LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares...

103
1 Final Report – July 31, 2012 Project Title: Comparison of LCA Methods and Databases for Evaluation of Packaging Alternatives Principal Investigators: Susan Selke and Rafael Auras Graduate Students: Ricky Speck and James Fitzsimmons Project Summary: The overall goal of this project was to compare evaluations of sustainability/environmental preference for selected packaging systems obtained through two main commercial Life Cycle Analysis (LCA) software systems (SimaPro ® and GaBi ® ) and an open source software program (openLCA) as well as with Comparative Packaging Assessment - COMPASS ® (a “packaging modeling tool that allows comparisons of packaging designs based on environmental metrics” developed by the Sustainable Packaging Coalition - SPC ® ) and Package Modeling 3 (the program used for the WalMart Scorecard). The underlying question was whether the determination that one alternative was preferable to another was robust, independent of the software used to make that determination, or whether it was influenced in significant ways by the choice of software, apart from the actual characteristics of the alternatives. Executive Summary We have completed comparisons of four base materials (aluminum, glass, PET and corrugated) in COMPASS, SimaPro, GaBi and OpenLCA. Despite concerted efforts to use data sets that were as nearly identical as possible, differences in impact value results – sometimes very large differences – were obtained using different software programs. Not only did the absolute values of the impacts differ, but the effect of recycled content on the values differed in many cases. This suggests that, even with identical data sets, the choice of software program may affect the relative comparisons between package systems. Different software packages, because of their varying capabilities as well as differences in the availability of data sets, lend themselves to use of base data (inventory data) that is not identical. This further exacerbates the effect of the choice of software on the evaluation of differences in environmental impact between package alternatives. We have completed evaluation of the container systems (beverage containers: aluminum cans, glass bottles, PET bottles, PLA bottles and aseptic cartons; corrugated boxes and reusable plastic crates; and steel cans and retort pouches for tuna) in the 5 software systems (COMPASS, SimaPro, GaBi, openLCA and Package Modeling). The effect of parameters such as recycled content and transport distance on the comparisons was also evaluated. Marked differences were found between not only the impact values calculated for various packaging systems, but also between the relative rankings of the packaging systems in individual categories, as a function of the software system used for the analysis. For example, in the base container comparisons we examined, COMPASS showed aseptic cartons as using the least non-renewable energy, while GaBi showed PLA bottles as using the least. GaBi showed glass bottles as using the most energy, while SimaPro reported more energy use for PET, and COMPASS reported nearly identical values for PET and glass. openLCA indicated PET bottles had more than twice the energy use of glass bottles, and showed

Transcript of LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares...

Page 1: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

1

Final Report – July 31, 2012 Project Title: Comparison of LCA Methods and Databases for Evaluation of

Packaging Alternatives Principal Investigators: Susan Selke and Rafael Auras Graduate Students: Ricky Speck and James Fitzsimmons Project Summary: The overall goal of this project was to compare evaluations of sustainability/environmental preference for selected packaging systems obtained through two main commercial Life Cycle Analysis (LCA) software systems (SimaPro® and GaBi®) and an open source software program (openLCA) as well as with Comparative Packaging Assessment - COMPASS® (a “packaging modeling tool that allows comparisons of packaging designs based on environmental metrics” developed by the Sustainable Packaging Coalition - SPC®) and Package Modeling 3 (the program used for the WalMart Scorecard). The underlying question was whether the determination that one alternative was preferable to another was robust, independent of the software used to make that determination, or whether it was influenced in significant ways by the choice of software, apart from the actual characteristics of the alternatives. Executive Summary We have completed comparisons of four base materials (aluminum, glass, PET and corrugated) in COMPASS, SimaPro, GaBi and OpenLCA. Despite concerted efforts to use data sets that were as nearly identical as possible, differences in impact value results – sometimes very large differences – were obtained using different software programs. Not only did the absolute values of the impacts differ, but the effect of recycled content on the values differed in many cases. This suggests that, even with identical data sets, the choice of software program may affect the relative comparisons between package systems. Different software packages, because of their varying capabilities as well as differences in the availability of data sets, lend themselves to use of base data (inventory data) that is not identical. This further exacerbates the effect of the choice of software on the evaluation of differences in environmental impact between package alternatives. We have completed evaluation of the container systems (beverage containers: aluminum cans, glass bottles, PET bottles, PLA bottles and aseptic cartons; corrugated boxes and reusable plastic crates; and steel cans and retort pouches for tuna) in the 5 software systems (COMPASS, SimaPro, GaBi, openLCA and Package Modeling). The effect of parameters such as recycled content and transport distance on the comparisons was also evaluated. Marked differences were found between not only the impact values calculated for various packaging systems, but also between the relative rankings of the packaging systems in individual categories, as a function of the software system used for the analysis. For example, in the base container comparisons we examined, COMPASS showed aseptic cartons as using the least non-renewable energy, while GaBi showed PLA bottles as using the least. GaBi showed glass bottles as using the most energy, while SimaPro reported more energy use for PET, and COMPASS reported nearly identical values for PET and glass. openLCA indicated PET bottles had more than twice the energy use of glass bottles, and showed

Page 2: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

2

aluminum cans and aseptic cartons as having nearly identical energy use. As another example, COMPASS and GaBi showed tuna cans as using less energy than retort pouches, while according to SimaPro the pouches used less energy than the cans. Similarly, variations such as recycling rate, recycling percentage at end of life, and transport differences affected the comparisons to different extents in different systems. The inescapable conclusion is that there is a potential for company decisions about which packages to use – based on their presumed environmental characteristics from lifecycle assessment studies – can differ depending on which commercial software systems are used to perform the LCA. The question of why these differences occur, and development of an improved understanding of when they are likely to be a concern, is one focus of the follow-up project that has been approved.

Page 3: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

3

Introduction Life cycle assessment (LCA) is increasingly being used to inform decisions about alternative packaging systems, with the overall goal of reducing adverse environmental impacts and improving sustainability, particularly as related to environmental attributes. Performing an LCA is complex and expensive. Several commercial software systems and various database compilations are available to assist in reducing this cost and complexity. The primary goal of this research project was to examine whether the choice of software package may impact the decisions that are made between packaging system alternatives, due to differences in the life cycle assessment results for the alternatives being evaluated. The software packages selected for inclusion in the project are SimaPro and GaBi, as the two most widely used commercial software programs for LCA; openLCA as a freely available emerging LCA system; COMPASS as a widely used system that is specifically focused on packaging and is designed to make it feasible to perform “streamlined” LCA analyses early in the package selection process by providing an inexpensive and easy-to-use tool; and Package Modeling, the basis for the WalMart Scorecard and therefore very widely used. To provide a broad base for analysis, we selected a variety of packaging systems which we grouped into 3 sets. Because the focus throughout this study was to compare the software systems, we chose packages based on their ability to provide the variety of types of comparisons that might emerge, not because these were necessarily realistic options. For example, the first group is the beverage container system, encompassing 12 oz (354 ml) aluminum cans, 12 oz PET bottles, 12 oz glass bottles, 500 ml (16.9 oz) PLA bottles, and 200 ml (6.76 oz) aseptic cartons. Obviously some of these packages are appropriate for some types of beverages but not for others, and a true system LCA would require consideration of differences in associated secondary packaging, etc., which were not included in this evaluation. It is important to keep in mind throughout this report that the comparisons are focused on the performance of the software systems, not on a valid comparison between the packages themselves. The beverage container system was chosen in part because such systems are among the most widely studied. Further, it gave us the opportunity to include a wide variety of materials, including a bio-based and compostable plastic (PLA). In order to include steel and make a comparison between rigid and flexible packages, the second group is tuna packages, consisting of steel cans and flexible retort pouches. The third group, flower packages, allows us to compare reusable versus single-use packaging systems, and also to incorporate corrugated boxes, which are by far the most widely used type of package. It compares single-use corrugated boxes with reusable polypropylene crates, and allows us to include transport by air and by ship along with the more common truck and rail shipping options. For each group of comparisons, we developed a number of scenarios, allowing us to examine additional variables such as end-of-life options, use of recycled content, and transport distances. These scenarios are detailed in Appendix 1, which contains flow charts for the systems as well as descriptions of the various “test” scenarios. The original premise of this research project was that we would match the input data (life cycle inventory data) that was used in the various software systems so that the comparison could focus

Page 4: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

4

on differences related to how the data was used and analyzed within the software. Our initial focus on comparison of SimaPro and COMPASS soon revealed that this approach was not possible. As we knew, COMPASS does not provide life cycle inventory data. Rather, it takes the data (from different sources), runs it (sometimes with some modifications) through SimaPro, and reports only a set of impact parameters previously defined by the Sustainable Packaging Coalition (SPC) and agreed upon by their members. We expected to be able to duplicate that process, and thereby match the outputs in relevant categories. However, using the data sets that COMPASS identifies and information about the impact assessment modeling choices it employs, we found some significant differences in the resulting impact values reported from the two software systems. Without direct access to the inventory data from the database used by COMPASS, we cannot definitively determine the causes of these differences. We subsequently identified similar differences among SimaPro, Gabi and openLCA, even with our best efforts to select and use the same input data. Further, there are differences between software systems in the impact categories, both in the category definitions and in the units in which the values are expressed. We were aware from the beginning that we could not use the direct comparison approach with Package Modeling, as it uses a very different set of parameters than the other programs, both on the input and the output sides. As a result, the project goals were modified to put less emphasis on trying to match input parameters, and greater emphasis on the more fundamental question of to what extent differences in decisions about the relative preference of various alternative systems will be impacted by the differences between the various software systems. In addition to the actual calculations within the software programs, this broader view encompasses aspects such as how the design of the software affects the models used to represent the systems, and how the availability of data sets affects how closely the LCA models match the “real world” systems being compared. As discussed above, the packaging comparisons included in the study consist of 3 sets of comparisons. The beverage group includes aluminum cans, aseptic cartons, glass bottles, PET bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable crate comparison uses a PP crate compared to a corrugated box system for distribution of fresh flowers. In selected cases, we are evaluating the effect of transport distances, recycling rate, recycled content, and number of reuses on the reported impacts. As mentioned earlier, flow diagrams for each packaging system, with system boundaries defined and key parameter information (volume, height, etc.) for all packages are shown in Appendix 1. The major attributes of each system that are being varied to study their effects on the LCA results are also identified (e.g. transport mode and mileage, number of reuse cycles, recycling rate, recycled content, composting rate). Not all of the software programs being evaluated provide the ability to examine all of these parameters. In particular, COMPASS and Package Modeling are more limited than SimaPro, GaBi and openLCA. In addition to these package comparisons, we determined that it was useful, in attempting to understand the differences between results from the various software systems, to analyze simpler comparisons. Therefore, we created base cases consisting of 1 kg of each of four selected materials: glass, aluminum, corrugated board, and PET. While for the containers U.S. data sets

Page 5: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

5

were used where available as most characteristic, for the base materials European data sets were used to maximize the comparability between systems. The inventory data files used in the base material comparisons as well as in the container comparisons are listed in Appendix 2. The selected base materials were compared using SimaPro 7.2.4, GaBi 4, COMPASS 2.0, and openLCA. The packaging containers were compared using SimaPro 7.2.4, GaBi 5, COMPASS 2.0, Package Modeling 3.0.1.1, and openLCA (with imported Ecoinvent 2.2 data). The impact assessment methodologies used were IMPACT 2002+ v 2.1 and ReCiPe Midpoint (H) 1.05. In several cases, there have already been or soon will be modifications of the software. For example, SimaPro has been updated to version 7.3.2.12, but we completed the analysis of all the packaging systems and variations for this study using version 7.2.4, to maximize comparability with COMPASS. An update from GaBi 4 to GaBi 5 occurred during the study, so the base materials were completed using GaBi 4 and the container systems with GaBi 5. We opted to complete the update and use it for the container analysis, rather than using the earlier version of GaBi for two main reasons. One is that the update provided some attractive new functionality. Another is that we had discovered a computational error in the GaBi implementation of the ReCiPe methodology that led to reported impacts that were too high by a factor of 106 in the ionizing radiation category. This error (which did not directly affect our comparisons since we used ReCiPe only for water consumption) was corrected in the update. There also have also been modifications of some of the databases and methods used by the software, such as IMPACT 2002+ going from version 2.06 to version 2.1. We completed some initial studies using version 2.06, but repeated those with version 2.1 when it was obtained. COMPASS added and updated some data in Dec. 2011, but did not change the version number. As was the case for SimaPro, analysis of all the packaging systems and variations considered in this study were completed before this update. Updates and modifications such as these can materially impact the values obtained. In the remainder of this report, references to these software systems should be understood to correspond to the versions listed above, unless otherwise stated. Qualitative Software Comparisons SimaPro and GaBi are both full-scale lifecycle assessment programs that can perform LCA studies in accordance with ISO 14040 and 14044 standards. They take different approaches to setting up the model of system lifecycles, but both do allow quite precise modeling, depending on data availability. Both allow users to provide their own data as inputs, and both allow use of parameters for flexibility in analysis. Both allow various choices of transportation modes, fuels, and distances. Both build complete systems from “building block” processes, though they have differing organizational approaches. Both report a variety of types of impacts, depending on the impact assessment methodology chosen, and make available a number of assessment methodologies. Both are downloaded programs available for license. Both rely on inventory

Page 6: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

6

databases that are also available for license. There are differences in the available databases, though there is also considerable overlap. Both systems require substantial training and experience for effective use. openLCA is a freely available system that does not require licensing. However, it does not come with inventory data or impact assessment methodologies. Rather, these must be obtained separately and loaded into the system. Like SimaPro and GaBi, it can be used for ISO-compliant LCA studies. However, support for users is very limited, depending mostly on user forums. COMPASS is a program that provides various eco-indicators for a much more limited set of system choices. It is much easier to use than SimaPro and GaBi but has much less flexibility. The COMPASS database itself was prepared using SimaPro, but only the impact parameters (not the inventory) are available to the user. Users can submit data to COMPASS for eventual incorporation in the program if approved, but cannot enter inventory-type information directly. Transportation mode, fuel and distance can be varied. The impact assessment methodology is fixed, and provides only limited impact categories. For example, only fossil fuel use is reported in the energy category; there is no report of total energy available. A unique feature of COMPASS is the “material health” report. COMPASS is a web-based tool. COMPASS is relatively easy to use, requiring only minimal training. Package Modeling is the program that underlies the Wal-Mart Scorecard. It provides inputs only for materials and not for the processes that the materials undergo. Distance variation is available only through choice of one of 3 broad categories; specific distances cannot be entered, and no options for transportation mode are available. Further, changing transportation distance in the software has been found to have no effect on greenhouse gas emissions. Quantity of energy use is not reported, only percent renewable energy. It creates a final “score” that is unique to Wal-Mart methods, as are most of the specific values reported. A unique feature is the inclusion of cube utilization. The program is downloadable. Package Modeling is relatively easy to use, requiring only minimal training, but provides little information about overall environmental impacts of packaging systems. The only measure it has in common with the other systems described above is greenhouse gas emissions. Impact Comparisons For the purposes of this project, we have focused our comparisons on selected impact category results. Both the units and “scores” in impact categories differ depending on the impact assessment methodology selected. A brief discussion of impact assessment categories for Impact 2002+ (current version 2.1), one of the most widely used impact assessment methodologies, is attached in Appendix 3. Base Material Comparisons As mentioned, we chose to use simplified systems consisting of 1 kg of material, for 4 of the base materials, to do initial comparisons of COMPASS, SimaPro, GaBi and openLCA. The results are presented next, for those categories where comparisons could be made. Package Modeling was not used in this comparison. Because the U.S. data sets in COMPASS had been

Page 7: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

7

modified from those available in SimaPro and are proprietary, we chose to use European data sets for this comparison. This provided the best chance of exactly matching the input (inventory) files in all 4 software systems. In this report, we will present a detailed description of the aluminum comparisons, and then a briefer summary of the comparisons for glass, PET and corrugated. Aluminum Impact values obtained for production of 1.0 kg aluminum, no conversion process, a 67.9% recycling rate and 32.1% landfill rate for disposal, and no waste-to-energy, are shown in Tables 1-4. The values for recycling rate, landfill, and waste-to-energy at end-of-life (EOL) for all the base materials were chosen to match the values used within COMPASS, as the COMPASS system does not allow modification of these parameters. Table 1 presents values from COMPASS, and Table 2 from SimaPro using IMPACT 2002+ v. 2.1, supplemented by ReCiPe Midpoint (H) v. 1.05 for water use. As can be seen, there are significant differences in values obtained from different software systems. It should be noted that aquatic toxicity in COMPASS is reported in units of CTUe and aquatic ecotoxicity in IMPACT 2002+ as PDF*m2*y, so these values cannot be directly compared. Further, the values for “fossil fuel consumption” in COMPASS, “non-renewable energy” in SimaPro and “primary energy” in GaBi (all reported in megajoule equivalents (MJ eq)) are close, but not identical. The categories of non-renewable energy and primary energy include use of electricity generated through nuclear energy, which is not included in the fossil fuel consumption category. Table 1. Impacts of 1 kg of aluminum based on COMPASS COMPASS SOFTWARE 1 kg aluminum             

         PCR    

      0  50  100 

Impact Category  Units 

Fossil Fuel Consumption  MJ eq  123.62  71.58  19.55 

Water Consumption  Liters  46.79  31.71  16.62 

Biotic Resource Consumption  m3  0.0213  0.0210  0.0208 

Mineral Consumption  kg  1.548  1.029  0.510 

GHG Emission  kg CO2 eq  10.179  5.754  1.329 

Human Impacts Total  DALY  2.45E‐6  1.31E‐6  0.17E‐6 

Aquatic Toxicity  CTUe  0.0144  0.0141  0.0138 

Eutrophication  kg PO4 eq  0.0047  0.0026  0.0005 

Page 8: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

8

Table 2. Impacts of 1 kg of aluminum based on SimaPro using IMPACT 2002+ supplemented by ReCiPe for water use. SIMAPRO USING IMPACT 2002+/ReCiPe          

         PCR    

      0  50  100 

Impact Category  Units 

Non‐renewable energy  MJ primary  160.53  91.69  22.85 

Water depletion  Liters  46.63  31.74  16.84 

Global warming  kg CO2 eq  10.36  5.84  1.33 

Carcinogens+Non‐carcinogens+Respiratory Inorganics+Respiratory Organics  DALY  9.08E‐6  4.98E‐6  0.877E‐6 

Aquatic ecotoxicity  PDF*m2*yr  0.0008974 0.0006108  0.0003243 

Aquatic eutrophication  kg PO4 P‐lim  0.002399 0.001523  0.000648 

In an effort to more deeply understand the differences between the reported values, we constructed within SimaPro an impact assessment methodology intended to match that used by COMPASS (which had been modified from the standard IMPACT 2002+ method) to determine whether that would allow us to duplicate the COMPASS values. The Sustainable Packaging Coalition provided us with the required parameters to duplicate the methodology, on a confidential basis. Utilization of the COMPASS method within SimaPro provides results that are close to those obtained from COMPASS directly, but the values are not identical. It is likely that these differences are associated with differences in the input data stemming from periodic updates of the lifecycle inventory data sets. Because of the proprietary nature of that methodology, we cannot present the data in this report. The next comparison was to GaBi, again using IMPACT 2002+ supplemented by ReCiPe for water use. GaBi’s category of fossil fuel consumption appears to be essentially identical to SimaPro’s category of non-renewable energy. The results from GaBi again using IMPACT 2002+ supplemented by ReCiPe are shown in Table 3. The match with SimaPro was good in most cases for these categories, but not exact.

