", J. Electrochem. Soc.  133 (10). 2018-202(1986).

[3]  D.D.  Macdonald and M.  Urquidi-Macdonald, "Kramers-Kronig  Transformation ofConstant  Phase Impedances", J.  Electrochem. Soc, 137 (2), 515-517 (1990).

[264]

Page 291: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 291/392

Appendix  1  Numerical Solut ion  of the  Nernst-Planck Flux

Equat ions  and Its App l icat ion to The Betts  Process

I.  Objective:

To  introduce an algorithm to  solve  numerically the Nemst-Planck flux

equations.  From the solution of this equation the concentration of ionic species

and the potential profile throughout the slimes layer will be obtained as a function

of  the electrolysis conditions.

n.  Assumptions:

1) The Nernst-Planck  flux equations can be applied in concentrated solutions

when they are solved in their fundamental form  \

2) Dissolution of  lead is the only Faradaic reaction. This reaction takes place

exclusively at the anode/slimes interface and proceeds without kinetic limitations

(i.e.  i o - * ~   for Pb->Pb+2+2e)2.

3) Noble impurities originally present in the lead anode report to the slimes

and  remain unreacted  during  the whole electrorefining cycle (i.e.  i„-»0  for the

dissolution of  Sb, Bi, As, and other noble impurities)3

.

4) Hydrolysis and secondary products precipitation can be neglected  4

.

5)  Mixing  of electrolytes within the  slimes  layer can be accounted for by

mcorporating the eddy diffusion component, D E   in the overall diffusion term, 2}

(i.e.  w=0)  [1.21

5

.

1

 This assumption implies

 that

 the cross coefficients in the Onsager phenomenological equations can be

neglected.

 Interrelationships between the involved ions can be incorporated

 within

 the absolute

 value

 of

activities and mobilities.

2 Assumptions 2 and

 3 are based on the fact that

 upon dissolution

 of lead bullion electrodes, lead

dissolution

 at the anode/slimes interface is the main reaction. Furthermore, under normal operation of the

BEP the slimes remain unreacted and polarized.

3 Dissolution

 of noble impurities is a function the potential gradient across the slimes layer. Once the

potential gradient is known, the point at which noble compounds start to react can be predicted.

4 Assumption 4 implies

 that

 the concentration gradients across the slimes layer do not depend on the

presence of secondary products or hydrolysis. This assumption can be relaxed once changes in activities

as a function of

 position

 are known. This will allow the hydrolysis point to be predicted.

5

 Eddy

 diffusion

 will be used to incorporate

 mixing

 due to natural convection within the slimes electrolyte.

Natural convection arises due to concentration differences

 that

 are created by the electrolysis itself.

Forced convection takes place in regions

 in

 which the velocity field is not influenced by the concentration

field around the electrode, and the density of the solution is constant [1,2]. Within the slimes electrolyte,

large concentration gradients exist and natural convection is perceived to be much larger than forced

convection.

[265]

Page 292: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 292/392

Fundamental Equations

6

Steady state, unidimensional model1 .

7) Electrical  neutrality is observed within the electrolyte entrapped in the

slimes layer 2 .

8 Only three ionic species are present (i.e. the PbSiF6 and H2 SiF 6 molecules

are completely dissociated)3

:

Species a:  Pb+ 2

Species b:  SiF6"2

Species c: H +

m.  Fun dam enta l Equat ions

Given the previous assumptions, the Nemst-Planck  flux equations that need

to be solved simultaneously are as follows  13-61:

1  dlna

a

  d<&  I(t)

 —o  c  -+u c —   = — —   ...rn

 N a  a

  a

  dx *

a

  dx Z

a

F

  1 1

1  d\na

b

  dQ>

1  d\na

c

  d®

Z.C.+Z

t

C,+Z,C,

  = 0  ...[iv]

where:

Species a = Ft/2

  Species b = S1F6

 2

  Species c = H +

Q = concentration of  species 1, (mol cm"3

].

Z, = charge number of  species 1, [eq mol"1!.

<Di  = overall diffusion coefficient of  species i, [cm2

 sec"1

] : ©; = D™  +D E

Df = molecular diffusion coefficient [cm2 sec"1]

D  E  = eddy diffusion constant [cm

2

 sec"1

] 17]  *•8 .

1 The electrolyte

 composition

 for a

 fixed

 position across the slimes layer may change as a result of

hydrolysis,

 precipitation of secondary products and

 natural

 convection. Depending

 on

 the height of the

electrode

 (among

 other electrolysis parameters) local ionic concentrations may show gradients in both the

vertical and

 horizontal

 coordinates.

2 Electrical neutrality rules out the presence of charge imbalance at any point throughout the slimes layer.

3 H

2

SiF

e

-PbSiF

6

 are strong electrolytes and their

 dissociation

 is expected to be very high.

4 D  E  can be

 considered

 to be equal for all the

 ions.

 Furthermore, it can be

 modified

 so as to incorporate

changes in porosity and tortuosity of the ionic flow across the slimes layer for different anode

compositions

 and/or electrolysis conditions.

5 Notice

 that when

 the molecular

 diffusion

 coefficient is smaller than the eddy

 diffusion

 constant, the

overall

 diffusion

 coefficient is nearly the same for all the components. In this case, eddy diffusion

practically

 equalizes

 the

 effective

 diffusivities for all the components

 [7].

[266]

Page 293: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 293/392

Fundamental Equations

 N, = water mol fraction with respect to species i:

A r > l - - £ -  a n d ^ =  10 , + ^

^ total

a, = molar activity coefficient of species i: a, = YC

•y,= individual molar activity coefficient.

*= migration potential, [volt]HJ= ionic mobility of species i, [cm 2 sec'1 volt"1! \

I (t) = net current density as a function of the electrolysis time 2, [Amp cm"2].

F = Faraday's constant, [96487 C eq"1]

R = universal gas constant, 8.3114 J mol"1 deg"1

x = distance from the slimes/electrolyte interface (as defined  in Fig. 1), [cm].

Eq.  i states that the only species being generated at the anode is Pb + 2 whereas

Eqs.  ii  and  iii  indicate that H+

 and  SiF6"2

  do not react and their equihbrium

concentration is only a function of the migration and diffusion gradients.  Eq. iv

is the electroneutrality condition.

Anode/Slimes

  Slimes/Electrolyte

Interface

1

nterface

\

Lead Slimes

Bulk

Anode Layer

Electrolyte

Fig. 1  Coordinate system used  toobtain the numerical solution of the Nemst-Planck flux equations.

i

X

=-x

  X

=0

x  0

1 D"

 and

 u,

 can be linked using the Nemst-Einstein relation:

•  Z;F

where Z* is the effective charge of species i

 exposed

 to the electric

 field,

 Z*

 <z,-.

2 The Betts electrorefining process for lead

 is

 normally carried out under nearly galvanostatic conditions

(i.e.

 /

 (t)

 = constant).

[267]

Page 294: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 294/392

Derived  Equations

TV.  Der ived Equations

Equation iv  can be differentiated using the following relationship:

then,

4

d_  d_(aAj^-a'i^lda,  at dyt

dx {Ci)  dx^) jf   yt dx   y}dx

rearranging terms:

d " dlna{ dlnyC

dx K dx dx _

By incorporating this relationship in equation [iv)  and assuming that Z, = Z*

the following relationship is obtained:

= 0

Thus, the electrical neutrality equation (Eq. iv)  can be equivalently expressed

as follows:

dlnaa  d  lnya

dx dx

+z bc„dlnab  d\nyb

dx dx

+Z.C.dlnac  d\nyc

dx dxBy making the following substitutions in equations  U  to v:

dlnya _-

dx ~ y"

d\naa  _

da>

dx= q>

d  lnyb  _

—= y

>

d\nab

  _

2FC a

=

 0  ...[v]

  =

 D

d  lnyb  -

d\nab  _

=n

Eqs.  i, ii, iii, and v  can be represented by the following equations:

D aaa + ua

O = -n ...1

...2

[268]

Page 295: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 295/392

Formulation

 of

 the Equations  to

 be

 Solved Numerically

D eae + u e* = 0  . . .3

2Ca(aa  - y.) - 2C „(Z b -yb )  + C C (3C -yc )  = 0  ..A

Equations  1 to 4 constitute a set of simultaneous differential equations that

have to be solved subject to the following initial conditions:

at x=0  (i.e. at the slimes/bulk electrolyte interface)

c,=c;

Y.=7f

0  = 0

Eqs.  1 to 4 have to be solved for 7 unknowns (aa,  ab , ac , ya , yb , yc ,  <S>)

using three additional equations of the form:

 _   dlna,  dlnC,  dlny,1  dx dx dx

These equations can be used to obtain either   or ctj once the concentrations

of all  the species are known.

V.  Formulat ion of the  Equat ions  to be  Solved Numerically

Eqs.  1 to 4 constitute a system of differential simultaneous equations that

have to be solved in order to yield the values for the four unknowns as a function

of   the distance  from  the slimes/electrolyte interface :  aa(x),ab(x),ac(x),®(x).  By

performing the following transformations, the differential equations are combined

in such a way that they can be solved by a finite difference numerical technique.

This transformation is accomplished as follows:

Multiplying Eq.  1 times u.c minus Eq. 3 times u.a:

D

a u . c aA

- D

c u a a c

  =  -riu,e

rearranging and solving for ac

1

a-Yl . . . 5

1  For a fixed electrolyte concentration, the individual

 activity

 coefficients, y, and the individual

 activities

can be

 derived

 from

 theoretical

 and experimental information

 [8-12].

[269]

Page 296: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 296/392

Finite

 Difference

 Equations

Multiplying Eq.  1 times u.b minus  Eq. 2 times u,a:

rearranging and solving for a

1

D.M*

(Db\i aab-n\i b ) ...6

Eqs.  5 and 6 are equivalent, thus:

and

D.M*

(Dbaaab-Tl \i b )

A L  = —— a. ...7

IncoiTJorating Eqs. 5 and 7 into eq. 4:

2C,

D„

D c l i 0 _

a  - n

-Ya+

 Ce(ac-Ye) = 0

rearranging and solving for ac:

a ( r  + 2 C ^ - 2 C   D ^=

 2C

a

y

a

-2QY

i

 +

 C

(:

Y

c

 +

 2 ^ n

Thus if  initial values for the Y and other variables are provided, a finite interval

numerical approach could be used to  solve for ac  \ Once ac  is known, ab  and a a

can be obtained from Eqs. 7 and 5 respectively. The fourth unknown, cp, can be

obtained from either Eq.  2 or from Eq.  3.

VI. Finite Difference Equations

The  differential  terms presented  in the previous  equations  can be

approximated using a first-order Taylor expansion.

1 By

 incorporating

 these transformations the differential equations can be

 approximated

 by

 using

 a

Taylor

 expansion

 series and solved as algebraic equations.

[270]

Page 297: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 297/392

Finite Difference

 Equations

Thus, a, can be represented as:

'   a,dx  ~ a{   Ax

from which:

aj +l =aj   + Ax-af-ai

where the superscripts j   and j+1 refer to different nodal positions (see Fig. 1

) and Axis the finite difference distance  l

.

A similar equation can be written for the change in the activity coefficients:

- _  =  I<*Y,_

71  ytdx'Y,  Ax

from which the value of the activity coefficient  at the next nodal point can be

obtained:

7j+1

=^ + Ax-7j-Y

(

.

Local ionic concentrations can also be put in a finite difference form by using

the following equations:

dlna,  dlnCi   dlny,a >

  dx dx dx

dlnCi   _ _ dlnji

dx   = a

' dx~

dQ  _ _

From the previous equation, the local values of the ionic concentrations can

be obtained as follows:

C / + 1  =  Cj + Cf-Ax-la,-^

The migration potential can also be expressed in finite difference  form:

qV  +1  =  qV  + Ax  <D

1

 Ax is

 a

 negative quantity (see

 Fig.

 1).

[271]

Page 298: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 298/392

Input data

Finally, the values of the D t, m, C l f  and II parameters in equations 1 to 4 all

refer to their values at position j.

VII.  A lgor i thm  for the Numeric al Solut ion

Given the equations presented in the previous section the numerical problem

consists in finding the values of  the activities and potential at the next nodal point

given their  initial  values  (a/=>a/+1

  ,  d>{=>Of +1).  To obtain  these  values, the

following variables have to be known at the following position:

 DJ   N{ a{ i   Y T 1

The  concentrations at point j   are known and the values of the above

parameters can be easily computed at that position. On the other hand the

concentrations at the next nodal point are not known in advance and an estimate

has to be used to compute the Y<+1

 values. The values for the i* 1  parameters can

be improved by repeating the iteration procedure until the assumed and computed

concentrations in the  next  nodal point are nearly equal. In the following

paragraphs the algorithm to solve such iteration problem will be outlined.

 A. Input data

To solve the Nernst-Planck flux equations in their finite difference  form,  the

following information has to be known in advance:

at x=0 (i.e. in the bulk   electrolyte):

r =C°

cb  = cc

c c =c:

and

q> =

 q>°

 =

 0

For  a fixed value of the concentration of the ionic  species,  the following

variables have to be computed according to pre-established relationships1

:

1 i y  values

 have

 to be provided also as a function of the slimes thickness, x  J  ,  because of the presence of

eddy diffusion.

[272]

Page 299: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 299/392

Page 300: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 300/392

 Algorithm

3)

 Assume that for the next interval1 :  ya = yb = ye = 0

4) Given the initial electrolyte composition obtain the values of the following

parameters:

c;=c;  ci=c° b   c/=c;

the value of migration potential at this point is also known:

oV = a>°

From these values compute the following parameters:

& c

vi   vi vi

 yi yl yi

< at < K   AY Nj

oa  Di   D;

Obtain the value of the n parameter:

 Z aFCi

5) Compute ac  from Eq. 8:

a, =•

-  - - c'-ti2C 

a y

a-2C 

b y

b  + C c yc + 2—

a

6) Compute aa  and ab  from Eqs.  6 and 7 respectively:

-  D«Vi_ah-—:—ar

"   miaa=-^-(Di^b-n

 j at)

7) Obtain the value of  O from Eq. 3:

1 Notice that this assumption implies that

 for

 the first interval the activity coefficients do not change:

[274]

Page 301: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 301/392

Algorithm

Cl +  Cl-Ax'-fc-yJ

C  J 

c +  C' c-to'-&e-yc ]

9) From  these concentration values obtain yi* 1

 , yl +1

 ,  yi^and   from these

values obtain:

1 2 )  Once the convergence criteria have been fulfilled,  go back to step 2 and

compute the concentrations and potentials for the next step.

1

 The convergence criteria have to be fulfilled by two of the three computed concentrations (the third

 is

obtained from electrical neutrality). A successful convergence criterion was

 found

 by averaging the

assumed and computed concentrations and

 using

 the new value to improve the

 solution:

 yi   Ax'  b

  y J 

h  Ax'

-  _iyi +1

-yiYc

  yi   Ax'

1 0 )  Repeat steps 3 to 8 using the "new" yt  values *.

1 1 )  Continue the iteration until:

C{*\new)-Ci +\old)

'   C{ +\new)<0.01 (or any other tolerance value)

C,i+

\next   iteration) <•Xnew) +  C i 

i+

\old)

2

[275]

Page 302: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 302/392

Appendix  2  Ana ly t ica l Solut ion  of the  Nernst-Planck Flux

Equations

I.  Objective:

To solve  analytically the Nernst-Planck  Flux equations.  This  solution is to

be obtained for the case in which activities are equal to concentrations and eddy

diffusion is not present. From this solution the rmgration/diffusion ratio is derived.

Also  an equation that describes local  changes  in resistivity of the entrained

electrolyte is obtained.

n. A s s u m p t i o n s 1 :

1) Dissolution of  lead is the only Faradaic reaction. This reaction takes place

exclusively at the anode/slimes interface and proceeds without kinetic limitations

(i.e. for Pb->Pb+2+2e").

2) Noble impurities originally present in the lead anode report to the slimes

and  remain unreacted  during  the  whole  electrorefining cycle (i.e.  Lj-^O for the

dissolution of   Sb, Bi, As, and other noble impurities).

3) Hydrolysis and secondary products precipitation can be neglected.

4) Mixing of  electrolytes within the slimes layer is neglected (i.e. D  £= 0  and

v=0).

5) Activities are equal to concentrations  a .

6) The water mol fraction is the same for all the  ions and is equal to 1.

7) Steady state, unidimensional model.

8)  Electrical  neutrality is observed within the electrolyte entrapped in the

slimes layer.

9) Only three ionic species are present (i.e. the PbSiF6 and H 2 SiF 6 molecules

are completely dissociated):Species a:  Pb + 2

Species b:  SiF 6"2

Species c: H +

1 These assumptions are similar

 to

 those used to obtain the numerical solution (see Appendix 1) except

for assumptions

 4

 to

 6.

2 It can be

 shown that

 the solution here presented is also

 valid

 when individual activity coefficients are

constant (see

 Appendix

 1).

[276]

Page 303: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 303/392

m.  Fundamental Equations

Fundamental Equations

Given the previous assumptions, the Nernst-Planck  flux equations that need

to be solved simultaneously are as follows [l-si:

"  dx RT dx Z„F

n  dC b  Z bFd&  n

 -Dk  _ i +  c t-J-=r- =0dx 

  b

 RT dx

 „  dC c  Z C F  d<f>  n

dx   c

 RT dx

 Z aC a+Z bC b+Z cC c=0

...1

...2

...3

...4

 where:Species a = Pb +2 Species b = SiF 6

 2  Species c = H +

C, = concentration of species i, [mol cm'3].

Z, = charge number of species i, [eq  mol'1].£>, = molecular diffusion coefficient [cm 2 sec'1]

*= migration potential, [volt]

HJ= ionic mobility of species i, [cm 2 sec'1 volt"1] l.

I = current density [Amp cm"2].

F = Faraday's constant. [96487 C eq"1]

R = universal gas constant, 8.3114 J mol"1 deg"1

x = distance from  the slimes/electrolyte interface (as defined  in Fig. 1), [cm]

Eq .  i state that the only species being generated at the anode is Pb + 2 whereas

Eqs.  ii  and  iii  indicate that H+

 and  SiF6"2

  do not react and their  equilibrium

concentration is only a function of the migration and diffusion gradients.  Eq. iv

is the electroneutrality condition.

IV.  Bound ary Con dit ions

Eqs.  1 to 4 constitute a set of simultaneous differential equations that haveto be solved subject to the following boundary conditions (see  Fig.  1):

1 £>r   andm were linked using the Nernst-Einstein relation:

 D =—'   Z'F

Z* is the

 effective

 charge of species i exposed to the electric field, z ' was assumed to be equal to Z r

[277]

Page 304: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 304/392

 Derived  Equations

Anode/Slimes  Slimes/Electrolyte

Interface Interface

1 I

Lead Slimes

Bulk

Anode Layer

Electrolyte

•  A

x=x

  x=0

Fig. 1 Coordinate system used to obtain the analytical solution of the Nernst-Planck  flux equations,

at x =x at x=0

Ca  = C a  C a = C a  ... 5

C b  = C b  C t = Cf   ...6

C c  —  C c  C c —  C c  ... 7

<D=q>  O = 0 ...8

V .  Der ived  Equations

Eqs.  1 to 4 are to be rearranged so that the concentration and potential

profiles can be obtained as a function of the distance  from  the slimes/bulk

electrolyte interface, x. This is done as follows:Dividing Eqs. 1, 2, and 3 by DA , DB , and D c respectively and substituting the

corresponding  Z, values  in  these  three equations and in Eq. 4, the following

relationships are obtained:

^ + 2 C  =  ...

9

dx   "RT  dx   2FD a

[278]

Page 305: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 305/392

 Derived  Equations

dC b  F  dq> —   -2C h ——   = 0dx   b RT  dx

...10

dC c  F   d <b+ C   =0

dx   Cc RTdx   U...11

2C a + C e = 2C b ...12

adding Eqs.  9, 10, and 11:

dC a  dC b  dC c  F d® I

**+*+*+(2C'+ C<-2C»W=-2FD„...13

substituting Eq.  12 in Eq.  13:

dC a  dC b  dC c _ I...14

dx dx dx   2FD a

...14

separating variables and integrating using b.c. 1  5, 6, and 7:

c m + c i + c e = c ; + c ° + c ? + - ^ - ...15

Eq.  15 can be expressed in dimensionless  form by dividing it by C°:

c a + c b + c c = c * a + c 0

b + c 0

c +  I x   Q

b  c a b  2FD aC°...16

where C,  is the dimensionless concentration defined as follows:

c '   c°...17

and

C°  = total bulk  electrolyte concentration , C ° = C x + C 2 , [mol cm'3] ...18

Ci  = PbSiF6 concentration in the bulk  electrolyte, [mol cm"3].

