LC Oscillator

download LC Oscillator

of 18

Transcript of LC Oscillator

  • 8/3/2019 LC Oscillator

    1/18

    Sheet

    1 of 18

    L.C oscillator Tutorial

    J P Silver

    E-mail: [email protected]

    1 ABSTRACTThis tutorial describes the operation of a basic L.C

    oscillator as used in RFIC circuits etc. The pertinent

    design parameters are given together with their rele-

    vant equations to allow basic hand calculations be-

    fore simulation is attempted. The initial design con-

    sists of a fixed frequency oscillator that is further

    developed into a voltage controlled oscillator (VCO),

    by the use of MOS devices configured as varactors.Finally a worked example is given to highlight the

    design steps required and CAD simulations are also

    described.

    2 INTRODUCTIONL.C oscillators are probably the most common type of

    oscillator used in RFIC design. They can be designed for

    a fixed frequency and variable frequency operation (with

    the use of a varactor). The performance of the oscillator

    is determined by the Quality factor of the L-C resonator.

    Usually, a spiral inductor is used in the resonator and

    these have quite low Qs of around 3-5 at 2.5GHz. If a

    low-phase noise design is required the inductor can bemade off-chip. The inductor can be either resonated

    with the device drain capacitance or by adding a shunt

    capacitor (on chip or off).

    3 OSCILLATOR DESIGN

    PHASE NOISE[1].For a discussion on phase noise read the Phase Noise

    Tutorial.

    But in summary Leesons equation is given below:-

    1Q2f

    +12P

    FkT=)(L

    2

    Lmavs

    +

    +

    fm

    fcf

    fm

    fcf om

    Usually the phase noise is specified in dBc/Hz ie :-

    L = 10LogFkT

    2P1 +

    2f QdBc / Hz10

    avs m L

    ( )ffc

    fm

    f fc

    fmm

    o+

    +

    2

    1

    The Leeson equation identifies the most significant

    causes of phase noise in oscillators, in particular the key

    parameter is the loaded Q of the resonator. We know that

    typically in CMOS the loaded Q of a spiral inductor is in

    the range 3-5. Therefore, if a tighter phase noise specifi-

    cation is required then the inductor will need to be off-

    chip.

    3.1L-C OCILLATOR OPERATION

    The circuit of the L-C oscillator is shown in Figure 1.

    M2

    L2

    Vcc

    M1

    L1

    M3

    Itail

    C1

    Vout1

    Vout2

    Cross-Coupling

    Vbias

    Figure 1 Schematic diagram of the cross-coupled

    L-C MOS oscillator. M3 sets the currents through

    each arm of the differential oscillator, and M1 & M2

    provide the negative impedance. The inductors L1 &

    L2 may be off-chip (depending on the phase noise

    requirement) and the resonating capacitors may be

    the drain capacitances of the devices themselves.

    Each arm of the oscillator has a L-C tank circuit that

    determines the frequency of oscillation and form the

    drain loads. Frequency dependant signals at the drains

    are then cross-coupled to the other devices gate, which

    Resonator Q

    Phase perturbation

    Flicker effect

  • 8/3/2019 LC Oscillator

    2/18

    Sheet

    2 of 18

    creates a negative impedance of value1/gm at the drain

    terminals.

    Generally then:

    ( )

    ( )f.L.2

    Vt-VgsI

    IgettoRearrangeQ

    f.L.2

    I

    Vt-Vgs

    Therefore,

    Vt)-(Vgs

    IgmWhere

    Q

    f.L.2

    gm

    1

    :noscillatioFor

    Q

    f.L.2inductorofRSeries

    D

    D

    D

    D

    U

    U

    Q

    =

    =

    =

    To ensure reliable startup, L-C oscillators are designed

    to have astartup safety factorof at least 2 ie

    UQ

    f.L.2p

    gm

    2 R =>

    3.2VARIABLE FREQUENCY OSCILLATOR(VCO)

    From the previous section we have seen how cross-

    connecting the two transistors gives a negative imped-

    ance of 1/gm. We also know that this value has to ex-

    ceed the losses of the resonator in order for the circuit to

    oscillate.

    For this tutorial we shall design an example Vco with the

    following specification:

    Parameter Specification UnitsCentre Frequency 2.5 GHz

    Tuning Bandwidth 500 MHz

    Ko >100 MHz/V

    Phase noise (10KHz offset) > 70 dBc/Hz

    Supply 2.5 V

    Power consumption

  • 8/3/2019 LC Oscillator

    3/18

    Sheet

    3 of 18

    However, varactors with a high tuning constant (Ko

    (MHz/V) will generate a lot of modulation noise and

    may well dominate the phase noise generated by the de-

    vice and resonator.

    The loaded Q of the resonator, will be determined by the

    loaded Q of the inductor and the loaded Q of the

    MOSFET varactor (variable capacitor). Each component

    can be represented by an ideal reactance with a parallel

    resistance representing the loss of the component.

    Typical Q values for an on-chip spiral inductor at

    2.5GHz is 3 to 5. Therefore, if we wish to use an induc-

    tor with a higher Q, we have to consider off-chip induc-

    tors. Off-chip inductors are commonly formed using

    bond-wires and for completeness of this tutorial designnotes on bond wire inductors will be given.

    3.2.1Bond wires as inductors [2]

    Larger inductances can be realised with bond-wires that

    have Quality (Q) factors an order of magnitude higher

    than on-chip spiral inductors.

    Note that low Q spiral inductors can still be used for low

    phase noise applications or for providing bias to the

    varactor(s).

    The inductance of a bond wire is given by:

    = 75.0

    2

    2

    .L o

    r

    lLn

    l

    Where r = radius of wire - typically 0.025mm (1mil)

    uo = 4 10-7

    (permeability of free-space).