Page 9: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

9

Table 3. Impacts of 1 kg of aluminum based on GaBi using IMPACT 2002+ supplemented by ReCiPe for water use. Gabi 4 Software             

         PCR    

      0  50  100 

Impact Category  Units 

Fossil Fuel Consumption  MJ eq  160.23  91.22  22.22 

Water Consumption  Liters  323253  165095  6936 

Global Warming  kg CO2 eq  12.586  6.959  1.332 

Human Impacts Total    

Aquatic Ecotoxicity  TEG  1305119  1229710  1154302 

Aquatic Eutrophication  kg PO4 eq  0.01620  0.00927  0.00233 

Results from openLCA are shown in Table 4. For the Impact 2002+ midpoint characterization, only aquatic acidification and eutrophication could be compared directly with SimaPro. openLCA reports endpoint damage assessment values only in terms of “points” (a type of normalized values equivalent to a person-year) rather than in the specific types of units available from the other software systems. SimaPro does provide points as an option for reporting Impact 2002+ results, so we were able to compare openLCA directly with SimaPro, as shown. The ReCiPe impact assessment methodology does not have that limitation, reporting in more traditional units, but it is not the methodology we used for the other comparisons (except for water use). Comparisons of these results are presented graphically in Figures 1-6.

Page 10: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

10

Table 4. Impacts of 1 kg of aluminum based on openLCA compared to SimaPro using IMPACT 2002+ supplemented by ReCiPe for water use.

   openLCA  SimaPro 

   % PCR  % PCR 

      0  50  100  0  50  100 

Midpoint Category  Units       

Ecosystem quality ‐ aquatic acidification  kg SO2‐Eq  0.037265  0.019871 0.002476  0.0542  0.030134  0.006067 

Ecosystem quality ‐ aquatic eutrophication  kg PO4‐Eq  0.000487  0.000252 0.000018  0.002399  0.001523  0.000648 

Endpoint Category  Units     

Ecosystem quality ‐ aquatic ecotoxicity   points  1.21E‐5  0.957E‐5  0.701E‐5  0.655E‐5  0.456E‐5  0.237E‐5 

Climate change ‐ climate change   points  0.000871  0.00046  0.0000501 0.001046  0.00059  0.000134 

Human health ‐ ionizing radiation   points  8.05E‐6  4.25E‐6  0.454E‐6  9.83E‐06  5.3E‐6  0.769E‐6 

Ecosystem quality ‐ land occupation   points  1.05E‐6  1E‐6  0.952E‐6  3.02E‐6  2.15E‐6  1.28E‐6 

Resources ‐ mineral extraction   points  1.34E‐6  ‐0.59E‐6  ‐2.5E‐6  18.5E‐6  9.32E‐6  0.0089E‐6 

Resources ‐ non‐renewable energy   points  0.000677  0.000373  6.93E‐05  0.001056  0.000603  0.00015 

Human health ‐ ozone layer depletion   points  9.31E‐8  5.51E‐8  1.72E‐8  0.801E‐8  0.471E‐8  0.14E‐8 

Human health ‐ photochemical oxidation   points  3.37E‐7  1.94E‐7  0.505E‐7  0.751E‐7  0.444E‐7  0.136E‐7 

Human health ‐ respiratory effects (inorganics)   points  0.000406  0.00018  ‐0.000047 0.001042  0.000566  0.00009 

Ecosystem quality ‐ terrestrial acidification & nutrification   points  6.75E‐6  3.63E‐6  0.523E‐6  11.5E‐6  6.53E‐6  1.54E‐6 

Ecosystem quality ‐ terrestrial ecotoxicity   points  7.05E‐5  7.93E‐5  8.8E‐5  8.53E‐5  4.43E‐5  0.323E‐5 

Human health ‐ human toxicity (carcinogens plus non‐carcinogens)  points  0.000197  0.000106  0.0000149 0.000239  0.000136  0.0000337 

ReCiPe Midpoint   Units     

Water depletion  liters  27.043  16.004  4.966  46.634  31.736  16.839 

 

Page 11: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

11

Figure 1. Fossil fuel/energy comparisons for 1 kg aluminum. Non-renewable and Primary Energy include nuclear energy. As can be seen in Fig. 1, COMPASS estimates lower fossil fuel/energy consumption than IMPACT 2002+ using either SimaPro or GaBi at 0% recycled content (as is expected), but the 3 methods agree closely at 100% recycled content. SimaPro and GaBi using IMPACT 2002+ agree very well with each other. openLCA estimates lower non-renewable energy consumption than SimaPro at all recycled content levels, though the difference decreases as recycled content increases. As shown in Fig. 2, GaBi reports higher greenhouse gas emissions at 0% recycled content than COMPASS or SimaPro, which are similar to each other. Again the three methods agree closely at 100% recycled content. openLCA reports somewhat lower values than does SimaPro, at all recycled contents, with the difference decreasing as recycled content increases.

Page 12: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

12

Figure 2. Global warming comparisons for 1 kg aluminum. Water consumption/depletion is shown in Fig. 3. Values in COMPASS, SimaPro and openLCA are very low, while those in GaBi are very high, except in the case of 100% recycled aluminum. The explanation is that GaBi, using ReCiPe, reports “water consumption” which includes water used in electrical turbines and similar uses, while SimaPro and openLCA, using ostensibly the same impact assessment methodology, report “water depletion” which excludes these uses. COMPASS labels the term “water consumption” but uses SimaPro for the calculation. The large amount of hydroelectric power used in smelting of aluminum, therefore, is largely responsible for the observed differences in reported water use. The large value from GaBi masks the values from COMPASS, SimaPro and openLCA. The values with GaBi excluded are shown in Fig. 4. Values from SimaPro and COMPASS are virtually identical, but values from openLCA are significantly lower at all recycled contents.

Page 13: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

13

Figure 3. Water use comparisons for 1 kg aluminum.

Figure 4. Water use comparisons for 1 kg aluminum with GaBi excluded.

Page 14: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

14

Comparisons of eutrophication are shown in Figure 5. There are substantial differences between the 4 methodologies at the 0% recycled content condition. As was the case for energy and greenhouse gases, the differences are much smaller at 100% recycled content, but in this case they remain substantial. All 3 systems specify eutrophication in kilograms of phosphate equivalent (kg PO4 eq) but SimaPro adds the notation that this is in a phosphate-limited (P-lim) system. Ecosystems can, in general, be phosphorus-limited or nitrogen-limited. Phosphorus is regarded by experts as the more fundamental limiting factor, as nitrogen can be fixed from the air. From our initial investigation, it appears that all 3 methodologies include only phosphorus-containing emissions in calculating the eutrophication value, so this does not explain the differences in the values between the methods.

Figure 5. Aquatic eutrophication comparisons for 1 kg aluminum. Comparisons of the summed human impacts are shown in Fig. 6 for COMPASS and SimaPro. GaBi and openLCA do not provide equivalent values.

Page 15: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

15

Figure 6. Human impact comparisons for 1 kg aluminum. For GaBi and SimaPro using ostensibly identical lifecycle inventory data and impact assessment methodologies (IMPACT 2002+), we can perform a more detailed comparison at the impact category level, as shown in Table 5. This is similar to the comparison between openLCA and SimaPro that was shown in Table 4.

Page 16: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

16

Table 5. Comparison of impact categories for 1 kg aluminum for SimaPro and GaBi using IMPACT 2002+ for 0, 50, and 100% recycled (PCR) content

Impact category  Unit  SimaPro  GaBi 

0 PCR  50 PCR  100 PCR  0 PCR  50 PCR  100 PCR 

Aquatic acidification  kg SO2 eq  0.05420  0.03013  0.00607  0.04026  0.02225  0.00425 

Aquatic ecotoxicity  kg TEG water  1787  1216  646  1305119  1229710  1154302 

Aquatic eutrophication  kg PO4 P‐lim  0.00240  0.00152  0.000648  0.01620  0.00927  0.00233 

Carcinogens  kg C2H3Cl eq  0.5630  0.3085  0.0540  0.1725  0.0962  0.0199 

Global warming  kg CO2 eq  10.358  5.845  1.331  12.586  6.959  1.332 

Ionizing radiation  Bq C‐14 eq  332.01  178.99  25.97  316.78  170.78  24.77 

Land occupation  m2org.arable  0.03790  0.02701  0.01612  0.0000047  0.0000032  0.0000017 

Mineral extraction  MJ surplus  2.818  1.416  0.013  3.285  1.779  0.273 

Non‐carcinogens  kg C2H3Cl eq  0.04166  0.03645  0.03124  1.6756  1.2899  0.9043 

Ozone layer depletion  kg CFC‐11 eq  0.541E‐7  0.318E‐7  0.095E‐7  7.45E‐7  4.43E‐7  1.41E‐7 

Photochemical oxidation ‐ Respiratory organics  kg C2H4 eq  0.000250  0.000148  0.000045  0.001924  0.001126  0.000327 

Respiratory effects ‐ Respiratory inorganics  kg PM2.5 eq  0.010557  0.005735  0.000911  0.014689  0.007850  0.001011 

Terrestrial acid/nutri  kg SO2 eq  0.15168  0.08596  0.02024  0.15172  0.08598  0.02024 

Terrestrial ecotoxicity  kg TEG soil  147.80  76.69  5.59  137.98  145.10  153.21 

Non‐renewable energy  MJ primary  160.53  91.69  22.85  160.23  91.22  22.22 

Using SimaPro values as the base, we can evaluate the percentage difference between GaBi and SimaPro, and between openLCA and SimaPro, based on the SimaPro values. As shown in Table 6, the differences are extremely large in several categories and substantial in most others. If we define good agreement as less than ±10% difference between methodologies at all recycled content levels, good agreement between GaBi and SimaPro is found only in the categories of ionizing radiation, terrestrial acidification/nutrification, and non-renewable energy; and there is no “good” agreement between SimaPro and openLCA. The reasons for these large differences require further investigation. The size of the differences certainly suggests that the choice of software package may have an impact on the decisions reached when comparing packaging alternatives, at least for packaging systems containing aluminum, since the same data and impact assessment methodology are being used to model 1 kg aluminum in the three software packages.

Page 17: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

17

Table 6. Percent differences in impact categories using IMPACT 2002+ for 1 kg aluminum for GaBi compared to SimaPro for 0, 50, and 100% recycled (PCR) content. Values with differences less than ±10% are indicated as bold.

Impact category 

Difference between GaBi valuesand SimaPro values as % of 

SimaPro values 

Difference between openLCA values and SimaPro values as % of SimaPro 

values 

0 PCR  50 PCR  100 PCR  0 PCR  50 PCR  100 PCR 

Aquatic acidification  ‐25.7%  ‐26.2%  ‐30.0%  ‐31.25%  ‐34.06%  ‐59.19% 

Aquatic ecotoxicity  72900%  101000%  179000%  ‐16.73%  ‐22.03%  ‐62.61% 

Aquatic eutrophication  575%  508%  260%  ‐79.70%  ‐83.45%  ‐97.24% 

Carcinogens  ‐69.4%  ‐68.8%  ‐63.2%       

Global warming  21.5%  19.1%  0.02%  ‐16.73%  ‐22.03%  ‐62.61% 

Ionizing radiation  ‐4.59%  ‐4.59%  ‐4.62%  ‐18.11%  ‐19.81%  ‐40.96% 

Land occupation  ‐99.99%  ‐99.99%  ‐99.99%  ‐65.23%  ‐53.49%  ‐25.63% 

Mineral extraction  16.57%  25.69%  1974.11%  ‐92.76%  ‐106.33%  ‐2980.18% 

Non‐carcinogens  3922%  3439%  2795%       

Ozone layer depletion  1277%  1293%  1384%  1062%  1070%  1129% 

Photochemical oxidation ‐ Respiratory organics  669%  662%  624%  349%  337%  271% 

Respiratory effects ‐ Respiratory inorganics  39.13%  36.89%  10.95%  ‐61.04%  ‐68.20%  ‐152% 

Terrestrial acid/nutri  0.03%  0.03%  0.03%  ‐41.30%  ‐44.41%  ‐66.04% 

Terrestrial ecotoxicity  ‐7.32%  89.19%  2642%  ‐17.35%  79.01%  2624.46% 

Non‐renewable energy  ‐0.19%  ‐0.51%  ‐2.79%  ‐35.89%  ‐38.14%  ‐53.80% 

Human health – human toxicity (carcinogens plus non‐carcinogens)        ‐17.57%  ‐22.06%  ‐55.79% 

Glass Impact values obtained for production of 1.0 kg container glass, no conversion process, a 63.8% recycling rate and 36.2% landfill rate for disposal, and no waste-to-energy, are compared in Figures 7-11. Tabulated values are provided in Appendix 4. As for aluminum, the large increase in water use reported by GaBi compared to the other methods is associated with non-consumptive use of water for power generation and similar items. The effect of varying recycled content is more uniform than was the case with aluminum – in all probability because the method used to obtain 0 and 100% recycled content used extrapolation from brown and green glass with defined (but differing) amounts of recycled content, as actual glassmaking processes virtually never use either of these. In our analysis, we replicated the process used in COMPASS to construct impacts for glass with a specified recycled content in order to compare the three software systems. In an LCA study, modeling of PCR content in glass would ideally be based on actual information about the effects of recycled content on inventory data, rather than using extrapolation as was done here. Because our goal was to compare the influence of the software on the results, we chose to use the same approach in SimaPro and Gabi as SPC selected for COMPASS.

Page 18: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

18

Figure 7. Fuel/energy comparisons for 1 kg glass.

Page 19: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

19

Figure 8. Global warming comparisons for 1 kg glass.

Figure 9. Water use comparisons for 1 kg glass.

Figure 10. Water use comparisons for 1 kg glass excluding GaBi.

Page 20: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

20

Figure 11. Eutrophication comparisons for 1 kg glass.

Figure 12. Human impact comparisons for 1 kg glass.

Page 21: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

21

The comparison between GaBi and SimaPro using ostensibly identical lifecycle inventory data and impact assessment methodologies (IMPACT 2002+) is also presented in Appendix 3. Table 7 shows the percent differences between the results. Table 7. Percent differences in impact categories using IMPACT 2002+ for 1 kg glass for GaBi and openLCA compared to SimaPro for 0, 50 and 100 PCR. Values with differences less than ±10% are indicated as bold.

Impact category 

Difference between GaBi values and SimaPro values as % of 

SimaPro values 

Difference between openLCA values and SimaPro values as % of SimaPro 

values 

0 PCR  50 PCR  100 PCR  0 PCR  50 PCR  100 PCR 

Aquatic acidification  ‐28.50%  ‐29.50%  ‐30.59%  ‐42.28%  ‐37.58%  ‐32.46% 

Aquatic ecotoxicity  14039%  14805%  15680%  ‐99.23%  ‐93.62%  ‐87.22% 

Aquatic eutrophication  340%  343%  346%  ‐62.30%  ‐60.84%  ‐59.04% 

Carcinogens  ‐64.1%  ‐63.6%  ‐63.0%       

Global warming  ‐7.00%  ‐7.31%  ‐7.63%  ‐81.69%  ‐71.46%  ‐60.35% 

Ionizing radiation  ‐4.63%  ‐4.63%  ‐4.64%  ‐56.15%  ‐49.93%  ‐43.09% 

Land occupation  ‐99.99%  ‐99.99%  ‐99.99%  ‐16.85%  ‐15.03%  ‐13.15% 

Mineral extraction  742%  724%  697%  ‐6629%  ‐6678%  ‐6753% 

Non‐carcinogens  731%  719%  706%       

Ozone layer depletion  1433%  1457%  1482%  1090%  1160%  1234% 

Photochemical oxidation ‐ Respiratory organics  816%  870%  932%  219%  341%  479% 

Respiratory effects ‐ Respiratory inorganics  5.06%  4.58%  4.06%  ‐100.25%  ‐86.60%  ‐72.12% 

Terrestrial acid/nutri  0.03%  0.03%  0.03%  ‐45.96%  ‐40.69%  ‐34.83% 

Terrestrial ecotoxicity  116%  123%  131%  ‐629%  ‐550%  ‐463% 

Non‐renewable energy  ‐1.76%  ‐1.84%  ‐1.92%  ‐68.39%  ‐59.04%  ‐49.15% 

Human health – human toxicity (carcinogens plus non‐carcinogens)        ‐100.40%  ‐99.05%  ‐97.38% 

Again using the criterion of less than ±10% difference across recycled content amounts as indicating good agreement, agreement between SimaPro and Gabi can be characterized as good in 5 categories (global warming, ionizing radiation, respiratory inorganics, terrestrial acidification/nutrification, and non-renewable energy). Agreement between openLCA and SimaPro is not good in any category. Polyethylene Terephthalate (PET) Selected impact values obtained for production of 1.0 kg PET, no conversion process, 26.1% recycling rate, 45.1% landfill rate, and 28.8% waste-to-energy, are compared in Table 8 and Fig. 12. Recycled content was not included as a variable since the current versions of the datasets do not contain files for recycled PET.