C 2  = H 2 SiF 6 concentration in the bulk  electrolyte, [mol cm'3].

Eq.  16 can be simplified by defining a new constant, K x:

...19

Thus,  Eq. 16 can be expressed as follows:

C a  + C b + C   =K.+—^—z

a  b c  1  2FD aC°

...20

1

  "boundary conditions" is

 abbreviated

 as b.c.

[279]

Page 306: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 306/392

Analytical

 Solution

VI.  Ana ly t ica l  Solution

All  the terms to the right of the equal sign in Eq.  20 are known or can be

assumed. Thus, the  problem consists in finding algebraic  relationships between

the C a , C b ,  and  C c  terms. These relationships were obtained as follows:

rearranging Eq.  10 and separating variables:

^  = 2 C  ——dx 

  b

 RTdx

dC„ 2Fd®

C b  ~RT dx

Eq.  22 can be integrated using b.c. 6 and 8:

rearranging:

C 4 =Cexp( -2F_

 RT

.21

.22

...23

...24

Eq. 24 can be expressed in dimensionless  form by dividing it by C°:

C b  = C^exp [RT )

...25

Eq.  25 provides a relationship between C b  and 4>. A sirmlar relationship

between C c  and <& can be obtained from Eq.  11 using b.c. 7 and 8:

...26

A relationship between C b  and C c  can be found by multiplying Eqs. 25 and

26:

cfr (cc)2

=cT(cTj ...27

the  C° b(C°f   term in Eq.  27 can be equaled to a new constant,  Kj , :

 K 2 = C°b{c° c J ...28

Thus, C b can be expressed as follows:

[280]

Page 307: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 307/392

 Analytical  Solution

 -   K 2c „ = ^ - 2

(C cf

.29

Eq. 29 can be substituted in Eq.  12 to obtain the following relationship:

2Ca + C c = — 2

{C cf...30

this equation can be rearranged to obtain:

T

  * 2  C c

a~(C ef   2...31

* 2  C c

a~(C ef   2...31

Finally,  substituting Eqs. 29 and 31 in Eq. 20 and rearranging:

(CJ3

 + (CJ2

1  FDaC°+ 4K 2 = 0 ...32

Eq. 32 is a cubic equation that has to be solved for C c  given K l t K , andlx

FD.C

. From the obtained C c  values,  C a , C b ,  and <I> values can be obtained from Eqs.

29, 31, and 25 respectively.

Eq. 32 was used to obtain changes in the dimensionless concentrations and

in the migration potential as a function of the bulk  electrolyte composition andof  the dimensionless parameter 0 (see  Figs. 2 to 4):

 Ix0 =

FDaC°...33

[281]

Page 308: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 308/392

[282]

Page 309: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 309/392

[283]

Page 310: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 310/392

[284]

Page 311: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 311/392

Changes in tie Specific Resistivity of  the Entrained  Electrolyt

VII.  Changes  i n the  Speci f ic R esist iv i ty  of the  Entrained

Electrolyte

The  specific resistivity of  dilute electrolytes can be  expressed as follows:

1  RT   1P,=

FXZ.n.C,  F'lZfD.Q

where:

Pi= specific resistance, [flcm].

The  dimensionless ratio between the resistivity of the bulk   electrolyte and

that of  the entrained electrolyte, p(/), is given by the following equation:

/ c . _ _   lZ?DiC,(Bulk  Electrolyte)- ( / )  =  p(0-0)_;

p(0 = O)  lZ?D,C,(Slimes Layer)

Changes in p(/) as a function of  0 are given in Fig. 5 for the indicated c o n s t

diffusion  coefficient values.  p(/) decreases as 0  increases  indicating  that the

entrained electrolyte is more conductive than the bulk  electrolyte  \

1 Electrical conductivities within the slimes electrolyte are likely to decrease rather than

 increase

 (see

Appendix

 

and Chapter 7).

[285]

Page 312: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 312/392

Changes

 in the Speak  resistivity of the entrained  electrofyte

0, 2 . C, » .2 mol/1 C, = .2 mol/1

Pi f. A ™.'/L  9i°.:?

C, .8  mot/I  C, » .2 mol/1

I I  I '  ' ' I '

2 4 6 8 10 12 14 16 18 20

C, = t.S mol/1 C , = .1 mol/1

- i  i '  | i i i  | i  i i  | i i i | | i i  i  | | i i  i0 2 4 6 8 10 12 14 16 18 20

Fig. 5  Effect of the variable © on the dimensionless resistivity, p(I), for different bulk electrolytecompositions.

[286]

Page 313: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 313/392

Computation ol  the Diffusion Flux

VUI .  Computat ion  of the Diffusion  Flux

As shown by Eq.  1, the ionic flux has two contributions:

dC a-D„——   = Diffusion Flux

dx

 Z aF  rfq>

 -D„C„  , =  Migration Flux°  " RT dx

Thus, the diffusion flux can be obtained once the  changes are known.

dC

The  term was obtained using the following algebraic procedure:

The derivative of  Eq.  12 with respect to x is given by:

...34

dC a  dC r   dC h2 — + — =  2 —

dx dx dx

Eqs.  10 and 11 can be rearranged to obtain a relationship between C a and

1 dC c  l  dC bF   d<Z>

RT dx C c  dx 2C b dx

d £]L  =  _ 2C 1dC 1

dx C c dx..35

Thus, Eqs. 34 and 35 can be used to obtain —,  and as a function of

dC a  dC c  C bdC c

dx dx

dC c

dx

C c  dx

dC„=

 -2-

dx

dC c 2C C   dC a...36

dx C c  + 4C bdx...36

dC b 4 C

4

  dC a...37

4 C

4

  dC a...37

dx ~C c + 4C b dx...37

dC.Incorporating Eqs. 36 and 37 in Eq. 14, and solving for -£

dC a

dx1 +

4 C

h

2C,

C c  + 4C b  C c + 4C b

dC a

dx

C c  + 4C b +  4C b -2C c

C. + 4C 2FD„

[287]

Page 314: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 314/392

Computaton ol the Migration Flux

dC a _ / \C e  + 4C„l...38

dx 2FDa . 8 C , - C C

...38

Eq. 38 can be expressed in dimensionless form my multiplying it by ^

dx 2FD„.38.a

The bracketed term in Eq. 38.a can be further simplified by using Eq.  29:

4iC,

C c + 4C b^Cc  +  (cc fJC c f   + 4K 2

 SC b-C c  j f i _  c  SK 2-(C c f(c«f 

  U c

Thus,  Eq. 38.a can be expressed as follows:

dC^

dx 2FD„

(C c f  + 4K 2

8tf 2  - ( C J3

From which the diffusion flux can be obtained:

" dx IF

(C C  )3 + 4K 

2

8 / T 2 - ( C J3

.39

IX . Computat ion of the Migr atio n  Flux

The  migration flux can  easily be derived  once  the diffusion flux is known.

This can be inferred by rearranging Eq.  1:

 _  F  d <b  I   n  dC a-ID  C   = — +D —-"  tt  RT dx IF   a dx

The  left hand terms in this equation can be simplified by using Eq.  39:

UD^ IF ' dx

From which the migration flux can be obtained as  follows:

/  / "(C C )3

 + 4AV  _  I '   (C c f  + 4K 2

 SK 2-(C C  )\

 _  I '4K 2-2{C C T

 IF IF  SK 2-(C c f ~2F

'   (C c f  + 4K 2

 SK 2-(C C  )\ ~2F _ %K 2-(C c f

F  d<3>  I'4K 2-2{C c f...40-2D C   = —

a  a RT   dx   2F

'4K 2-2{C c f...40-2D C   = —

a  a RT   dx   2F _  %K 2-{C c f

[288]

Page 315: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 315/392

Computation of the Uagmion/Diffusion Ratio

X. Computat ion  of the Migrat ion/Diffusio n Ratio

Both the migration and diffusion  fluxes can be obtained  once the C c values

are known (see  Eq. 32). The rnigration/diffusion ratio, R(I), can be obtained by

dividing Eq. 40 by Eq.  39:

Migration Flux  n , T ^  4/sT2-2(CJ3

.~T  .——— = /?(/)=  ...41Diffusion Flux  (C c f  + 4K 2

As shown in Fig. 6, the diffusional flux is always larger than the migrational

flux.  Migration  becomes  increasingly more important at large  values  of the

dimensionless  parameter 0 (e.g. at large  slimes thicknesses  and/or current

densities).

[289]

Page 316: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 316/392

Computation ol  tfie  Migration /Diffusion ratio

1-r

(A)

0.2- ,

legend

C t  » .2  mol/1  C, » .2  mol/1

Cjtt_  ._2_  moj l  C a  .8 mot l

C, =  .8 mol/1  C, g .2  mol/1

0 +

10

0 =

12

lxFD n X°

T -

16

18

20

(B)6

o3£COin3

5

o•cni

0.8

0.6

0 .4 -

0.2-

legend

C, •  .8 mol/l  C ,  « .8 mol/l

C, = 1.5 mol/l  C ,  = .1 mol/l

0 =

10

-t—12

lx16

18 20

Fig. 6 Effect of the variable 0 on the migration /diffusion ratio, R(I), for different bulk electrolytecompositions.

[290]

Page 317: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 317/392

Appendix 3  T ime Domai n To  Frequency Domain

Transformation:  The Fourier Trans form  In  Cu rre nt Step

E lec t rochemica l  Techniques

I.  Introduct ion

The  theoretical foundations of the Laplace transformation are described

extensively  in the literature [1-4]. Laplace plane domain techniques are widely

used in the analysis of electrical circuits (5-71. Particularly, in the area of  system

analysis Laplace analysis is extremely valuable 181. The availability of personal

computers with high processing power has boosted the use of this technique in

almost every scientific field. Among other advantages, the power of the technique

resides in its ability to decompose any signal into its fundamental components.

Furthermore, the possibility of obteuxiing the transfer function of the system is a

strong  driving  force for the implementation of this technique. Electrochemists

have applied Laplace techniques to the study of a variety of electrochemical

systems [9-191.

In this appendix, the one-sided Laplace transformation (or Fourier transform)

will be used to analyze a simple electrical circuit. The circuit here chosen follows

the electrical analogue  of  the electrode/solution interface proposed by Gerischer

[201 and Grahame [21]. The response of this circuit to a pulse of current will beanalyzed both in the time and in the frequency domains. The transfer function of

the system will be obtained by Fourier transformation of  the input and the output

signals. The differences  between the values obtained by the numerical (using the

FFT algorithmx

) and the analytical Fourier transformations will be stressed.

n. Response of a S imple RC C i rcu i t  to  Current Pulses

In the analysis of electrochemical systems the use of electrical analogues is

widespread [22-271. The advantages and limitations of  this approach are discussedin the literature (28-301. Fig.  1 shows the analogue that has been extensively used

to model the behavior of electrochemical cells. In this circuit Ri represents the

uncompensated ohmic resistance,  Rj the Faradaic resistance for charge transfer,

and  c the capacity of the electrical double layer. The quantification of each of this

parameters can be done using a wide array of  electrochemical techniques [24,31,32].

1

 FFT stands by

 Fast

 Fourier Transformation.

[291]

Page 318: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 318/392

 Analytical  solution

For  this simple analogue, the study of the decay in potential upon current

interruption provides accurate information on these parameters. However, as the

system  becomes  more complex, analysis of the time-domain transients is

extremely difficult and the amount of  information that can be obtained is limited.

Very often information on rj n is the only value sought [33-381 but sometimes kineticand  mass transport data are also required. Usually a "trial and error" procedure

has to be conducted in order to  find  an electrical analogue that matches the

response of the experimental system.  That is, the configuration of the electrical

circuit is not usually known and experimental data have to be provided to create

an  analogue circuit. The  use of the Fourier transformation is a strong aid in such

an  analysis. More complex circuits can be analyzed following the same technique.

(a) (b)

e(t) E(S)

i(t)

-<s>-R,

i(S) Ri

c S

Fig. 1  Electrical analogue circuit

(a) Time-domain representation, (b)  Laplace-domain representation

 A. Analytical solution

The  problem here  consists  in finding for a known configuration of the

electrical circuit, the response (potential as a function of time) given the input (a

current pulse). This circuit is depicted in Fig.  l.a.

The  response of the circuit shown in Fig.  1 to two different input functionswill be analyzed both in the time and in the frequency domains.

Figs. 2.a and  2.b describe the input functions used to exemplify the analytical

procedure. Fig.  2.a describes a current step with zero decay and  rise times whereas

Fig.  2.b sketches a similar current step but with a non-zero rise time \

The  analytical procedure to obtain the output of the system is as follows:

1 In Fig.

 2 L, represents the time that has elapsed since the current

 step

 was first

 applied.

[292]

Page 319: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 319/392

 Analytical  solution

1)  Obtain  the Laplace transform of each one of the components of the

electrical circuit (i.e. i(t),  R2,  c).

The  Laplace transform is defined as:

 W(r)]=  rf (t)e-*'dt=F{S)  t>0 Jo ...1

 where:

T ->lfW]  = F(S) = Laplace transform  of the time-dependent function, JW.

S = new algebraic variable which is independent of time.

2) Obtain the transfer function of the system:

In this case, the transfer function is known as the impedance, Z(S). For the

circuit shown in Fig.  1, Z(S) can easily be obtained using nodal analysis. The

general form of  Z(S)  is given by the following relationshipl

:

 where:

I(S) = Laplace transform  of the current. i(t)E(S) = Laplace transform  of the potential, e(t).

3)  Obtain the value of  E(S)  from Eq. 2

4) Obtain the inverse Laplace transform of  E(S), which is:

V l  [E(S)]  = e(t)  ...3

Thus, given i(t) and the configuration of  the electrical analogue, the response

of   the system, e(t), is obtained by following the 4 steps previously described. In

the following section these steps will be performed one by one for each current

step waveform (cases A and B).

Case A:

1

 Notice

 the relationship between Eq. 2 and Ohm's Law: R =  j

2 Notice

 that

 this

 step can be performed because both

 Z(S)

 and

 l(S)

 are

 known

 precisely.

[293]

Page 320: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 320/392

 Analytical  solution

Fig. 2  Current step functions

 used

 to analyze the circuit

 described

 in Fig. 1

(a) Current step with

 zero

 decay and rise times

(b) Current step with zero decay but with a finite rise time.

 Step 1:

The  input function, i(t), can be described by the following relationship:

i(0 = /: 1[l(r)-l(r-U + ia-O]  -4

where 1.(0 is the unit step function:

1 / x  {0  for   t<0\

 for   ,>o}

The  Laplace transformation of the R l t  c components is described by the

following equations:

L [ / ? J    = ...6

L [ / ? J    ==  R2...7

L [ c ]  =

1

'cS...8

[294]

Page 321: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 321/392

 Analytical  solution

while  the  Laplace  transform of the  time dependent function,  i(t) can be

expressed as follows:

/ ( S ) = | [ l - ^ +  ] - .9

Step 2:

The Laplace domain representation of the electrical circuit shown in Fig.  1 .a

is shown  in Fig. l.b. Applying nodal analysis  the impedance of the system  is

obtained:

 Z(S)=Z l (S)+Z 2(S) ...10

where:

Zt(S) = ...11

Z2(S) = R2

l+R2cS...12

thus,

Z ( 5 ) =

^  +  l + ; 2 c 5

...13

rearranging:

R.+R.

Z(5)=  p - ...14

Step 3:

E(S) is obtained by multiplying Eq.  14 times  Eq. 9:

 E(S) =  I(S)Z(S)=j[i-e-'  J   + e" bS  ]

rearranging:

k  R- }^ L

£(S) = - ^ [ l - ^ \ r ' 1 + T ^ [ l - ^ S

  + «f''S]  -IS

.15

[295]

Page 322: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 322/392

 Analytical  solution

 Step 4;

The inverse Laplace transformation of  Eq.  16 gives

+  t , [ « , + / ! j { 1 - c " ^ _ [ i  _  e - ^ . - . . ) ] i ( , _ , > ) + [ i  _ e - ^ . - , ) ] , ( r  _ I s ) J  ...17

Eq.  17 is the pursued analytical solution for the input function shown in

Fig.  2.a.

Case B:

 Step  1:

The function i(t) can be described by

i  (0  = *x{ 1 (0 " K' - O + rn [r(t - t b ) - r (t - t c )]} ... 18

where r(r) is the unit ramp function:

r W - f °

  f   r <

n

0}  ...19

= [t for t > 0 J

and  m is the slope of the rise time curve which is defined as:

k  x

m =— —   ...20

tc-h

The  Laplace transform of the time-invariant components is given by Eqs.  6

to 8 and the Laplace transform of i(t) is given by:L[i(01 =/(5) =| [1 ~e-'  S  ]  +!jL [ e-*-e-V]   ...21

 Step 2:

The  impedance of the  system  is independent of the input and output

functions and is given by Eq.  14.

 Step 3:

E(S)  can be described as follows:

[296]

Page 323: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 323/392

 Analysis ol tie data generated in the  time domain

R

x

+R

2

'Si'-"1 -;m

V * 2R~c

.22

Step 4:

Taking the inverse Laplace transform of  Eq. 22, e(t) is obtained as follows:

e(f) = k l  Rl [e  v

'-e  ''m-/.)] + ...23

+ [1 _ e-^(,

-,

»)

]ia-o-[1 _/^"'-)

]i(t

-o}

+  m{Rl +RJR2cK '-O-

1

B . A n a l y s i s o f t h e d a t a generated in the time 

The  response of the circuit shown in Fig.  l.a to the input signals expressed

by Eqs.  4 and  18 is described by Eqs.  17 and  23 respectively. The  time dependance

of   the input and output signals is presented in Fig.  3 assuming the indicated

parameters.  Analysis of the response of the system in specific windows of time

can  provide the unknown values of  some of the parameters present in the circuit.

For  instance, considering the time interval between t (i.e. after the capacitor is

fully charged but before current is interrupted) and t (i.e. just before current is

applied back), Eqs. 24 to 26 are derived from Eqs.  17 and 23:

[297]

Page 324: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 324/392

 Analysis of  the dab generated in tie time domain

0.006

0.005

CL£  0.004

<

(a1)

0.003 -,

3  0.002

O

0.001  -

t

0

=

  0.000 sec

t=  0.583 sec

t„=  1.000 sec

t

c

-  1.600 sec

J?f 25.0  n

/V

  10.00

  n

c =

 3000.  / iF

f

\

0.2  0.4 0.6 0.8 1 1.2 1.4 1.6

Time,  sec

(bi)

0.006

0.005

CLE  0.004

<

0.003

 •

 Z3  0.002

o

0.001

t

(„=  0.000 sec

(,=  0.101 sec

t„=  0.108 sec

f

e

= 0.115

 sec

tf  0.130 sec

Rr

  25.0 0

Rz=  10.0

  n

c = 300. fjF

0.026  0.052  0.078  0.104 0.13

Time,  sec

0.2

0.15

(a2)

>

+->c

oQ_

r

0.1

0.05 -

f

 '

\

0

  0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time,  sec

(b2)

Time,  sec

Fig. 3  Response of the circuit described in Fig. 1 to the input functions described in Fig. 2 assuming the indicatedsystem parameters Figs, (al)  and (a.2) correspond to Eqs. 4 and 17 respectively. Figs, (b.l) and (b.2) comply withEqs.  18 and 23 respectively

A) At t = t':

B) at t = U:

C) between  and t

e(t) =  k 1(R1+R2 )

steep potential decay =  k^

e(t) = klR2e

...24

...25

.26

[298]

Page 325: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 325/392

Analysis of  the data generated

 in

 the

 ime

 domain

Thus, R t and Ra can be obtained by solving simultaneously Eqs. 24 and 25.

Knowing R 2 , c is computed using Eq. 26. Analysis of  other windows of  time should

provide with equivalent values for the resistors and the capacitor.

For  this particular example, the computation of the value of the electrical

parameters was straightforward. On the other hand, when the number of  analogueelements  increases and/or time-dependant components are involved, this

analysis is overwhelmingly difficult.  Thus,  the use of   Fourier  analysis is

encouraged.

The Fourier transform is defined as [39-41]:

Fr /(f)] = j ~ =  F(j<o)  .. .27

where co is the frequency (in rad/sec) and j is the imaginary number (V -T). The

functions used in electrochemistry are only defined for times greater than zero,

therefore  Eq.  27 can be expressed as

Fr /(0] =

  (~f(t)e- J °'dt=F(j(0)  ...28

Jo

Eq.  28 resembles closely  Eq.  1 when the variable S is substituted by the

variable jco. Eq. 28 can be called the one-sided or imaginary part expression of

the Laplace transformation. Thus, the Fourier and Laplace transformations whichthemselves are two separate mathematical entities, can be linked through changes

in  the S algebraic variable. A real part representation of the Laplace transform

can  also  be obtained. However, for the following analysis this particular

representation is not explicitly required.