    As we go higher in frequency the skin effect becomes

    more important and increases the losses of the inductor:

    (m)Length

    (m)wireofradiusr

    74.47x10(S/m)tyConductivi

    m,indepthskinWhere

    2

    1

    2R

    =

    =

    ==

    =

    ==

    l

    .

    f.

    r..r.

    l o

    We can now calculate the unloaded Q of the inductor

    thus:

    fr

    lLn

    R

    Lo ...75.0

    22r

    .Q

    ==

    The graph of Figure 4 shows the inductance of a 1mil

    diameter gold bond wire for varying lengths.

    Inductance vs Bond Wire Length

    0.000

    2.0004.000

    6.000

    8.000

    10.000

    12.000

    14.000

    16.000

    18.000

    0 5 10 15

    Length (mm)

    Inductance

    (nH)

    Figure 4 Bond wire inductace (nH) vs Bond wire

    length (mm) for a gold 1mil diameter bond wire.

    If for example we have a 2mm gold bond wire (of diame-

    ter 1mil) then we will have an inductance of2nH .

    The associated Q of 2mm bond wire will be around 80 at

    a frequency of 2.5GHz a considerable improvement on

    an on-chip inductor with a typical Q of between 3 & 5

    at 2.5GHz. However, for our example we will assume an

    inductor Q of 5 can be realized on-chip.

    3.3FREQUENCY CONTROL [3,4]Using bond wires instead of on-chip inductors allows the

    design of low phase noise oscillators but makes the fab-

    rication more difficult as it is difficult to precisely set the

    length of the bond wire. Also for use in Phase LockedLoop (PLL) applications it is necessary to have variable

    frequency. To make the fixed frequency oscillator into a

    variable frequency oscillator (VCO) we add/incorporate

    into the resonator a electronically controlled capacitor

    known as a varactor.

    In MOS technology we can realise a varactor by con-

    necting a FET as a diode and applying a reverse bias to it

    as shown in Figure 5.

  • 8/3/2019 LC Oscillator

    4/18

    Sheet

    4 of 18

    Vg

    Vcontrol

    Bulkconnected toD&S

    Vgs

    Figure 5 Implementation of a varactor by con-necting together the source, drain and bulk of a

    MOS Fet (forming a diode) and applying a re-

    verse bias across it.

    There are two common connections of the MOS fet as a

    diode:

    (1) B-S-D connected together, with voltage applied

    across the gate and B-S-D connection. If we plot capaci-

    tance vs (Vcontrol-Vg = Vgs) then we get the response

    shown in Figure 6. To simulate the varactor to deter-

    mine the capacitance vs voltage characteristics, the ADSsimulation of the varactor is shown in Figure 12.

    The disadvantage of this varactor is that the control volt-

    age needs to be kept below weak inversion in order to

    keep the capacitance reducing with increased control

    voltage.

    (2) In the second varactor, the voltage is applied across

    the gate and bulk only (S & D unconnected) this is

    known as an accumulation varactor and produces the

    tuning characteristic shown in Figure 7.

    The characteristic is more predictable in that the capaci-tance always falls with increasing control voltage.

    Note however, a normal varactors capacitance increases

    with increased reverse bias, therefore, it will be impor-

    tant to check the phasing of the PLL loop that the VCO

    is being used in, otherwise the Vco will go to an end stop

    and never lock up!!

    Vgs

    Cox

    Accumulation StrongInversion

    Depletion

    WeakInversion

    ModerateInversion

    Cmos

    Figure 6 Capacitance variation of a P-mos ca-

    pacitor with the bulk, source and drain connected

    together as perFigure 5. Voltage is applied across

    the gate and B-S-D connection.

    Vgs

    Cox

    Cmos

    Figure 7 Capacitance variation of a P-mos

    capacitor with voltage applied across the gate

    and Bulk connection (The source & drain are

    unconnected).

  • 8/3/2019 LC Oscillator

    5/18

    Sheet

    5 of 18

    3.4VARACTOR DESIGN EQUATIONS [5]

    For this design we will be using the Accumulationmode varactor, where the source and drain terminals are

    unconnected and bias is applied across the gate and bulk

    only.

    We first need to determine the maximim capacitance of

    the varactor shown as Cox in Figure 6 & Figure 7, fol-

    lowed by the minimum capacitance (that will allow the

    tuning bandwidth to be calculated) and the unloaded Q.

    The value of Cox or CMAX is determined by the geometry

    of the varactor:

    fingersgateofNumberN

    &process)14TBCMOSHP(For)(96mE6.9Tox

    F/m1084542.8Where

    N.

    oxT

    .W.L3.9.CorCox

    O9

    12

    MAX

    =

    =

    =

    =

    xo

    o

    The minimum value of the varactor is approximately

    given by:

    process)14TBCMOSForF/m9E(

    ecapacitancdraingateCWhere

    .WCC

    11-

    gdo

    gdoMIN

    =

    =

    To determine the maximum and minimum capacitance

    for a range or W/L ratios it is easiest to use simulation.

    The ADS schematic ofFigure 12, shows an S-parameter

    simulation, measuring Zin. On the resulting simulation

    run the following equation has been used to determine

    the capacitance in pF.

    freq)*)(Imag(Zin1*PI*1E12/(-2C=

    Using Table 1 we can select a size of varactor that is

    going to resonate with the 2nH on-chip spiral inductor

    at 2.5GHz with its middle value capacitance using:

    2pF2E

    .2.5E2.

    1

    L

    .f2.

    1

    C9-

    2

    9

    2

    =

    =

    =

    Depending on the configuration two varactors are used

    end to end across a single inductor (see Figure 13) (And

    we need to use 2 times C resonating as capacitors in se-

    ries!) or a varactor is connected to each of the two load

    inductors (see Figure 14).

    For this tutorial we will be simulating both design op-tions.