Page 22: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

22

As before, we observe large differences in water use due to GaBi’s inclusion of water that is not consumed. Table 8. Comparison of Impacts for 1 kg PET using COMPASS, SimaPro, GaBi and openLCA using Impact 2002+ supplemented by ReCiPe for water.       COMPASS  GaBi   SimaPro  SimaPro   openLCA  

Impact Category  Units            Fossil Fuel Consumption/Non‐renewable Energy  MJ eq  70.19  80.93  82.38 

0.0005421 points 

0.0003737 points 

Water Consumption  Liters  11.51  6990  14.76    4.898 liters 

Biotic Resource Consumption  m3  0.0113         

Mineral Consumption  kg  0.0149         

Mineral extraction MJ surplus    0.574034  0.062555 

4.11 E‐07 points 

‐7.39 E‐06points 

GHG Emission  kg CO2 eq  3.151  3.270  3.266 0.0003298 points 

0.0001545points 

Human Impacts Total  DALY  2.55E‐07    0.494E‐07     

Eutrophication  kg PO4 eq  0.0058  0.003040  0.000582   0.000151kg PO4 eq 

Figure 13 shows a comparison of the COMPASS, GaBi and openLCA methods normalized to SimaPro. In this figure, values from SimaPro are equal to 100% in all categories. Values greater than 100% represent values higher than those from SimaPro and values lower than 100% represent values lower than those from SimaPro. Water consumption from GaBi (very large) and mineral extraction from openLCA (a negative value) have been removed from the graph to allow more detail to be shown for the other comparisons.

Page 23: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

23

Fig. 13. Comparison of COMPASS, Gabi, and openLCA for PET. COMPASS, Gabi, and openLCA values normalized to Simapro (Simapro = 100%). Values for water depletion from GaBi (very large positive value) and mineral extraction from openLCA (negative value) are not shown. As before, we can also compare impact categories directly between SimaPro and GaBi and between SimaPro and openLCA. Numerical values are presented in Appendix 4, and the percentage comparisons in Table 9. The categories of global warming, ionizing radiation, terrestrial acidification/nutrification and non-renewable energy meet our criterion of deviation of less than ±10% for a good fit between SimaPro and GaBi; no values meet the criterion between SimaPro and OpenLCA.

Page 24: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

24

Table 9. Percent differences in impact categories using IMPACT 2002+ for 1 kg PET for GaBi compared to SimaPro. Values with differences less than ±10% are indicated as bold.

Impact category 

Difference between GaBi values and SimaPro values as 

% of SimaPro values 

Difference between openLCA values and SimaPro values as 

% of SimaPro values 

Aquatic acidification  ‐33.00%  ‐70.63% 

Aquatic ecotoxicity  1663%  ‐84.81% 

Aquatic eutrophication  423%  ‐74.02% 

Carcinogens  ‐98.8%   

Global warming  0.13%  ‐53.15% 

Ionizing radiation  ‐4.68%  ‐34.82% 

Land occupation  ‐99.99%  ‐135% 

Mineral extraction  818%  ‐1896% 

Non‐carcinogens  771%   

Ozone layer depletion  1177%  729% 

Photochemical oxidation ‐ Respiratory organics  1158%  920% 

Respiratory effects ‐ Respiratory inorganics  13.41%  ‐169% 

Terrestrial acid/nutri  0.03%  ‐79.5% 

Terrestrial ecotoxicity  121%  ‐696% 

Non‐renewable energy  ‐1.77%  ‐31.06% 

Human health – human toxicity (carcinogens plus non‐carcinogens)    ‐98.67% 

Corrugated Board Impact values obtained for production of 1.0 kg corrugated board, no conversion process, a 76.4% recycling rate, 10.7% landfill rate, and 12.9% waste-to-energy, are compared in Figures 14-19. Tabulated values are provided in Appendix 4. Recycled content values of 12, 50 and 87 percent were used in this comparison because COMPASS limited the recycled content that could be used to the 12-87% range; it did not allow use of 0 or 100% recycled content.

Page 25: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

25

Figure 14. Fuel/energy comparisons for 1 kg corrugated board.

Figure 15. Global warming comparisons for 1 kg corrugated board.

Page 26: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

26

The differences between COMPASS and GaBi compared to SimaPro for global warming are known to be in part related to the fact that COMPASS and GaBi provide a global warming credit for carbon dioxide removal in the growing of biomass feedstocks, while SimaPro does not.

Figure 16. Water use comparisons for 1 kg corrugated board.

Page 27: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

27

Figure 17. Water use comparisons for 1 kg corrugated board, excluding GaBi.

Figure 18. Eutrophication comparisons for 1 kg corrugated board.

Page 28: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

28

Figure 19. Human impacts comparisons for 1 kg corrugated board. The percentage comparison of impact categories directly between SimaPro and GaBi and between SimaPro and openLCA is shown in Table 10, with numerical values presented in Appendix 4. Good agreement (difference of less than ±10% at all recycled content levels) between SimaPro and GaBi is found in the categories of ionizing radiation, respiratory effects, terrestrial acidification/nitrification, and non-renewable energy. There is good agreement between openLCA and SimaPro in land occupation.

Page 29: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

29

Table 10. Percent differences in impact categories using IMPACT 2002+ for 1 kg corrugated board for GaBi and openLCA compared to SimaPro for 12, 50 and 87 PCR. Values with differences less than ±10% are indicated as bold.

Impact category Difference between GaBi values and SimaPro values as % of SimaPro values 

Difference between openLCA values and SimaPro values as % of SimaPro 

values 

12 PCR  50 PCR  87 PCR  12 PCR  50 PCR  87 PCR 

Aquatic acidification  ‐70.2%  ‐81.3%  ‐104.5%  ‐42.58%  ‐47.88%  ‐56.21% 

Aquatic ecotoxicity  95.6%  95.68%  95.7%  ‐56.95%  ‐66.07%  ‐77.20% 

Aquatic eutrophication  67.9%  70.98%  76.0%  ‐19.66%  ‐26.47%  ‐42.51% 

Carcinogens  ‐384%  ‐348.18%  ‐305%       

Global warming  ‐573%  ‐60.46%  8.93%  ‐49.62%  ‐44.67%  ‐39.85% 

Ionizing radiation  ‐4.82%  ‐4.82%  ‐6.67%  ‐26.08%  ‐31.80%  ‐44.68% 

Land occupation  ‐1249000%  ‐1245000% ‐

1277000%  ‐0.31%  ‐0.38%  ‐0.67% 

Mineral extraction  88.0%  88.5%  88.9%  ‐2130%  ‐2102%  ‐2070% 

Non‐carcinogens  91.3%  90.6%  89.9%       

Ozone layer depletion  92.8%  94.30%  95.4%  1011.41%  1372.31%  1801.08% 

Photochemical oxidation ‐ Respiratory organics  83.9%  84.5%  85.2%  365.96%  387.55%  415.58% 

Respiratory effects ‐ Respiratory inorganics  8.07%  8.18%  7.24%  ‐76.08%  ‐91.06%  ‐118.99% 

Terrestrial acid/nutri  0.22%  0.24%  ‐0.12%  ‐38.06%  ‐39.16%  ‐40.54% 

Terrestrial ecotoxicity  81.73%  83.75%  85.30%  312.43%  333.79%  353.39% 

Non‐renewable energy  ‐1.02%  ‐2.00%  ‐2.97%  ‐49.26%  ‐44.79%  ‐40.42% 

Human health – human toxicity (carcinogens plus non‐carcinogens)        ‐46.76%  ‐41.92%  ‐35.37% 

Beverage Container Comparisons In examining the “base materials” we established that the numerical values provided by the various software systems sometimes agree fairly well, but often disagree, sometimes markedly. The next level of comparison is to determine whether (or to what extent) these variations affect comparisons between alternative packaging systems. In modeling the container systems, we chose a different approach than in modeling the base material comparisons. For the base materials, we tried to the extent possible to use identical data sources. Since the goal of the container comparisons is to evaluate whether the choice of software is likely to impact decision-making, where choices of data were available, we chose to use the choices that simplified the modeling. So, for example, in SimaPro we chose to use the Franklin Associates data for aluminum cans (which contains the entire process from resources in the ground to the finished cans), rather than attempting to model beginning with aluminum production and including all the associated parts of the can manufacturing process. Similarly, the Franklin data was used for glass bottles and PET bottles. In GaBi and openLCA, the “rolled up”

Page 30: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

30

container data was not available, so more complex models were required. In COMPASS, generally there was only one appropriate “conversion” process available so that was coupled with the raw material data. Undoubtedly this results in differences in beginning data that affect the impact values. It also, we believe, reflects the most likely approach to using the software systems. Note that U.S. data sets were used where available, rather than the European data sets used for the base materials. One obvious difficulty with comparisons of life cycle impacts between containers and software systems is that the categories of information provided by the different software packages are not identical. Between COMPASS, SimaPro and GaBi, for example, only 4 categories can be matched for comparison. Further, this includes water consumption, which as previously discussed is quantified very differently within GaBi than within COMPASS and SimaPro, even though the name and units appear to be the same. Therefore, effectively the comparison is down to 3 matching categories. If Package Modeling is added, the only common category is Global Warming. Further, it is important to remember that openLCA reports endpoint characterization only in units of points. Therefore, separate graphs will be used to compare openLCA with SimaPro in most cases. While the units will differ, the directionality and proportionality will permit comparisons. However, openLCA results should be interpreted with caution, since negative values were present in some indicator categories that are not logical and need further exploration. Base Case Scenarios For the base beverage container comparison, the following scenarios were compared (see Appendix 1 for details):

aluminum cans test 1: 50% recycled at end of life (EOL), 70% recycled content, 0 km rail transport, 100 km standard truck transport

glass bottles test 1: 40% recycled EOL 25% recycled content, 500 km rail, 100 km truck

PET bottles test 4: 30% recycled EOL, 0% recycled content, 0 km rail, 100 km truck

PLA bottles test 2: 0% composted EOL, 0% recycled content, 0 km rail, 100 km truck

aseptic cartons test 2: 0% recycled EOL, 0% recycled content, 0 km rail, 100 km truck

Comparisons were made between all 5 software programs for global warming. For non-renewable energy/fossil fuel use, values were obtained from all programs except Package Modeling. No other end-point measures had sufficient commonality between software systems for useful comparisons to be made. Eutrophication is the only midpoint measure available in COMPASS, so comparisons on this measure could also be obtained from all programs except Package Modeling. Additional midpoint comparisons were made between SimaPro and GaBi. Figures 20 and 21 show a comparison of the results obtained for global warming (data are tabulated in Appendix 5).

Page 31: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

31

As can obviously be seen, while the direction of the comparison (lower-higher) is the same in COMPASS, SimaPro, and GaBi, it differs substantially in Package Modeling. In openLCA, the glass bottle appears anomalously low, while the general trend of the remaining comparisons is similar. Further, the proportion of the differences varies between COMPASS, SimaPro, and GaBi, meaning, among other things, that changes in weight of the containers being compared would affect the overall comparison to different degrees, and therefore would have the potential to change the relative ranking.

Figure 20. Comparison of greenhouse gas emissions for beverage containers with COMPASS, SimaPro, GaBi and Package Modeling.

Figure 21. Comparison of greenhouse gas emissions for beverage containers with openLCA.

Page 32: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

32

Results for fossil fuel/non-renewable energy use are striking, as shown in Fig. 22 and 23. Despite the fact that the COMPASS value does not include nuclear energy, the fossil fuel values for PET bottles and glass bottles in the base scenario (Test 1) from COMPASS are actually higher than the corresponding non-renewable energy values from SimaPro. The ranking of containers in SimaPro also differs from both COMPASS and GaBi, with glass bottles better than PET in SimaPro and worse in GaBi and COMPASS. Aseptic cartons are the most favorable container in COMPASS, but PLA bottles have lower non-renewable energy values than the cartons in GaBi. openLCA shows non-renewable energy use as much lower, proportionally, for glass than in the other systems, similar to the results for greenhouse gases. Data are tabulated in Appendix 5. Further investigation is required to understand the source of these differences.

Figure 22. Comparison of fossil fuel/non-renewable energy use for beverage containers with COMPASS, SimaPro, and GaBi. .

Figure 23. Comparison of fossil fuel/non-renewable energy use for beverage containers with openLCA.

Page 33: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

33

The results for eutrophication also vary markedly between programs, as shown in Fig. 24. Data tables are included in Appendix 5. Not only do the absolute values reported vary, but the rank order differs. For example, according to COMPASS, SimaPro and openLCA, PLA bottles have the highest emissions, while according to GaBi glass bottles have the highest, and PLA bottles are second lowest. Aluminum cans have the lowest emissions according to COMPASS and openLCA, while in SimaPro they are second highest. Aseptic cartons have the lowest emissions according to GaBi. Therefore, these differences can be expected to impact relative rankings of different containers in these categories. Again, further investigation is required to understand why these differences arise.

Figure 24. Comparison of eutrophication for beverage containers with COMPASS, SimaPro, GaBi and openLCA. Human impacts can be compared directly between COMPASS and SimaPro only (Fig. 25), as GaBi does not provide results in a way that allows direct comparisons. The magnitude of the values is significantly different between the two programs, but the direction is similar. In openLCA, an indicator titled “Human health total” is available, with results presented in Fig. 26. The value obtained for PET bottles was negative and has been omitted. The direction of comparison is quite different in this measure from openLCA. Further exploration is required to determine the types of factors impacting this score, as well as understanding the negative PET value.

Page 34: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

34

Figure 25. Comparison of human impacts for beverage containers with COMPASS and SimaPro.

Figure 26. Comparison of human health total impacts for beverage containers with openLCA. As was the case for the base materials, we can make comparisons between SimaPro and GaBi at the midpoint impact category level, ostensibly using the same impact assessment methods (Impact 2002+ supplemented by ReCiPe for water use) but, as discussed earlier, potentially different inventory data (due to the choice of differing input data files). These comparisons are shown in Table 11. As can be seen, GaBi reports much higher values than SimaPro for these container systems for aquatic ecotoxicity, non-carcinogens and photochemical oxidation. Values are sharply higher in GaBi for aluminum cans, glass bottles, and PET bottles but only moderately higher for PLA bottles and aseptic cartons in the categories of aquatic eutrophication, ionizing radiation and terrestrial ecotoxicity. Much lower values (less than 1/100) are reported for land occupation in

Page 35: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

35

GaBi compared to SimaPro. Values for aquatic acidification and for terrestrial acidification/nutrification are lower in GaBi than in SimaPro for all containers. The relative magnitude of the differences is not uniform across container types. In fact, for a number of categories, the GaBi values are lower than those from SimaPro for some containers and higher for others (carcinogens, global warming, mineral extraction, non-renewable energy, ozone layer depletion, respiratory organics). A table showing percentage comparisons can be found in Appendix 5. As a consequence, the relative ranking of the containers is not consistent between the software (keeping in mind that there are differences in input data). A rough comparison obtained simply by ranking the containers from 1-5 in order of lowest to highest score in each impact category (see Appendix 5), for each software program and averaging the ranks across all the categories provides the overall rankings shown in Table 12.

Page 36: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

36

Table 11. Comparison of impact category values from GaBi and SimaPro for beverage containers SimaPro  GaBi 

Al can Glass bottle  PET bottle  PLA Bottle 

Aseptic Carton  Al can 

Glass bottle 

PET bottle 

PLA Bottle 

Aseptic Carton 

Impact category  Unit  Test 1  Test 1  Test 4  Test 2  Test 2  Test 1  Test 1  Test 4  Test 2  Test 2 

Aquatic acidification  kg SO2 eq  0.002167  0.006246  0.004131  0.004249  0.001194  0.001116  0.000734  0.003439  0.001247  0.001285 

Aquatic ecotoxicity  kg TEG water  1.22  7.17  18.23  20.94  18.22  66945  2484  1434  275  8999 

Aquatic eutrophication  kg PO4 P‐lim  0.000028  0.000004  0.000005  0.000005  0.000078  0.000027  0.000382  0.000590  0.000507  0.000528 

Carcinogens  kg C2H3Cl eq  0.000095  0.001328  0.000549  0.000551  0.010634  0.005413  0.002903  0.007242  0.001605  0.001681 

Global warming  kg CO2 eq  0.184935  0.478029  0.331277  0.339648  0.241585  0.125190  0.243731  0.594607  0.321756  0.336248 

Ionizing radiation  Bq C‐14 eq  0.005584  0.119455  0.121989  0.121989  3.308188  1.335498  7.637806  11.57551  12.57622  12.63487 

Land occupation  m2org.arable  0.000028  0.000312  0.000236  0.000236  0.010589  0.038130  0.000000  0.000002  0.000004  0.000000 

Mineral extraction  MJ surplus  0.000007  0.000831  0.000078  0.000078  0.002735  0.005167  0.047488  2.598286  0.044022  0.048011 

Non‐carcinogens  kg C2H3Cl eq  0.000093  0.001289  0.002027  0.002039  0.001080  0.002221  0.059941  0.047700  0.025173  0.026206 

Non‐renewable energy  MJ primary  2.93  6.93  7.65  7.88  3.82  2.76  3.40  10.15  8.15  8.63 

Ozone layer depletion  kg CFC‐11 eq  1.60E‐09  1.30E‐09  1.78E‐09  5.60E‐09  1.09E‐09  16.7E‐09  63.8E‐09  21.4E‐09  4.47E‐09  4.43E‐09 

Photochemical oxidation ‐ Respiratory organics  kg C2H4 eq  0.000002  0.000006  0.000023  0.000024  0.000005  0.000006  0.000051  0.000186  0.000156  0.000169 

Respiratory effects ‐ Respiratory inorganics  kg PM2.5 eq  0.000230  0.000770  0.000436  0.000447  0.000139  0.000137  0.000234  0.001168  0.000249  0.000260 

Terrestrial acid/nutri  kg SO2 eq  0.005056  0.021000  0.008841  0.009057  0.004342  0.002834  0.002995  0.017094  0.004315  0.004508 

Terrestrial ecotoxicity  kg TEG soil  0.00921  0.06697  0.06502  0.06707  0.12619  0.17458  6.13350  18.0732  1.6892  1.8213 

Page 37: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

37

Table 12. Rankings of beverage container systems in SimaPro and in GaBi. Average for each container where a score of 1 represents the container with lowest emissions of the group and 5 the highest emissions, within each category. Average ranking SimaPro GaBi Aluminum can 1.87 3.13 Glass bottle 3.27 4.47 PET bottle 3.47 3.47 PLA bottle 3.67 1.60 Aseptic carton 2.93 2.33

As can be seen, using this simple methodology would provide the lowest score value (indicating it is the preferred alternative) to aluminum cans if SimaPro were used, and the highest score (least preferred) to PLA bottles. In contrast, if GaBi were used, PLA bottles would be ranked as the most preferred (lowest score value). Rigid/Flexible Packaging Comparisons – Tuna Packaging

As an example of comparisons between rigid and flexible packaging systems, we examined steel cans and retort pouches used for tuna fish. The base scenario for the pouch was 0% recycled at end-of-life, 0% recycled content, and 100 km truck transport. For cans, two base scenarios were considered, since none were available in all software systems. For COMPASS, 37% recycled content (Test 4) was the only option (with 70% recycled at end of life, 100 km truck). For GaBi, the only recycled content option was 25%, so Test 1was used (with 70% recycled at end of life and 100 km truck). For SimaPro, both Test 1 and Test 4 were used. Tabulated values are included in Appendix 6.