The Fourier transform of  the impedance of the circuit described in Fig.  1 can

be obtained in the same way its Laplace transform was derived. Thus, by analogy

with Eq.  13, the following equation is obtained:

 R2

v  1

  l+R2cj(Si

The variation of  Z(jco) with frequency is sketched in Fig. 4.a. In this plot, the

real part of the impedance is the abscissa and the negative  of the imaginary part

of  the impedance is plotted as the ordinate. Analysis of this plot (so-called Argand

diagram) can provide the value of the  elements of the analogue circuit. Plotting

of  log (co) vs.  I Z(jco) I  (so-called Bode plot) complements the overall information

[299]

Page 326: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 326/392

Analysis of  tie  data generated in  the  imedomain

required to analyze the system. The Bode plot for this circuit is shown in Fig. 4.b.

Information on the values and characteristics of the electrical parameters likely

to be present, can be derived from these plots (28.42.431.

The value of the real part of the total impedance can be obtained as the low

frequency interception of  the impedance curve in the Argand diagram. In addition,at high frequencies the value of  Rj is attained:

when  (0 = 0  Z (j (n )=Rl +R2 ...30

when  CD  — > oo  Z (ja)=Rl...31

Eq. 29 can also be written as:

Z

( /G>)=K

,+7

72

1

+ CJ(H

...32

Thus,  at  co = co 0=^ a maximum in the  Argand  diagram is found.  This

maximum is marked in Fig. 4.a and corresponds to the value of   Thus, to obtain

the value of c,  I Z(Jco) I is computed at this point and the frequency at which it

takes  place is obtained  from  the Bode plot (Fig. 4.b). Complex non-linear

regression analysis [44,45]

 and deconvolution techniques [42,43] can also be appliedin the analysis of impedance data.

At this point, it is worth noting the fact already stated in the literature [28,29]

that the impedance obtained by Fourier transformation of data generated in the

time domain is also in character an AC impedance. That  is, the results obtained

from the study of a  time-invariant  system should be equivalent in both cases.

[300]

Page 327: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 327/392

Numerical

 Solution

- zmag (a)

 RtCHWv

J

  /

\  y   W =0

*2

FVR 2 eal

IZ! ( b )

log   w Q log  w

Fig. 4 Frequency spectrum of  the circuit depicted in Fig. 1(a) Argand Plot (b) Bode Plot

ni. Numer ica l  Solution

The relationship between the Laplace and Fourier transformations expressed

by Eq.  28, produce the following representation of  the impedance in the frequency

domain:

ZC/co) = Em

/(/co)

...33

[301]

Page 328: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 328/392

Numerical Solution

By  knowing the configuration of the electrical circuit the frequency

dependance  of  the impedance was found (Fig. 4). As Eq.  33 shows, the impedance

can also be obtained by Fourier transforming the input and output functions and

taking their ratio. In the previous  section  the  system response  was derived

analytically  from  the knowledge of the circuit configuration and of the time

dependance of the input function. The approach in this section  is to obtain the

transfer function given the input and output functions in discrete  form.  Details

of  the configuration of the electrical analogue and evaluation of its components

are to be derived  from  the analysis of the frequency spectrum of the transfer

function.

The numerical representation of the transfer function is obtained by finding

the zero-order approximation of  Eq.  27. This approximation to the Fourier integral

is known as the discrete Fourier transformation  (DFTj. The DFT is defined as  [461:

where:

fn(t) = value of the digitized time dependent signal fl.t) taken at the nth time  interval.

N = total number of sampled points taken

At = sampling interval,  sec

Assuming that fit) is only defined for t>0 and that it has a finite number of

points, the following relationship is derived from Eq.  34:

F n  =  F(j<x>)=   lf n(t)e  l N i 

  m= 0 , l , . . . , A / - l  ...35

»=o

where m is an integral value known as the frequency index.

The frequency index is related to the frequency , co, through the following

relationship:

2nm  17   ,co = ——   m =0,1,...N-l   ...36

 NAt

The period, T, of the function f(t) is given by the product NAt. For a single

period,  Eq.  36 shows that coAt spans in values comprehended between 0 and 2n

rad. It also shows that the frequency representation of the data generated in the

time-domain is given in multiples of the fundamental frequency ay

[302]

Page 329: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 329/392

Numerical

 Solution

Accurate results can only be obtained by "matching" o)f so that an integral

number of  waveform periods is covered. If this condition is not fulfilled, "leakage"

[461

 will be present and incorrect spectra will be attained. Another phenomenon

that can significantly alter the frequency spectrum is known as "aliasing"[461. This

can be avoided by limiting the value of  the highestfrequency that can be preciselyknown. This is done by applying the sampling theorem [46]

 which can be expressed

by the following relationship:

Thus,  even though  coAt values as high as  2n can be obtained  (Eq.  36) the

highest meaningful coAt value is  n rad. In practice, this value is reduced even

further to avoid as much as possible the presence of aliasing.By applying the definition of the DFT given in Eq. 35 to Eq. 33, the discrete

Fourier transformation of the impedance can be expressed as follows:

where the  DFT of the different functions involved has been incorporated.

Thus, the problem reduces to find the Fourier coefficients F„  for the e(t) and

i(t) functions and taking their ratio. This transformation has to account for the

restrictions imposed by leakage and aliasing and the F

m

  coefficients must be

computed from Eq. 35 using the  FFT algorithm.

One of the requirements for the implementation of the FFT algorithm is that

the f(t) functions have to be given as sets of 2q  (q being a positive integer number)

equally spaced data points. A large amount of  easy-to-use programs are available

in the literature to implement this algorithm [1,46-481. In this particular work, use

of  a built-in FFT routine present in a commercial software package was employed.

When the numerical time-domain to frequency-domain transformation is to

be performed, important consideration should be given to the values that the

sampling interval, At, and the function period, T, can adopt. To assure that the

maximum  spectral content is to be obtained, At has to be chosen as small as

possible (see  Eq. 37). In addition to this, the extent to which information in the

lower frequency range can be attained is regulated by the total number of points

sampled, N (see  Eq.  36). Thus, the use of  very small At values and a large number

...38

[303]

Page 330: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 330/392

Numerical

 Solution

of  data points is advantageous to obtain the  full frequency spectrum. However,

due to instrumental and experimental constraints, there is a limit as to how small

or large these parameters can be. Moreover, choice of the signal period is not an

easy task and a "cut" and "try" approach has to be undertaken.

In the numerical analysis of the potential and current transients hereconducted, coy values were  restricted  even  further than indicated by  Eq. 36

because a large amount of aliasing was found when the frequencies considered

went as high as  Eq. 36 indicates \  Thus, by using a "trial and error" procedure

the maximum allowable value of  co  was found to be:

1 'rod'...40

2Ai

...40

In Table  1, hypothetical  values  for NAt were  introduced to illustrate howchanges in this parameter can affect the characteristics of  the frequency spectrum.

In this table,  cOf  and 0 ^ were calculated according to Eqs. 37 and 40 respectively.

For a fixed NAt value,  increases in the number of sampled points are reflected in

a wider frequency region. Reduction in the  NAt values for a fixed sampling rate

produces an increase in the frequency range but at the cost of  decreased resolution

(by increasing  COf). Thus,  changes  in  COf  can only be introduced through

modifications in NAt. Small  COf  values are helpful as the lower they are the better

resolved the spectrum and the lower the possibility of  "leakage". If  the fundamentalfrequency is to be decreased, the easiest way of doing it is by extending the period

of  the waveform.

Table

 

Changes

 in the maximum

 and

 fundamental frequencies

 for

 different waveform

 periods

 and

 number

 of

sampled points

NAt=l sec,  C0(=2TC NAt=2

 sec, C0f=n

NAt=4 sec, C0f=n/2

N

At

w

u

At  WW At

w

u

128

0.00781

64

0.01563

32

0.03125

16

256

0.00391

128

0.00781 64

0.01563

32

512 0.00195 256

0.00391

128

0.00781

64

1024 0.00098 512 0.00195 256

0.00391

128

2048 0.00049 1024 0.00098 512 0.00195 256

1 Use of filters can help in obtaining frequencies as high as the ones implied by Eq. 36.

[304]

Page 331: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 331/392

Numerical Solution

The  interaction of the previous parameters will be further exemplified by

analyzing the numerical representation of the frequency spectrum of the transfer

function given in Figs. 5 to 8. The effect that At and N have on (% and coy is shown

in  the respective captions. The impedance was obtained by applying the  FFT

algorithm  to the theoretical discrete and uniformly spaced input and outputfunctions. These functions were generated by using the equations developed in

the previous section.  The numerical representation of the frequency spectrum of

the impedance was compared with its analytical counterpart. As can be observed,

good agreement exists between the analytical and numerical solutions. The large

number of data points considered together with small At values contributed to

this correspondence.

One  of the most  critical  choices in the  FFT  transformation is the one

concerning the point at which the waveform starts. The logic behind this is thatthe input and output waveforms have to considered as a trend, that is, as if they

repeat themselves periodically. Thus, in this  case,  the time  t„ was chosen so as

to avoid the influence of the  initial charging of the double layer. By doing this,

truncation errors were avoided and a "clean" frequency spectrum was obtained.

If  time t  is to be considered equal to zero, the waveform period has to be selected

between zero and tb. In addition to this, tb has to be chosen as large as possible

so that the double layer is fully discharged before current is applied back. By

imposing these limits the waveform can be considered to repeat itself afterwards.

Figs. 5 and 6 show the frequency spectrum obtained when different input

functions and system parameters are employed. By comparing the  Argand

diagrams in these figures it can be seen that they are similar. This is to be expected

as the only electrical parameter that was changed was the capacitor value. The

decrease in this value is observed in the Bode plots as a displacement of the

frequency towards higher values. As can be observed, an order of magnitude

decrease in the capacitor value reflected in a tenfold frequency increase required

to define the frequency spectrum.

[305]

Page 332: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 332/392

Numerical Solution

(a) (b)0.006

0.2

0.005

CL

£

  0.004

<

0.003

CDi _

  0.002

O

0.001

t=  0.550

  sec

t=  0.583  sec

t b=  1.000 sec

t=  1.600 sec

 Rf   25.0

  n

/?= 10.0  Q

c= 3000.  yuF

0.55 0.76

0.97  1.18

Time,  sec

(c)

1.39

c ncd

EN

l

* Analytical Solution

 — Numerical Solution

20

Zreal, Q

0.15  -

>

'•+->CCD

oCL

0.1

0.05

1.6

0.55  0.76 0.97 1.18

Time,  sec

(d)

1.39 1.6

G

N

35

34

33

32

31

30

29

28

27

26

25

4 0

10

X  Analytical Solution

 — Numerical Solution

Freq,  rad/secFig. 5  Frequency response of  the circuit depicted in Fig. 1 obtained assuming the parameters shown in (a).

The  input (a) and output (b) functions were calculated according to Eqs. 4 and 17 respectively. These functionswere digitized using N=2048, At= 5.127x10"* sec.Plots

 (c)

  and (d) describe the analytical (Eq. 33) and numerical (Eq. 37) frequency spectra. For this set of  data cop5.98 rad/sec, 0) =975 rad/sec (Eqs. 37 and 40 respectively)

[306]

Page 333: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 333/392

Numerical

 Solution

0.006

0.005

0.004

-  0.003

CCDk_

k_

13

o

0.002

0.001

G

CO

EN

(a)

tcf   0.100 sec

t=  0.101 sec

t„=  0.110 sec

t e=  0.200  sec

 Rf   25.0 fl

 Rf   10.0 n

c = 300. yuF

0.1

  0.12 0.14 0.16 0.18

Time,  sec

(c)

20 25 30 35

Zreal. Q

>

-t-<CCD

oCL

0.2

0.1 0.12

* Analytical Solution

— Numerical Solution

 A1 1

c •  • • •

35

34

33

32

31

G30

N29

28

27

26

25

0.14

  0.16 0.18

Time,  sec

(d)

40

10

X  Analytical Solution

— Numerical Solution

Freq, rad/secFig.  6  Frequency response of the circuit depicted in Fig. 1 obtained assuming the parameters shown in (a).

The  input (a) and output (b) functions were calculated according to Eqs.  4 and 17 respectively. These functionswere digitized using N=2048, At=  4.883xl0'3

 sec.

Plots (c) and (d) describe the analytical  (Eq.  33) and numerical (Eq.  37) frequency spectra. For this set of dataC0(=62.83. rad/sec, co^10240 rad/sec (Eqs. 37 and  40 respectively)

[307]

Page 334: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 334/392

 Numerical  Solution

Figs. 7 and 8 show the effect that a different waveform period and sampling

interval have on the definition of the frequency spectrum at lower frequencies.

Increasing the waveform period from 0.03 to 0.10 sec decreased the value of co

but increased  % due to the fact that At was increased. Better resolution of the

frequency spectrum at lower frequencies is reflected in a well defined Bode plot

shown in Fig. 8.d.

Figs. 5,7, and 8 were obtained using the same electrical analogue parameters

and only changes in the characteristics of the input function were studied. Plots

c and d in these figures show that regardless of the shape and magnitude of the

input and output functions, the transfer function remains identical provided the

same system is being analyzed.

The advantages  of  the Fourier transformation in the analysis of  time-domain

transients can be visualized by inspecting plots c and d in Figs. 5 to 8. Thenumerical transfer function obtained matches the one derived analytically. If the

electrical circuit analogue had not been not known in advance, it could be inferred

from analysis of this frequency spectrum. Different circuits could be proposed

and their frequency spectrum calculated so as to match the numerical frequency

response. The numerical frequency response could then be curve fitted to the

theoretical circuit leading to the derivation of the values of the electrical

parameters.

Plots c and d of  Figs. 6 to 9 also show that the information that AC impedance

and current interruption can provide is equivalent. This equivalence is due to the

fact that "lumped" time-invariant electrical parameters  were  considered. The

presence of distributed and/or time dependant parameters may give  different

information from each technique as different systems maybe analyzed. If  systems

where  these  parameters are present are to be studied, careful experimental

planning is required. Also,  the information provided by each technique may be

used jointly to better characterize the system.

[308]

Page 335: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 335/392

Numerical Solution

(a)0.006

CL

£  0.004  -

<

cCDv_•  0.002

O

 _i_

0.100  sec

t

4

=  0.101  sec

t b= 0.108  sec

t=  0.115  sec

 If   0.130  sec

 Rf   25.0 n

 Rf   10.0  fl

c  =  300.  fjf

0.1 0.105 0.11 0.115 0.12

Time, sec

(c)

G

d>CO

E

 Nl

X  Analytical Solution

 —   Numerical Solution

20

zreal,  Q

0.15

>

CCD

-t—

oCL

0.125 0.13

0.05 -

G

 N

0.11 0.115 0.12

Time, sec

(d)

0.13

40

Freq, rad/secFig. 7  Frequency response of the circuit depicted in Fig. 1 obtained assuming the parameters shown in (a).

The  input (a) and output (b) functions were calculated according to Eqs.  18 and 23 respectively. These functionswere digitized using N=2048, At= 4.883xl0'5

 sec.Plots

 (c)

  and (d)

 describe the analytical (Eq. 33) and numerical (Eq. 37) frequency spectra. For this set of  data cop209.44 rad/sec, 0 =34133 rad/sec (Eqs. 37 and 40 respectively)

[309]

Page 336: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 336/392

Numerical Solution

(a)

0.006

0.005

a£  0.004

<-M "  0.003

cCDi _

•  0.002

o0.001

t 0= 0.100  sec

\ = 0.101 sec

f„=

  0.108  sec

t

e

= 0.115 sec

frf= 0.2(90

 sec

R,=  25.0  n

/?

2

= 70.0

 0

c = 300.  /xF

0.1 0.12 0.14 0.16

Time, sec

(c)

0.18 0.2

G

CC

4 -

N

* Analytical Solution

 — Numerical Solution

20

G

N

35

34

33

32

31

30

29

28

27

26

25

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18

Time, sec

(d)

40 10"'

* Analytical Solution

 — Numerical Solution

Zreal, Q Freq, rad/secFig. 8  Frequency response of the circuit depicted in Fig. 1 obtained assuming the parameters shown in (a).

The  input (a) and output (b) functions were calculated according to Eqs.  18 and 23 respectively. These functionswere digitized using N=2048, At=  1.465xl0'5

 sec.Plots (c) and (d) describe the analytical (Eq. 33) and numerical (Eq. 37) frequency spectra. For this set of data cop62.80 rad/sec, 0^=10240 rad/sec (Eqs.  37 and 40 respectively)

[310]

Page 337: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 337/392

 Summary

IV.  Summary

Equations were derived to describe the time domain response to a current

step  for a simple RC electrical circuit. These  equations were  used to generate

theoretical time-dependant  discrete functions  that were subject to DFT by using

the  FFT algorithm The complex process of analyzing electrochemical data in the

time domain was simplified by analyzing it in the frequency domain. The practical

implementation of the FFT algorithm was discussed. The limitations and

application range of the time domain to frequency domain transformation were

also explored. It was stressed that provided the same system is analyzed, current

interruption and A C   impedance can provide the  same information.

[311]

Page 338: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 338/392

Appendix  4  Analyt ica l Chemist ry  of  E lec troly te Sol ut ions

Conta in ing P b S i F 6 - H 2 S i F 6

I.  Objectives:

A)  To describe the different techniques that have been reported in theliterature to analyze solutions containing H 2SiF 6.

B) To explain how a modified technique for analyzing H 2 SiF 6 solutions was

developed.

C) To describe the analytical technique used in the present study to analyze

H2SiF6-PbSiF6  electrolytes.

 A. Chemical analysis ofH aSiF e  solutions

1. Overview of the acid  properties

The  different techniques reported in the literature [1-81 for the analysis of

H 2SiF 6  solutions are based on the very special properties of this  acid. Upon

dissociation,  H 2SiF 6 behaves like a strong acid, its strength being close to that

of   H 2 S 0 4  solutions 191. By potentiometric titration of  H 2SiF 6 solutions in water

and  in various organic solvents, the first and second dissociation constants of

the acid were determined [9]:

 H£iF t <=> HSiFl   + H + ...1

 HSiFl <=> SiFf   + H +

 pK 2=\.19 ...2

The H 2SiF 6  molecule is known to exist only in aqueous solutions [1,7,10-13].

On evaporation, H 2SiF 6 solutions decompose into SiF 4  (g) and HF  (g) [7,10]l  . The

maximum concentration of the  acid that has been found in liquid  solutions is

61% [3,101.

1 Solutions with more than 13.3% H

2

SiF

6

 become enriched with HF due to preferential evaporation of

SiF

4

. Reciprocally, SiF

4

 solution enrichment takes place upon evaporation of solutions with less than

13.3%  H

2

SiF

6 [7,10].

[312]

Page 339: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 339/392

Techniques  for  the analysis of  HJSiF, solutions

The fluorine to silica ratio  1  in H2SiF 6 solutions is not always equal to six p

[11.14-16].  ^   ratios larger than 6 are observed in solutions  in which HF is present.

Solutions with  j. ratios lower than 6 are observed when the acid has an excess

of  S i0 2 n H 2 0. Alarge variety of  compounds containing silica can be present under

these conditions. Among these,  conductometric and cryoscopic measurements

have shown that  the  solubility  of  Si0 2  in  H 2SiF 6  is due to the  formation of

SiF 4-2H 20 [151.  This compound behaves like a strong acid [16]. The  |  number

depends on the technique used to produce the acid [11,14,17]. j. ratios can also

be changed by dilution [18].

In dilute solutions, hydrolysis of  SiF6"2 takes place in different steps which

involve intermediate splitting of  one  F" and formation of  SiF 5[H 20]'  (reaction 3).

This  compound  losses its  F" atom in a second  step  forming S iF 4  which then

hydrolyses towards H 2 Si0 3  (reactions 4 and 5 ) [5,14,19-21]:

 SiF;2  +2H 20  o   SiF 5 [H 2OY "  + F~ ...3

 SiF 5  [H 20]~  +H 20  o  SiF 4  + F~  +2H 20 ...4

 SiF 4  +  3H 20  <=> H^iOs +  HF ...5

In very dilute solutions,  SiF6"2  is  completely dissociated

  [20.22]

 2.This has

lead to the use of  fluorosilicates (i.e. NajSiFe) for the fluoridation of  water supplies

[23,24]. Data on the physico-chemical properties of  H2SiF 6 solutions are reported

extensively in the literature [18,22,24-30].