    W

    (um)

    L

    (um)

    Cmax

    (pF)

    Cnom

    (pF)

    Cmin

    (pF)

    50 0.6 0.071 0.0775 0.013

    100 0.6 0.141 0.0835 0.026

    150 0.6 0.211 0.125 0.039

    200 0.6 0.282 0.167 0.052

    250 0.6 0.352 0.208 0.065

    300 0.6 0.423 0.25 0.078

    350 0.6 0.493 0.29 0.090

    400 0.6 0.564 0.33 0.103450 0.6 0.634 0.375 0.116

    500 0.6 0.705 0.430 0.129

    550 0.6 0.775 0.459 0.142

    600 0.6 0.846 0.50 0.154

    650 0.6 0.916 0.54 0.167

    700 0.6 0.986 0.583 0.180

    750 0.6 1.057 0.625 0.193

    800 0.6 1.127 0.667 0.206

    850 0.6 1.198 0.709 0.219

    900 0.6 1.268 0.749 0.231

    950 0.6 1.339 0.792 0.244

    1000 0.6 1.409 0.833 0.257

    Table 1 Cmax & Cmin for an Accumulation

    varactor (Using the HP 14B process) with various

    W/L ratios. Note that we can increase the capaci-

    tance by increasing the number of gate fingers in

    parallel. So to give us a varactor with a nominal

    capacitance of 4pF (ie two capacitors in parallel to

    give 2pF) we could use a gate width of 500um with

    10 fingers = 4.3pF.

    Note that the parasitic capacitances of the 1/gm devices

    will increase the minimum capacitance of the varactorreducing the tuning range. This can only be evaluated

    once the 1/gm device sizes are known.

    The simulation of a P-type accumulation varactor

    (Where the voltage is applied across the gate and bulk

    only (S & D unconnected) with the dimensions of

    W=600, L=0.6 and N=5, is shown in Figure 8 with the

    resulting capacitance (pF) vs control voltage characteris-

    tic shown in Figure 9.

  • 8/3/2019 LC Oscillator

    6/18

    Sheet

    6 of 18

    VARVAR3

    L=0.6

    W=500

    Vcontrl=2.5

    EqnVar

    MM9_PMOS

    MOSFET4

    _M=1

    Width=W um

    Length=L um DC_Feed

    DC_Feed1

    DC_Feed

    DC_Feed2

    VAR

    VAR2

    Vcc=2.5

    Fc=2500

    EqnVar

    V_DCSRC2

    Vdc=Vcontrl V

    V_DC

    SRC1Vdc=Vcc V

    TermTerm1

    Z=50 Ohm

    Num=1

    S_Param

    SP1

    Center=Fc MHz

    S-PARAMETERS

    Zin

    Zin1Zin1=zin(S11,PortZ1)

    Zin

    N

    BSIM3_Model

    cmosp

    Xl=-1e-7

    Xw=0Noic=1.4e-12

    Noib=2.4e3

    Noia=9.9e18

    Em=4.1e7Kt2=0.022

    Kt1=-0.11

    Uc1=-5.6e-11

    Ua1=4.31e-9At=3.3e4

    Ute=-1.5

    Pv ag=14.4617331Pscbe2=3.078664e-9

    Pscbe1=6.898588e10

    Pdiblcb=-0.0209265

    Pdiblc2=9.858521e-3Pdiblc1=1.300053e-5

    Drout=7.988149e-4

    Dsub=0.3593017

    Etab=8.604543e-3Eta0=0.111002

    Cit=0

    Cdscd=0

    Cdscb=0Cdsc=2.4e-4

    Nf actor=0.8428454

    Voff =-0.0939754B1=5e-6

    B0=4.703171e-6

    A1=0

    Pags=0.09532Ags=0.2633783

    Wketa=8.895347e-3

    Lketa=-9.580923e-3

    Keta=4.690296e-3Vsat=1.57686e5

    Prwb=-0.0733682

    Prwg=-4.742166e-3

    Prdsw=128.4338259Rdsw=2.552456e3

    Delta=0.01

    Uc=-5.80218e-11Ub=9.033053e-19

    Ua=1.447557e-9

    Dv t2=-0.061438

    Dv t1=0.5624229Dv t0=3.8366128

    Nlx=1.867036e-7

    W0=1e-5

    K3b=-5K3=96.6543548

    Pk2=3.340684e-3

    K2=0.0200888

    K1=0.3913281Pv th0=1.949468e-3

    Vth0=-0.8017536

    U0=183.1171264Xj=1.5e-7

    Vbm=-3.0

    Nch=1.7e17

    Dwb=9.587665e-9Dwg=-1.585994e-8

    Xpart=0.5

    Cgbo=2e-9

    Cgdo=2.56e-10Cgso=2.56e-10

    Pbswg=0.8

    Mjswg=0.1912128

    Cjswg=4.256e-11Pbsw=0.8

    Pb=0.914212

    Mjsw=0.1842521Cjsw=2.002874e-10

    Mj=0.4683602

    Cj=9.196812e-4

    Tox=1.01e-8Wwl=0

    Wwn=1

    Wln=1

    Wl=0Wint=2.151118e-7

    Lwl=0

    Lwn=1

    Lw=0Lln=1

    Ll=0

    Lint=5.519082e-8Js=0

    Rsh=2.2

    Capmod=2

    Mobmod=1Version=3.1

    Idsmod=8

    PMOS=yes

    ParamSweepSweep1

    Step=0.01Stop=5

    Start=0

    SimInstanceName[6]=

    SimInstanceName[5]=SimInstanceName[4]=

    SimInstanceName[3]=

    SimInstanceName[2]=SimInstanceName[1]="SP1"

    SweepVar="Vcontrl"

    PARAMETER SWEEP

    DC_Block

    DC_Block1

    DC_Block

    DC_Block2

    Figure 8 ADS simulation to determine the variation in capacitance of a P-type Accumulation varactor diode

    (Where the voltage is applied across the gate and bulk only (S & D unconnected) with the dimensions of

    W=600, L=0.6 and N=5. The input impedance is measured by adding the Zin parameter box, to allow calcu-

    lation of the capacitance at 2.5GHz. The resulting plot of results is shown in Figure 10.