As before, comparisons including Package Modeling were available only for greenhouse gas emissions. Results are shown in Figure 27. It can be noted that the difference between the pouch and the can is much larger in SimaPro, GaBi, and Package Modeling than in COMPASS.

Page 38: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

38

Figure 27. Comparisons of greenhouse gas emissions for the tuna packaging systems with COMPASS, SimaPro, GaBi and Package Modeling. Problems were encountered in the tuna can modeling using openLCA. Most of the impact indicators had negative values, which is illogical. The reasons for this finding are still being evaluated. Therefore, tuna packaging comparisons using openLCA are not being presented at this time. Comparisons for fossil fuel/non-renewable energy use for COMPASS, SimaPro and GaBi are shown in Figure 28. As before, values from COMPASS are smaller, despite it not including electricity generated through nuclear energy. The direction of comparison differs, with COMPASS and GaBi favoring the can, while SimaPro favors the pouch.

Figure 28. Comparisons of fossil fuel/non-renewable energy use for the tuna packaging systems.

Page 39: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

39

Water consumption/water depletion results are shown in Table 13. As before, values from GaBi for the pouch are very much higher, due to the inclusion of hydroelectric power. However, the direction of the comparison again differs between systems, with GaBi having lower values for the can than the pouch, while in COMPASS and SimaPro the pouch has lower values than the can. The proportional difference is much greater in SimaPro than in COMPASS.

Table 13. Water consumption/depletion for tuna packaging systems. Units are liters.

COMPASS  SimaPro  GaBi 

Tuna can test 1  6.413  502 

Tuna can test 4  4.524151  6.413 

Pouch  1.014149  0.6866  1459 

Eutrophication results consistently show the pouch as less favorable than the can, as shown in Figure 29, but the size of the differences is much larger in COMPASS and GaBi than in SimaPro.

Figure 29. Comparisons of eutrophication for tuna packages. Human impacts can be compared between COMPASS and SimaPro only (Fig. 30), as GaBi does not provide results in a way that allows direct comparisons. As can be seen, COMPASS ranks the pouch as considerably better than the can, while SimaPro ranks the pouch as somewhat worse than the can options.

Page 40: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

40

Figure 30. Comparisons of human impacts for tuna packages. Additional comparisons between SimaPro and GaBi can be made at the midpoint impact category level, as shown in Table 14, for the tuna can test 1 and the pouch. Table 14. Comparison of impact category values from GaBi and SimaPro for tuna packages.

Impact category  Unit  SimaPro  GaBi 

Tuna can test 1  Pouch  Tuna can test 1  Pouch 

Aquatic acidification  kg SO2 eq  0.003206  0.002962  0.001131  0.001814 

Aquatic ecotoxicity  kg TEG water  87.76  45.11  5829  44985 

Aquatic eutrophication  kg PO4 P‐lim  7.588E‐05  8.805E‐05  21.044E‐05  17.189E‐05 

Carcinogens  kg C2H3Cl eq  0.017236  0.057987  0.001285  0.065746 

Global warming  kg CO2 eq  0.822113  0.388884  0.709581  0.346630 

Ionizing radiation  Bq C‐14 eq  3.903  2.625  6.538  17.754 

Land occupation  m2org.arable  0.056353  0.002066  0.0000008  0.000165 

Mineral extraction  MJ surplus  0.012646  0.026935  0.017900  0.050273 

Non‐carcinogens  kg C2H3Cl eq  0.002994  0.006974  0.015637  0.367737 

Ozone layer depletion  kg CFC‐11 eq  0.326E‐08  0.170E‐08  3.305E‐08  1.067E‐08 

Photochemical oxidation ‐ Respiratory organics  kg C2H4 eq  1.946E‐05  1.727E‐05  7.411E‐05  16.542E‐05 

Respiratory effects ‐ Respiratory inorganics  kg PM2.5 eq  0.000405  0.0003055  0.000278  0.000333 

Terrestrial acid/nutri  kg SO2 eq  0.010647  0.006450  0.005826  0.005235 

Terrestrial ecotoxicity  kg TEG soil  1.7660  0.3940  2.7308  0.9225 

Non‐renewable energy  MJ primary  10.597  9.401  7.412  7.836 

Page 41: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

41

As can be seen, SimaPro and GaBi agree on whether the can has lower or higher emissions than the pouch (though not generally in the proportion of the difference) in 8 categories (carcinogens, global warming, mineral extraction, non-carcinogens, ozone layer depletion, terrestrial acidifiction/nutrification, terrestrial ecotoxicity, and non-renewable energy). They disagree on direction of the comparison for 7 categories (aquatic acidification, aquatic ecotoxicity, aquatic eutrophication, ionizing radiation, land occupation, photochemical oxidation - respiratory organics, and respiratory effects - respiratory inorganics). Reusable and Disposable Package Comparisons – Flower Packaging In order to examine aspects of reuse, the third set of comparisons was two alternative packaging systems that can be used for distribution of fresh flowers. One was comprised of a single-use corrugated box; the other was a reusable PP crate. The systems were modeled as originating in Colombia, with shipment to the U.S. by air, and return of the PP crates for reuse by ship. This system was modeled on a previous LCA study done for a private company, but details were changed to fit the focus of this study on comparison of the software rather than on actual comparison of detailed systems. The prior study gave us accurate values to use for weights of the containers and a reasonable package distribution scenario. The base comparison selected for this report is Test 1 for corrugated, with 80% recycled at end of use and 50% recycled content; outgoing transport consisting of 2500 km air shipment, 100 km refrigerated truck, 100 km standard truck; and no return. For the PP crates, tests 1, 2 and 3 were used. Test 1 calls for 10 uses, test 2 for 1 use, and test 3 for 100 uses of the crates. In all cases, 10% of the PP is recycled at end of life, and no recycled content is included in the crate. Outgoing transportation is the same as for the corrugated box. Return shipment in tests 1 and 3 is comprised of 2100 km by ship and 1200 km by truck. Test 2 is single-use so has no return. As before, comparison with Package Modeling could be done only for greenhouse gas emissions. Results are shown in Figures 31-32. Tabulated values are included in Appendix 7. It can be noted that COMPASS rates the corrugated box as slightly inferior to the 100 trip crate, and significantly better than the 10 trip crate. In contrast, SimaPro shows the 100 trip crate as clearly better than the corrugated box, while GaBi shows the corrugated box as superior to the 100-trip crate. In Package Modeling, partly because transportation impacts are not included in the calculations, the 10 trip crate has significantly lower emissions than the corrugated box. openLCA, like GaBi, shows the corrugated box as superior to all the crate options. The difference is greater than found with GaBi, however, with the one-use box in this case having less than half the greenhouse gas emissions of the 100-trip crate.

Page 42: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

42

Figure 31. Comparison of greenhouse gas emissions for corrugated box and reusable PP crate with COMPASS, SimaPro, GaBi and Package Modeling.

Figure 32. Comparison of greenhouse gas emissions for corrugated box and reusable PP crate with openLCA. Figures 33-34 show the comparison of fossil fuel/non-renewable energy for the systems considered. Results are more consistent for this parameter than for greenhouse gas emissions. COMPASS, SimaPro and GaBi all show the 100 trip crate as having the lowest emissions, followed by the corrugated box. openLCA differs, showing the corrugated box as having lower emissions than the 100 trip crate.

Page 43: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

43

Figure 33. Comparison of fossil fuel/non-renewable energy use for corrugated box and reusable PP crate with COMPASS, SimaPro, and GaBi.

Figure 34. Comparison of fossil fuel/non-renewable energy use for corrugated box and reusable PP crate with openLCA. Figure 35 shows the comparisons for the midpoint measure of eutrophication. As can be seen, COMPASS and openLCA report lower emissions for the corrugated box than the 10 trip crate, while SimaPro and GaBi report the reverse. openLCA reports lower emissions for the corrugated box than the 100 trip crate, in contrast to the other software systems.

Page 44: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

44

Figure 35. Comparison of eutrophication for corrugated box and reusable PP crate with COMPASS, SimaPro, GaBi and openLCA. Figure 36 shows the human impacts comparisons between COMPASS and SimaPro. Both systems show the 100-trip crate as having the lowest impacts, followed by the corrugated box. Figure 37 shows the presumably comparable Human Health Total category from openLCA, which rates the corrugated box as having significantly lower impacts than even the 100-trip crate.

Figure 36. Comparison of human impacts for corrugated box and reusable PP crate with COMPASS and SimaPro.

Page 45: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

45

Figure 37. Comparison of human health total impacts for corrugated box and reusable PP crate with openLCA. Additional comparisons between SimaPro and GaBi can be made at the midpoint impact category level, as shown in Table 15, for the corrugated box and crate options.

Page 46: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

46

Table 15. Comparison of impact category values from GaBi and SimaPro for corrugated box and crate systems.

Impact category  Unit  SimaPro GaBi

Corrug. Box Crate 10 uses 

Crate 1 use 

Crate  100 uses  Corrug. Box 

Crate 10 uses 

Crate 1 use 

Crate 100 uses 

Aquatic acidification  kg SO2 eq  0.005737  0.010936  0.071336  0.004895  0.002014  0.006361  0.055853  0.001465 

Aquatic ecotoxicity  kg TEG water  94  191  1317  78  3110  1750  15335  403 

Aquatic eutrophication  kg PO4 P‐lim  0.000203  0.000023  0.000187  0.000007  0.001065  0.000447  0.004466  0.000045 

Carcinogens  kg C2H3Cl eq  0.035917  0.017151  0.170846  0.001781  0.003454  0.002000  0.018412  0.000367 

Global warming  kg CO2 eq  1.0803  1.1062  5.9228  0.6245  0.4868  1.0102  5.3822  0.5995 

Ionizing radiation  Bq C‐14 eq  9.9968  6.2051  62.0511  0.6205  14.3863  11.7075  117.0748  1.1707 

Land occupation  m2org.arable  32454E‐05  342.04E‐05  3420.3E‐05  34.21E‐05  2.6014E‐05  0.0295E‐05  0.2946E‐05  0.0029E‐05 

Mineral extraction  MJ surplus  0.017357  0.001962  0.019624  0.000196  0.146096  0.017591  0.175915  0.001759 

Non‐carcinogens  kg C2H3Cl eq  0.013874  0.064323  0.311024  0.039652  0.054013  0.094154  0.616751  0.043648 

Ozone layer depletion  kg CFC‐11 eq  0.819E‐08  12.199E‐08  121.97E‐08  1.22E‐08  6.908E‐08  13.539E‐08  135.37E‐08  1.36E‐08 

Photochemical oxidation ‐ Respiratory organics  kg C2H4 eq  0.000054  0.000070  0.000559  0.000021  0.000376  0.000590  0.003136  0.000349 

Respiratory effects ‐ Respiratory inorganics  kg PM2.5 eq  0.000914  0.001262  0.006629  0.000726  0.000818  0.001266  0.006808  0.000758 

Terrestrial acid/nutri  kg SO2 eq  0.022689  0.036821  0.129287  0.027575  0.018406  0.034419  0.128034  0.026754 

Terrestrial ecotoxicity  kg TEG soil  3.9451  0.5493  5.4664  0.0576  23.4230  1.0245  10.0073  0.1276 

Non‐renewable energy  MJ primary  16.51  27.50  200.861  10.16  12.55  24.96  181.69  9.65 

Page 47: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

47

Comparing the corrugated box and the 100-trip crate systems, SimaPro and GaBi agree on rating the 100 trip crate having lower emissions in the categories of aquatic acidification, aquatic ecotoxicity, aquatic eutrophication, carcinogens, ionizing radiation, land occupation, mineral extraction, photochemical oxidation – respiratory organics, respiratory effects – respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. They agree on rating the corrugated box as having lower emissions than the 100-trip crate in terrestrial acidification/nutrification. They disagree in the categories of global warming, non-carcinogens, and ozone layer depletion. For the corrugated box versus 10-trip crate systems, SimaPro and GaBi agree on the corrugated box as having lower emissions than the 10-trip crate in aquatic acidification, global warming, non-carcinogens, ozone layer depletion, photochemical oxidation – respiratory organics, respiratory effects – respiratory inorganics, terrestrial acidification/nutrification, and non-renewable energy. They agree on rating the 10-trip crate as having lower emissions than the corrugated box in aquatic eutrophication, carcinogens, ionizing radiation, land occupation, mineral extraction, and terrestrial ecotoxicity. They disagree in direction only on aquatic ecotoxicity. For the comparisons of the corrugated box with the single-use crate, the direction of comparison disagrees for aquatic eutrophication and terrestrial ecotoxicity. Within the crate systems, there is uniform rating of the 100-trip crate as having the lowest emissions and the single-use crate as having the highest. As before, the magnitudes of the values reported as well as the size of the differences differ substantially in many cases. Effects of Selected Parameters We have also compared the effect of parameters such as recycled content, recycling rate at end of life, and transport distance on the results obtained from various software programs for selected packaging systems. Examples are presented here. Recycled Content Aluminum cans Figures 38-41 illustrate the effect of recycled content in aluminum cans on greenhouse gas emissions, fossil fuel/non-renewable energy use, eutrophication, and human impacts, respectively. Tables 16-19 show the values for 10%, 70% and 100% recycled content as a percentage of the 0% recycled content values, to show more clearly how the programs differ in the proportional reduction with increased recycled content. As can be seen in Figure 38 and Table 16, for greenhouse gas emissions, GaBi has the largest values at all recycled contents, Except for 100% recycled content, the values from SimaPro are higher than those for COMPASS. SimaPro has a significantly larger reduction for recycled content than does GaBi, with COMPASS in between. Because of this, at 100% recycled content, the COMPASS value is higher than the SimaPro value. Absolute values for openLCA are not

Page 48: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

48

shown in Fig. 38 because of the difference in units, but the percentage is shown in the table. openLCA has the largest reduction as a function of recycled content of the 4 software programs.

Figure 38. Effect of recycled content in aluminum cans on greenhouse gas emissions. Table 16. Proportional effect of recycled content in aluminum cans on greenhouse gas emissions shown as percent of 0% recycled content base value by software program (e.g. value for 70% recycled content in COMPASS is 44% of the value for 0% recycled content in COMPASS, a reduction of 56%). % recycled content 

10%  70%  100% 

COMPASS  92.03%  44.20%  20.28% 

SimaPro  91.61%  41.24%  16.06% 

GaBi  92.25%  45.75%  22.51% 

openLCA  90.88%  36.18%  8.82% 

For fossil fuel/non-renewable energy, the pattern is similar, with openLCA showing the largest percentage reduction as a function of recycled content, followed by SimaPro, COMPASS, and GaBi, in that order. GaBi again has higher absolute values than do SimaPro and COMPASS, though the differences are smaller than for greenhouse gas emissions. Table 16. Proportional effect of recycled content in aluminum cans on fossil fuel/non-renewable energy shown as percent of 0% recycled content base value by software program. % recycled content 

10%  70%  100% 

COMPASS  92.32%  46.25%  23.21% 

SimaPro  91.96%  43.74%  19.62% 

GaBi  92.75%  49.24%  27.48% 

openLCA  91.90%  43.33%  19.04% 

Page 49: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

49

Figure 39. Effect of recycled content in aluminum cans on fossil fuel/non-renewable energy. For eutrophication, values can be compared across all 4 software programs. As observed earlier, and shown in Fig. 40, values reported by GaBi are much higher than those reported by the other programs. openLCA reports the lowest values. As in the other measures, reduction with increased recycled content is greatest in openLCA. However, in this case SimaPro has the lowest percent reduction, followed by GaBi and COMPASS in that order.

Figure 40. Effect of recycled content in aluminum cans on eutrophication.

0.E+00

5.E‐05

1.E‐04

2.E‐04

2.E‐04

3.E‐04

COMPASS SimaPro GaBi openLCA

kg PO4 equiv

Eutrophication as function of % recycled content

0 10 50 100

Page 50: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

50

Table 17. Proportional effect of recycled content in aluminum cans on eutrophication shown as percent of 0% recycled content base value by software program. % recycled content 

10%  70%  100% 

COMPASS  91.52%  40.65%  15.21% 

SimaPro  95.80%  70.59%  57.99% 

GaBi  93.11%  51.74%  31.06% 

openLCA  91.45%  40.16%  14.52% 

Since GaBi does not report human impacts in a comparable manner, Figure 40 compares the effect of recycled content in COMPASS and SimaPro. Absolute values are higher in SimaPro, but the proportional reduction with recycled content is higher in COMPASS. Results from openLCA are particularly interesting. The program gives a very sharp reduction with increased recycled content – actually resulting in a negative value at 100% recycled content. This illogical finding requires further investigation.