2. Techniques for the analysis ofH 2 SiF 6  solutions

H 2SiF 6  solutions have been analyzed using titrimetric techniques [3,6,8].

The  acid is  titrated against alkaline solutions such as  NaOH or LiOH.  During

the titration, two equivalence points can be observed. The first equivalence point

corresponds to the neutralization of the acid and the second equivalence point

corresponds to the hydrolysis of  the hexafluorosilicate ion. The two equivalencepoints can be described by the following reactions:

1 In H

2

SiF

6

 solutions the fluorine to silica ratio is defined as:

F  6[//

g

SiF

6

]

 +

 [//f]

Si ~ [HJIFJ  + lSiOJ

2 S iF

6

2

 is an

 octahedral

 ion.

[313]

Page 340: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 340/392

Techniques

 or  he analysis of H£iF, solutions

 H 2 SiF 6  + 2/Va 0/7

 -»

 Na2 SiF 6 +H 20  ...6

 Na2 SiF 6  + 4NaOH  -» 6NaF  + H^iO^+H 20  .. .7

Reactions 6 and 7 indicate that the amount of  alkali required in the second

equivalence point should be equal to twice the amount used for the neutralization

of  the acid. Disagreement in these values indicates the presence of other species

in solution. The  presence  of  H F and  soluble SiOa  compounds in H

2SiF

6  solutions

have accounted for these discrepancies. In addition to this, it has been found,

that the hydrolysis of   S1F6"2  is kinetically slow [201. To circumvent  these

limitations, various analytical techniques have been proposed [3,81.  In these

techniques, a two-step titration routine has been used to analyze the acid for

H2SiF

6,  and either Si0 2 or HF.  The first step in this routine consists in adding

a suitable salt to precipitate the hexafluorosilicate ions. When this salt is chosen

to be a fluoride salt,  SiOa  can be determined in the same titration. Thus,  if   NaF

is added to the H 2SiF 6  solution, the following reactions take place:

 H 2 SiF 6  + 2NaF   -»Na2 SiF 6 1+2HF   ..

 .8

6HF  + Si02 -»H 

2 SiF 

6   + 2H 20  .. .9

Reactions 8 and 9 show that by adding an  excess  of NaF, all the

hexafluorosilicate ions are present as Na 2SiF 6.  If any Si0 2 were present, it wouldreact with HF according to reaction 9. The total amount of  HF  is obtained by

titrating the solution at low temperatures  [io]1  using  NaOH:

 HF  +NaOH  ->NaF  +H 20  ...10

Reaction 10 reaches completion at a pH close to 8.

Once this first step is completed, the sample is diluted with hot water and

titrated near its boiling point2. This dilution and solution warming brings all the

hexafluorosilicate ions into solution allowing reaction 7 to take place.  Thisreaction reaches completion near pH  10. From the stoichiometry of reactions 7

to 10, the acid composition can be found. If the amount of  alkali spent  during

1 This titration has to be carried out at low temperatures (near

 0

 *C) to avoid dissolution of sodium

hexafluorosilicate. The solubility of Na

2

SiF

6

  is: 6.52 g/l at 17°C and 24.54 g/l at 100*C

 .

2 Titration of the solution near its boiling point aids

 in

 the kinetics of the hydrolysis reaction.

[314]

Page 341: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 341/392

Background

the second titration was larger than twice as much the amount spent in the first

titration,  HF was present in the sample. A reciprocal relation will indicate that

Si0 2 was present in the solution.

Experimentally this two-step titration technique is difficult to perform. The

main  difficulties in the implementation of the technique are the cooling andheating operations which have to be performed carefully. Dilution of   the samples

can  be a source of  error as some unaccounted fluorosilicate hydrolysis can occur.

Additionally, any alkali added in excess during the first titration will react with

the hexafluorosilicate ions. Jacobson  [3]  points out that in addition to the

temperature of the solution during the first titration being very low, the solution

has to be concentrated so that the reaction products of the first stage do not

pass  into the second  stage  before the first  stage  reactions are completed.

Notwithstanding these difficulties, this technique provides accurate acid analysis

and  its use is frequently reported in the literature 15,181.

3. Analysis of  H 2 SiF 6 -PbSiF 6  electrolytes

Analysis  of the electrolyte used in lead refiriing has been carried out by

modifying  the  two-stage titration previously described  [7,311. In the analysis of

H 2SiF 6-PbSiF 6 electrolytes, Pb has to be removed before the acid is titrated. Use

of   Na 2S0 4  to separate Pb from the electrolyte was discarded due to potential

co-precipitation of  NaaSiFg with PbS0 4  [311. To avoid this  loss of  SiF 6~ 

2

,  knownamounts  of  H 2 S 0 4 are added to the sample to remove Pb + 2

 as PbS0 4 (see reaction

11). The precipitation of PbS0 4  releases an equivalent amount of  H 2SiF 6  that

can  be subsequently titrated using the two-stage titration previously described.

 PbSiF^+H^O^  H^iF^PbSO^  i   ...11

B. Modification  of  existing  experimental procedure

1. Background

The  two-step titration technique was modified so as to determine, in a single

step, H 2SiF 6, and either Si0 2 or HF  .The approach that was taken was to titrate

[315]

Page 342: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 342/392

Straight titration

 against

 LiOH

 in the

 presence

 o f

 excess

 SK),.

the acid against  LiOH  adding LiF and/or HF. H 2 SiF 6 solutions  were titrated at

room  temperature using an automatic titration system1. The  same  H 2SiF 6

solution (sample SI a) was titrated under the following conditions:

Case A: Straight titration against LiOH in the presence of  excess Si02.

Case B: Titration against LiOH in the presence of  excess HF.

Case C: Titration against LiOH in the presence of  excess HF and LiF.Case D: Titration against LiOH when LIF is added previous to the titration.

Each of  these routines is explained in the following paragraphs.

(A) Straight titration against LiOH  in the presence of  excess Si0 2 .

When H 2 SiF 6 solutions are titrated against  LiOH,  the following reactions

take place:

 H 2 SiF 6  + ILiOH  -> Li 2 SiF 6  + H 20  ...

 12

 Li 2 SiF 6  + 4LiOH   ->•6UF  +

 H£i03  + H 20  ...

 13

Li 2SiF 6  is the most soluble of all the  alkali fluosilicates HO]3. Thus, upon

neutralization of the acid (reaction 12), all the  SiF 6"2 remains in solution. As

these  ions are already in solution, heating and dilution preceding hydrolysis

via reaction 13, are not required. On the other hand, the hydrolysis reaction

has to be carried out very slowly to circumvent its kinetic limitations. Fig.  1 .A

shows the titration curve 4 obtained under these conditions 8 . Two equivalence

points are present during the titration of the acid. The first equivalence pointtakes place at a pH between 3.5 and 4 and corresponds to reaction 12. The

second equivalence point  takes place at pH values  between  7.7 and 8.4 and

corresponds to reaction 13. While  [H2SiF6]  can be calculated  from  the total

amount of  LiOH  spent in the titration, [Si02] cannot be quantified using this

technique  6 > 7  .

1 Radiometer

 end-point titration

 system model ETS 822.

2 Acid composition

 2.03 M  H

2

SiF

6

 and 0.40 M  Si0

2

. All samples were titrated against 0.8657 M  LiOH.

3 The solubility of LiSiF

6

-2H

2

0 is

 730 g/l,

 T=17'C

 .

4 Titration

 curves

 are shown primarily to indicate

 where

 equivalence points are observed. Particular

characteristics of these curves may

 vary

 depending on

 the experimental conditions.

5 0.5

 ml

 of the acid sample S1 was diluted to 20

 ml

 with

 deionized

 water and titrated using 0.8657 M

LiOH.

6 The presence of Si0

2

  in

 the sample will be indicated

 by

 the difference in alkali volumes spent

 during

 the

first and second equivalence points.

7 [H

2

SiFe], [PbSiF

6

], [HF],

 [SiOJ

 =

 concentrations of the indicated species in

 mol/l,

 [ M].

[316]

Page 343: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 343/392

Titration

 against

 LiOH

 in th e

 presence ol excess HF.

CB) Titration  against LiOH  in the presence of excess HF.

The sample analyzed in Case A showed that SiOa was present. To quantify

it, a known amount of  HF  was added to the sample1.

HF  reacts  with Si0 2  according to reaction 9 producing  H 2SiF 6.  Upon

titration of the acid, any HF in solution is neutralized according to:

 HF  + LiOH -»LiF   + H 20  ... 14

Fig.  1 .B shows the titration curve obtained in a sample containing  H 2SiF 6

and  HF. This curve shows that reactions 12 and 14 take place very close to each

other (at a pH between 3.1 and 3.8). Furthermore, hydrolysis of  SiF6"2  takes

place at a pH between 7.7 and 8.4 (reaction 13). From the alkali volumes spent

to reach the first and second equivalence points, [H2SiF6] and [HF] can be

calculated. By deducting the amount of H2SiF 6 released  during reaction 9, [Si02]

could be obtained.

(C) Titration  against LiOH  in the presence of excess HF and  LiF.

To differentiate between reactions 12 and 14 during the first neutralization

reaction, LiF was added to the original acid sample. Additionally, HF was added

to this solution 2 .

LiF reacts with H 2SiF 6 according to the following relationship:

 H 2 SiF 6  + ILiF Li 2 SiF 6  + 2HF   ... 15

As  reaction 15 shows, by adding LiF to the sample, only HF  and  Li 2SiF 6

are present in solution.  Thus,  only two well-defined equivalence points are

expected upon titration of  this sample. As Fig.  l .C shows, these points are well

defined, and agree with reactions 13 and 14. Accurate acid analysis can be

obtained by analyzing this titration curve.

1 2 ml of 1.127 M HF were added to 0.5

 ml

 of the acid sample S1. Afterwards the solution was diluted to

20 ml using deionized

 water.

2 2

 ml

 of 1.127 M HF were added to 0.5

 ml

 of the acid sample S1. Afterwards the solution was diluted to

20

 ml

 using deionized

 water.

 To

 this

 solution

 =

 0.5 g of

 CP

 LiF was added.

[317]

Page 344: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 344/392

Titration   against LiOH in the presence   of excess   HF and LiF.

( A )  (B)

 , i  , . . . i . . . i . . .  i. .  i  11   i i .  i 11.. 11 , i i . i

0 1 2 3 4 5 6 7 8 9

  10 0 1

  2 3 4 5 6 7 ^ 8 9

  10

mM  LiOH  mM  LiOH

F i g .  1  Cha n g e s  in p H durin g the titration of a H 2 S i F 6 solution  against  L i O H  (Sample SI, Table  1 ) .

( A ) Case

  A : Straight titration

(B) Case

 B:  A d d e d H F

(C)

  Case

 C :  A d d e d H F + L i F

(D) Case D:  A d d e d L i F  ( L i F - L i O H  Technique).

[318]

Page 345: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 345/392

Titration against LiOH when LiF is

 added

 previous to

 tie

 titration.

(D) Titration against LiOH  when LiF  is added  previous to  the titration.

To the original acid sample,  LiF was added and the solution was titrated

against  LiOH1

.  The two equivalence points described by reactions 13 and 14

can  be observed in Fig.  I.D. As in the previous case, accurate analysis of the

solution can be obtained by analyzing the titration curve.

Comparison of  the different analytical routines:

The results obtained by analyzing the same acid sample using the routines

previously described are shown in Table 1. Similar concentrations can be found

by  either of  these  techniques. The technique described in C a s e  D

 (LiF-LiOH

technique) proved to give accurate acid analysis and was used  extensively in

this work. This  technique was used to analyze  H 2 SiF 6  within ± 1.5 g/1,  SiOa

within ± 1 g/1, and HF within ± 1 g/1. When  PbSlF 6-H 2SiF 6  solutions  were

analyzed by this technique,  Pb was removed prior to the acid analysis by using

Li 2 S0 4 :

 PbSiF 6 +Li£0 A  ->

 Li 2 SiF 6 + PbS0 4 i   ... 16

The amount of  L i 2SiF 6 released by Li 2 S0 4  can be calculated by knowing the

Pb content of the sample. Pb is quantified in a separate sample by using  EDTA

complexometric analysis 1321.

Table 1 Comparison of the different analytical techniques.

Technique [HaSiFd. M [Si02l.  M [HF],  M Comments

Two-step

titration:

Cold-Hot titration

2.03 0.40 Quantification of  HF or SiO a

present in the sample is

possible.

One  Step U OH Titrations :

Case AStraight titration

2.04- -

Only the total H2SiF

6 content of

the sample can be quantified

Case B:

HF added.

2.05 0.44 Quantification of  HF or Si02

present in the sample ispossible.

Case C:

HF  and LIF

added.

2.02 0.40 Quantification of  HF or Si0 2

present in the sample is

possible.

Case D:LiF added.

2.02 0.40 Quantification of  HF or Si0 2

present in the sample is

possible.

1 0.5 ml of the acid sample S1 was diluted to 20 ml using deionized water. To this solution = 0.5 g of  CP

LiF was added.[319]

Page 346: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 346/392

Analytical routine

C. H 2 SiF 6   and  HF  or  Si0 2   analysis  in H 3 SiF e-PbSiF 9   electrolytes (IAF-LiOH

Technique)

1. Analytical  routine

Pipette a 2-ml aliquot of the  sample into  a  plastic centrifuge tube  \ add

approximately 10-ml of  « 0.2 M Li 2 S 0 4

2 . Mix well, then centrifuge for 5 minutes.

Decant the supernatant liquor into a 50-ml beaker. Wash the solid residue in

the centrifuge  twice with 2-3 ml of  distilled water, and add the washings to the

solution In the beaker. Add ~ 0.5 g of powdered CP LIF. Stir well and titrate the

mixture with LiOH 3

 up to a pH of  3-4 [first  equivalence point). Record This volume

as V\.  Continue the  titration adding LiOH  at a very slow rate4 up to a pH  of

6.8-7.3. Record this volume as V 2 [second  equivalence point).

To titrate  the acid sample,  use of an automatic titration system is highlyrecommended. In this set-up LiOH addition rates can be set to very low speeds.

Also, the equivalence points can be easily determined by obtaining the derivative

of  the titration curve.

2.

 Reactions

As described previously, the reactions that take place during the LiF-LiOH

titration are as follows 5 :

(a) Neutralization of  the lead salt:

 PbSiF 6 +LJ'2S04  -> Li 2 SiF 6   + PbS04  i . . . 16

(b) Addition of  LiF and reaction of  HF with Si0 2  (if present):

 H 2 SiF 6   + 2L /F  -» Li^iFf,  + 2HF . . .15

6HF   + Si02  -» H 2 SiF 6   +  2H 20 . . .9

(c) First neutralization point pH= 3-4:

 HF+LiOH   ->LiF+H 20 . . .14

1 Plastic tube volume larger than 10 ml.

2 Add

 enough

 L i 2 S0 4  so as to neutralize all the lead salt present

 in

 the electrolyte (reaction 15).

3 LiOH

 =

 0.9 M, known titer.

4 LiOH addition rates smaller than 0.5 ml/min.

5

 [Pb]

 =

 Lead concentration

 in

 the sample as obtained in a separate analytical routine,  M .v

sanpi« = Volume of the acid sample, ml.

[320]

Page 347: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 347/392

Calculation

 ol results

Record the volume of  LiOH spent as Vi  and obtain the moles of  LiOH required

in this titration: mx = V x * [LiOH].

(d) Second neutralization point pH  - 6.8-7.3

 Li 2 SiF 6  + ALiOH  -> 6LiF  +H 2 Si01i +H 20  .. . 13

Record the volume of  LiOH spent as V 2 and obtain the moles of  LiOH required

in  this titration: n\  = V 2 * [LiOH].

3. Calculation  of   results

HF  is present when: 2V,>  V 2 .  Compute [HF]  and [H2SiF6] as follows:

 [H 2 SiF^=-/^—-[Pb]"sample  ^

 [HF]=-^--2*[H 2 SiF 6 \^sample

Si0 2 is present when: 2 V  x  < V2 .  Compute [SiOa] and [HaSiFg] as follows:

2*[//25/F6]-1''h

 [SiO j = —

The t o t a l fluorine to silica ratio is derived from the following relationsh

F   _ 6{[H 2 SiF 6  ]  + [PbSiF 6  ]} + [HF]

 Si  "   [H 2 SiF 

6  ]  + [PbSiF 6  ]  + [5/OJ

[321]

Page 348: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 348/392

Appendix  5 Comp uter Interfacing of the We nk in g Poten tios tat:

Cal ibrat ion of the R out in es used to Interrupt  the  Current

I.  Objectives:

A) To explain some of the details involved in the computer interfacing of theWenking  potentiostat.

B) To describe the algorithm used to interrupt the current.

C)  To demonstrate how by using "dummy" cell circuits the current

interruption routines were checked.

D) To analyze the experimental results obtained in the time domain in the

frequency domain by using the  FFT algorithm.

 A. Current interruption using  the Wenking   potentiostat

In Chapter 3 the various connections required to interface the computer to

the potentiostat  were  described (see Fig. 3.6).  Current  was halted by using a

mercury wetted  relay activated by the computer.  This  relay short circuits the

battery that controls the amount of  current that goes through the electrochemical

cell.  To activate this relay, a DC voltage of at  least 3.5 V is required. Voltages

smaller than 0.5 V deactivate the relay allowing current to flow back to the cell.

The  easiest and fastest way of controlling the relay operations was found to be

through the use of  the digital output of  the DT2805 board 1 1 2 . By setting the output

value of the digital bits to 1, the relay was activated and the current halted3

.

Accordingly, resetting this value to zero opened the short circuit imposed by the

relay, allowing the re-establishment of the current flow.

During the galvanostatic experiments, at least two data acquisition channels

were used 4

. One of  these channels was used to record the difference in potential

between the reference and working electrodes.  The other was used to monitor the

current  flow to the cell. As Fig. 3.6  shows,  all the data logger channels were

1

 When

 a

 digital

 value

 of  ("high" bit status), is output

 a

 voltage of

 =2.5

  volts is generated, and

 when its

value

 is zero

 ("low"

 bit statusltne voltage output

 value

 drops to

 =0.2

 V. This signal goes back and forth

 in

the shape of

 a

 pulse.

2 To generate the required voltages to activate the relay three digital output bits

 were

 connected in series.

3 Oscilloscope readings showed

 that

 current was halted within 10 usee.

4 Additional channels

 were

 used

 when

 the difference in potential between the inner slimes electrolyte and

the working electrode was measured.

[322]

Page 349: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 349/392

 Algorilhm used  lo interrupt  the current

grounded with respect to the working electrode. This aided in preventing common

mode voltages. Additionally, common mode voltages were avoided by not making

direct connections between the counter electrode and the DT2805 board.

B. Algorithm   used  to  interrupt the current.

Concurrent  interruption of  current at preset times under galvanostatic

conditions was implemented by the hardware connections shown in Fig.  3.6. In

addition,  appropriate software programs were developed. The characteristics of

these programs varied according to the number of channels sampled, the length

of   the experiment, and the extent and frequency of the current interruptions.

The  computer programs were written so as to handle up to a maximum of 8

analogue input channels. Additionally, control of the digital bits used to generate

the voltages required to control the relay's functions was incorporated in theseprograms. Thus, data acquisition and setting and  resetting of  digital bits were the

tasks considered in the program's algorithm. In this algorithm, the speed at which

these operations took place was the most important parameter accounted for.

The  different operations performed by the computer were programmed by

using the "foreground/background" operation mode. In this mode, all the tasks

performed by the DT2805 board  are executed  in the "background" while the

computer is free to do other operations in the "foreground". The rate at which the

background  operations run is set by fixing the task  period.  Additionally, thefrequency  at  which each task runs  is  controlled by fixing  the task   modulo.

Moreover, tasks may start synchronously but they may not be instantaneously

activated. The task  phase controls how many task periods have to take place

before the task  is first executed.  Furthermore, completion of a specific task may

activate/deactivate other tasks. The state of each task may also be altered from

the "foreground" operating mode. Also,  tasks become idle, once  the number of

times the task has been executed equals a preset value .This preset value is defined

as the  number  of  iterations.

Table  1 shows the task  set-up used to control the DT2805 operations. Typical

values for the task  modulo, task phase, and number of times the task is executed

are  provided in this table. The order in which each task  is defined is  important

as tasks are executed sequentially rather than simultaneously. Every task  period,

the  status of each task  is checked. If the task  status is idle, the task  is skipped

and  the next task  is executed.