  • 8/3/2019 LC Oscillator

    7/18

    Sheet

    7 of 18

    m1indep(m1)=plot_vs(C, Vsg)=0.70freq=2.500500GHz

    -1.620 m2indep(m2)=plot_vs(C, Vsg)=0.12freq=2.500500GHz

    1.850

    -2 .4 -2 .2 -2 .0 -1 .8 -1.6 -1 .4 -1 .2 -1. 0 -0. 8 -0 .6 -0 .4 -0 .2 0.0 0 .2 0 .4 0 .6 0 .8 1 .0 1 .2 1 .4 1 .6 1. 8 2. 0 2 .2 2 .4-2.6 2.6

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    0.50

    0.55

    0.60

    0.65

    0.70

    0.10

    0.75

    Vsg

    C

    m1

    m2

    Eqn C=1E12/(-2*PI*(imag(Zin1))*freq)P-MOS Accumulation Varactor diode

    C (pF)

    Eqn Vsg=2.5-Vcontrl

    Figure 9 Resulting simulation plot of the ADS schematic (P-type Accumulation type varactor diode) shown

    in Figure 8. The equation C converts the imaginary input impedance (Zin) to capacitance pF

  • 8/3/2019 LC Oscillator

    8/18

    Sheet

    8 of 18

    Finally, we need to calculate the unloaded Q of the

    varactor by using the following approximate expression:

    ( )

    Vs/m13.6E).1E136.(1EVs/mtoconvert

    process)CMOS14TB(For

    / Vscm1.36EmobilitybulkZeroMUZ

    oxMUZ.C'Kp

    :bygivenfactorgainKp

    ox.LP.C'

    )VT-12.Kp.(VgsQ

    VTVgsL

    W.Kp.

    ox.W.LP.C'

    12Q

    23-2-2-2

    22

    2mos

    mos

    ==

    ==

    =

    =

    =

    =

    process)14TBCMOSHP(For)(96mE6.9Tox

    F/m1084542.8Where

    F/m3.59EE6.9

    .1084542.83.9xoxC'

    oxT

    .3.9.oroxC'

    O9

    12

    23-

    9

    12

    =

    =

    ==

    ==

    x

    o

    x

    o

    2-3-3 uA/V84.3.59E13.6EKp ==

    ( )

    ( )35

    0.6E.E59.3..2.5E2

    (1.25).48E.12

    Qmosthen

    1.25V2

    VddVT-VgsthatassumeweIf

    26-39

    6-

    !

    =

    ==

    Note: To maximize the Q of the varactor we need to

    keep L as short as possible!

    3.5RESONATOR Q & BANDWIDTHThe overall unloaded Q of the resonator will depend on

    the loaded Qs of the inductor and varactor. However, if

    we minimize the varactor gate length and use on chip

    inductors the overall Q will be dominated by the Q of the

    inductor:

    actorINDres QQQ var

    111+=

    4.435

    1

    5

    11!+=

    resQ

    The ADS schematic ofFigure 11 simulates the loaded Q

    of the resonator (ie P-type varactor diode and on-chip

    inductor). The resulting simulation plot with loaded Q

    calculation is shown in Figure 10, showing a similar

    loaded Q to the hand calculation.

    For this initial design the varactor is connected directly

    across the inductor giving the largest tuning range. This

    however, may not always be required, as the ko

    (MHz/V) will be very large. Ko is one of the variables in

    PLL loop calculations and will give a large open loop

    gain, which may be undesirable and prove difficult tostabilize the loop. In addition, with such a sensitive VCO

    comes the problem of noise on the varactor control line

    will modulating on the VCO RF output.

    An additional design will be given in this tutorial that

    shows how the tuning bandwidth can be reduced, so

    lowering Ko.

    3.6AMPLIFIER GM CALCULATIONIn order to determine the minimum cross-coupled ampli-

    fier negative GM we need to find the loss of the resona-

    tor. For this we take the inductance and calculate Req:

    "==

    =

    381.2E.2.5E4.4.2R

    exampleourforand.fo.LQ.2R

    9-9

    eq

    eq

    Therefore, the minimum Gm required for oscillation is:

    DP)or(n

    PN

    eq

    I.L

    W2.GM

    (10/7)ie1.43benowwillmarginup-startThe

    10mS.GMmakemarginsomeusgiveTo

    ary VCOcomplimentfor-GMGMGMWhere

    7mSGMR

    1GM

    =

    =

    +=

    >#>

    KWhere

    Thus we can re-arrange to give the minimum W/L ratio

    required to give oscillator:

    D

    2

    2.K.I

    gm

    L

    W=

  • 8/3/2019 LC Oscillator

    9/18

    Sheet

    9 of 18

    We would obviously increase this ratio to give us margin

    allowing for lower Q in the resonator (reducing Req) and

    so ensure reliable startup and operation over tempera-

    ture.

    To calculate the gate widths we first have to decide on a

    drain current, for this example set ID to 5mA.

    m1freq=dB(S(1,1))=-5.152

    2.512GHz

    1.5 2.0 2.5 3.0 3.5 4.0 4.51.0 5.0

    -5

    -4

    -3

    -2

    -1

    -6

    0

    freq, GHz

    dB(S(1,1

    ))

    m1

    m3freq=Qext=4.995

    2.512GHz

    1.5 2.0 2.5 3.0 3.5 4.0 4.51.0 5.0

    1

    2

    3

    4

    0

    5

    freq, GHz

    Qext

    m3

    Eqn Qext=real(Zin1)/(2*pi*freq*2.2e-9)

    Figure 10 Frequency response of the resonator

    circuit shown in Figure 11. The equation has been

    added to determine the loaded Q of the circuit

    resulting in a loaded Q of 4.99 compared to the

    hand calculation value of 4.44.