Figure 41. Effect of recycled content in aluminum cans on human impacts. Table 18. Proportional effect of recycled content in aluminum cans on human impacts for COMPASS and SimaPro and human health – total for openLCA, shown as percent of 0% recycled content base value by software program. % recycled content 

10%  70%  100% 

COMPASS  91.27%  38.90%  12.72% 

SimaPro  91.95%  43.68%  19.54% 

openLCA  86.24%  3.66%  * *Negative value 

Page 51: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

51

Glass bottles A similar investigation was done of the effect of recycled content in glass bottles. The results are shown in Figures 42-45. Again, differences were found in the proportional reduction with increasing recycled content for the various software programs, as well as for the various types of emissions, with SimaPro generally having the largest reductions. In general, proportional reductions with increasing recycled content were much smaller for glass bottles than for aluminum cans. Results from openLCA are not being presented in this category because they show anomalous increases in greenhouse gas emissions, non-renewable energy use, and human impacts with increased recycled content. The reasons for this illogical finding require further investigation.

Figure 42. Effect of recycled content in glass bottles on greenhouse gas emissions.

Page 52: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

52

Figure 43. Effect of recycled content in glass bottles on fossil fuel/non-renewable energy use.

Figure 44. Effect of recycled content in glass bottles on eutrophication.

Page 53: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

53

Figure 45. Effect of recycled content in glass bottles on human impacts. Recycling/Composting Rate at End-of-Life Various recycling rates were examined for a number of the packaging systems, along with composting rates for the PLA bottle. Aseptic carton The effect of recycling rate for aseptic cartons is shown in Figure 46, for 0% recycled content and 100 km truck transportation. COMPASS did not allow modification of the recycling rate.

Figure 46. Effect of recycling rate for aseptic cartons on greenhouse gas emissions. COMPASS did not allow modification of recycling rate.

Page 54: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

54

As can be seen, the values of greenhouse gases reported are considerably higher for SimaPro than for COMPASS, with GaBi being much lower. Proportional reduction rates with increased recycling, as shown in Table 19, are much higher for GaBi than for SimaPro, with openLCA being in the middle. Table 19. Proportional effect of recycling rate of aluminum cans on global warming shown as percent of 0% recycling rate base value by software program. Recycling Rate 

10%  50%  100% 

SimaPro  99.42%  97.11%  94.21% 

GaBi  96.10%  80.52%  61.05% 

openLCA  98.08%  90.42%  80.85% 

For non-renewable energy, eutrophication, and human impacts, there was very little influence of recycling rate on the obtained values; reductions in SimaPro and GaBi were less than 1% of the values for 0% recycling. openLCA had somewhat larger effects, with reductions for 100% recycling of approximately 10% for human impacts and 6% for eutrophication. The reduction for non-renewable energy, however, was under 1%, similar to that found with the other programs. Aluminum cans The effect of recycling rate on aluminum cans, with a base of 70% recycled content, is shown in Figure 47 for greenhouse gases. As can be seen, the effects are very small. There is also very little difference in non-renewable energy use or in eutrophication, based on recycled content. In openLCA, there is a significant reduction in the human health – total category, but no similar reduction in SimaPro’s human impacts category.

Figure 47. Effect of recycling rate for aluminum cans on greenhouse gas emissions. COMPASS did not allow modification of rate.

Page 55: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

55

Glass bottles Greenhouse gas emissions as a function of recycling rate at end of life for glass bottles (recycled content 25%) are shown in Figure 48. As was the case for aluminum cans, the end-of-life recycling rate has little effect. An exception is human health – total in open LCA, where there was a substantial reduction with increased recycling rate, which requires further investigation. Another anomaly in openLCA was a small increase in greenhouse gas emissions with increased recycling rate, which was not found in SimaPro or GaBi, which showed a small decrease.

Figure 48. Effect of recycling rate for glass bottles on greenhouse gas emissions. COMPASS did not allow modification of rate. PLA Bottles For the PLA bottles, composting rates of 0%, 10% and 50% at end of life were examined. The effect on greenhouse gas emissions is shown in Figure 49. Effects on total energy use, eutrophication, and human impacts were insignificant (less than 0.3%).

Page 56: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

56

Figure 49. Effect of composting rate for PLA bottles on greenhouse gas emissions. COMPASS did not allow modification of rate. Transport Distance Another general set of comparisons is the effect of truck transportation distance. Figures 50-53 show the effect on greenhouse gas emissions, non-renewable energy use, eutrophication and human impacts of increasing the truck transport distance by a factor of 10 for aluminum cans, from 100 km to 1000 km. The increases generally are fairly small, less than 10%. As before, there are differences between the software programs that could lead to differences in resulting comparisons. openLCA once again has anomalous findings that require further investigation, showing a decrease in greenhouse gas emissions with increasing transport distance, as well as a negative value for human health – total at 1000 km (but not at 100 km). In GaBi, eutrophication is not affected at all by transport distance in this range. It should be noted that while it is possible to set transport distance in Package Modeling to one of two ranges, doing so has no effect on the outputs of the program. Therefore, this software is not included in the discussion in this section.

Page 57: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

57

Figure 50. Effect of transport distance for aluminum cans on greenhouse gas emissions.

Figure 51. Effect of transport distance for aluminum cans on fossil fuel/non-renewable energy use.

Page 58: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

58

Figure 52. Effect of transport distance for aluminum cans on eutrophication.

Figure 53. Effect of transport distance for aluminum cans on human impacts. For glass bottles, both variation in truck transport distance and in rail transport distance were examined, as shown in Figures 54-57. The effects were generally larger for aluminum cans, likely related to the greater weight of the containers. In SimaPro and GaBi the values for 4000 km rail and 100 km truck exceeded those for 500 km rail and 1000 km truck for both greenhouse gas emissions and non-renewable energy, while COMPASS showed the reverse.

Page 59: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

59

Figure 54. Effect of transport distance for glass bottles on greenhouse gas emissions.

Figure 55. Effect of transport distance for glass bottles on fossil fuel/non-renewable energy use.

Page 60: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

60

Figure 56. Effect of transport distance for glass bottles on eutrophication.

Figure 57. Effect of transport distance for glass bottles on human impacts. The relative effects, compared to the “Test 1” baseline of 400 km rail and 100 km truck, are shown in Tables 20-23. As in other cases described previously, openLCA had some anomalous results that require further investigation.

0.E+00

1.E‐04

2.E‐04

3.E‐04

4.E‐04

5.E‐04

6.E‐04

7.E‐04

COMPASS SimaPro GaBi openLCA

kg PO4 equiv

Effect of truck and rail transport distance on eutrophication for glass bottles

100 km truck, 0 km rail 100 km truck, 500 km rail

100 km truck, 4000 km rail 1000 km truck, 500 km rail

Page 61: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

61

Table 20. Proportional effect of transport distance for glass bottles on greenhouse gas emissions, shown as percent of 100 km truck, 500 km rail base value, by software program. % of 100 km truck, 500 km rail 

100 km truck,  0 km rail 

100 km truck,  4000 km rail 

1000 km truck,  500 km rail 

COMPASS  98.87%  107.92%  118.39% 

SimaPro  97.06%  120.59%  109.16% 

GaBi  97.79%  115.50%  107.39% 

openLCA  103.65%  74.46%  91.21% 

Table 21. Proportional effect of transport distance for glass bottles on fossil fuel/non-renewable energy, shown as percent of 100 km truck, 500 km rail base value, by software program. % of 100 km truck, 500 km rail 

100 km truck,  0 km rail 

100 km truck,  4000 km rail 

1000 km truck,  500 km rail 

COMPASS  99.03%  106.76%  115.65% 

SimaPro  97.00%  120.98%  108.79% 

GaBi  98.04%  113.75%  106.02% 

openLCA  100.54%  96.22%  101.16% 

Table 22. Proportional effect of transport distance for glass bottles on eutrophication, shown as percent of 100 km truck, 500 km rail base value, by software program. % of 100 km truck, 500 km rail 

100 km truck,  0 km rail 

100 km truck,  4000 km rail 

1000 km truck,  500 km rail 

COMPASS  94.99%  135.10%  123.69% 

SimaPro  74.16%  280.90%  108.32% 

GaBi  99.25%  105.25%  100.00% 

openLCA  99.04%  106.73%  116.06% 

Table 23. Proportional effect of transport distance for glass bottles on human impacts, shown as percent of 100 km truck, 500 km rail base value, by software program. % of 100 km truck, 500 km rail 

100 km truck,  0 km rail 

100 km truck,  4000 km rail 

1000 km truck,  500 km rail 

COMPASS  99.13%  106.11%  106.17% 

SimaPro  96.12%  127.17%  106.77% 

The effects of shipment in refrigerated truck shipment distance, air freight distance, and ship distance were examined for the PP crate, as shown in Figures 58-61. The base scenario is 10 uses, 10% PP recycled at end of life, 2500 km outgoing air shipment, 100 km outgoing refrigerated truck, 100 km outgoing and 1200 km return standard truck, and 2100 return ship transport (test 1). In test 6, air shipment was decreased to 500 km; in test 7, refrigerated truck shipment was increased to 1000 km; and in test 8, ship transport was decreased to 500 km (with all other parameters remaining the same as in test 1). It needs to be noted that refrigerated trucks

Page 62: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

62

could not be modeled in COMPASS, so there is no test 7 for COMPASS and truck distances in the other scenarios used non-refrigerated truck values.

Figure 58. Effect of transport distance for 10-trip PP crates on greenhouse gases. COMPASS does not provide for refrigerated truck so was modeled as ordinary truck.

Figure 59. Effect of transport distance for 10-trip PP crates on fossil fuel/non-renewable energy. COMPASS does not provide for refrigerated truck so was modeled as ordinary truck.

Page 63: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

63

Figure 60. Effect of transport distance for 10-trip PP crates on eutrophication. COMPASS does not provide for refrigerated truck so was modeled as ordinary truck.

Figure 61. Effect of transport distance for 10-trip PP crates on human impacts. COMPASS does not provide for refrigerated truck so was modeled as ordinary truck.

Page 64: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

64

The general pattern of effects was similar, though again there are differences in proportion of increase and decrease, as shown in Tables 24-27. As before, openLCA values, which are given only as points, cannot be shown in the figures for greenhouse gas emissions, fossil fuel/non-renewable energy, or human impacts, but the proportional effect is included in the tables. Table 24. Proportional effect of transport distance for 10-trip PP crates on greenhouse gas emissions, shown as percent of 2500 km air, 100 km refrigerated truck, 2100 km ship base value, by software program. COMPASS does not provide for refrigerated truck so was modeled as ordinary truck. % of 2500 km air, 100 km refrig truck, 2100 km ship 

500 km air,  100 km refrig truck, 

2100 km ship 

2500 km air,  1000 km refrig truck, 

2100 km ship 

2500 km air,  100 km refrig truck,  

500 km ship 

COMPASS  84.38%    96.64% 

SimaPro  80.25%  113.43%  95.77% 

GaBi  78.41%  114.60%  95.37% 

openLCA  28.62%  99.43%  99.51% 

Table 25. Proportional effect of transport distance for 10-trip PP crates on fossil fuel/non-renewable energy, shown as percent of 2500 km air, 100 km refrigerated truck, 2100 km ship base value, by software program. COMPASS does not provide for refrigerated truck so was modeled as ordinary truck. % of 2500 km air, 100 km refrig truck, 2100 km ship 

500 km air,  100 km refrig truck, 

2100 km ship 

2500 km air,  1000 km refrig truck, 

2100 km ship 

2500 km air,  100 km refrig truck,  

500 km ship 

COMPASS  88.86%    97.82% 

SimaPro  88.07%  107.51%  97.67% 

GaBi  86.99%  108.21%  97.43% 

openLCA  36.45%  100.13%  99.54% 

Table 26. Proportional effect of transport distance for 10-trip PP crates on eutrophication, shown as percent of 2500 km air, 100 km refrigerated truck, 2100 km ship base value, by software program. COMPASS does not provide for refrigerated truck so was modeled as ordinary truck. % of 2500 km air, 100 km refrig truck, 2100 km ship 

500 km air,  100 km refrig truck, 

2100 km ship 

2500 km air,  1000 km refrig truck, 

2100 km ship 

2500 km air,  100 km refrig truck,  

500 km ship 

COMPASS  91.10%    90.87% 

SimaPro  91.75%  105.17%  98.39% 

GaBi  100.00%  100.00%  100.00% 

openLCA  26.21%  102.17%  99.56% 

Page 65: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

65

Table 27. Proportional effect of transport distance for 10-trip PP crates on human impacts (COMPASS and SimaPro) and human health – total (openLCA), shown as percent of 2500 km air, 100 km refrigerated truck, 2100 km ship base value, by software program. COMPASS does not provide for refrigerated truck so was modeled as ordinary truck. % of 2500 km air, 100 km refrig truck, 2100 km ship 

500 km air,  100 km refrig truck, 

2100 km ship 

2500 km air,  1000 km refrig truck, 

2100 km ship 

2500 km air,  100 km refrig truck,  

500 km ship 

COMPASS  94.09%    94.91% 

SimaPro  85.60%  111.23%  89.17% 

openLCA  15.92%  86.64%  96.56% 

While generally transportation accounts for a relatively small fraction of overall greenhouse gas emissions associated with a packaging system, these results indicate that, in some cases, these differences in the relative effect of distance could affect the ranking of alternative packaging systems. Conclusions It does appear that the choice of software program used for the analysis affects the relative comparisons between differing package system options, and therefore the choices that will be made. The software appears to have an effect on the impact results and comparisons even when data sources are selected to be as identical as possible. This effect is magnified by the natural inclination of the user to employ data sets that are “convenient” when using specific software packages. The end result is the real possibility that evaluation of choices between package system alternatives on the basis of lifecycle attributes will be materially affected by the choice of software system chosen for the analysis. If there is to be increasing use of LCA analysis in guiding packaging design, this issue must be understood and resolved.

Page 66: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

66

Appendix 1 – Flow diagrams and parameters systems being evaluated Functional Units:

Tuna - 1 kg Beverages - 1 liter Flowers - 1/2 box (standard size for flower shipment)

Component weights:

Package  Component  Material  Ave. Weight (g) Wt/Functional Unit (g) 

Al can, 12 oz (ave of 5 samples) 

Can body & lid  Aluminum  13.018  36.681 

Glass bottle, 12 oz (ave of 6 samples) 

Bottle  Glass (brown)  187.434  528.133 

Label  Bi‐Axially Oriented PP  0.388  1.093 

Cap  Steel  2.118  5.969 

PET bottle, 12 oz (ave of 20 samples) 

Bottle  PET  24.221  68.247 

Label  PP  2.707  7.628 

Cap  PP  2.87  8.087 

Aseptic carton, 200 ml (ave of 6 samples) 

Box (ave wt 9.341 g) 

SBS, 75%  7.006  35.029 

LDPE, 20%  1.868  9.341 

Al foil, 5%  0.467  2.335 

Straw  PP  0.373  1.865 

Pouch for straw 

PP  0.148  0.740 

PLA bottle, 500 ml (ave of 6 samples) 

Bottle   PLA  24.512  49.023 

Cap  HDPE  2.184  4.368 

Tuna can (ave of 6 samples) 

Can  Steel  28.602  201.423 

Label  Paper  0.683  4.810 

Tuna pouch 

Pouch (ave wt 6.354 g) 

PET, 40%  2.542  34.345 

Polypropylene, 40%  2.542  34.345 

aluminum foil, 15%  0.953  12.879 

Nylon, 5%  0.318  4.293 

Corrug flower box (ave of 2 samples) 

Corrug box  Corrugated  699.9  699.9 

Reusable flower crate 

Crate  PP  1796.2  1796.2 

Page 67: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

67

Aluminum Beverage Can

Parameters           Test          

   1  2  3  4  5  6  7 

Aluminum Recycled At EOL (%)  50  0  100  50  50  50  50 

Aluminum Recycled Content (%)  70  70  70  0  10  100  70 

Rail (Km)  0  0  0  0  0  0  0 

Standard Truck (Km)  100  100  100  100  100  100  1000 (EOL stands for “end of life”)

Page 68: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

68

Glass Beverage Bottle

Parameters              Test             

   1  2  3  4  5  6  7  8  9 

Glass Recycled At EOL (%)  40  0  100  40  40  40  40  40  40 

Glass Recycled Content (%)  25  25  25  0  50  100  25  25  25 

Rail (km)  500  500  500  500  500  500  0  4000 500 

Standard Truck (km)  100  100  100  100  100  100  100  100  1000

Page 69: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

69

PET Beverage Bottle

Parameters           Test          

   1  2  3  4  5  6  7 

PET Recycled At EOL (%)  30  0  100  30  30  30  30 

PET Recycled Content (%)  10  10  10  0  50  100  10 

Rail (km)  0  0  0  0  0  0  0 

Standard Truck (km)  100  100  100  100  100  100  1000

Page 70: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

70

Aseptic carton

Parameter        Test       

   1  2  3  4  5 

Aseptic Carton Recycled At EOL (%)  10  0  50  100  10 

Aseptic Carton Recycled Content (%)  0  0  0  0  0 

Rail (km)  0  0  0  0  0 

Standard Truck (km)  100  100  100  100  1000 

Page 71: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

71

PLA bottle

Parameter     Test       

   1  2  3  4 

PLA Composted At EOL (%)  10  0  50  10 

PLA Recycled Content (%)  0  0  0  0 

Rail (km)  0  0  0  0 

Standard Truck (km)  100  100  100  1000 

Page 72: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

72

Steel tuna can

Parameter        Test    

   1  2  3  4 

Steel Recycled At EOL (%)  70  10  100  70 

Steel Can Recycled Content (%)  25  25  25  37 

Rail (km)  0  0  0  0 

Standard Truck (km)  100  100  100  100 

Page 73: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

73

Flexible retort pouch for tuna

Parameter  Test 

   1 

Flexible Pouch Recycled At EOL (%)  0 

Flexible Pouch Recycled Content (%)  0 

Standard Truck (km)  100 

Page 74: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

74

Corrugated box

Parameter              Test          

   1  2  3  4  5  6  7  8 

Number Of Uses  1  1  1  1  1  1  1  1 

Corrugate Recycled At EOL (%)  80  0  100  80  80  80  80  80 

Corrugate Recycled Content (%)  50  50  50  0  25  100  50  50 

Outgoing Air (km)  2500 2500 2500 2500  2500  2500  500  2500 

Outgoing Refrigerated Truck (km)  100  100  100  100  100  100  100  1000 

Outgoing Standard Truck (km)  100  100  100  100  100  100  100  100 

Return Ship (km)  0  0  0  0  0  0  0  0 

Return Standard Truck (km)  0  0  0  0  0  0  0  0 

Page 75: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

75

PP reusable crate

Parameter              Test          

   1  2  3  4  5  6  7  8 

Number Of Uses  10  1  100  10  10  10  10  10 

PP Recycled At EOL (%)  10  10  10  50  100  10  10  10 

PP Recycled Content (%)  0  0  0  0  0  0  0  0 

Outgoing Air (km)  2500 2500 2500 2500 2500 500  2500  2500 

Outgoing Refrigerated Truck (km)  100  100  100  100  100  100  1000  100 

Outgoing Standard Truck (km)  100  100  100  100  100  100  100  100 

Return Ship (km)  2100 01  2100 2100 2100 2100  2100  500 

Return Standard Truck (km)  1200 01  1200 1200 1200 1200  1200  1200 

Note 1. Distances for Return Ship and Return Standard Truck are set to 0 km in Test 2 because it is assumed a single use crate will not be returned.