[323]

Page 350: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 350/392

Algorithm used

 to interrupt the current

Table 1 Tasks description and typical parameter values.

Task Fu n c t i o n Descr ipt ion Task

Modulo

Task

Phase

 Nu m be r   o f

Iterations

T a s k    Status

T y p i c a l  valu es wh en tas k

 peri od  =4 msec

1 Set bits Hal ts  f low  of cur re nt to the

11111111 llll ill ^^^^9 9 1

Tasks s imul taneous ly

activa ted by Ta sk 4

These tasks

con t ro l  the cu rre nt

Interrupti on cycle

2 Reset bits Re-es tablishes  flow  of current

to the  cel l

50 50 1 Tas ks s imul tane ously

activa ted by Ta sk 4

These tasks

con t ro l  the cu rre nt

Interrupti on cycle

3 Acqui re  data T r a n s ie n t R e c o r d e r    Mode".

Logs  data conti nuousl y

 befo re , aft er , a nd d u r i n g

current in terruption.

1 1 100

Tasks s imul taneous ly

activa ted by Ta sk 4

These tasks

con t ro l  the cu rre nt

Interrupti on cycle

4  No  oper ati on Onc e activa ted it  starts  the

curre nt Interrupti on routine

 b y  s ta rt in g Ta sk s 1, 2, an d 3.

1 1 OO "Foreground" activated

once Task 5 buffer is

f i l l ed .  "Background"deactivated once

Task 3 is completed

5 Acqui re  data "Data Logger   Mode".  Logs data

d u r in g  normal galvanostatic

conditions .  Thi s task controls

the curre nt in te rrupt ion

frequency and the experiment

length.  Every  cert ain nu mbe r

of   acquired points Task 4 is

activated.

2500 0 250 00 390 0 Alway s  active

As was  previously described, all tasks run at the  same rate. This rate is fixed

by the  value of the  task  period which for most of the  programs was set to 4 msec.

The frequency at which tasks are executed is  fixed by the  task  modulo. Thus, for

example, Task 5 was  used to acquire a set of  data points every 100 sec (i.e.  25000

times 4 msec). These data were sequentially put in a buffer array. The size of  this

array was  selected to control the current interruption frequency. Thus, every time

the  buffer  array was filled,  data were saved  in the  computer's hard drive, andTask 4 was  activated.  Once  Task 4 is  activated,  Tasks  1, 2, and 3  start

simultaneously. These three tasks are  executed sequentially. However, Tasks 1

and 2 start only after a certain number of  tasks periods (or clock-ticks) have gone

by, whereas Task 3 is executed immediately. Task 3 acquires data at the  highest

acquisition rate set by the  task  period (in this case at 250 Hz). As Table 1 shows,

100  data points are collected at this acquisition rate (i.e. during 400  msec). After

9  data points have been collected,  Task 1 sends a high bit and  halts the  flow of

[324]

Page 351: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 351/392

Calibration

 of the

 routines

 used lo interrupt the current

current. As this task is  executed  first, there is a time lag between the current

interruption and the acquisition of the tenth set of data points. This time lag is

due to the fact that the computer has to check  Task  2  status before executing

Task  3 (i.e. there is a software overload).  This  time lag was measured with an

oscilloscope and was of the order of 1 msec. The current interruption length iscontrolled by Task  2. Task  2 phase is 50, thus, current was interrupted during

41 clock-ticks (i.e. during 164 msec).  After this time, Task  2 sends a low bit and

re-establishes the flow of  current. One niillisecond after the short circuit is opened,

data are recorded. Subsequently, samples are taken every 4 msec during a period

of   196 msec. Once Task  3 is completed,  Task  4 is deactivated and the data are

saved in the computer's hard drive. As Task  5 is active all the time, the previous

process repeats as often as Task  5 buffer is filled. The data acquisition program

ends when task 5 becomes idle (i.e. after 3900 data points or 108.33 Hrs.).

During the data acquisition run,  an interactive procedure for changing the

A / D  gain was incorporated in the computer program \  Thus, the DT2805 board

measured potentials lower than 100  mV with an accuracy of  ±0 .3  mV.  Potentials

between  100 and 1000  mV were measured within ±1 mV.

C . C a l i b r a t i o n of  the routines used  to interrupt the current

In  addition to using an oscilloscope to check the input-output operations

performed by the DT2805 board, "dummy" cell circuits were also used. A typicalRC  circuit equal to the one shown in Fig. A3.1  .A was assembled out of  commercial

components. Capacitors and resistors of known values a  were  used to test  the

current  interruption routines. The nominal value of the components was

compared with the obtained empirically.

Fig.  1 shows  the empirical potential and current waveforms obtained by

current  interruption. The theoretical values of the  elements  of the circuit are

shown in the figure. Also, the points at which samples were taken are marked in

the plots. In all the cases, current was interrupted after applying current to the

circuit for several minutes. Thus, the initial charging of  the capacitor is not shown

1

 The

 DT2805

 board performs analogue to digital (A/D) conversions at

 a

 12-bit resolution. Four input

voltage ranges are

 available in

 the

 board: -20

 to 20 mV,

 -100

 to 100 mV,

 -1000

  to

 1000

  mV, and -10000

to 10000 mV. These

 ranges

 can be interactively changed by software control improving the resolution of

the acquired data.

2

 Resistors

 were measured independently by using a Tech-300 digital

 voltmeter.

 Capacitor values were

obtained by using AC impedance techniques (see Appendix

 6).

[325]

Page 352: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 352/392

Calibration ol  the routines used  to interrupt  the curre

(A)  (B)

Time,

  msec

  Time,

  msec

Fig. 1 Transients obtained upon current interruption using a dummy cell

Experimental data: R t = 15.1  £2, R 2 =10.2  Q, c = 3147 uF.

Theoretical data derived from analysis of the potential decay: Rx  = 15.1  Q, R 2 =10.1 fi, c = 3140 uF.

(A) Current as a function of time(B) Potential as a function of time

in  these  transient curves. As Fig. 1.A  shows,  current is interrupted almostimmediately after sending a "high" bit from the computer. On the other hand,

several milliseconds are required for the current to recover its previous value once

the short circuit is opened.

The response of  RC circuit upon current interruption was studied using the

equations developed in Appendix 3. Eqs. A3.24 to A3.26 were used to obtain the

values of the components of the electrical circuit. The potential upon current

interruption was fitted to Eq. A3.26. From this equation the Ra and c values were

obtained. Extrapolation of this curve at time zero provided the R x  value.

[326]

Page 353: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 353/392

Calibration of tie routines used  to interrupt  the current

T a b l e 2 Comparison between experimental and theoretical RC  componen

values obtained by the interruption technique

Theoretical values Expenmental Values Regression  No. points

mAmp Ra, Q C,  \lF R x, Q R* n C, uF Coeff.,  r 2

Considered

4.88 10.3 0

- 10.2 0.0

-   - 1

4.89 15.1 0

- 14.9 0.0

- - 1

0.97 10.3 2.3 3147

10.0

2.3 2952

0.984

3

4.93 10.2

2.1

2863 0.991

5

0.95 10.3 4.9

3147

10.1 4.9

3062 0.995

4

4.90 10.2 4.8 2879 0.993 4

0.49 15.1 10.5 3147 149 10.5 3289 0.998

10

0.99 15.0 10.3 3207 0.998

10

2.46 15.1 10.2 3178 0.999

10

2.45 15.1 10.2 3140 0.999

10

4.91 15.1 10.2

3146

0.999

10

24.61 15.1 10.1

3140 0.999 10

0.97 10.3 2.3

1117 10.0

2.3

1339 0.969

3

4.91 10.1 2.2 1022 0.993 4

0.96 10.3 4.9 1117 9.8 5.2 938 0.989 3

4.90

1111161114.9 913 0.993 4

0.50 15.1 10.5 1117 iiii;4

:

i9iii 10.4 1115

0.992

6

0.99

15.0

10.3 1053

0.994

6

2.46

15.0

10.2

1026 0.994

6

2.45 15.2 10.1 1017 0.997 6

4.93

15.0

10.3 992

0.996

6

24.65 15.1 10.2 1005 0.995 6

0.50 15.1 10.5 225 14.4

II?233 Ii 0.985

3

0.99

13.7 11.6

203

0.990

4

2.46 13.7 11.6 177 0.996 4

2.45 12.2 12.9 133 1.000 3

4.91 13.2 12.2 151 0.998 4

24.65

13.6 11.6

159 0.999

5

4.89 10.3 2.3 11.7 12.2 0.0

***0.842

3

,0.20

10.3 4.9 11.7

14.8

0.2

•**0.647 3

4.83

14.9 0.1

***0.647 3

0.50 15.1 10.5

11.7 24.7

0.7

***

0.001 3

0.99

24.9

0.4

***0.800

3

2.47 25.1 0.2

***0.707

3

4.93

25.0

0.3

***0.997

4

24.63 25.2

0.1

***0.998

4

0.49 15.1 10.7 7.8 24.7 0.7

***0.006 3

0.98 25.0 0.3

***-0.004 3

2.45 25.3 0.0

***-0.004

3

24.61 25.2 0.0

***-0.500 3

[327]

Page 354: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 354/392

Tune domain to  frequency domain tans  formation: experimental  resul

Table 2 shows the values of resistors and capacitors obtained for different

current levels. The theoretical and experimental values of the components of the

electrical circuit are shown in this table. The  first two rows of  data show the circuit

parameters obtained when a single resistor is used as a dummy cell. In all the

other cases,  the circuit shown in  Fig.  A3.1.A was used. The number of pointsupon current interruption used to fit the data to Eq. A3.26 is also presented in

Table 2. The parameters used in the current Interruption routine to obtain these

data sets were the same in all the cases fTable  1).

Table 2 shows that  as  long   as the time constant 1 of the electrical  circuit   is

larger   than IQ  msec,  accurate values of   ths.  parameters  of the circuit can be

obtained. These large time constants are present in the sets where the 3147 and

1117  |iF capacitors were used. Circuits in which smaller time constants were used

did  not provide accurate parameter values. In  these  circuits, only the total

resistance value (R x + Ra)  can be obtained. In both cases, the amount of steady

state current going through the circuit does not  seem to have an effect on the

calculation of the parameters of the circuit.

D. Time domain tofrequency  domain transformation: experimental  results

In Appendix 3 the fundamentals behind the time domain to frequency domain

transformation  were presented.  Here,  FFT  techniques  will  be used to  Fourier

transform the time domain transients presented in Fig.  1.The FFT algorithm requires the data to be given as sets of  2q

  (q being a positive

integer number) equally spaced data points. Thus, to satisfy these requirements,

the transient functions shown in Fig.  1 were modified. This was done by curve

fitting these functions using high order polynomials over different time intervals.

Once the transients were curve fitted, they were reconstructed using a uniform

sample interval equal to  1 msec.  By  doing this, the functions shown in Fig. 1 were

represented by 400 points rather than by the original 100 points. To increase the

range of the frequency spectrum and to have the required 2 q  data points, the

transient functions were extended.  Thus,  a total of  4096  points were  Fourier

transformed. The  impedance of the system was obtained by Fourier transforming

1 The

 time

 constant

 for the RC

 circuit

 shown

 in Fig. A3.1 .A can be

 expressed

 by:

 x

(sec) = RT C

[328]

Page 355: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 355/392

Time domain b frequency domain transformation: experimental  res

the output (potential transient) and the input (current transient) functions and

taking their ratio. The results  of  this  transformation are shown in Fig. 2. The

theoretical impedance spectrum is also shown in this figure.

(A)  (B)

Z r , a l , Q   Freq,  rad/sec

Fig. 2  Frequency domain representation of the time domain data presented in Fig 1.

The analytical solution was computed using the known parameter values: R t - 15.1  f2 ,R 2 = 10.2 i>,c = 3147 uF.The numerical solution was obtained by applying the FFT algorithm to the experimental data presented in Fig. 1,from which the following values were obtained: R, = 15.3  £2, R 2 =9.9  £2, c = 2864 uF.

(A) Argand Plot(B) Bode Plot

Fig. 2 shows that the circuit parameters derived from the experimental data

are within 10% of  the theoretical values. These values are not as good as the ones

obtained by time domain analysis. However, if the electrical analogue had not

been known in advance,  Fourier transformation would have shown  some of the

characteristics of the circuit. Thus, time domain and frequency domain analysis

can be used concurrently to study and verify experimental data. As the informationprovided by each technique is given by only changing the frame of reference (time

<=> frequency), the data can be interpreted from different perspectives.

[329]

Page 356: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 356/392

Appendix  6  Current Interruption  and  AC  Impedance

Measurements  us ing the Sola rtr on Dev ices

I.  Objectives:

A) To describe how the Solartron Electrochemical Interface  (SEI) performs

the "sampled" current interruption procedure.

B) To describe the implementation  of  the AC impedance measurements using

the  SEI and the Frequency Response Analyzer (FRA).

A . Current interruption  using  the SEI

The  SEI offers three ways of compensating for the value of  IRg  *. Two of them

(Feedback  and Real Part Correction) require the value of  the uncompensated ohmic

resistance,  Rg, to be known in advance. The  tiiird  of   these  procedures, the"sampled" IRg drop compensation,  determines Rg by using a current interruption

routine. Use of  this routine involved the quantification of  the potential and current

values during current interruption conditions. These values are different from the

ones  observed under steady state  conditions as the  SEI  interrupts the current

continuously at frequencies as high as 18.5 KHz. Thus, by executing the "sampled"

interruption routine, the following parameters are obtained:

a) Factual This is the value of the potential actually being applied to the cell

under current interruption conditions.

b)  C a c t u a l : This is the value of the current actually being applied to the cell

under current interruption conditions.

C) PsamPie+hoid> This is the value of  the potential 5 usee before current is applied

back to the cell.

From  these  parameters the value of the uncompensated  resistance  is

obtained using the following equation:

 _  (Factual   Psample + hold)

The  current interruption procedure was  tested  by using the dummy cell

provided by Solartron 2 . The routine was applied under potentiostatic and under

galvanostatic conditions. A 18.5  KHz current interruption frequency was found

1 This IRg value corresponds to r\a described in Chapters 2 and 4.

2 Dummy Cell circuit 12861

 ECI

 test

 module

[330]

Page 357: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 357/392

 Implementaton of  the AC measurements

to give the best results. The Rg values obtained from this technique were witiiin

5%. of  the theoretical values. Table  1 shows some of the Rg values obtained under

potentiostatic conditions using the Solartron dummy cell.

T a b l e  1: Parameters obtained by using the "sampled" IRg compensation

routine under potentiostatic conditions. Theoretical Rg value = 1800 ohms

 Values obtained  under

steady-state conditions

 Values obtained  under current

interruption conditions

Experimental

value

Potential

 mV

Current

uAmp

 p A   actual

mV

 p1 sample+hold

mV

 p^actual

uAmp

Experimental

value

200 20.86 234.0 192.3 24.32 1714

500 52.04 593 483 61.67 1784

B. Implementation of  the AC measurements

In a typical AC experiment, a low amplitude sinusoidal voltage waveform is

generated by the  FRA and sent to the  SEI. Depending on whether the SEI is set

to operate under potentiostatic or galvanostatic conditions, the waveform is

superimposed either on the DC potential or on the DC current being applied to the

cell \ The variation in current and potential measured by the SEI is fed back to

the  FRA which obtains the transfer function of the system.  This  is obtained by

repeating this process for a range of frequencies.  From  this information, plots

such as  those  shown in Figs. 1 and 2 are obtained. In these plots, imaginary

numbers are required to express the transfer function of the system. In a Bode

plot (Figs. 1 .B and 2.B) the frequency of the sinusoidal waveform is plotted on the

abscissa, whereas the absolute value of the impedance is plotted on the ordinate.

In an Argand  diagram, the real and the negative parts of  the imaginary impedance

are plotted on the ordinate and in the abscissa respectively (Figs. 1.A and 2.A).

From  the analysis of  these plots, kinetic and mass transfer parameters can bededucted when electrochemical systems are studied.

1 If

 the system is controlled under galvanostatic conditions, the voltage waveform input by the FRA

 is

converted to

 a

 current waveform by the

 SEI.

 This current signal is

 superimposed

 on the

 DC current being

applied to the cell. The amplitude of this superimposed signal is obtained by dividing the sinusoidal

voltage amplitude by the value of the resistor used

 in

 the

 SEI

 to measure current.

[331]

Page 358: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 358/392

 Implementation ofthefc measurements

(A) (B)

eooo c,Hh

c2

Hh7000 OWi

6000

-

  5000

 <g

E

 MI

4000

3000

2000

1000

'  • • •

AKMX)  2500 4000 5500 7000 8500 10000

Zrea|, ft

 M

4000

2500

Fig. 1 Impedance diagrams generated using the Solartron Dummy cell

R, = 1800 Q, R 2 = 1000 ii , R3 =6800 ft, c, = 0.1  uF,  =4.7 uF

(A) Argand Plot  (B) Bode Plot

\

10°  10' 10* 103  104

Freq,

  rad/sec

10s

To  illustrate the use of the  AC  impedance technique dummy  cells were

assembled. The impedance of  these circuits was measured using the experimental

set-up shown in Figs. 3.7 and 3.8. The frequency spectrum was obtained under

potentiostatic control using 5 mV R.M.S.  sinusoidal waveforms. Frequency was

swept between 1 and 60000 Hz. Figs. 1 and 2 show the Argand and Bode plots

obtained experimentally. These curves  were  analyzed following the procedure

described in Appendix 3, Fig. A3.4.

The  curves shown in Fig. 1 correspond to the frequency spectrum of theSolartron dummy cell. This circuit has two RC components connected in series.

As the time constants of  these RC components are far from each other, two well

resolved humps are obtained. By analyzing each hump separately, the values of

the parameters of the circuit were obtained. The magnitude of  these parameters

was witliin 0.1% of the expected values.

[332]

Page 359: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 359/392

 Implementation oftheAC measurements

(A)  (B)

Z  n  Freq, rad/sec

Fig. 1 Impedance diagrams generated using a RC Dummy cell

R t = 10.2 Q, R 2 = 10.2 fl, c = 3147 uF

(A) Argand Plot (B) Bode Plot

Fig. 2  shows  the frequency spectrum for a dummy cell with only one RC

component.  Only one hump is obtained in the Argand diagram. The R x and Rj

values  obtained  were  within 1.0% of the  expected  values.  Capacitor  values

measured by this technique were within 5% of the nominal value (i.e. the value

provided by the manufacturer) \

1 The

 capacitor measurements

 done by

 AC  impedance

 were

 used as standards for

 calibrating

 the current

interruption routines presented in appendix

 5.

[333]

Page 360: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 360/392

Appendix  7 So lub i l i t y of  P b S i F 6 4 H 2 0

I.Objective:

To obtain the solubility of  PbSiF6-4H 20 in water and in H2S1F 6 as a

function of temperature and acid composition. Solubility changes are computedfrom data available in the literature.

EL Solubil i ty of pure  PbS iF 6  4 H 2 0  as a funct ion of temperat ure

The solubility of  pure PbSiF6-4H 20 solutions in terms of the anhydrous

mole fraction is given by the following relationship  [ l ] :

2464 4418

log;t 2 = -62.56499

 + — ^ — -  +

 21.54633 log  T   .. .

 1

 where:

jt, = anhydrous mole fraction (number of moles of the i-th component divided  by thenumber of moles of the mixture).

T= Temperature. K

From  the x 2  value at a fixed temperature, the value can be obtained

from the following relationship:

w  =  2 x 2 M ank   +  (l-x 2 )M l

 where:

W mh  = weight of the anhydrous component contained In 1 Kg of solution [Kg ofcomponent/ Kg solution!.

Manh = molecular weight of the anhydrous component (For PbSiF6 M mh is equal to 349.34g/mol)

 M, = molecular weight of the solvent ( for water M, = 18 g/mol)

From  the value obtained in Eq. 2, the value can be obtained as

follows:

 where:

W)^ = weight of the hydrated  component contained in 1 Kg of solution [Kg of component/Kg solutionl.

 Afhyj = molecular weight of the hydrated  component (For PbSlF6.4H20  is equal to421.34 g/mol)

 Af, = molecular weight of the solvent

[334]

Page 361: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 361/392

 Solubility 0lPbSiF

t

.4H

 ,0 in the

 presence

 of HjSF, at T

=20

 'C

Once W and  and W anh are obtained, the solubility of the salt can be obtained

from any of the following relationships:

IOOOWU

^  A W l - W ^ )...4

...5

lOOOW^  p

c, =2

...6

where:

rrx, = molality of the solution [mol/Kg of solvent

c

2

 =

 molarity of the solution [mol/1]

P,

 = weight

 percent: Kg of anhydrous i-th component contained in 100 Kg of solution,

p

  =

 solution density,

 [g/cm

3

]

Table  1 shows the solubility changes as a function of the temperature for

pure PbSiF6-4H 20 solutions obtained from Eqs.  1 to 6.