    3.6.1N devices:

    35W58.5E2.171E)0E1(

    LW

    A/V.s171.7EE645.3.471EMUZn.CoxKp

    F/m3.645E9.6E

    3.97x8.85E

    Tox

    o3.97.Cox

    m471E).1E471(1Emtoconvert

    471cmMUZnox;MUZ.C'Kp

    3--6-

    23

    6-34-

    23-

    9

    12

    24-2-2-2

    2

    =$==

    ===

    ===

    ==

    ==

    3.6.2P devices:

    120W200.5E2.49E

    )E501(

    L

    W

    A/V.s49e645.3.136eMUZn.CoxKp

    F/m3.645e9.6e

    3.97x8.85e

    Tox

    o3.97.Cox

    136cmMUZpox;MUZ.C'Kp

    3--6-

    23

    6-34-

    23-

    9

    12

    2

    =$==

    ===

    ===

    ==

    e

    Estimation of phase noise performance

    ( )[ ]

    carrierfromoffsetFrequency

    resonator.theofresistanceseriesequivalentEffectiveReffresonator.acrossamplitudevoltagePeakV

    .oscillatorofresistanceNegative

    resonatorofresistanceparallelEquivalent

    factorsafetyStartupA

    Where

    2

    .A1k.T.Reff.

    A

    2

    2

    Radial

    V

    L

    A

    o

    ='

    =

    =

    =

    =

    '+

    ='

    From our example A ~ 138/(1/10E-3

    ) = 1.38.

    "===

    7.154.4

    .2EE5.2.2..2Reff

    99

    Q

    LFo

    res

    ( )

    [ ]

    ( ) ( )[ ]

    dBc/Hz6.84

    )E44.3log(10dBingetTo

    E44.3

    2

    5.2

    E10

    E5.2.38.11.7.15.293.1.38E

    2

    .A1k.T.Reff.

    9

    9

    2

    3

    923-

    2

    2

    =

    =

    =

    +

    '+

    ='

    A

    o

    V

    L

  • 8/3/2019 LC Oscillator

    10/18

    Sheet

    10 of 18

    BSIM3_Model

    cmosp

    Xl=-1e-7

    Xw=0Noic=1.4e-12

    Noib=2.4e3

    Noia=9.9e18

    Em=4.1e7

    Kt2=0.022Kt1=-0.11

    Uc1=-5.6e-11

    Ua1=4.31e-9At=3.3e4

    Ute=-1.5

    Pv ag=14.4617331Pscbe2=3.078664e-9

    Pscbe1=6.898588e10

    Pdiblcb=-0.0209265

    Pdiblc2=9.858521e-3Pdiblc1=1.300053e-5

    Drout=7.988149e-4

    Dsub=0.3593017

    Etab=8.604543e-3

    Eta0=0.111002Cit=0

    Cdscd=0

    Cdscb=0Cdsc=2.4e-4

    Nf actor=0.8428454

    Voff =-0.0939754B1=5e-6

    B0=4.703171e-6

    A1=0

    Pags=0.09532Ags=0.2633783

    Wketa=8.895347e-3

    Lketa=-9.580923e-3

    Keta=4.690296e-3

    Vsat=1.57686e5Prwb=-0.0733682

    Prwg=-4.742166e-3

    Prdsw=128.4338259Rdsw=2.552456e3

    Delta=0.01

    Uc=-5.80218e-11Ub=9.033053e-19

    Ua=1.447557e-9

    Dv t2=-0.061438

    Dv t1=0.5624229Dv t0=3.8366128

    Nlx=1.867036e-7

    W0=1e-5

    K3b=-5

    K3=96.6543548Pk2=3.340684e-3

    K2=0.0200888

    K1=0.3913281Pv th0=1.949468e-3

    Vth0=-0.8017536

    U0=183.1171264Xj=1.5e-7

    Vbm=-3.0

    Nch=1.7e17

    Dwb=9.587665e-9Dwg=-1.585994e-8

    Xpart=0.5

    Cgbo=2e-9

    Cgdo=2.56e-10

    Cgso=2.56e-10Pbswg=0.8

    Mjswg=0.1912128

    Cjswg=4.256e-11Pbsw=0.8

    Pb=0.914212

    Mjsw=0.1842521Cjsw=2.002874e-10

    Mj=0.4683602

    Cj=9.196812e-4

    Tox=1.01e-8Wwl=0

    Wwn=1

    Wln=1

    Wl=0

    Wint=2.151118e-7Lwl=0

    Lwn=1

    Lw=0Lln=1

    Ll=0

    Lint=5.519082e-8Js=0

    Rsh=2.2

    Capmod=2

    Mobmod=1Version=3.1

    Idsmod=8

    PMOS=yes

    ZinZin1

    Zin1=zin(S11,PortZ1)

    Zin

    N

    S_ParamSP1

    CalcGroupDelay=y es

    Step=8 MHzStop=5 GHz

    Start=1 GHz

    S-PARAMETERS

    VARVAR1

    Bond_Wire=2.2Vcontrol=1.3

    EqnVar

    MM9_PMOS

    MOSFET4

    _M=5

    Width=500 umLength=0.6 um

    INDQL4

    Rdc=0.0 Ohm

    Mode=proportional to f req

    F=2.5 GHzQ=5

    L=Bond_Wire nH

    TermTerm1

    Z=50 Ohm

    Num=1

    R

    R2R=1 kOhm

    MM9_PMOS

    MOSFET9

    _M=5

    Width=500 um

    Length=0.6 um

    V_DC

    VDD2

    Vdc=Vcontrol

    Figure 11 ADS simulation to determine the loaded Q of the resonator circuit. The input impedance is meas-

    ured by adding the Zin parameter box. The resulting plot of results is shown in Figure 10.