Page 76: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

76

Appendix 2 – Data Files Used for Comparisons

1. US Ecoinvent 2. USLCI 3. USLCI/PE 4. PE International 5. PE/NatureWorks 6. PE/World Steel 7. Franklin USA 98 8. BUWAL250 9. LCA Food DK 10. COMPASS hybrid dataset of USLCI and Ecoinvent with US Electricity (2009)

Software Data Files 

   SimaPro  GaBi 5   COMPASS10 

PET BOTTLE           

PP Resin  Polypropylene resin, at plant/RNA2 RNA: Polypropylene resin, at plant1 

Polypropylene (PP), virgin, Compass/US 

PET Resin  PET bottles FAL7 RER: polyethylene terephthalate, granulate, bottle grade, at plant3 

Polyethylene Terephthalate (PET), virgin, Compass/US 

PET Recycled Content  PET bottles recycled FAL7 US: Plastic resin secondary (unspecified)4 

  

Cast Film Process to Form Labels Extrusion, plastic film/RER with US electricity U1 

RER: extrusion, plastic film1  Extrusion, plastic film/RER U 

Injection Molding to Form Closure  PET bottles FAL7  RER: injection moulding1  Injection Moulding/RER U 

Injection Stretch Blow Molding to Form Bottles 

PET bottles FAL7 PET bottles recycled FAL7 

RER: stretch blow moulding1 Stretch Blow Molding (unit process file name not available) 

Flexographic Printing  Flexography CF8  omitted    

*Cleaning, Filling, Sealing and Applying Label  omitted  omitted    

*Warehousing, Distribution, Sales and Use  omitted  omitted    

Page 77: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

77

Landfill 

Landfill/CH with US electricity U1

Disposal, polyethylene terephthalate, 0.2% water, to sanitary landfill/CH with US electricity U1 Disposal, polyethylene, 0.4% water, to sanitary landfill/CH with US electricity U1 

CH: disposal, polyethylene terephthalate, 0.2% water, to sanitary landfill1 CH: disposal, polyethylene, 0.4% water, to sanitary landfill1 

Disposal, polyethylene terephthalate, 0.2% water, to sanitary landfill/CH U Disposal, polypropylene, 15.9% water, to sanitary landfill/CH U 

Incineration  

Incineration/CH with US electricity U1 Disposal, polyethylene terephthalate, 0.2% water, to municipal incineration/CH with US electricity U1 Disposal, polyethylene, 0.4% water, to municipal incineration/CH with US electricity U1 

CH: disposal, polyethylene terephthalate, 0.2% water, to municipal incineration1 

CH: disposal, polyethylene, 0.4% water, to municipal incineration1 

Disposal, polyethylene terephthalate, 0.2% water, to municipal incineration/CH U Disposal, polypropylene, 15.9% water, to municipal incineration/CH U 

Recycling 

Recycling PET/RER with US electricity U1 

Recycling PP/RER with US electricity U1 

omitted Recycling PET/RER U Recycling PP/RER U 

Truck Transportation Transport, combination truck, average fuel mix/US2 

US: Transport, combination Truck, average fuel mix3 

Transport, combination truck, diesel powered/US 

GLASS BOTTLE          

PP Resin  Polypropylene resin, at plant/RNA2 RNA: Polypropylene resin, at plant3 

Polypropylene (PP), virgin, Compass/US 

ECCS Sheet Steel  ECCS steel sheet8 RER: tin plated chromium steel sheet, 2mm, at plant1 

Steel, virgin, Compass/US 

Silica (White Sand) 

Glass bottles FAL7 Glass bottles recycled FAL7 

RER: packaging glass, green, at plant1 

RER: packaging glass, brown, at plant1 

Container Glass, virgin, Compass/US 

Soda (Sodium Bicarbonate) 

Lime (Limestone) 

Cullet (Recycled Glass) 

Iron Sulphide 

Page 78: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

78

Blown Film Process to Form Labels Extrusion, plastic film/RER with US electricity U1 

RER: extrusion, plastic film1  Extrusion, plastic film/US 

Stamping Process  Crown caps (1 million)8 RER: cold impact extrusion, steel, 1 stroke1 

Sheet rolling, steel/RER U 

Glass Furnace     omitted    

Flexographic Printing  Flexography CF8  omitted    

Press and Blow Process to form Bottle 

Glass bottles FAL7 Glass bottles recycled FAL7 

omitted Production of Container Glass  (unit process file name not available) 

*Incertion of Cap Liner  omitted  omitted    

*Cleaning, Filling, Sealing and Applying Label  omitted  omitted    

*Warehousing, Distribution, Sales and Use  omitted  omitted    

Landfill 

Landfill Glass B250 (1998)8 

Landfill ECCS steel B250(1998)8 

Landfill/CH with US electricity U1 Disposal, polyethylene, 0.4% water, to sanitary landfill/CH with US electricity U1 

CH: disposal, glass, 0% water, to inert material landfill1 CH: disposal, polyethylene, 0.4% water, to sanitary landfill1 CH: disposal, steel, 0% water, to inert material landfill1 

Disposal, inert material, 0% water, to sanitary landfill/CH U Disposal, polypropylene, 15.9% water, to sanitary landfill/CH U Disposal, tin sheet, 0% water, to sanitary landfill/CH U 

Incineration  

Incineration/CH with US electricity U1 Disposal, glass, 0% water, to municipal incineration/CH with US electricity U1 Disposal, polyethylene, 0.4% water, to municipal incineration/CH with US electricity U1 Disposal, steel, 0% water, to municipal incineration/CH with US electricity U1 

CH: disposal, glass, 0% water, to municipal incineration1 CH: disposal, polyethylene, 0.4% water, to municipal incineration1 CH: disposal, steel, 0% water, to municipal incineration1 

Disposal, glass, 0% water, to municipal incineration/CH U Disposal, polypropylene, 15.9% water, to municipal incineration/CH U Disposal, tin sheet, 0% water, to municipal incineration/CH U 

Page 79: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

79

Recycling 

Recycling glass/RER with US electricity U1 Recycling PP/RER with US electricity U1 Recycling PE/RER with US electricity U1 Recycling steel and iron/RER with US electricity U1 

omitted Recycling glass/RER U Recycling PP/RER U Recycling steel and iron/RER U 

Truck Transportation Transport, combination truck, average fuel mix/US2 

US: Transport, combination Truck, average fuel mix3 

Transport, combination truck, diesel powered/US 

Rail Transportation Transport, freight, rail, diesel/US with US electricity U1 

US: transport, freight, rail, diesel1 

Transport, train, diesel powered/US 

ALUMINUM CAN          

Aluminum Sheet for Can Bodies (3004/3104) 

Aluminum can FAL7 RER: aluminium, primary, at plant1 

Aluminum, virgin, Compass/US Aluminum Sheet for Tab (5082/5182/5042) 

Aluminum Sheet for Can Ends (5052/5082/5182) 

Aluminum Recycled Content  Aluminum can 100% recycled FAL7 RER: aluminium, secondary, from old scrap, at plant1 

  

Draw and Iron Process to Form Can Bodies 

Aluminum can FAL7 Aluminum can 100% recycled FAL7 

RER: sheet rolling, aluminium1  Sheet rolling, aluminium/RER U 

Stamping Process to Form Stay‐Tab  RER: cold impact extrusion, aluminium, 2 stroks1 

  Stamping Process to form Ends 

Attachment of Stay‐Tab to End  omitted    

*Printing Process  omitted  omitted    

*Coating (liner) Process  omitted  omitted    

*Interior Coating (Liner) Process  omitted  omitted    

*Cleaning, Filling, Sealing and Applying Label 

omitted  omitted    

*Warehousing, Distribution, Sales and Use 

omitted  omitted    

Page 80: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

80

Landfill 

Landfill/CH with US electricity U1

Disposal, aluminium, 0% water, to sanitary landfill/CH with US electricity U1 

CH: disposal, aluminium, 0% water, to inert material landfill1 

Disposal, aluminium, 0% water, to sanitary landfill/CH U 

Incineration  

Incineration/CH with US electricity U1 Disposal, aluminium, 0% water, to municipal incineration/CH with US electricity U1 

CH: disposal, aluminium, 0% water, to municipal incineration1 

Disposal, aluminium, 0% water, to municipal incineration/CH U 

Recycling Recycling aluminium/RER with US electricity U1 

omitted  Recycling aluminium/RER U 

Truck Transportation Transport, combination truck, average fuel mix/US2 

US: Transport, combination Truck, average fuel mix3 

Transport, combination truck, diesel powered/US 

PLA BOTTLE          

PLA Resin Polylactide, granulate, NatureWorks Nebraska/US with US electricity U1 

US: Ingeo Polylactide (PLA) biopolymer production NatureWorks5 

Polylactic Acid Pellet (PLA), virgin, Compass/US 

HDPE Resin Polyethylene, HDPE, granulate, at plant/RER with US electricity U1 

RER: polyethylene, HDPE, granulate, at plant1 

High‐Density Polyethylene (HDPE), virgin, Compass/US 

Cast Film Process to Form Labels Extrusion, plastic film/RER with US electricity U1 

RER: extrusion, plastic film1    

Injection Stretch Blow Molding to Form Bottles 

Stretch blow moulding/RER with US electricity U1 

RER: stretch blow moulding1 Stretch Blow Molding (unit process file name not available) 

Injection Molding to Form Closure Injection moulding/RER with US electricity U1 

RER: injection moulding1  Injection moulding/RER U 

Flexographic Printing  Flexography CF8  omitted    

*Cleaning, Filling, Sealing and Applying Label 

omitted  omitted    

*Warehousing, Distribution, Sales and Use 

omitted  omitted    

Landfill 

Landfill/CH with US electricity U1

Disposal, polyethylene, 0.4% water, to sanitary landfill/CH with US electricity U1 Disposal, polyethylene terephthalate, 0.2% water, to 

CH: disposal, polyethylene, 0.4% water, to sanitary landfill1 CH: disposal, polyethylene terephthalate, 0.2% water, to sanitary landfill1 

Disposal, plastics, mixture, 15.3% water, to sanitary landfill/CH U Disposal, polyethylene, 0.4% water, to sanitary landfill/CH U 

Page 81: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

81

sanitary landfill/CH with US electricity U1 

Incineration  

Incineration/CH with US electricity U1 Disposal, polyethylene, 0.4% water, to municipal incineration/CH with US electricity U1 Disposal, polyethylene terephthalate, 0.2% water, to municipal incineration/CH with US electricity U1 

CH: disposal, polyethylene, 0.4% water, to municipal incineration1 CH: disposal, polyethylene terephthalate, 0.2% water, to municipal incineration1 

Disposal, plastics, mixture, 15.3% water, to municipal incineration/CH U Disposal, polyethylene, 0.4% water, to municipal incineration/CH U 

Recycling Recycling PE/RER with US electricity U1 

omitted  Recycling mixed plastics/RER U 

Industrial Composting Composting organic waste/RER with US electricity U1 

CH: compost, at plant1    

Truck Transportation Transport, combination truck, average fuel mix/US2 

US: Transport, combination truck, average fuel mix1 

Transport, combination truck, diesel powered/US 

Aseptic Carton (TETRA BRIK)          

PP Resin  Polypropylene resin, at plant/RNA2 RNA: Polypropylene resin, at plant3 

Polypropylene (PP), virgin, Compass/US 

LDPE Resin Low density polyethylene resin, at plant/RNA2 

RNA: Low density polyethylene resin, at plant3 

Low‐Density Polyethylene (LDPE), virgin, Compass/US 

LLDPE Resin Linear low density polyethylene resin, at plant/RNA2 

RNA: Linear low density polyethylene resin, at plant3 

Linear Low‐Density Polyethylene (LLDPE), virgin, Compass/US 

Aluminum  Aluminium foil B2508  RER: Aluminium foil4  Aluminum, virgin, Compass/US 

Paper Kraft paper, bleached, at plant/RER with US electricity U1 

Cutting rolls CF8 

RER: kraft paper, bleached, at plant1 

Solid Bleached Sulfate (SBS) Board, virgin, Compass/US 

Cast Film Process for Film to Contain Straw 

   RER: extrusion, plastic film1  Extrusion, plastic film/US 

Extrusion Process to Form Straw Extrusion, plastic film/RER with US electricity U1 

RER: extrusion, plastic film1  Extrusion, plastic film/US 

Film Layer Extrusion Process Extrusion, plastic film/RER with US electricity U1 

RER: extrusion, plastic film1  Extrusion, plastic film/US 

Page 82: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

82

Rolling Process to Form Foil  Aluminium foil B2508   omitted  Sheet rolling, aluminium/RER U 

Flexographic Printing  Flexography CF8  omitted    

Form/Fill/Seal to Create Straw in Packet 

   omitted    

Lamination to Form Multilayer Material 

omitted  omitted    

*Sterilization, Forming, Filling and Sealing  omitted  omitted    

*Warehousing, Distribution, Sales and Use  omitted  omitted    

Landfill 

Landfill/CH with US electricity U1

Disposal, polyethylene, 0.4% water, to sanitary landfill/CH with US electricity U1 Disposal, aluminium, 0% water, to sanitary landfill/CH with US electricity U1 Disposal, paper, 11.2% water, to sanitary landfill/CH with US electricity U1 Disposal, packaging paper, 13.7% water, to sanitary landfill/CH with US electricity U1 

CH: disposal, polyethylene, 0.4% water, to sanitary landfill1 CH: disposal, aluminium, 0% water, to sanitary landfill1 CH: disposal, packaging paper, 13.7% water, to sanitary landfill1 

Disposal, polypropylene, 15.9% water, to sanitary landfill/CH U Disposal, polyethylene, 0.4% water, to sanitary landfill/CH U Disposal, aluminium, 0% water, to sanitary landfill/CH U Disposal, packaging cardboard, 19.6% water, to sanitary landfill/CH U 

Incineration  

Incineration/CH with US electricity U1 Disposal, polyethylene, 0.4% water, to municipal incineration/CH with US electricity U1 Disposal, aluminium, 0% water, to municipal incineration/CH with US electricity U1 Disposal, paper, 11.2% water, to municipal incineration/CH with US electricity U1 Disposal, packaging paper, 13.7% water, to municipal 

CH: disposal, polyethylene, 0.4% water, to municipal incineration1 CH: disposal, aluminium, 0% water, to municipal incineration1 CH: disposal, packaging paper, 13.7% water, to municipal incineration1 

Disposal, polypropylene, 15.9% water, to municipal incineration/CH U Disposal, polyethylene, 0.4% water, to municipal incineration/CH U Disposal, aluminium, 0% water, to municipal incineration/CH U Disposal, packaging cardboard, 19.6% water, to municipal incineration/CH U 

Page 83: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

83

incineration/CH with US electricity U1 

Recycling 

Recycling PE/RER with US electricity U1 Recycling aluminium/RER with US electricity U1 Recycling PP/RER with US electricity U1 Recycling paper/RER with US electricity U1 

omitted 

Recycling PP/RER U Recycling PE/RER U Recycling aluminium/RER U Recycling cardboard/RER U 

Truck Transportation Transport, combination truck, average fuel mix/US2 

US: Transport, combination truck, average fuel mix3 

Transport, combination truck, diesel powered/US 

POUCH FOR TUNA          

PET Resin Polyethylene terephthalate, granulate, amorphous, at plant/RER with US electricity U1 

RER: polyethylene terephthalate, granulate, amorphous, at plant1 

Polyethylene Terephthalate (PET), virgin, Compass/US 

Nylon Resin Nylon 6, at plant/RER with US electricity U1 

RER: nylon 6, at plant1  Nylon 6, virgin, Compass/US 

Aluminum  Aluminium foil B2508  RER: Aluminium foil4  Aluminum, virgin, Compass/US 

PP Resin  Polypropylene resin, at plant/RNA2 RNA: Polypropylene resin, at plant3 

Polypropylene (PP), virgin, Compass/US 

Cast Film Process (Printable Outer Layer) 

Extrusion, plastic film/RER with US electricity U1 

RER: extrusion, plastic film1  Extrusion, plastic film/RER U Cast Film Process (Middle Layer) 

Cast Film Process (Food Contact Layer) 

Rolling Process to Form Foil  Aluminium foil B2508  omitted  Sheet Rolling, aluminium/RER U 