Table

 

Solubility changes

 as a function

 of

 the

 temperature

 for pure

 PbSiF

6

4H

2

0 solutions.

Temp *C

mj, mol/kg  Pi,% c

2

 *, mol/1

0 -1.0472 0.0897 0.6567

3.81

5.47 65.67 4.57

20 -1.0015 0.0997

0.6824

4.65 6.15

68.24

4.75

25

-0.9842 0.1037

0.6919

5.04

6.43

69.19 4.81

30

-0.9649

0.1084

0.7024 5.54

6.76

70.24

4.89

40 -0.9208 0.1200 0.7258

7.02

7.58 72.58 5.05

50

-0.8702

0.1348 0.7515 9.68 8.66 75.15 5.23

57

-0.8314 0.1474 0.7704

13.13

9.61

77,04

5.36

*  c2 values obtained using a density

 value

 p = 2.43 g/cm

3  [2].

ni .Solubil ity  of P b S i F 6 . 4 H 2 0  i n the presence of H 2 S1F 6 at T=20 °C

Table 2 shows the solubility of  PbSiF 6.4H 20 as a function of the  H 2SiF 6

concentration as reported in the literature[3l.

[335]

Page 362: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 362/392

 Solubility of  PbSiF,.4Hfi  in the

 presence

 of HjSiF, at

 T=20 'C

Table 2 Solubility of  PbSiF6.4H 20 as a function of

the HjSiFj concentration at T=20 #

C [3].

P,  [PbSiFJ ,

0 68.97

0.98 67.96

7.34 56.5

13.93 43.1

25.82 23.95

39.65 10.38

P, = weight percent: Kg of  anhydrous i-th

component contained in 100 Kg of  solution.

[336]

Page 363: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 363/392

Appendix 8  Solut ion of F i ck ' s Second Law Equat ion Under Cur rent

Interrupt ion  Condit ions

I.  Objective:

To solve analytically Fick's Second Law equation in the presence and in the

absence  of a net Faradaic current. This solution will be used to predict local

concentrations from which the concentration overpotential across the

hypothetical Nernst diffusion layer will be derived.

n.  Assumptions:

1) Dissolution of lead is the only Faradaic reaction and proceeds without

kinetic limitations (i.e.  io-**> for Pb->Pb+2+2e").

2)  Mixing  of   electrolytes  witfiin the hypothetical Nernst diffusion layer is

neglected (D  E 

=0  and v =0).

3) Migration is absent.

4) Activities are equal to concentrations.

5) Dissolution of lead  takes  place under serin-infinite, unidimensional

conditions.

m.  Fundamental Equations

Unsteady state diffusion can be described by Fick's second law  [1,2] 1:

where:

C = concentration of species

 i [in

 this case

 Pb

+2

],

 [mol cm"

3

].

D =

 Pb*

2

 molecular diffusion coefficient

 [cm

2

 sec"

1

]

t

 = time,

 [sec]

x

 = distance

 from the electrode/solution

 interface,

 [cm]

For any problem the initial concentration, C \ is known2

:

1

 In this appendix

 the

 equations presented by Bushrod

 et

 al.

 [2] are re-derived and explained in greater

detail. Furthermore, a relationship between

 concentration overpotential and local concentrations

 (not

included in

 Bushrod's derivation)

 is

 obtained.

2 i.e.

 C=C*

 for

 t

=0 at any

 point

 x.

[337]

Page 364: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 364/392

Fundamental Equations

Fig. 1 Coordinate system used toobtain the analytical solution ofFick's second law.

A  A

x

=0  x=x

I •'0

  x

C*  =  C(x  ,0)  ...[ii]

Eqs.  [i] and [ii] can be expressed in a general form by substituting the variable

C for the variable ix.

u*  =  u(x  ,0)  ...2

The general solution of  Eq.  1 subject to the initial condition 2 can be obtained

from their Laplace transform.

The  Laplace transform, L, of the  left and right terms of  Eq.  1, is as follows:

= D—-  Li—\=Su-udx 2   I  Bt J

where u  =u(x,S)  is the Laplace transform of  u  =u{x,t)  .Thus, Eq. 1 can be

expressed as  follows:

Pure

Lead

Nernst

Bulk

Pure

Lead

Boundary

Electrolyte

Anode

Layer

[338]

Page 365: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 365/392

Fundamental Equations

dx 2

  DU 

~D

Eq. 3 can also be expressed by the following relationship:

in which y(x) = u(x,S) and P =

The  solution of   Eq. 3.a can be obtained  from  the  complementary

(homogeneous) and the particular  (nonhomogeneous) solutions:

The complementary solution satisfies the  source free equation:

Eq. 4 can be solved by assuming a trial solution:

 y(x) = k  exp[m x]   . . . 5

where  m is a dummy variable. Substituting Eq.  5 in Eq. 4 and rearranging:

m 2 + p = 0  ...6

Eq.  6 is the  characteristic or  auxiliary  equation.  Thus,  solving for m, the

following complex conjugate roots are obtained:

from which the complementary solution of  Eq. 4 is obtained:

 y(x) = k  x 

 exp[-*^^j +  k 

2  e x

p [yv/f]

Similarly, the particular  solution is obtained by assuming a trial solution:

y(x) = *,  . . . 8

Incorporating Eq.  8 in Eq.  3.a and solving for k 3:

[339]

Page 366: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 366/392

 Boundary Conditions andAnalyScal  Solution

Finally, the general solution is obtained by adding the complementary and

particular solutions:

y (x) = k  x  exp^^!~| + *2 e x l j * ^ ! ]  +  J - 1 0

from which:

u(x,S) = M(S) e x r j - x - ^  +N(S)  exp[x^|j  +±. ...11

IV.  Boundary  Condit ions  and Analyt ica l  Solution

For semi-infinite linear diffusion C(°°,t)  = C*  and M(°°,S) = y .  Consequently,

N(S)=0 and Eq.  10 is given by:

< H I Iu(x,S) = M(S)ex l i-x\l^\  + j   ...12

Eq.  12 will be solved for three different cases (see Fig. 2):

A) Application of a galvanostatic  step (t[ < t)

B)

  Current  Interruption in the presence  of  concentration gradients  in the

Nemst-Boundary layer (tl < t  < t" 2 )

C Application of  constant current after current interruption (t  > t" 2 )  .

[340]

Page 367: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 367/392

 Application ol  a galvanostatic step

tc

O

c1_L.

CJ

-

Time

1 , .

t  1

Fig.  2  Current step function for

which the concentration andoverpotential changes were solved/

ti starts when the current step is firstapplied

ts starts when the current is

interrupted (at t[).

t3 starts when the current is applied

back  (at  Q.

+  ti

•  t 2

 A. Application  of a galvanostatic  step

The  boundary condition  that expresses the application  of a galvanostatic

anodic current step is a follows:du, . h

 where:

U  = current density, [Amp-m"2].

Z= Charge number of Pb +2 [eqmol M

The  Laplace transform of  Eq.  13 is given by:

<Tx{o'  S)=-zT5s

...13

...14

Thus,  Eq.  14 is to be incorporated in Eq.  12 to obtain M(S),  from which the

changes in concentration  as a function  of  time can be obtained.  This is done as

follows:

Derivating Eq.  12, rearranging and solving for M(S):

[341]

Page 368: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 368/392

 Application ol  a galvanostatic step

.15

Incorporating Eq.  16 in Eq.  12:

u(x,S)=-

 ZF^DS' 2

exp

hVI]

+

  J

...17

The  inverse  Laplace  transformation of   Eq.  17 can be obtained using the

following relationship:

L-!

 jA«p[^VS]|

 = 2^I^p[.

At

-k  erfck '

2>/r

with

Thus,

k  =

Vo

"

( J :

' ' '

) =

Z

FW | 2

V ? X { - 4 D J

...18.a

...18.6

From Eqs.  18.a and 18.b, the concentration overpotential can be obtainedfrom the following relationship:

T] c(x,t)=  — ln-^T 

 J - Lb u

...19

from which:

[342]

Page 369: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 369/392

Current  interruption

r   x J t

  f

l

(

exp

-A

liDh ...20.a

...20.6

B . C u r r e n t interruption

After applying current for t[ sec, a concentration profile that follows Eq.  18.a

is  present. Thus, Eq. 12 is to be  solved for the current interruption case  using

Eq.  18.a as initial condition and Eq.  21 as boundary condition:

d u

dx(0

,0  =

 0

| (0 ,5 ) = 0

Thus,  Eq.  12 can be expressed as  follows:

...21

u(x,S) = M(S)ex -  +u\x,tx )

.22

Incorporating  Eq.  18.a in Eq.  22 and derivating:

+

 ZF  J D]  ^

"v^ D

e x p[4oJ .

evaluating  Eq.  23 at (0,S) and solving for M(S):

du.

dx(0

'

5)=

  V?

M(S)- 1 1

ZF^D^DS=

 0

..23

...24

M(S)  = -

ZF^DS 1..25

Finally,  incorporating Eqs. 25 and 18.a in Eq. 22, obteuxiing the  inverse

Laplace transform and rearranging:

[343]

Page 370: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 370/392

 Application of  current  back   to the electrode

u(x,tr ) =ZFyfD

 x (

erfc -erfc

 ZFynD

+ u  ..26.a

...26.6

The  the concentration overpotential can be obtained  from Eq.  26.b:

...27

C . A p p l i c a t i o n o / current back  to the electrode

After  time  tl current is applied back (see Fig. 1). The  initial  concentration

profile follows Eq.  26.a, and the boundary condition is given by Eq.  28:

dU  .  . h

du h

dx-{o'  S)=-Wm

Thus Eq.  12 can be expressed as  follows:

...28

u(x,S)=M(S)e\Hfi-  + ...29

Incorporating Eq.  26.a in Eq.  29 and derivating:

'll

5

.30

evaluating  Eq.  30 at (0,S) and solving for M(S):

[344]

Page 371: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 371/392

 Application of current  back  to the electrode

M(S)=  — ; ...32

 ZF  I DS' 2

Finally,  incorporating Eqs. 32 and 26.a in  Eq.  29, obtaining the inverse

Laplace transform and rearranging:

The concentration overpotential can be expressed as follows:

Figs.  3 and 4  show  the variation in concentration and overpotential for

different step functions according to Eqs. 18.b, 20.b, 26.b, 27, 33.b, and 34.

[345]

Page 372: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 372/392

 Application of  current  back  t> the electrode

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

(A)

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

_

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

—  /

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

t, , , ,  , , ,  , , ,  , , ,  , , ,  . . .  , .

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

ae ie .a  aa.a  3a.a 4a.a  se

T i n e *  sees

(B)

.  e

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

 —

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

.

  87a

.  ess

 NoC

C  .843

O

u

£ .838

uS

eo

N+ . 8  1 4*

• 8 e . %

a.  aa

s  i .  ea

4

**

£ i . aa

o0.

«.

O  . 808

C

e

••» .  480S01oeo

 <JA n n

-  • , . ,  , , ,  , , ,  . , ,  , , ,  , , i  i i 1 _J

•IBB  i a .a  ae.  a  3 a .

 a  4 e . a  se.  aT  i  M e ,  s e c

Fig. 3  Changes In u(0,t) and  iic(0,t) upon application of the current step described inFig. 2.

C'=C(x,0)=[Pb+2lBulk=0.8 moll"1, i1=i2=50 Ampm 

2, £>=5xlO6 cm 2sec"1. /,'= 16 sec,  t\ = 32 sec.

(A) Changes in [Pb+2]  (B) Changes in  T | c corresponding to the data presented  in Fig. A

[346]

Page 373: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 373/392

 Application of  current  back  to the electrode

488.  688. 888

Time,  sec

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

488.  688.

Time,  sec

Fig. 4  Changes In r

\c{0,t)

 upon application of the current step described  in Fig. 2.{C*=C(x,0)=[Pb+alBulk=0.8 moll

1},  D=5xlO 6cm 2sec 1

Fig. ij, AmpnV 2 i 2 , AmpnV 2 t[ =, sec t'2=, sec

 A 50 100 16 32B 200 100 16 32C 200 200 100 800D 200 200 200 600

[347]

Page 374: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 374/392

Appendix  9 Extended V ersion  of Tables Pres ente d i n Chapter 6.

Objective:

To present the complete set of  tables presented in chapter 6 and their

associated statistical regression parameters.

Foreword:

The  abstracted tables presented in chapter 6 are shown in this appendix

in their complete  form. The names of the tables in this appendix were chosen to

correspond to those presented in chapter 6.  Furthermore, the regression

parameters associated with the data shown in these tables are also presented

in this appendix alongside the main tables.

The  regression parameters shown in this appendix were obtained from

ANOVA analysis \ The square of the multiple regression coefficient,  r2, and the

square of the residual errors,  l y r l 2 , were obtained from such analysis. These

quantities are defined by the following relationships:

\yT  NY-Y'\2

in which:

y = Experimental data

y = Regressed data

y x  = parameter related to the variations vector 2 , y   with y = y r  +  y x .

y r  = remairiing residual error

r  = multiple regression coefficient.

The regression parameters r 2 and I yj 2  obtained from the curve fitting of

the  AC impedance data, are given with respect to the real,  Z* ,  the  imaginary,-Zj,and  the absolute impedances, IZI, (| Z |= ^Z^ + Z^

1 ANOVA stands for Analysis Qi  Variance.

2 y and  yx

 are

 related

 through the

 following

 relationship:

 |

 y, f=\ y |2

-1Y- Y'  |2

[348]

Page 375: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 375/392

Table 3 Summary of  the values of  the electrical analogue parameters obtained under rest potential conditions

Frequency Range Derived analogue parameters

Experiment Addition Pot/Gal 4*zcand Sweep Agents Control rad/sec rad/sec Qcm

2

Qcm2

pFcm' 2 Ci cm2

 sec  *Amp/m

2

Number

pFcm' 2

Amp/m2

CA2-/ yes Gal 560 99588 1.42 0.501 64 23.71 0.64 269

CA4-7 yes Pot 315 250159 1.02 1.855 lllPilf 12.45 IIKl! 72CA5-i yes Pot 560 111740 1.19 '"'0725''''' 65.30 23.90 0.64 186

CA5-4 yes Gal 560 111740 1.21 0.854 liii!!! llliill!!! 0.56 157CA6-2 yes Gal 177 157834 1.20 1.916 "liS"""" 0.55 70

CC1-5 no Gal 628 15783 0.90Illlll

iiiiioiii 0.57CC1-6 no Gal 628 44482 0.89

- - 2.88 0.45

CC2-J no Gal 560 17709 iiliii i i i i i ! lllslli0,01-2

no Gal 560 28067 0.85 1.88 0.59

Values of  statistical parameters related to the quality of the fit:

El

Experimentiy

r

i

2

.

r

2

iy

r

i

2

.

r

2

iy

r

«

2

,

r

2

and Sweep iy

r

«

2

,

NumberQ

2

cm

4

Q W

CA2-7 4.99X102

0.972 2.43X103

0.977 4.75X10"2

0.971

CA4-7 2.92xia' 0.995 4.74X103

0.986 2.45X10"1

0.996CA5-7 1.05x10' 0.976 6.53xl0'3

0.967 9.81xia2

0.976

CA5-4 2.09X10'1

0.969 1.23X102

!lll!l§ii!!ll1.96x1a

1

0.970CA6-2 3.10x10' 0.995 5.06X10

2

0.992 5.59X101

0.996

CC1-5 5.09X10"4

0.876 2.19x10* 0.966 3.51x10^ 0.967CC1-6 1.02xia3

0.970 3.11x10* 0.987 1.03xl0-3

0.982

CC2-Z 8.00X1O'5

0.944 6.39X10"5 0.975 1.16X10"4 0.971

CC2-2 1.48X10-4

0.913 4.75x10s

0.984 1.60X10 -4 0.966

[349]

Page 376: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 376/392

Table 4  Analysis of the  spikes produced during the application of the A C

 waveform,

in  the presence  of a net DC current (Exp. CA2, Figs. 6.32 to 35)

Parameters Derived from Regression AnalysisComputations

From  Eq.  4 Experimental

Slimes

Thickness

mm

Slope R m,

Qcm2

Intercept,

i,(mV)

r

2 |y r |2

,mv2

b

pm,Qcm K» ,  mV

mVTI A.

mV

0.80

1.61

3

3.10

3.72

4.72

5.33

5.95

0.62

1.19

L45

2.15

2.50

3.16

3.93

4.57

30.8

38.1

45.8

54.4

i i i i i i i73.7

llill&iiif82.4

0.850

0.983

0.986

0.988

0.992

0.952

0.981

0.961

6.8

5.1

6.4

12.6

8.8

86.0

59.8

163.7

2 54

1.65

1.63

1.30

1.26

1.20

0 98

0.93

7.78

7.37

6.48

6.93

6.72

6.70

7.38

7.68

12.1

23.1

28.1

41.8

48.6

61.5

76.5

88.8

42.9

61.2

73.9

96.1

109.7

135.2

151.8

171.2

41.9

60.4

733

95.5

109.3

133.5

150.4

170.0

6.56

7.18

7.79

5.23

5.71

7.22

llliiili113.9

124.9

0.920

0.905

0.888

375.1

633.5

1192.5

0.92

1.03

0.89

7.98

7.95

9.27

101.7

110.9

140.3

194.8

224.8

265.2

193.3

221.8

262.48.41

8.65

4.96

9 40

361.0

360.6

0.051

0.558

4386.0

5688.7

3.74

1.97

5.90

10.86

96.5

182.7llliiili:

543 3

436.0

520.0

Between 18 and 20 experimental points were used to obtain the regression coefficient. These points were

collected during -55 min and correspond to digitized samples taken when the frequency of  the applied  C  waves

was between 0.063 and 6.3 rad/sec.

[350]

Page 377: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 377/392

Table  5 .A Analys is of the spikes produced during the application of the  AC waveform.

in  the presence of a net  DC current (Exp. CA6)

Parameters Derived from Regression From Eq. 4 Experimental

Analysis Computations

Slimes Slope Intercept, r2

ly rl2, b pm, Qcm nc mV

Thickness b, (mV) mV

2

TD mV mVmm Qcm 2 'Km

0.70 0.36 24.9 0.95 0.17 3 56 5.14 7.0 32.0 32.6

0.98 0.48 28.4 0.99 0.03 3.05 4.90 9.3 37.7 39.0

1.25 0.67 29.6 0.98 0.11 2.28 5.36 13.0 42.6 44.2

1.47 0.56 35.7 0.98 0.04 3.28 3.83 10.9 46.7 47.9

2.11 1.00 ! ! t l 3 l i i ! l 0.99 0.14 1.96 4.75 19.5 57.8 59.5

2.39 1.21 40.0 0.92 1.80 1.69 5.08 23.6 63.6 65.7

2.66 1.15 i i i ^ i i i i i 0.97 0.71 209 4.31 22.3 68.8 70.5

3.06 1.52 47.0 0.99 0.40 1.59 4.98 29.6 76.6 78.3

5.37 1.89 llllPi!!!! 0.85 15.64 2 55 3.52 36.8 130.5 134.1

5.58 2.87 81.4 0.88 15.37 1.46 5.14 55.8 137.2 138.3

5.79 2.16 98.6 0.97 4.33 2.35 3.74 42.0 140.6 143.76.00 2.08 105.7 0.96 6.85 2.61 3.47 40.5 146.2 149.7

6.22 1.95 113.0 0.92 10.92 2.98 3.13 37.9 150.8 154.7

6.43 2.53 106.1 0.82 42.73 2.16 3.94 49.2 155.3 160.0

6.64 2.70 i l l i l i i l i 0.88 10.16 2.16 4.06 52.5 166.1 168.2

6.85 2.76 120.3 0.92 7.49 2.24 4.02 53.6 173.9 176.3

7.06 3.36 118.6 24.54 182 4.75 65.3 183.8 184.5

7.28 3.98 112.3 0.66 83.22 1.45 5.47 77.4 189.6 193.7

7.49 3.13 140.9 0.97 4.09 2.31 4.18 60.9 201.9 205.2

4 experimental points were used to obtain the regression coefficient. These points were collected during  -12

min and correspond to digitized samples taken when the frequency of the applied AC waves was between 0.63 and

6.3 rad/sec.