  • 8/3/2019 LC Oscillator

    11/18

    Sheet

    11 of 18

    DC_Feed

    DC_Feed2

    VAR

    VAR2

    Vcc=2.5

    Fc=2500

    EqnVar

    V_DCSRC2

    Vdc=Vcontrl V

    V_DC

    SRC1Vdc=Vcc V

    TermTerm1

    Z=50 Ohm

    Num=1

    S_Param

    SP1

    Center=Fc MHz

    S-PARAMETERS

    VAR

    VAR3

    L=50

    W=10

    Vcontrl=2.5

    EqnVar

    MM9_PMOS

    MOSFET4

    Width=W um

    Length=L um DC_Feed

    DC_Feed1

    Zin

    Zin1Zin1=zin(S11,PortZ1)

    Zin

    N

    BSIM3_Model

    cmosp

    Xl=-1e-7

    Xw=0Noic=1.4e-12

    Noib=2.4e3

    Noia=9.9e18

    Em=4.1e7Kt2=0.022

    Kt1=-0.11

    Uc1=-5.6e-11

    Ua1=4.31e-9At=3.3e4

    Ute=-1.5

    Pv ag=14.4617331Pscbe2=3.078664e-9

    Pscbe1=6.898588e10

    Pdiblcb=-0.0209265

    Pdiblc2=9.858521e-3Pdiblc1=1.300053e-5

    Drout=7.988149e-4

    Dsub=0.3593017

    Etab=8.604543e-3Eta0=0.111002

    Cit=0

    Cdscd=0

    Cdscb=0Cdsc=2.4e-4

    Nf actor=0.8428454

    Voff =-0.0939754B1=5e-6

    B0=4.703171e-6

    A1=0

    Pags=0.09532Ags=0.2633783

    Wketa=8.895347e-3

    Lketa=-9.580923e-3

    Keta=4.690296e-3Vsat=1.57686e5

    Prwb=-0.0733682

    Prwg=-4.742166e-3

    Prdsw=128.4338259Rdsw=2.552456e3

    Delta=0.01

    Uc=-5.80218e-11Ub=9.033053e-19

    Ua=1.447557e-9

    Dv t2=-0.061438

    Dv t1=0.5624229Dv t0=3.8366128

    Nlx=1.867036e-7

    W0=1e-5

    K3b=-5K3=96.6543548

    Pk2=3.340684e-3

    K2=0.0200888

    K1=0.3913281Pv th0=1.949468e-3

    Vth0=-0.8017536

    U0=183.1171264Xj=1.5e-7

    Vbm=-3.0

    Nch=1.7e17

    Dwb=9.587665e-9Dwg=-1.585994e-8

    Xpart=0.5

    Cgbo=2e-9

    Cgdo=2.56e-10Cgso=2.56e-10

    Pbswg=0.8

    Mjswg=0.1912128

    Cjswg=4.256e-11Pbsw=0.8

    Pb=0.914212

    Mjsw=0.1842521Cjsw=2.002874e-10

    Mj=0.4683602

    Cj=9.196812e-4

    Tox=1.01e-8Wwl=0

    Wwn=1

    Wln=1

    Wl=0Wint=2.151118e-7

    Lwl=0

    Lwn=1

    Lw=0Lln=1

    Ll=0

    Lint=5.519082e-8Js=0

    Rsh=2.2

    Capmod=2

    Mobmod=1Version=3.1

    Idsmod=8

    PMOS=yes

    ParamSweepSweep1

    Step=0.01Stop=5

    Start=0

    SimInstanceName[6]=

    SimInstanceName[5]=SimInstanceName[4]=

    SimInstanceName[3]=

    SimInstanceName[2]=SimInstanceName[1]="SP1"

    SweepVar="Vcontrl"

    PARAMETER SWEEP

    DC_Block

    DC_Block1

    DC_BlockDC_Block2

    Figure 12 ADS simulation for determining the tuning characteristics of a P-type MOS varactor. In this simu-

    lation the bulk, source and drain are connected together to produce the response predicted in Figure 6. The

    S-parameter simulation contains a Zin block and we use the imaginary term of this to determine the capaci-

    tance of the varactor while sweeping the applied gate-source voltage (Vcontrl).