Reverse Gravure Printing  Gravure printing CF8  omitted    

Lamination to Form Multilayer Material 

Laminating solvent free8  omitted    

Conversion Process to Form Pouches  Production of pouch 100 g8  omitted    

*Adhesives For Laminating Layer Together  omitted  omitted    

*Cleaning, Filling, Sealing and Retorting  omitted  omitted    

Page 84: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

84

*Warehousing, Distribution, Sales and Use  omitted  omitted    

Landfill 

Landfill/CH with US electricity U1

Disposal, polyethylene terephthalate, 0.2% water, to sanitary landfill/CH with US electricity U1 Disposal, aluminium, 0% water, to sanitary landfill/CH with US electricity U1 Disposal, polyethylene, 0.4% water, to sanitary landfill/CH with US electricity U1 

CH: disposal, polyethylene terephthalate, 0.2% water, to sanitary landfill1 CH: disposal, aluminium, 0% water, to sanitary landfill1 CH: disposal, polyethylene, 0.4% water, to sanitary landfill1 

Disposal, polyethylene terephthalate, 0.2% water, to sanitary landfill/CH U Disposal, plastics, mixture, 15.3% water, to sanitary landfill/CH U Disposal, aluminium, 0% water, to sanitary landfill/CH U Disposal, polypropylene, 15.9% water, to sanitary landfill/CH U 

Incineration  

Incineration/CH with US electricity U1 Disposal, polyethylene terephthalate, 0.2% water, to municipal incineration/CH with US electricity U1 Disposal, aluminium, 0% water, to municipal incineration/CH with US electricity U1 Disposal, polyethylene, 0.4% water, to municipal incineration/CH with US electricity U1 

CH: disposal, polyethylene terephthalate, 0.2% water, to municipal incineration1 CH: disposal, aluminium, 0% water, to municipal incineration1 CH: disposal, polyethylene, 0.4% water, to municipal incineration1 

Disposal, polyethylene terephthalate, 0.2% water, to municipal incineration/CH U Disposal, plastics, mixture, 15.3% water, to municipal incineration/CH U Disposal, aluminium, 0% water, to municipal incineration/CH U Disposal, polypropylene, 15.9% water, to municipal incineration/CH U 

Recycling  omitted  omitted 

Recycling PE/RER U Recycling mixed plastics/RER U Recycling Aluminum/RER U Recycling PP/RER U 

Truck Transportation Transport, combination truck, average fuel mix/US2 

US: Transport, combination truck, average fuel mix3 

Transport, combination truck, diesel powered/US 

STEEL TUNA CAN          

Paper (for Label) Kraft paper, bleached, at plant/RER with US electricity U1 

RER: kraft paper, bleached, at plant1 

Bleached Kraft Paper, virgin, Compass/US 

Page 85: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

85

Tin Free Sheet Steel ECCS steel sheet8

ECCS steel 100% scrap8 RER: Steel ECCS worldsteel6  Steel, virgin, Compass/US 

Flexographic Printing  Flexography CF8  omitted    

Organic Coating Application Process  omitted  omitted    

Stamping Process to Form Lid Cold impact extrusion, steel, 1 stroke/RER with US electricity U1 

RER: cold impact extrusion, steel, 1 stroke1 

Sheet rolling, steel/RER U 

Draw‐Redraw Process to Form 2 Piece Can 

Cold impact extrusion, steel, 1 stroke/RER with US electricity U1 

RER: cold impact extrusion, steel, 1 stroke1 

Sheet rolling, steel/RER U 

*Cleaning, Filling, Sealing, Retorting & Applying Label  omitted  omitted    

*Label Adhesive  omitted  omitted    

*Warehousing, Distribution, Sales and Use  omitted  omitted    

Landfill 

Landfill/CH with US electricity U1 Landfill ECCS steel B250(1998)8 Disposal, paper, 11.2% water, to sanitary landfill/CH with US electricity U1 Disposal, packaging paper, 13.7% water, to sanitary landfill/CH with US electricity U1 

CH: disposal, steel, 0% water, to inert material landfill1 CH: disposal, packaging paper, 13.7% water, to sanitary landfill1 

Disposal, tin sheet, 0% water, to sanitary landfill/CH U Disposal, packaging paper, 13.7% water, to sanitary landfill/CH U 

Incineration (Label) 

Incineration/CH with US electricity U1 Disposal, steel, 0% water, to municipal incineration/CH with US electricity U1 Disposal, paper, 11.2% water, to municipal incineration/CH with US electricity U1 Disposal, packaging paper, 13.7% water, to municipal incineration/CH with US electricity U1 

CH: disposal, steel, 0% water, to municipal incineration1 CH: disposal, packaging paper, 13.7% water, to municipal incineration1 

Disposal, tin sheet, 0% water, to municipal incineration/CH U Disposal, packaging paper, 13.7% water, to municipal incineration/CH U 

Recycling Recycling steel and iron/RER with US electricity U1 Recycling paper/RER with US 

omitted    

Page 86: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

86

electricity U1

Truck Transportation Transport, combination truck, average fuel mix/US2 

US: Transport, combination truck, average fuel mix3 

Transport, combination truck, diesel powered/US 

POLYPROPYLENE CRATE          

PP Resin  Polypropylene resin, at plant/RNA2 RNA: Polypropylene resin, at plant3 

Polypropylene (PP), virgin, Compass/US 

Injection Molding to Form Crate Injection moulding/RER with US electricity U1 

RER: injection moulding1  Injection moulding/RER U 

*Filling  omitted  omitted    

*Distribution Center  omitted  omitted    

*Destination  omitted  omitted    

*Port  omitted  omitted    

*Cleaning  omitted  omitted    

Landfill 

Landfill/CH with US electricity U1 Disposal, polyethylene, 0.4% water, to sanitary landfill/CH with US electricity U1 

CH: disposal, polyethylene, 0.4% water, to sanitary landfill1 

Disposal, polypropylene, 15.9% water, to sanitary landfill/CH U 

Incineration 

Incineration/CH with US electricity U1 Disposal, polyethylene, 0.4% water, to municipal incineration/CH with US electricity U1 

CH: disposal, polyethylene, 0.4% water, to municipal incineration1 

Disposal, polypropylene, 15.9% water, to municipal incineration/CH U 

Recycling Recycling PP/RER with US electricity U1 

omitted    

Truck Transportation Transport, combination truck, diesel powered/US2 

US: Transport, combination truck, diesel powered3 

Transport, combination truck, diesel powered/US 

Air Transportation  Transport, aircraft, freight/US2  US: Transport, aircraft, freight3  Operation, aircraft, freight, Europe/RER U 

Refrigerated Truck Transportation Transport, combination truck, diesel powered/US2 Refrigerator, big, A9 

US: Transport, combination truck, diesel powered3 

Transport, combination truck, diesel powered/US 

Ship Transportation (water) Transport, ocean freighter,average fuel mix/US2 

US: Transport, ocean freighter, average fuel mix3 

Operation, transoceanic freight ship/OCE U 

Page 87: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

87

CORRUGATED BOX          

C‐Flute Corrugated Board 

Packaging, corrugated board, mixed fibre, single wall, at plant/RER with US electricity U1 (Note: Modified into two new files, one using FRESH fiber, and one using RECYCLED fiber) 

RER: corrugated board, fresh fibre, single wall, at plant1 

RER: corrugated board, recycling fibre, single wall, at plant1 

Corrugated, virgin, Compass/US 

Conversion Process to Form Box  omitted RER: packaging box production unit1 

Packaging, corrugated board, mixed fibre, single wall, at plant/RER U (modified by COMPASS: without material input so to not double count the material impacts) 

*Filling  omitted  omitted    

*Distribution Center  omitted  omitted    

*Destination  omitted  omitted    

Landfill 

Landfill/CH with US electricity U1 Disposal, packaging cardboard, 19.6% water, to sanitary landfill/CH with US electricity U1 

CH: disposal, packaging cardboard, 19.6% water, to sanitary landfill1 

Disposal, packaging cardboard, 19.6% water, to sanitary landfill/CH U 

Incineration 

Incineration/CH with US electricity U1 Disposal, packaging cardboard, 19.6% water, to municipal incineration/CH with US electricity U1 

CH: disposal, packaging cardboard, 19.6% water, to municipal incineration1 

Disposal, packaging cardboard, 19.6% water, to municipal incineration/CH U 

Recycling Recycling cardboard/RER with US electricity U1 

omitted  Recycling Cardboard/RER U 

Truck Transportation Transport, combination truck, diesel powered/US2 

US: Transport, combination truck, diesel powered3 

Transport, combination truck, diesel powered/US 

Air Transportation  Transport, aircraft, freight/US2  US: Transport, aircraft, freight3  Operation, aircraft, freight, Europe/RER U 

Refrigerated Truck Transportation Transport, combination truck, diesel powered/US2 Refrigerator, big, A9 

US: Transport, combination truck, diesel powered3 

Transport, combination truck, diesel powered/US 

Page 88: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

88

BASE MATERIAL ALUMINUM          

Aluminum Material 

Aluminium, primary, at plant/RER U1 Aluminium, secondary, from old scrap, at plant/RER U1 

**RER: aluminium, primary, at plant1 **RER: aluminium, secondary, from old scrap, at plant1 

Aluminum, virgin, Compass/US 

Landfill Landfill/CH U1 Disposal, aluminium, 0% water, to sanitary landfill/CH U1 

**CH: disposal, aluminium, 0% water, to sanitary landfill1 

Disposal, aluminium, 0% water, to sanitary landfill/CH U 

Incineration Incineration/CH U1 Disposal, aluminium, 0% water, to municipal incineration/CH U1 

omitted Disposal, aluminium, 0% water, to municipal incineration/CH U 

Recycling  Recycling aluminium/RER U1  omitted  Recycling aluminium/RER U 

BASE MATERIAL CORRUGATE          

Corrugated Board Material 

Corrugated board, fresh fibre, single wall, at plant/RER U1 Corrugated board, recycling fibre, single wall, at plant/RER U1 

**RER: corrugated board, fresh fibre, single wall, at plant1 **RER: corrugated board, recycling fibre, single wall, at plant1 

Corrugated, virgin, Compass/US 

Landfill 

Landfill/CH U1 Disposal, packaging cardboard, 19.6% water, to sanitary landfill/CH U1 

**CH: disposal, packaging cardboard, 19.6% water, to sanitary landfill1 

Disposal, packaging cardboard, 19.6% water, to sanitary landfill/CH U 

Incineration 

Incineration/CH U1 Disposal, packaging cardboard, 19.6% water, to municipal incineration/CH U1 

**CH: disposal, packaging cardboard, 19.6% water, to municipal incineration1 

Disposal, packaging cardboard, 19.6% water, to municipal incineration/CH U 

Recycling  Recycling cardboard/RER U1  omitted  Recycling Cardboard/RER U 

BASE MATERIAL GLASS          

Glass Material 

Packaging glass, brown, at plant/RER U1 Packaging glass, green, at plant/RER U1 

**RER: packaging glass, green, at plant1 RER: packaging glass, brown, at plant1 

Container Glass, virgin, Compass/US 

Page 89: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

89

Landfill Landfill/CH U1 Disposal, inert material, 0% water, to sanitary landfill/CH U1 

**CH: disposal, inert material, 0% water, to sanitary landfill1 

Disposal, inert material, 0% water, to sanitary landfill/CH U 

Incineration Incineration/CH U1 Disposal, glass, 0% water, to municipal incineration/CH U1 

**CH: disposal, glass, 0% water, to municipal incineration1 

Disposal, glass, 0% water, to municipal incineration/CH U 

Recycling  Recycling glass/RER U1  omitted  Recycling glass/RER U 

BASE MATERIAL PET          

Polyethylene Terephthalate Polyethylene terephthalate, granulate, bottle grade, at plant/RER U1 

**RER: polyethylene terephthalate, granulate, bottle grade, at plant1 

Polyethylene Terephthalate (PET), virgin, Compass/US 

Landfill 

Landfill/CH U1 Disposal, polyethylene terephthalate, 0.2% water, to sanitary landfill/CH U1 

**CH: disposal, polyethylene terephthalate, 0.2% water, to sanitary landfill1 

Disposal, polyethylene terephthalate, 0.2% water, to sanitary landfill/CH U 

Incineration 

Incineration/CH U1 Disposal, polyethylene terephthalate, 0.2% water, to municipal incineration/CH U1 

**CH: disposal, polyethylene terephthalate, 0.2% water, to municipal incineration1 

Disposal, polyethylene terephthalate, 0.2% water, to municipal incineration/CH U 

Recycling  Recycling PET/RER U1  omitted  Recycling PET/RER U 

* Not modeled in this study **Created in GaBi 4 Software 

Page 90: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

90

Appendix 3 – Introduction to Life Cycle Assessment and Discussion of Impact Assessment Methodologies. Life cycle assessment (LCA) is defined as the "compilation and evaluation of the inputs, outputs and potential environmental impacts of a product system throughout its life cycle" (ISO 14040 Environmental management-Life cycle assessment-Principles and framework). Thus, LCA is a tool for the analysis of the environmental burden of products at all stages in their life cycle – from the extraction of resources, through the production of materials, product parts and the product itself, and the use of the product to the management after it is discarded, either by reuse, recycling or final disposal (in effect, therefore, "from the cradle to the grave’). The environmental burden ideally covers all types of impacts upon the environment, including extraction of different types of resources, emission of hazardous substances and different types of land use.

Basically, LCA is composed of four steps: goal and scope, inventory analysis, impact assessment and interpretation of results. In the goal and scope step, the main focus is establishing the boundary and functional unit as well as the purpose, including to whom the results of the study are intended to be communicated. The functional unit provides a reference amount for comparison of input and output data (ISO 14044 Environmental Management - Life cycle assessment – Requirements and Guidelines). As specified in the ISO standards, inventory analysis involves data collection and calculation procedures to quantify relevant inputs and outputs of a product system. The impact assessment phase of LCA is aimed at evaluating the significance of potential environmental impacts using the results of the life cycle inventory analysis. In general, this process involves associating inventory data with specific environmental impacts and understanding those impacts. The interpretation phase is a systematic procedure to identify, qualify, check and evaluate information from the results of the inventory analysis and/or impact assessment of a product system and to present them to meet the requirements of the application as described in the goal and scope of the study (ISO 14044). A number of different life cycle impact assessment methodologies are available. Impact 2002+, which is very commonly used, was chosen as the base method for this study, supplemented by ReCiPe. Impact 2002+ The Impact 2002+ method converts life cycle inventory data into midpoint categories, which are the impact categories, and then converts the impact categories into damage categories (endpoint categories) by means of midpoint reference units. Figure A2-1 illustrates the overall relationships among life cycle inventory data, midpoint categories and damage categories. The source for the information in this section is Jolliet et al, IMPACT 2002+: A New Life Cycle Impact Assessment Methodology, Int. J. LCA, 8(6):324-330, 2003.

Page 91: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

91

Figure A2-1. Overall scheme of the IMPACT 2002+ framework (http://www.sph.umich.edu/riskcenter/jolliet/impact2002+.htm) Midpoint categories Human toxicity is categorized as carcinogens and non-carcinogens. Characterization factors for chronic toxicological effects on human health provide estimates of the cumulative toxicological risk and potential impacts associated with a specified mass of a chemical emitted into the environment. At the midpoint level, these are termed Human Toxicity Potentials (HTP) and at the damage level are termed Human Damage Factors (HDF). The methodology involves consideration of both “fate” of the emissions (including transport in the environment, exposure, and intake) and “effect” (characterizing the potential risks associated with the intake). The characterization factors are then expressed in kg-equivalents of chloroethylene, as the reference substance.

Page 92: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

92

Impacts on aquatic and terrestrial ecotoxicity are treated similarly to human toxicity, and incorporate consideration of both fate and effect. The primary difference is that the effects are evaluated at the species level rather than on individuals. Characterization factors are expressed in kg-equivalents of triethylene glycol. The characterization factors for the midpoint categories of respiratory effects, photochemical oxidation, ionizing radiation, ozone layer depletion and terrestrial acidification/nutrification are based on Eco-indicator 99. The “respiratory effects” category is limited to respiratory inorganics, characterized as kg-equivalents of PM2.5 (particulate matter 2.5 microns in size or smaller). Respiratory organics, characterized as kg-equivalents of ethylene, are labeled as photochemical oxidation. Ionizing radiation is reported as Bq-equivalents of carbon 14, and ozone layer depletion as kg-equivalents of CFC-11. Terrestrial acidification/nutrification is reported in kg-equivalents of sulfur dioxide, as is aquatic acidification. Aquatic nutrification is reported as kg-equivalents of phosphate in a phosphorus-limited environment. While some aquatic environments are currently nitrogen-limited, this method considers that phosphorus provides the ultimate limitation even in such environments due to the ability of bacteria to fix atmospheric nitrogen. Land occupation is reported as equivalent square meters of organic arable land-years, also based in Eco-indicator 99. Mineral extraction, also based on Eco-indicator 99, is reported as MJ of additional energy required to obtain the resource (based on depletion of resources accessible with lower amounts of energy expenditure). Non-renewable energy use, based on the total primary energy extracted, is also reported in MJ and calculated using upper heating values.

Global warming is reported as kg-equivalents of carbon dioxide, using the latest Intergovernmental Panel on Climate Change (IPCC) Global Warming Potentials with a 500 year time horizon to account for long-term effects.