Table  5.B Analys is of the spikes produced during the application of the  AC waveform.

under  current interruption conditions (Exp. CA6)

Parameters Derived from Regression From Eq. 4 ExperimentalAnalysis Computations

Time, hrs Sloped, Intercept, r 2

|y r |2

,mv2

pm. Qcm IRm, mV IR^+ft, mV*u,

Qcm2

b, (mV) mV

0.63 ,.,,,,,2.23,,,,,,. 60.8 0.89 21.95 2.82 0.0 60.8 82.1

2.44 3 62 48.4 0.91 41.19 QQ 48.4 49.43.83 3.83 44.5 0.95 62.43 484 0.0 44.5 44.0

9.08 2.93 31.5 0.79 154.01 3.70 0.0 31.5 30.014.33 2.59 24.0 0.64 208.29 3.27 0.0 24.0 21.7

41.96 1.92 6.7 0.88 30.14 2.42 0.0 6.7 6.743.07 1.64 5.3 0 87 22.09 2.07 0.0 5.3 5.1

54.97 0.98 3.3 0.37 22.74 1.24 0.0 3.3 2.965.17 1.00 2.3 066 21.53 1.26 0.0 2.3 1.4

91.44 1.15 -6.2 0.95 7.60 1.45 0.0 -6.2 -6.1102.00 0 90 -0.4 0.70 17.22 1.14 0.0 -0.4 0.3

112.8 0.99 0.2 0.69 21.63 U 5 0.0 i i i i i i i i t t 0.3

9 experimental points were used to obtain the regression coefficient These points were collected during -27

min and correspond to digitized samples taken when the frequency of the applied AC waves was between 0.63 and

6.3 rad/sec.

[351]

Page 378: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 378/392

Table 6 Analysis of the spikes produced during the application of the AC waveform,

in  the presence of a net DC current (Exp. CC 1)

Parameters Derived from Regression

Analysis Computations

From Eq. 4 Experimental

Slimes

Thicknessmm

Slope R„

Qcm

2

Intercept,

b, (mV)

r2

ly r|2,

mV

2

b pm, Qcm IRm. mV IRm+fc,

mV mV

1.37

1.79

2.22

2.65

3.07

3.50

0.52

0.63

0.74

0.81

0.92

0.96

32.4

38.0

42.8

48.0

52.4

58.4

0.98

0.97

0.98

0.95

0.93

0.93

0.1

0.3

0.4

1.1

1.7

2.3

3.21

3.11

2.97

3.06

2.94

3.12

3.80

3.51

3.34

3.05

2.99

2.74

10.1

12.2

14.4

15.7

17.8

18.7

42.6

50.2

57.2

63.7

70.3

77.1

42.8

50.6

57.8

64.4

70.9

78.1

5 experimental points were used to obtain the regression coefficient These points were collected during -1 2

min and correspond to digitized samples taken when the frequency of the applied AC waves was between 0.63 and

6.3  rad/sec.

[352]

Page 379: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 379/392

Table 7 Parameters derived  from  the fitting of the impedance data obtainedin Exp. CA2 to the Zz^-Z^c   analogue (Circuit A.2, Figs. 6.38.39)

High Frequency Parameters Low Frequency Parameters R -A ,tottl  —

R t + R 2

Slimes ^zci bi, \  ,sec ^zcz- D2, b 2 , 1R2 ,sec

Thickness

 mm

Qcm2

secCi cm 2   sec Qcm2

secil cm   sec

Qcm2

0.80

1.61

2.23

3.10

3.72

4.72

5.33

0.21

0.31

0.42

0.64

0.52

1.10

1.06

0.73

0.67

0.64

0.59

0.59

0.55

0.60

0.0062

0.0165

0.0296

0.0683

0.0503

0.1511

0.1045

33.50

18.76

14.09

9.39

10.34

7.25

10.19

0.0010

0.0023

0.0042

0.0102

0.0064

0.0321

0.0225

0.44

0.88

1.17

1.62

2.22

2.50

3.17

0.77

0.69

0.69

0.69

0.68

0.70

0.71

0.079

0.21

0.30

0.39

0.42

0.59

0.69

5.55

4.17

3.84

4.11

5.30

4.26

4.60

0.037

0.104

0.176

0.260

0.276

0.464

0.592

0.65

1.19

1.58

2.26

2.74

3.59

4.235.95 1.54 0.51 0.1866 llliill 0.0373 3.45 !§§llllliill 4.06 Illlll 4.99

6.56

7.18

7.79

4.70

5.13

4.30

0.56

0.55

0.59

0.5415

0.5671

0.3873

iiiiieiiii9.04

11.11

0.3323

0.3593

0.2030

1.29

2.08

4.65

0.98

0.96

0.90

llliiili1.94

2.27

0.82

1.07

2.05

lislli!1.992

2.484

5.99

7.21

8.95

All  measurements refer to the geometrical area of  the electrode.1 Low and high frequency terms refer to the ranges  of  frequencies used during the deconvolution process.

'* Low and high frequency arcs were fitted to the whole frequency range (0.063<co<30000 rad/sec)

Values of  statistical parameters related to the quality of the fit:

EZt

Slimes |yr|2,QW r

2 |yr|2,QW r

2 |yr|2,oW r

2

Thickness,

mm

0.80 0.0067 0.999 0.0661 0.777 -0.0594 1.009

1.61 0.0147 0.999 0.0185 0.978 -0.0038 1.000

2.23 0.0242 0.999 0.0136 0.991 0.0106 1.000

3.10 0.0174 1.000 0.0107 0.997 0.0067 1.000

3.72 0.0574 0.999 0.0143 0.997 0.0431 1.000

4.72 0.0328 llllifiiollill! 0.0095 0.999 0.0233 1.0005.33 0.1136 1.000 0.0449 0.997 0.0688 1.000

5.95 0.4281 0.999 0.1344 0.993 0.2936 0.999

6.56 0.0563 1.000 0.0083 1.000 0.0480 1.000

7.18 0.1286 i!i!iH!i!!l 0.0054 lillllHIII 0.1232 1.000

7.79 0.3369 1.000 0.0045 1.000 0.3324 1.000

A  total of 6 parameters were curve fitted using between 110 and 113 experimental points.

For the impedance curves obtained at 0.8 and 1.6 mm slimes, r2

3>0.99 when 1<CK 30000 rad/sec

[353]

Page 380: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 380/392

Table 8 Parameters derived  from  the fitting of the impedance spectraobtained In Exp. CA2 (Circuit B.2, Figs. 6.40, 41)

Slimes r a r bc b B a ^ Z C a ^B. tota l

Thickness Qcm 2

Qcm 2

F  cm"2

Qcm2

sec"¥ z c Qcm 2

mm

0.80 0.43 0.23 0.026 11.48 0.58 0.661.61 0.84 0.38 0.068 8.06 1.22

1.15 0.49 0.102 "•••"••••••"7 "— 0.53

3.10 1.64 0.66 0.146 0.56 2.303.72 2.03 0.73 0.178 8.84 0.57 2.764.72 2.81 0.80 IIIIIIITIIIII 0.59 3.615.33

, , , , , , , , 3 : ^ , , , , , , ,

0.90 0.398 0.60 4.255.95 l l l i l l l l l i l l l l l 9.88 0.61 5.006.56 4.36 0.749 10.48 0.61 5.96

7.18 2.40 0.975 0.62 7207.79 5.29 3.82 12.61 0.64 9.12

For the AC sweep done at 0.8 mm slimes: Bb= 1.92 Clem2sec'¥zc,  and 4/ 

ZCB= 0.78 (this was the only sweep

fitted to circuit B . l , all the other sweeps were fitted to circuit B.2)

Values of  statistical parameters related to the quality of  the  fit:

Frequency Range (ZI

Slimes llliiili |yr|2. r2 | y r | 2 ,nW r2 | yR |

2

,QW r2

Thickness, Q W

mm

0.80 0.063 28068 0.012 0.998 0.059 0.791 -0.047 1.0071.61 0.063 28068 0.031 0.999 0.013 IllilPiil. 0.018 0.9992.23 0.063 28068 0.057 0.998 0.008 0.995 0.049 0.999

3.10 0.063 28068 0.015 1.000 0.007 0.998 0.008 1.0003.72 0.063 28068 0.028 1.000 0.009 0.998 0.019 1.000

4.72 0.063 28068 0.077 1.000 0.019 0.998 0.058 1.0005.33 0.063 28068 0.124 0.999 0.028 0.998 0.096 1.000

5.95 0.063 28068 0.181 illiRil! 0.038 0.998 0.143 0.9996.56 0.063 28068 0.226 0.999 0.054 0.998 0.171 1.000

7.18 0.063 28068 0.241 1.000 0.072 0.999 0.169 1.0007.79 0.063 28068 0.253 1.000 0.086 0.999

0.167 LOOO

[354]

Page 381: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 381/392

Table 9 Parameters derived  from the fitting of the impedancedata obtained  in Exp CA5 to the analogue (Circuit A.2)

High Frequency Parameters Low Frequency Parameters

R, + R 2

Slimes

Ri,

^ Z C l

D „

bi,

\

  ,sec

R

2

,

D

2

,

b

2

,

\

  ,sec

RA.total

Thickness

mm

Q c m

2

sec

Qcm  sec

Q cm

2

sec

O. cm1 sec

Q cm

2

0.64

1.20

1.76

1.89

0.101

0.017

0.069

0.817

0.91

0.68

0.83

0.58

0.0013

0.0115

0.1972

0.0599

75.04

1.47

0.35

13.64

0.0007

0.0015

0.1423

0.0079

0.32

0.83

1.61

0.99

0.68

0.59

0.53

0.81

0.039

0.075

0.174

0.146

8.19

11.10

9.26

6.77

0.0088

0.0121

0.0373

0.0934

0.42

0.85

1.68

1.81

*  All measurements refer to the geometrical area of the electrode.

** Low and high frequency terms refer to the ranges of  frequencies used during the deconvolution process.

*** Low and high frequency arcs were fittedto the whole frequency range (6.3<ox23000 rad/sec)

Values of statistical parameters related to the quality of the fit:

Slimes |y ri2,Q 2cm

Thickness,

mm

0.64 0.005

1.20 0.013

1.76 0.045

1.89 0.062

ly,l2.QW |yr|2,QW

0.996

0.997

0.995

0 998

0.001

0.002

0.002

0005

0.990

0.994

0.998

0 997

0.005

0.012

0.043

0 057

0.996

0.997

0.995

0 998

A total of  6 parameters were curve fitted.

[355]

Page 382: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 382/392

Table  10 Electrical analogue parameters derived  from  the fitting of the impedance dataobtained  in Exp.  CA5 (Circuit B.2)

Slimes r aC b B a ^ Z C A

Thickness

mm Qcm 2

Qcm 2

F  cm"2

Q c m

2

s e c '

V z c Qcm 2

0.64 0.38 0.04 0.017

16.10 0.65

0.42

1.20 0.72 0.08 0.036 16.10 0.64 0.80

1.76 1.44 0.16 0.063 0.57 1.60

1.89 1.50 0.32 0.062 iiiiiiiiiiiiiiii 0.62 1.82

Values of  statistical parameters related to the quality of the fit:

Frequency

 Range

tzi

Slimes |yr|2, r2 |yr

l

2.nW r2 |yr|2,QW r2

Thickness,

Q2

cm

4

mm

0.64 6.28 22295

0.002

0.999 0.001

0.978 0.001 1.000

1.20 6.28

fiiiii0.002

1.000 0.001

0.997

0.001

1.000

1.76 6.28 "22295'"" 0.019 0.998 0.001 0.999 0.018 0.998

1.89 0.63 28068 0.056 0.998

0.019 0.991

0.037 0.999

[356]

Page 383: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 383/392

Table 11 Parameters derived from thefitting of the impedance dataobtained in Exp. CA2 to the Randies analogue circuit (Figs. 6.43. 44)

Time, Hrs Rct. Qcm2

Cdj.  nF cm'2

B L  il cm2 sec fzc

0.17 0.044 23.75 3.83 0.190.64 0.112 167.42 3.63 0.3312.03 0.070 206.32 3.13 0.3121.32 0.063 247.86 2.69 0.3258.58 0.063 267.78 2.62 0.32

lillililllll0.066

illllll9l)ililil;sii i i i i i t i iHii i i i i 0.32

72.08 0.049 284.79 2.25 0.3076.82 0.044 272.15 2.23 0.3078.06 0.046 276.70 - 0.3086.90 0.048 274.37 2.23 0.30

Values of  statistical parameters related to the quality of  the fit:

iZI

Time, Hrs|y

r

|

2

,Q

2

cm

4 r2

|y

r

|

2

,QW

r2

|y

r

|

2

,"W r2

0.17 0.28 0.98 0.01 Il!;ii:i9iiiiill 0.24 0.980.64 0.11 0.95 0.00 0.99 0.08 0.97

12.03 0.06 0.97 0.00

Illli9l!f;!IIII0.04 0.98

21.32 0.04 0.97 0.00 0.99 0.03 0.98

58.58 0.07 0.95 0.00 0.99 0.05 0.9667.57 0.07 0.94 0.00 0.99 0.05 0.96

72.08 0.07 0.93 0.00 0.99 0.05 0.9576.82 0.05 0.95 0.00 0.99 0.04 0.97

78.06 0.05 0.95 0.00 0.99 0.04 0.9786.90 0.05 0.95 0.00 0.99 0.04

[357]

Page 384: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 384/392

Table  12 Electrical analogue parameters derived from the Fitting of theimpedance data obtained in Exp. CA5 to the Randies analogue circuit (Fig.  6.45)

Time, Hrs Ret, Qcm2

Cd,, nF cm'2

B i ,  Q cm2 sec"heZC

063

2.444.26

6.07

7.88

9.70

11.67

17.58

23.45

30.27

34.59

0010

0.0180.030

0.041

0.046

0.046

0.021

0.024

0.009

0.023

0023

804.67

1350.321502.48

1625.51

1707.71

1719.34

1588.19

1579.10

1431.30

1452.57

1308.61

1.11

0.850 83

0.82

082

0.83

0.71

0.71

0.66

0.69

0.70

0.21

0.240 26

0.27

0.28

0.28

0 25

0.26

0250.26

0.25

Values of  statistical parameters related to the quality of  the fit:

Frequency Range llllllllllllllllll IZI

Time, HrsIIIBII lyrl

2

. r2 |yr|

2,QW r2 |yr|

2,nW r2

tfcm4

0.63 177.1 44485 0.026 0.958 0.002 0.956 0.012 0.979

2.44 177.1 35335 0.023 0.913 0.000 0.983 0.016 0.9374.26 177.1 31492 0.014 0.936 0.000 0.987 0.009 0.955

6.07 177.1 31492 0.014 IIollllll: 0.000 ilfJilll 0.010 0.9517.88 177.1 31492 0.017 0.913 0.000 0.985 0.011 0.939

9.70 177.1 31492 0.015 0.922 0.000 0.986 0.010 0.946

11.67 17.7 31493 0.013 0.979 0.001 0.990 0.010 0.985

17.58 17.7 31493 0.013 0.980 0.000 0.992 0.009 0.985

23.45 11.2 31493 0.019 0.971 0.001 0.989 0.015 0.978

30.27 17.7 31493 0.012 0.978 0.001 0.990 0.010 0.983

34.59 17.7 39647 0.015 0.976 0.001 0.989 0.012 0.981

[358]

Page 385: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 385/392

Table  13  Electrical analogue parameters derived from the fitting  of the AC  impedance data

obtained  in Exp. CA4 to the  Z a ^ - Z a ^ c  analogue  (Circuit A.2, Fig. 6.47)

High Frequency Parameters Low Frequency Parameters

R, + R 2

TImt.

Hra

Ri.

Qcm2

z c i Di,

V2C,

sec

bi,

CI  cm

1

  sec

\  ,sec Ra,

Qcm2

TCI- D2,

sec

 b2,

i i c m2

  sec

T R

  ,sec R

AJOISI,

Qcm2

208

3.89

5.70

7.52

9.33

11.18

15.37

19.55

0 87

0.43

0 35

0.33

0.32

0.34

0.33

0.32

0 73

0.83

0 82

0.80

079

0.73

071

0.72

00092

0.0031

0.0026

0.0026

0.0029

0.0042

00047

0.0043

94.77

139.84

137.18

126.81

108.92

79.97

71.53

75.11

0.00167

0.00092

0.00071

0.00059

000062

0.00057

0.00054

0.00052

1.77

1.96

165

1.44

1.26

0.99

0.93

0.99

043

0.35

0 39

0.43

047

0.55

0.59

0.59

0 89

0.94

0.86

0.82

0.77

0.55

0.53

0.58

198

2.08

1.91

1.75

165

1.79

1.76

1.70

0 77

0.85

0 69

0.63

0.56

0.34

0.34

0.40

2.64

2.38

2.00

1.77

1.58

1.33

1.27

1.31

The  A C sweeps obtained at current interruption times longer than 11 hrs were fitted to the  Z Z A R C r Z Z A R C 2 - C P E 0

analogue (circuit A.l). Thus, 2 additional parameters were obtained:

Time, Hrs b0, ^ZCo

Q. cm 2 sec *'

11.18 0.050 0.74

15.37 0.054 0.73

19.55 0.046 0.79

*  Al l measurements refer to the geometrical area of  the electrode.

**  The regression coefficients  r*2 and r 3

2

 were larger than 0.99

[359]

Page 386: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 386/392

Appendix  1 0 Krame rs-Kr onig Transformations  of NUD  E lements

I.  Objective:

To obtain the Kramers-Kronig transformation of the non-uniform diffusion

element  (NUD) used to fit the experimental data presented in Chapter 6.

n.  Fundamental Equations

The  Kramers-Kronig transformations  (KKT) have been proposed as a way of

validating experimental data obtained from AC impedance measurements  [l]. They

imply that causality, linearity, and stability were observed during the experimental

measurement. Basically, KKT indicate that there is a unique relationship between

the real (Z*) and the imaginary (-2y parts of  the impedance. Thus, for a sufficiently

wide impedance spectrum, the real part of the impedance can be obtained from

the imaginary part and viceversa.

One  of the mathematical forms of the  KKT is as follows [2,3]:

Z3(G)) = -(2(0^  f-rZaCO-Z^G))"

^  7C JJ o [  X 2 -(£> 2dx   ...1

where the total impedance as a function of the frequency, Z(co), is given by the

following relationship:

Z(to)=Z9l((o)-yZ3(co) ...2

Eq.  1 indicates that if  Zj,  is known in the whole frequency range,  -Zg can be

obtained. Thus, if the derived -Zg values match those experimentally measured,

the data follows the KKT.

To  evaluate Eq. 1 at  least  two problems (one experimental and another

mathematical) have to be overcome:

1) Impedance data are not usually available in the whole frequency range

(0<uK°o).

2) Eq. 1 has singular points at x=co.

Several experimental procedures and mathematical arrangements have been

used to evaluate the  KKT [2,3]. The approach followed here is to evaluate  Eq. 1 by

assuming that the  NUD element fits the experimental data in the whole frequency

range:

[360]

Page 387: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 387/392

Fundamental Equations

Z NUD((0)  = B.O'co)  tanhfl2(yco)y2C

  .. .3

The  second assumption, is that when  Eq.  1 is solved numerically, at the

singularity point (i.e. at x=co) the bracketed term in Eq.  1 is equal to one \

Thus,  with  these  two assumptions the problem  consists  in evaluating

numerically Eq.  1 for the  NUD element represented by Eq. 3. Thus, the KKT to be

solved is as follows:

%{Bjjjxf^ tanhfl2(/x)Vac -fltQco)"  tanhfl2(/co)¥2C}

x2

-co2

The steps followed to obtain the  KKT of the  NUD element were as follows:

1) From the e x p e r i m e n t a l d a t a obtained in Exp.  C

^zc values (e.g. for the  sweep  taken at 1.79 mm, Bx= 1.03  r2c/w2secVzc,

B2=0.91 sec"^, and ¥ ^ = 0 . 3 3 ,  Table  14, Chapter 6).

2) Assume the impedance was measured in the frequency range between

0.0001 and 10000 rad/sec at 2500 equidistant discrete intervals.

3) Evaluate numerically Eq. 4 for each of the 2500 discrete frequency points

assuming that at x=co, the bracketed term in Eq. 4 is equal to one.

By  following  these steps  the data presented in Fig. 1 were obtained. The

theoretical (obtained directly from  the imaginary component of  Eq.  3) and the

computed (obtained  from  Eq. 4) -Zj values are shown to be very similar. This

appears to indicate that the  NUD follows the  KKT.  Furthermore, the fulfillment of

the  KKT implies that the data fitted to such a function adhere to experimental

stability, causality, and linearity which are the foundations of impedance

spectroscopy.