  • 8/3/2019 LC Oscillator

    12/18

    Sheet

    12 of 18

    VDD

    vout2

    VSS

    BSIM3_Model

    cmosn

    Xl=-1e-7

    Xw=0

    Em=4.1e7

    Kt2=0.022

    Kt1=-0.11

    Uc1=-5.6e-11

    Ub1=-7.61e-18

    Ua1=4.31e-9

    At=3.3e4

    Ute=-1.5

    Pvag=0.1945781

    Pscbe2=5e-10

    Pscbe1=2.541131e10

    Pdiblcb=-0.5

    Pdiblc2=9.723614e-4

    Pdiblc1=2.091364e-3

    Pclm=0.7319137

    Drout=0.0428851

    Dsub=0.751089

    Etab=2.603903e-3

    Eta0=0.1178659

    Cit=0

    Cdscd=0

    Cdscb=0

    Cdsc=2.4e-4

    Nfactor=1.2410485

    Voff=-0.0850186

    B1=5e-6

    B0=1.648829e-6

    Pags=0.0968

    Ags=0.1450882

    Wketa=-5.792854e-3

    Lketa=-0.0143698

    Keta=3.997018e-3

    A0=0.9059229

    Vsat=1.174604e5

    Prwb=-0.0586598

    Prwg=0.0182608

    Prdsw=-33.9337286

    Rdsw=1.28604e3

    Delta=0.01

    Uc=1.831708e-11

    Ub=1.582544e-18

    Ua=1e-12

    Dvt2=-0.1427458

    Dvt1=0.9107896

    Dvt0=6.5803089

    Nlx=5.28517e-8

    W0=1e-5

    K3b=1.252205

    K3=68.279056

    Pk2=9.631217e-3

    K2=-0.0316751

    K1=0.825917

    Pvth0=8.691731e-3

    Vth0=0.6701079

    U0=433.6065339

    Xj=1.5e-7

    Vbm=-3.0

    Nch=1.7e17

    Dwb=1.238214e-8

    Dwg=-7.483283e-9

    Xpart=0.5

    Cgbo=2e-9

    Cgdo=2.79e-10

    Cgso=2.79e-10

    Pbswg=0.99

    Mjswg=0.1

    Cjswg=2.2346e-10

    Pbsw=0.99

    Pb=0.99

    Mjsw=0.1

    Cjsw=4.437149e-10

    Mj=0.7549569

    Cj=5.067009e-4

    Tox=1.01e-8

    Tnom=27

    Wwl=0

    Wwn=1

    Ww=0

    Wln=1

    Wl=0

    Wint=2.277646e-7

    Lwl=0

    Lwn=1

    Lw=0

    Lln=1

    Ll=0

    Lint=1.097132e-7

    Js=0

    Rsh=2.8

    Capmod=2

    Mobmod=1

    Version=3.1

    Idsmod=8

    NMOS=yes

    BSIM3_Model

    cmosp

    Xl=-1e-7

    Xw=0

    Noic=1.4e-12

    Noib=2.4e3

    Noia=9.9e18

    Em=4.1e7

    Kt2=0.022

    Kt1=-0.11

    Uc1=-5.6e-11

    Ua1=4.31e-9

    At=3.3e4

    Ute=-1.5

    Pvag=14.4617331

    Pscbe2=3.078664e-9

    Pscbe1=6.898588e10

    Pdiblcb=-0.0209265

    Pdiblc2=9.858521e-3

    Pdiblc1=1.300053e-5

    Drout=7.988149e-4

    Dsub=0.3593017

    Etab=8.604543e-3

    Eta0=0.111002

    Cit=0

    Cdscd=0

    Cdscb=0

    Cdsc=2.4e-4

    Nfactor=0.8428454

    Voff=-0.0939754

    B1=5e-6

    B0=4.703171e-6

    A1=0

    Pags=0.09532

    Ags=0.2633783

    Wketa=8.895347e-3

    Lketa=-9.580923e-3

    Keta=4.690296e-3

    Vsat=1.57686e5

    Prwb=-0.0733682

    Prwg=-4.742166e-3

    Prdsw=128.4338259

    Rdsw=2.552456e3

    Delta=0.01

    Uc=-5.80218e-11

    Ub=9.033053e-19

    Ua=1.447557e-9

    Dvt2=-0.061438

    Dvt1=0.5624229

    Dvt0=3.8366128

    Nlx=1.867036e-7

    W0=1e-5

    K3b=-5

    K3=96.6543548

    Pk2=3.340684e-3

    K2=0.0200888

    K1=0.3913281

    Pvth0=1.949468e-3

    Vth0=-0.8017536

    U0=183.1171264

    Xj=1.5e-7

    Vbm=-3.0

    Nch=1.7e17

    Dwb=9.587665e-9

    Dwg=-1.585994e-8

    Xpart=0.5

    Cgbo=2e-9

    Cgdo=2.56e-10

    Cgso=2.56e-10

    Pbswg=0.8

    Mjswg=0.1912128

    Cjswg=4.256e-11

    Pbsw=0.8

    Pb=0.914212

    Mjsw=0.1842521

    Cjsw=2.002874e-10

    Mj=0.4683602

    Cj=9.196812e-4

    Tox=1.01e-8

    Wwl=0

    Wwn=1

    Wln=1

    Wl=0

    Wint=2.151118e-7

    Lwl=0

    Lwn=1

    Lw=0

    Lln=1

    Ll=0

    Lint=5.519082e-8

    Js=0

    Rsh=2.2

    Capmod=2

    Mobmod=1

    Version=3.1

    Idsmod=8

    PMOS=yes

    HarmonicBalance

    HB2

    ConvMode=Basic (Fast)

    NoiseConMode=yes

    Noisecon[1]="NC1"

    EquationName[1]=

    OscPortName="oscport1"

    OscMode=yes

    UseKrylov=no

    FundOversample=4

    Order[1]=5

    Freq[1]=2.5 GHz

    HARMONIC BALANCE

    NoiseCon

    NC1

    NoiseNode[1]=vout2

    PhaseNoise=Phase noise spectrum

    CarrierIndex[1]=1

    NLNoiseDec=1

    NLNoiseStop=1 M Hz

    NLNoiseStart=10 Hz

    HB NOISE CONTROLLER

    VDD

    MM9_PMOS

    MOSFET11

    Width=W um

    Length=L um

    Model=cmosp

    VAR

    VAR2

    L=1

    VDD=1.5

    Vcontrol=1.5

    W=100

    EqnVar

    I_DC

    SRC2

    Idc=3.5 mA

    INDQ

    L4

    Rdc=0.0 Ohm

    Mode=proportional to freq

    F=2.5 GHz

    Q=80

    L=2 nH

    MM9_PMOS

    MOSFET4

    Width=500 um

    Length=3 um

    Model=cmosp

    MM9_PMOS

    MOSFET9

    Width=500 um

    Length=3 um

    Model=cmosp

    OscPort

    oscport1

    MaxLoopGainStep=

    FundIndex=1

    Steps=50

    NumOctaves=4

    Z=1.1 Ohm

    V=

    INDQ

    L2

    Rdc=0.0 Ohm

    Mode=proportional to freq

    F=2.5 GHz

    Q=5

    L=2.0 nH

    VSSMOSFET_NMOS

    MOSFET8

    Width=W um

    Length=L um

    Model=cmosn

    VSS

    MOSFET_NMOS

    MOSFET7

    Width=W um

    Length=L um

    Model=cmosn

    VDDMM9_PMOS

    MOSFET10

    Width=W um

    Length=L um

    Model=cmosp

    DC

    DC1

    DC

    VSSMOSFET_NMOS

    MOSFET12

    Width=W um

    Length=L um

    Model=cmosn

    I_Probe

    IDS V_DC

    VDD

    Vdc=VDD

    V_DC

    VDD2

    Vdc=Vcontrol

    VSS

    MOSFET_NMOS

    MOSFET13

    Width=W um

    Length=L um

    Model=cmosn

    V_DC

    VDD1

    Vdc=-VDD

    Figure 13 ADS simulation of the basic L-C oscillator option 1 using harmonic balance. The OscPort is