Damage Categories Impact 2002+ calculates damage category values by multiplying the midpoint category numbers by damage characterization factors for the reference substances. The damage categories are human health, ecosystem quality, climate change, and resources, as indicated in Figure A2-1. The human health category is comprised of human toxicity, respiratory effects, ionizing radiation, ozone layer depletion, and photochemical oxidation. It is expressed in units of Disability Adjusted Life Years (DALY). DALY accounts for both mortality (years of life lost due to premature death) and morbidity. Ecosystem quality is comprised of aquatic ecotoxicity, terrestrial ecotoxicity, terrestrial acidification/nutrification, and land occupation, and is expressed in units of Potentially

Page 93: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

93

Disappeared Fraction (PDF)-square meter-year. Aquatic acidification and eutrophication, photochemical oxidation, and ozone depletion also contribute to this category but are not currently included in the damage characterization. The climate change category is comprised simply of the global warming value, and has the same units of kg-equivalents of carbon dioxide. The resource depletion category is comprised of non-renewable energy and mineral extraction, and has units of MJ. ReCiPe ReCiPe (http://www.lcia-recipe.net/) is an alternative impact assessment methodology. One of the drawbacks of using IMPACT 2002+ as the impact assessment method is that it does not provide any measure of water consumption or water depletion. The COMPASS system reports water consumption, measured in liters, as one impact measure. Therefore, we chose to supplement IMPACT 2002+ with a measure of “water depletion” from ReCiPe, also reported in liters. While the category names differ slightly, they appear to be measuring the same basic impact. COMPASS Discussion of the life cycle metrics for COMPASS can be found at https://www.design-compass.org/resources/pdf/LIFE_CYCLE_METRICS.pdf. COMPASS reports fossil fuel consumption in MJ equivalent, water consumption in liters, biotic resource consumption in cubic meters, total mineral consumption in kg, and greenhouse gas emissions in kg-equivalents of carbon dioxide. Clean production – human impacts is reported only as a total, in units of DALY. One significant difference from IMPACT 2002+ is that clean production - aquatic toxicity is reported in units of Comparative Toxic Unit ecosystem (CTUe), which corresponds to a fraction of disappeared species over a cubic meter of fresh or marine water during one year. While this bears an obvious relationship to the PDF unit in IMPACT 2002+, reported values differ by more than an order of magnitude, and conversion from one set of units to the other is not straightforward. One complicating factor is that this measure in COMPASS appears to include terrestrial ecotoxicity as well as aquatic.

Page 94: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

94

Appendix 4 - Additional Impact Data for Base Materials Glass Table A4-1 COMPASS values for glass COMPASS SOFTWARE             

         PCR    

      0  50  100 

Impact Category  Units          

Fossil Fuel Consumption  MJ eq  13.61 13.25 12.90 

Water Consumption  Liters  11.91 8.71 5.504 

Biotic Resource Consumption  m3  0.06417 0.06364 0.06311 

Mineral Consumption  kg  1.1439 0.6235 0.1030 

GHG Emission  kg CO2 eq  0.8207 0.7852 0.7497 

Human Impacts Total  DALY  2.07E‐07 1.99E‐07 1.91E‐07 

Aquatic Toxicity  CTUe  0.004956 0.004920 0.004884 

Eutrophication  kg PO4 eq  0.000572 0.000536 0.000500 

Table A4-2 SimaPro values for glass

 SIMAPRO USING IMPACT 2002+/ReCiPe PCR 

0  50  100 

Impact Category  Units          

Non‐renewable energy  MJ primary  16.06 15.63  15.20

Water depletion  liters  12.214 8.995  5.776

Global warming  kg CO2 eq  0.9055 0.8695  0.8334

Carcinogens+Non‐carcinogens+Respiratory Inorganics+Respiratory Organics  DALY  9.29E‐07 9.01E‐07  8.73E‐07

Aquatic ecotoxicity  PDF*m2*yr  0.0000705 0.0000662  0.0000618

Aquatic eutrophication  kg PO4 P‐lim  0.0001675 0.0001512  0.0001349

Table A4-3 GaBi values for glass Gabi 4 Software                   

         PCR 

      0  50  55.5  83.5  100 

Impact Category  Units       Brown Glass  Green Glass    

Fossil Fuel Consumption  MJ eq  15.78 15.34 15.30 15.05  14.91

Water Consumption  Liters  1827 1670 1652 1564  1512

Global Warming  kg CO2 eq  0.8421 0.8059 0.8020 0.7817  0.7698

Aquatic Ecotoxicity  TEG  19870 19654 19631 19510  19439

Aquatic Eutrophication  kg PO4 Equiv.  7.37E‐4 6.69E‐4 6.62E‐4 6.24E‐4  6.02E‐4

Page 95: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

95

Table A4-4 Comparison of SimaPro and GaBi impacts for glass Impact

category Unit SimaPro GaBi 0 PCR  50 PCR  100 PCR  0 PCR  50 PCR  100 PCR 

Aquatic acidification kg SO2 eq 0.008142 0.007808 0.007474 0.005822  0.005504  0.005187 Aquatic ecotoxicity

kg TEG water 140.5 131.9 123.2 19871  19655  19439 

Aquatic eutrophication

kg PO4 P-lim 0.000167 0.000151 0.000135 0.000737  0.000669  0.000602 

Carcinogens kg C2H3Cl eq 0.01651 0.015541 0.014572 0.005927  0.005661  0.005395 

Global warming kg CO2 eq 0.9055 0.8695 0.8334 0.8421  0.8059  0.7698 Ionizing radiation Bq C-14 eq 16.35 15.62 14.89 15.60  14.90  14.20 Land occupation

m2org. arable 0.03173 0.03131 0.03088 0.000003  0.000003  0.000003 

Mineral extraction MJ surplus 0.007836 0.006512 0.005187 0.065939  0.053646  0.041354 Non-carcinogens

kg C2H3Cl eq 0.010222 0.00996 0.009697 0.084941  0.081551  0.078161 

Ozone layer depletion

kg CFC-11 eq 6.58E‐09 6.46E‐09 6.33E‐09 1.01E‐07  1.01E‐07  1.00E‐07 

Photochemical oxidation - Respiratory organics kg C2H4 eq 0.000026 0.000025 0.000023 0.000239  0.000238  0.000237 Respiratory effects - Respiratory inorganics

kg PM2.5 eq 0.001220 0.001185 0.001150 0.001282  0.001239  0.001197 

Terrestrial acid/nutri kg SO2 eq 0.02575 0.02447 0.02320 0.02576  0.02448  0.02320 Terrestrial ecotoxicity kg TEG soil 4.125 3.920 3.716 8.919  8.750  8.581 Non-renewable energy MJ primary 16.06 15.63 15.20 15.78  15.34  14.91 

Page 96: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

96

PET Table A4-5 Comparison of SimaPro and GaBi impacts for PET

Impact category Unit SimaPro  GaBi 

Aquatic acidification kg SO2 eq 0.010542 0.007062 

Aquatic ecotoxicity kg TEG water 569 10029 

Aquatic eutrophication kg PO4 P-lim 0.000582 0.003040 

Carcinogens kg C2H3Cl eq 1.3117 0.01616 

Global warming kg CO2 eq 3.2656 3.2698 

Ionizing radiation Bq C-14 eq 64.99 61.95 

Land occupation m2org.arable 0.012325 0.0000013 

Mineral extraction MJ surplus 0.06256 0.57403 

Non-carcinogens kg C2H3Cl eq 0.02665 0.23213 

Ozone layer depletion kg CFC-11 eq 0.113E‐7 1.45E‐7 Photochemical oxidation - Respiratory organics kg C2H4 eq 0.000153 0.001922 Respiratory effects - Respiratory inorganics kg PM2.5 eq 0.001702 0.001930 

Terrestrial acid/nutri kg SO2 eq 0.034716 0.034726 

Terrestrial ecotoxicity kg TEG soil 8.800 19.443 

Non-renewable energy MJ primary 82.38 80.93 

Page 97: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

97

Corrugated Board Table A4-6 COMPASS values for corrugated board COMPASS SOFTWARE             

         PCR    

      12  50  87 

Impact Category  Units          

Fossil Fuel Consumption  MJ eq  11.22 12.21 13.16 

Water Consumption  Liters  40.180 23.708 7.669 

Biotic Resource Consumption  m3  1.4538 0.7439 0.0526 

Mineral Consumption  kg  0.5632 0.2810 0.0062 

GHG Emission  kg CO2 eq  0.09269 0.6838 1.2594 

Human Impacts Total  DALY  1.61E‐7 1.01E‐7 0.43E‐7 

Aquatic Toxicity  CTUe  0.2703 0.3856 0.4979 

Eutrophication  kg PO4 eq  0.001765 0.001464 0.001172 

Table A4-7 SimaPro values for corrugated board SIMAPRO USING IMPACT 2002+/ReCiPe          

         PCR    

      12  50  87 

Impact Category  Units          

Non‐renewable energy  MJ primary  15.23 15.20  15.17

Water depletion  liters  37.03 24.62  12.54

Global warming  kg CO2 eq  0.9457 0.9455  0.9453

Carcinogens+Non‐carcinogens+Respiratory Inorganics+Respiratory Organics  DALY  8.76E‐07 6.74E‐07  4.78E‐07

Aquatic ecotoxicity  PDF*m2*yr  0.0000951 0.0000854  0.0000759

Aquatic eutrophication  kg PO4 P‐lim  0.000563 0.000395  0.000233

Table A4-8 GaBi values for corrugated board Gabi 4 Software             

         PCR    

      12  50  87 

Impact Category  Units          

Fossil Fuel Consumption  MJ Equivalent  15.09 14.90 14.74

Water Consumption  Liters  4077 2763 1449

Global Warming  kg CO2 Equival. 0.1405 0.5892 1.0380

Aquatic Ecotoxicity  TEG  4326 3938 3551

Aquatic Eutrophication  kg PO4 Equival. 0.001755 0.001363 0.000970

Page 98: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

98

Table A4-9 Comparison of SimaPro and GaBi impacts for corrugated board Impact category  Unit  SimaPro  GaBi 

12 PCR  50 PCR  87 PCR  12 PCR  50 PCR  87 PCR 

Aquatic acidification  kg SO2 eq  0.00525  0.00424  0.00326  0.00309  0.00234  0.00159 

Aquatic ecotoxicity kg TEG water  189  170  151  4326  3938  3551 

Aquatic eutrophication  kg PO4 P‐lim  0.000563  0.000395  0.000233  0.001755  0.001363  0.000970 

Carcinogens kg C2H3Cl eq  0.030157  0.025024  0.020026  0.006226  0.005583  0.004941 

Global warming  kg CO2 eq  0.9457  0.9455  0.9453  0.1405  0.5892  1.0380 

Ionizing radiation  Bq C‐14 eq  27.03  19.27  11.71  25.79  18.38  10.98 

Land occupation m2org.arable  0.663891  0.415360  0.173369  0.000053  0.000033  0.000014 

Mineral extraction  MJ surplus  0.01686  0.01546  0.014095  0.140759  0.134142  0.127525 

Non‐carcinogens kg C2H3Cl eq  0.006097  0.006085  0.006074  0.07027  0.06505  0.05983 

Ozone layer depletion kg CFC‐11 eq  0.55E‐08  0.50E‐08  0.46E‐08  7.71E‐08  8.84E‐08  9.98E‐08 

Photochemical oxidation ‐ Respiratory organics  kg C2H4 eq  0.000066  0.000058  0.000050  0.000410  0.000373  0.000335 

Respiratory effects ‐ Respiratory inorganics  kg PM2.5 eq  0.001106  0.000839  0.000578  0.001204  0.000913  0.000623 

Terrestrial acid/nutri  kg SO2 eq  0.021267  0.018812  0.016422  0.021314  0.018858  0.016403 

Terrestrial ecotoxicity  kg TEG soil  4.680  4.826  4.969  25.609  29.704  33.799 

Non‐renewable energy  MJ primary  15.23  15.20  15.17  15.08  14.90  14.74 

    

Page 99: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

99

Appendix 5 – Selected impact data for beverage containers, base comparisons (Test 1 for Al can and glass bottle; Test 4 for PET bottle; Test 2 for PLA bottle and aseptic carton). Table A5-1 Comparison of greenhouse gases, kg CO2 eq

COMPASS  SimaPro  GaBi Package Modeling 

Al can  0.1826  0.1849 0.2437 0.3047

PET bottle  0.4050  0.3313 0.3218 0.1449

Glass bottle  0.5072  0.4780 0.5946 0.3153

PLA bottle  0.1988  0.2416 0.0644 0.0748

Aseptic carton  0.09581  0.13876 0.05181 0.09648

Table A5-2 Greenhouse gases as a percentage of SimaPro values

COMPASS  GaBi  Package Modeling 

Al can  98.71%  131.79% 164.78%

PET bottle  119.24%  99.00% 42.67%

Glass bottle  106.09%  124.39% 65.95%

PLA bottle  82.28%  26.67% 30.97%

Aseptic carton  69.05%  37.34% 69.53%

Table A5-3 Comparison of fossil/fuel non-renewable energy use, MJ

COMPASS  SimaPro  GaBi 

Al can  2.3295  2.9253 3.4024

PET bottle  8.1255  7.8820 8.6290

Glass bottle  8.1489  6.9304 10.1460

PLA bottle  3.9037  3.8169 1.7235

Aseptic carton  1.9329  2.7601 1.8314

Table A5-4 Fossil fuel/non-renewable energy as a percentage of SimaPro non-renewable energy values

COMPASS  GaBi 

Al can  79.63%  116.31%

PET bottle  103.09%  109.48%

Glass bottle  117.58%  146.40%

PLA bottle  102.27%  45.15%

Aseptic carton  70.03%  66.36%

Page 100: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

100

Table A5-5 Comparison of eutrophication values, kg PO4 eq COMPASS  SimaPro  GaBi  openLCA 

Al can  0.00007494  0.00002775 0.00038188 0.00000808

PET bottle  0.00038859  0.00000490 0.00052798 0.00001621

Glass bottle  0.00035555  0.00000422 0.00058980 0.00003396

PLA bottle  0.00069553  0.00007797 0.00010863 0.00005264

Aseptic carton  0.00021897  0.00002677 0.00005449 0.00002875

Table A5-6 Eutrophication as a percentage of SimaPro values

COMPASS  GaBi  openLCA 

Al can  270%  1376% 29%

PET bottle  7929%  10773% 331%

Glass bottle  8425%  13976% 805%

PLA bottle  892%  139% 68%

Aseptic carton  818%  204% 107%

Table A5-7 Comparison of human impacts values, DALY

COMPASS  SimaPro 

Al can  0.00000004  0.00000016

PET bottle  0.00000006  0.00000032

Glass bottle  0.00000013  0.00000055

PLA bottle  0.00000004  0.00000013

Aseptic carton  0.00000003  0.00000012

Page 101: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

101

Appendix 6 – Selected impact data for tuna packaging, base comparisons (Test 1 and Test 4 for cans, Test 1 for pouch) Table A6-1 Comparison of greenhouse gases, kg CO2 eq

COMPASS  SimaPro  GaBi  Package Modeling 

Tuna can test 1  0.822113 0.709581 0.652017

Tuna can test 4  0.479598 0.776792

Pouch  0.407296 0.388884 0.346630 0.225087 Table A6-2 Comparison of fossil/fuel non-renewable energy use, MJ

COMPASS  SimaPro  GaBi 

Tuna can test 1  10.597223 7.411536

Tuna can test 4  6.459450 10.194099

Pouch  8.053125 9.400535 7.835546 Table A6-3 Comparison of eutrophication values, kg PO4 eq

COMPASS  SimaPro  GaBi 

Tuna can test 1  0.000076 0.000088

Tuna can test 4  0.000347 0.000074

Pouch  0.000490 0.000088 0.000172 Table A6-4 Comparison of human impact values, DALY

COMPASS  SimaPro 

Tuna can test 1  0.00000034

Tuna can test 4  0.00000017 0.00000033

Pouch  0.00000008 0.00000040

Page 102: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

102

Appendix 7 – Selected impact data for flower packaging, base comparisons (corrugated box test 1; crate test 1, 10 trip; crate test 2, 1 trip; crate test 3, 100 trip) Table A7-1 Comparison of greenhouse gases, kg CO2 eq

COMPASS  SimaPro  GaBi  Package Modeling 

Corrugated box test 1  0.8642 1.0803 0.4868 0.6102

Crate – 10 trip  1.3747 1.1062 1.0102 0.2574

Crate – 1 trip  6.6544 5.9228 5.3822 2.5737

Crate – 100 trip  0.8467 0.6245 0.5995 0.0257 Table A7-2 Greenhouse gases as a percentage of SimaPro values

COMPASS  GaBi  Package Modeling 

Corrugated box test 1  79.99% 45.07% 56.48%

Crate – 10 trip  124.27% 91.32% 23.27%

Crate – 1 trip  112.35% 90.87% 43.45%

Crate – 100 trip  135.58% 95.99% 4.12% Table A7-3 Comparison of fossil/fuel non-renewable energy use, MJ

COMPASS  SimaPro  GaBi 

Corrugated box test 1  13.64 16.51 12.55

Crate – 10 trip  28.67 27.50 24.96

Crate – 1 trip  186.93 200.86 181.69

Crate – 100 trip  12.85 10.16 9.65 Table A7-4 Fossil fuel/non-renewable energy as a percentage of SimaPro non-renewable energy values

COMPASS  GaBi 

Corrugated box test 1  82.62% 76.03%

Crate – 10 trip  104.28% 90.78%

Crate – 1 trip  93.06% 90.45%

Crate – 100 trip  126.46% 95.03%

Page 103: LCA Report 0712 final · 2018-04-20 · bottles, and PLA bottles. The food container group compares steel food cans with flexible retort pouches (for tuna). The corrugated box/reusable

103

Table A7-5 Comparison of eutrophication values, kg PO4 eq

COMPASS  SimaPro  GaBi  openLCA 

Corrugated box test 1  0.001379 0.000203 0.001065 0.000511

Crate – 10 trip  0.001630 0.000023 0.000447 0.000843

Crate – 1 trip  0.009040 0.000187 0.004466 0.001128

Crate – 100 trip  0.000889 0.000007 0.000045 0.000815 Table A7-6 Eutrophication as a percentage of SimaPro values

COMPASS  GaBi  openLCA

Corrugated box test 1  680% 526% 252%

Crate – 10 trip  7112% 1948% 3679%

Crate – 1 trip  4847% 2394% 605%

Crate – 100 trip  13548% 680% 12414% Table A7-7 Comparison of human impacts values, DALY

COMPASS  SimaPro 

Corrugated box test 1  0.00000013 0.00000078

Crate – 10 trip  0.00000024 0.00000111

Crate – 1 trip  0.00000177 0.00000599

Crate – 100 trip  0.00000009 0.00000062