1 i.e.

Z^-Z^co)

-co'

0

0

= ll,

[361]

Page 388: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 388/392

Fundamental

 Equations

(A)

.238

  xE  8

I

<s

t

£

N

I

.

  eee

23a  —xE  e

.  288

isa

108

,038 —

.  8 8 8 »

.

  eee 40   . a

88.8 128.

F r a  q ,  r j i d / s a c

168

288 .

Fig. 1 Kramers-Kronig Transforms of  the impedance data fitted to the NUD element.

From the experimental data presented in Table 6.14 (sweep taken at 1.79 rnm.Bp 1.03 Q cm 2 sec'Vzc, B2=0.91 sec'yzc,

and ¥zc=0.33).(A) Comparison of  the theoretical imaginary impedance component, -Z3(co), with -Z co) obtained by KKT of  thereal component. (B) Detail of  Fig. A at low frequencies.

[362]

Page 389: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 389/392

p p e n d i x 1 1 P r o g r a m s U s e d t o G e n e r a t e t h e E h - p H D i a g r a m s P r e s e n t e d i n C h a p t e r 7The Eh-pH diagrams presented in Chapter 7 were generated using the

THERMODATA computer program. In this appendix, the i n p u t f i l e s required to draw

these diagrams are presented alongside the o u t p u t f i l e s .

D - S i - H ^ O S y s t e mn p u t F i l e :

 pH diagram for the (F)-Si-H20 system

 of

 all

 components = 1

DIAGRAM

AXES

<-> (AQ)

H<+>(AQ)

H2 0

LIGANDS

H2SI03

HSI03<1->(AQ)

SI03<2-> (AQ)SI H4  (G)

AREAS

SIF6<2->(AQ)

SI F4 [H20]2 (AQ)

SIF5[H20]  <1->(AQ)

F<->(AQ)

HF  (G)

HF (AQ)

HF2  <1-> (AQ)

F20(G)

LINES

2(G)

H2(G)

UNITSOU

FILE

cpdaiber

gibalber

cpdjandat

cpdnpldat

cpdnbsdal

cpdsgtdat

ACTIVITY

1.

COMPONENTS

1,1AXES

ABSCISSA PH

H <+> (AQ)

ORDINATE EH

<-> (AQ)

LIMITS

abscissa 4.9.

ORDINATE-1.0 2.5

TEMPERATURE

298.15

PRESSURE

1.

AREASgibbs

check

all

OVERLAY

H2(G)  = 2<->(AQ) + 2H<+>(AQ)

OVERLAY

2 H20 = 02  (G) + 4 <->  (AQ) + 4 H <+> (AQ)

1.,1.,1.,1.

PLOT

VISUAL

mark  lower abscissa 12

-3.,-2.,-1.,0.,1.,2.,3.,4.,5.,6.,7.,8.

MARK  LOWER  ORDINATE 6

-.5,0.,.5,1., 1.5,2.0label lower abscissa 14

4.,-4

-3.,-3-2.,-2

0.01.0  1

2.0  2

3.0  3

4.045.0  5

6.0  6

7.0  7

8.0  8

9.0  9LABEL LOWER  ORDINATE 8

-1.-1

-.5-0.50. 00. 5 0.5

1. 11.51.5

2. 22.5 2.5

TITLE LOWER  ABSCISSA

PH

TITLE LOWER  ORDINATE

Eh

TITLE UPPER  ABSCISSA

SYSTEM (F)-Si-H20 at 25 C

LEGEND

linetype dashed 0.5 0.5OVERLAY

linetype full

IDENT

linetype dashed .3.7.3.7

LIGAND

linetype full

O u t p u t F i l eINPUT WILL BE TAKEN FROM F:\PB07_0.INP

OUTPUT WILL BE WRITTEN TO F:\PB07_0.OUT

SPECIES  17 ELEMENTS 5 E  H O Si F

UNITS CHANGED TO JOUMAIN SPECIES PER  AREA 1

LIGAND SPECIES PER  AREA 1

ORDINATE  EH  MULTIPLIER   1.0

SPECIES <-> (AQ)ABSCISSA  PH  MULTIPLIER   1.0SPECIES  H<+>(AQ)

CURRENT PRESSURES IN ATM

1.0000

TEMPERATURE OF SYSTEM  298.15 K

G VS T COEFFICIENTS FOR  SPECIES JOU

SPECIES  GA GB

<->(AQ)  0.901164E-12 0.000000H<+>(AQ)  -16.9655 0.000000H2 0 -237190. 0.000000

H2 SI 03 -.102300E+07 0.000000HSI03<1->(AQ)  -955460. 0.000000SI03<2-> (AQ) -887000. 0.000000SI H4 (G)  -39310.0 0.000000SI F6 <2-> (AQ)  -.213800E+07 0.000000SI F4 [H20]2 (AQ)  -.200200E+07 0.000000SIF5[H20] <1->(A -.207300E+07 0.000000F<->(AQ)  -278820. 0.000000H F (G) -273220. 0.000000HF  (AQ) -296850. 0.000000HF2<1->(AQ)  -578150. 0.000000F2 O (G)  -4600.00 0.000000

02(G)  0.183206E-11 0.000000

H2(G)  0.180604E-11 0.000000

TOTAL LIGAND AREAS 2TOTAL MAIN AREAS  7A SI F6 <2-> (AQ)

B SI F4 [H20]2 (AQ)

C  SIF5[H20]  <1->(AQ)D F<->(AQ)

E F2  0(G)

F H F  (AQ)G HF2<1->  (AQ)

[363]

Page 390: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 390/392

(Pb-F)-Si-H 2Q System

P b - F J - S i - H a O S y s t e mn p u t F i l e

TITLEEh vs pH diagram  for the (PW>SI-H20 systemActivities of all components = 1DIAGRAM

AXES

<-> (AQ)H <+> (AQ)

H2 0

LIGANDS

H2SI03

HSI03<1->(AQ)

SI 03 <2-> (AQ)

SIH4  (G)

AREAS

SIF6<2->(AQ)

SIF4[H20]2(AQ)

SIF5[H20] <1->(AQ)

F<->(AQ)

HF(G)

HF  (AQ)

HF2<1->  (AQ)

F20(G)

Pb

Pb<2+>(AQ)

PbO

Pb2  03

PB3 04

PB 02

PB02H2

PB02H<1->(AQ)

PB<4+>

PB F2 (S)

PBSI03

LINES

02(G)H2(G)

UNITS

JOU

FILE

cpdalbergibalber

cpdjandat

cpdnpldat

cpdnbsdat

cpdsgtdat

ACTIVITY1.

ALL

COMPONENTS

2,1

AXES

ABSCISSA  PH

H<+>(AQ)

ORDINATE EH

<-> (AQ)

LIMITS

abscissa -4.9.

ORDINATE-1.0 2.5

TEMPERATURE

298.15

PRESSURE

1.

AREAS

gibbs

check

all

OVERLAY

H2 (G) = 2 <-> (AQ) + 2 H <+> (AQ)

1..1..1.

OVERLAY

2 H20 = 02 (G) + 4 <-> (AQ) + 4 H <+> (AQ)

1.,1.,1.,1.

PLOT

VISUAL

mark  lower abscissa 12

-3.,-2.,-1.,0.,1.,2.,3.,4.,5.,6.,7.,8.

MARK LOWER ORDINATE 6

-.5,0.,.5,1.,1.5,2.0

label lower abscissa 14

4.,4

-3.,-3

-2.,-2

0.01.0  12.0 2

3.0 3

4.045.056.067.0 7

8.089.09

LABEL LOWER ORDINATE 8

-1.-1-.5-0.5

0. 00. 5 0.5

1. 1

1.51.5

2. 2

2.5  2.5

TITLE LOWER  ABSCISSA

pH

TrTLE LOWER ORDINATE

Eh

TITLE UPPER  ABSCISSA

SYSTEM (Pb-F)-SI-H20 at 25 C

LEGEND

linetype dashed .2 .2OVERLAY

linetype DASHED .5.5

IDENTlinetype DASHED  .2 .4LIGAND

linetype full

O u t p u t F i l eINPUT WILL BE TAKEN FROM F:\PB013_0.INPOUTPUT WILL BE WRITTEN TO F:\PB013 _0.OUT

SPECIES 28 ELEMENTS 6 E H O Si F  Pb

UNITS CHANGED TO JOU

MAIN  SPECIES PER AREA 2

LIGAND SPECIES PER AREA 1

ORDINATE  EH  MULTIPLIER   1.0

SPECIES <-> (AQ)

ABSCISSA  PH  MULTIPLIER   1.0

SPECIES H<+>(AQ)ABSCISSA  LIMITS 4.000  TO 9.000

ORDINATE  LIMITS -1.000  TO 2.500

CURRENT PRESSURES IN ATM

1.0000

TEMPERATURE OF SYSTEM  298.15 K

G VS T COEFFICENTS FOR  SPECES JOU

SPECIES  GA GB

<-> (AQ)  0.901164E-12  0.000000

H<+>(AQ)  -16.9655 0.000000

H20  -237190. 0.000000

H2 SI 03 -.102300E+07 0.000000

HSI03<1->(AQ)  -955460. 0.000000

SI03<2-> (AQ) -887000. 0.000000

SI H4  (G)  -39310.0 0.000000

SI F6 <2-> (AQ)  -.213800E+O7 0.000000

SI F4 [H20]2 (AQ)  -.200200E+07 0.000000

SIF5[H20]  <1->(A -.207300E+07 0.000000

F<->(AQ)  -278820. 0.000000

HF  (G)  -273220. 0.000000

HF  (AQ)  -296850. 0.000000

HF2<1->(AQ)  -578150. 0.000000

F20(G)  4600.00 0.000000

Pb  0.168155E-11 0.000000

Pb<2+>(AQ)  -24310.0 0.000000

PbO  -188500. 0.000000

Pb2 03  411780. 0.000000

PB3 04  -616200. 0.000000PB 02 -218990. 0.000000

PB 02 H2  420900. 0.000000

PB 02 H <1 -> (AQ)  -339000. 0.000000

PB <4+>  302500. 0.000000

PB F2 (S)  -619600. 0.000000

PBSI03  -.100000E+O7 0.000000

02(G)  0.183206E-11 0.000000

H2(G)  0.180604E-11 0.000000

TOTAL LIGAND AREAS 2

TOTAL MAIN  AREAS 23

A SI F6 <2-> (AQ) + Pb

'  B SI F6 <2-> (AQ) + Pb <2+> (AQ)

C SIF6<2->(AQ) + PB 02D SIF6<2->(AQ) + PBF2(S)E SIF4[H20]2(AQ) + Pb

F SI F4 [H2012 (AQ) + Pb <2+> (AQ)

G SIF4[H20]2(AQ) + PB 02H SIF4[H20]2(AQ) + PB<4+>I SIF5[H20]  <1->(AQ) + Pb

J SI F5 [H20] <1-> (AQ) + Pb <2+> (AQ)

K SIF5[H20]  <1->(AQ) + PB 02

L F<->(AQ) + Pb

M F<->(AQ) + PB 02N F<->(AQ) + PBF2(S)O  F<->(AQ) + PBSI03P  F20(G) + PB 02

Q F20(G) + PB<4+>R  Pb + PBF2(S)S  Pb<2+>(AQ) + PBF2(S)T PB  02 + PB F2 (S)

U PB F2 (S) + PB SI 03

V H F  (AQ) + Pb

W HF2<1-> (AQ) + Pb

[364]

Page 391: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 391/392

(Sb-F)-Si-H 20 System

S b - D - S i - H a O S y s t e mn p u t P i l e :ITLEh vs pH diagram  for the (Sb-F SWfiO systemctivities of afl Sb soluble components = 1e-6

M

 (AQ)

 <+> (AQ)

 0

ANDS

 (AQ)

>

4 06(c)

2 05(c)

 (c)

->(aq)

 F6

 <2->

 (aq)

 <1->(AQ)

>(AQ)

 (AQ)

  (AQ)

TS

<+>

0.

>

0.

4

 06 (C).

2 04(c)

SbOF(aq)

487400.

Sb02H2F(aq)

724700.

Sb06H6<1->(aq)

514093.

FIE

cpdalber

cpdjandat

cpdnpldat

cpdnbsdat

cpdsgtdat

ACTIVITY

1.1.1.

1.1.1.1.

1.10-610-61.1.1.1.1.1.1a-e 1.1.1.1a-e 1.1.1.1.1.

1.1.1.

1. 1.

ALL

COMPONENTS

2,1

AXES

ABSCISSA PH

H

 <+> (AQ)

ORDINATE EH

<1->

 (AQ)

LIMITS

abscissa

 0.4.

ORDINATE-0.51.

TEMPERATURE

298.15

PRESSURE

1.

AREAS

check

all

OVERLAY

H2(G) = 2<1->(AQ)

 +

 2H<+>(AQ)

1..1..1.

OVERLAY

2

 H20

 =

 02

 (G) + 4

 <1->

 (AQ) + 4

 H <+>

 (AQ)

1.,1.,1.,1.

PLOT

VISUAL

 16.5.16.5.2..1.

mark

 lower

 abscissa

 7

0.5,1.,1.5,2.,2.5,3.,3.5

MARK LOWER ORDINATE 5

-0.25,0.,0.25,0.5,0.75

label

 lower

 abscissa

 9

0.0

0.5.5

1.0

  1

1.5 1.5

Z02

2.52.5

3.03

3.5

 3.5

4.04.0

LABEL LOWER ORDINATE 7

-.5-0.5

-0.25  -0.25

0.  0

0.25

 0.25

0.5 0.5

0. 75  0.75

1. 1.

TITLE LOWER ABSCISSA

pH

TITLE LOWER

 ORDINATE

Eh

TITLE

 UPPER

 ABSCISSA

SYSTEM (Sb-F)-SI-H20 at

 25

 C

LEGEND

linetype dashed

 .2 .2

OVERLAY

linetype

 DASHED .5.5

IDENT

linetype DASHED

 .2 .4

LIGAND

linetype

 full

O u t p u t P i l e :INPUT

 WILL

 BE TAKEN FROM F:\SB017_2.INP

OUTPUT

 WILL BE

 WRITTEN TO

 F:\SB017_2.0UT

Eh vs

 pH

 diagram

 for

 the

 (Sb-F)-Si-H20

 system

Activities

 of all Sb soluble components = 1e-6

ACTIVITIES OF SPECIES

<1->(AQ) 1.00000

H<+>(AQ) 1.00000

H20

  1.00000

H2SI03

  1.00000

HSI03<1->(AQ)  1.00000

SI03<2->

  (AQ)

  1.00000

SIH4(G)

  1.00000

Sb 1.00000

SbO<+> 0.100000E-05

Sb02<1-> 0.100000E-05

Sb4 06(c) 1.00000

Sb204(e)  1.00000

Sb2

 05(c) 1.00000

SbH3(g)

  1.00000

HSb02(aq)  1.00000

Sb03H3(aq) 1.00000

Sb04H4<1-> 0.100000E-05

SbF3(c)  1.00000

SbOF(aq)

  1.00000

Sb"02H2F(aq) 1.00000

Sb06H6<1->(aq) 0.100000E-05

SiF6<2->(aq)  1.00000

Si F4 [H20]2

 (AQ) 1.00000

SIF5[H20] <1->(A 1.00000

F<1->(AQ) 1.00000

HF(G) 1.00000

HF

  (AQ)

  1.00000

HF2<1->(AQ) 1.00000

F20(G)

  1.00000

02(G) 1.00000

H2(G) 1.00000

MAIN SPECIES

 PER AREA

 2

LIGAND SPECIES

 PER

 AREA

 1

TOTAL LIGAND AREAS  2

TOTAL

 MAIN AREAS

 9

A Sb

 +

 SiF6<2->(aq)

B  Sb + SIF5[H20] <1->(AQ)

C

 Sb

 O <+>

 +

 Si F6 <2-> (aq)

D

 SbO<+> +

 SIF5[H20] <1->(AQ)

E  Sb406(c)

 +

 SiF6<2->(aq)

F Sb2 04(c)

 +

 SiF6<2->(aq)

G Sb2 04 (c) + SI F5 [H20] <1-> (AQ)

H

 Sb2 05 (c) + Si F6 <2-> (aq)

I

 Sb+HF

  (AQ)

[365]

Page 392: Lead Anodes Electrorefining

7/17/2019 Lead Anodes Electrorefining

http://slidepdf.com/reader/full/lead-anodes-electrorefining 392/392

(Bi-F)-Si-H20  System

( B i - D - S i - H a O S y s t e mn p u t F i l e :

TITLEEhvspH diagram  for the (BI-F)-SWtiO systemActivities of Bi soluble components = 1e4

RAM

•> (AQ)

(AQ)

NDS

 <2->  (AQ)

)

i

 <+3>

 (aq)

 0 H <+2>

012H12<+6>(aq)

O20H20<+7>(aq)

id

 021 H21 <+€>(aq)

i9

 022 H22

 <+5> (aq)

i2 03

 0

 <+>

 H3 (g)

<2->(AQ)

 <1->(AQ)

(AQ)

 (AQ)

  (AQ)

TS

s

i <+3> (aq)

20.

i 0 H <+2>

.

i6

 012H12<+€>(aq)

00.

i9 021 H21

 <+€> (aq)

H22 <+5>(aq)

144446.

Bi

 H3(G)

231431.

FIE

cpdalber

cpdjandat

cpdnpldat

cpdnbsdat

ACTIVITY

1. 1.1.

1.1.1.1.

1.1e41e41e41e41e41e41.1.1.1.1e41.1.1.1.

1.1.1.1.1.

1.1.

COMPONENTS

2,1

AXES

ABSCISSA

 PH

H<+>(AQ)

ORDINATE EH

<->

 (AQ)

LIMITS

abscissa 0.4.

ORDINATE -0.51.

TEMPERATURE

298.15

PRESSURE

1.

AREAS

check

all

OVERLAY

H2(G) = 2<->(AQ) + 2H<+>(AQ)

1..1..1.

OVERLAY

2 H20 = 02 (G)

 +

 4

 <-> (AQ) +

 4 H <+> (AQ)

1.,1.,1.,1.

PLOT

VISUAL 16.5,16.5,2.,1.

mark lower abscissa

 7

0.5,1.,1.5,Z,2.5,3.,3.5

MARK

 LOWER

 ORDINATE 5

-0.25,0.,0.25,0.5,0.75

label lower abscissa 9

0.0

0.5.5

1.0

 1

1.5  1.5

2.0

 2

2.5 2.5

TRIE LOWER ABSCISSA

pH

TITLE

 LOWER ORDINATE

Eh

TITLE UPPER ABSCISSA

SYSTEM

 (Bi-F)-SI-H20at25C

LEGEND

linetype

 dashed

 .2  .2

OVERLAY

linetype DASHED

 .5.5

IDENT

linetype DASHED .2 .4

LIGAND

=

 1e4

O u t p u t F i l e :Eh

 vs pH diagram for

 the

 (Bi-F)-Si-H20

 system

Activities

 of all Bi soluble components

 =

ACTIVITIES

 OF SPECIES

<->(AQ)  1.00000

H<+>(AQ) 1.00000

H20 1.00000

H2SI03  1.00000

HSI03<1->(AQ)  1.00000

SI03<2->

  (AO)

  1.00000

SIH4(G)  1.00000

Bi  1.00000

Bi<+3>(aq)  0.100000E-03

BiOH<+2> 0.100000E-03

Bi6 012H12<+«>(a 0.100000E-03

Bi9

 020

 H20 <+7> (a 0.100000E-03

Bi9

 021 H21 <+€>

 (a 0.100000E-03

Bi9

 022

 H22 <+5> (a 0.100000E-03

Bi203

Bi205

Bi204

Bi4

 07

BiO<+>

BiH3(g)

SI F6 <2 > (AQ)

1.00000

1.00000

1.00000

1.00000

0.100000E-03

1.00000

1.00000

SI F4 [H20]2 (AQ) 1.00000

SIF5[H20]

 <1->(A 1.00000

F<->(AQ)  1.00000

HF (G)  1.00000

HF

  (AQ)

  1.00000

HF2<1-> (AQ)  1.00000

F2 0(G) 1.00000

02(G) 1.00000

H2(G) 1.00000

MAIN SPECIES PER AREA 2

LIGAND SPECIES PER AREA 

TEMPERATURE OF

 SYSTEM

 298.15

 K

TOTAL

 LIGAND

 AREAS

  2

TOTAL MAIN AREAS

 6

A Bi + SIF6<2->(AQ)

B Bi +

 SIF5[H20J

 <1->(AQ)