    used by the harmonic balance simulator, to inject a signal into the circuit to determine the frequency of op-

    eration etc. The fundamental oscillating frequency is entered into the harmonic balance simulator and

    Oscmode is checked.

  • 8/3/2019 LC Oscillator

    13/18

    Sheet

    13 of 18

    VSS

    VDD

    vout2

    V_DCVDD2

    Vdc=Vcontrol

    BSIM3_Model

    cmosn

    Xl=-1e-7

    Xw=0Em=4.1e7

    Kt2=0.022Kt1=-0.11

    Uc1=-5.6e-11

    Ub1=-7.61e-18

    Ua1=4.31e-9At=3.3e4

    Ute=-1.5

    Pvag=0.1945781Pscbe2=5e-10

    Pscbe1=2.541131e10

    Pdiblcb=-0.5Pdiblc2=9.723614e-4

    Pdiblc1=2.091364e-3

    Pclm=0.7319137Drout=0.0428851

    Dsub=0.751089Etab=2.603903e-3

    Eta0=0.1178659

    Cit=0

    Cdscd=0Cdscb=0

    Cdsc=2.4e-4

    Nfac tor=1.2410485Voff =-0.0850186

    B1=5e-6

    B0=1.648829e-6Pags=0.0968

    Ags=0.1450882

    Wketa=-5.792854e-3Lketa=-0.0143698

    Keta=3.997018e-3A0=0.9059229

    Vsat=1.174604e5

    Prwb=-0.0586598

    Prwg=0.0182608Prdsw=-33.9337286

    Rdsw=1.28604e3

    Delta=0.01Uc=1.831708e-11

    Ub=1.582544e-18

    Ua=1e-12Dv t2=-0.1427458

    Dv t1=0.9107896

    Dv t0=6.5803089Nlx=5.28517e-8

    W0=1e-5K3b=1.252205

    K3=68.279056

    Pk2=9.631217e-3

    K2=-0.0316751K1=0.825917

    Pvth0=8.691731e-3

    Vth0=0.6701079U0=433.6065339

    Xj=1.5e-7

    Vbm=-3.0Nch=1.7e17

    Dwb=1.238214e-8

    Dwg=-7.483283e-9Xpart=0.5

    Cgbo=2e-9Cgdo=2.79e-10

    Cgso=2.79e-10

    Pbswg=0.99

    Mjswg=0.1Cjswg=2.2346e-10

    Pbsw=0.99

    Pb=0.99Mjsw=0.1

    Cjsw=4.437149e-10

    Mj=0.7549569Cj=5.067009e-4

    Tox=1.01e-8

    Tnom=27Wwl=0

    Wwn=1Ww=0

    Wln=1

    Wl=0

    Wint=2.277646e-7Lwl=0

    Lwn=1

    Lw=0Lln=1

    Ll=0

    Lint=1.097132e-7Js=0

    Rsh=2.8

    Capmod=2Mobmod=1

    Version=3.1Idsmod=8

    NMOS=yes

    BSIM3_Model

    cmosp

    Xl=-1e-7

    Xw=0Noic=1.4e-12

    Noib=2.4e3

    Noia=9.9e18

    Em=4.1e7Kt2=0.022

    Kt1=-0.11

    Uc1=-5.6e-11Ua1=4.31e-9

    At=3.3e4

    Ute=-1.5Pvag=14.4617331

    Pscbe2=3.078664e-9Pscbe1=6.898588e10

    Pdiblcb=-0.0209265

    Pdiblc2=9.858521e-3Pdiblc1=1.300053e-5

    Drout=7.988149e-4

    Dsub=0.3593017

    Etab=8.604543e-3Eta0=0.111002

    Cit=0

    Cdscd=0Cdscb=0

    Cdsc=2.4e-4

    Nfactor=0.8428454Voff =-0.0939754

    B1=5e-6B0=4.703171e-6

    A1=0

    Pags=0.09532Ags=0.2633783

    Wketa=8.895347e-3

    Lketa=-9.580923e-3

    Keta=4.690296e-3Vsat=1.57686e5

    Prwb=-0.0733682

    Prwg=-4.742166e-3Prdsw=128.4338259

    Rdsw=2.552456e3

    Delta=0.01Uc=-5.80218e-11

    Ub=9.033053e-19Ua=1.447557e-9

    Dv t2=-0.061438

    Dv t1=0.5624229Dv t0=3.8366128

    Nlx=1.867036e-7

    W0=1e-5

    K3b=-5K3=96.6543548

    Pk2=3.340684e-3

    K2=0.0200888K1=0.3913281

    Pvth0=1.949468e-3

    Vth0=-0.8017536U0=183.1171264

    Xj=1.5e-7Vbm=-3.0

    Nch=1.7e17

    Dwb=9.587665e-9Dwg=-1.585994e-8

    Xpart=0.5

    Cgbo=2e-9

    Cgdo=2.56e-10Cgso=2.56e-10

    Pbswg=0.8

    Mjswg=0.1912128Cjswg=4.256e-11

    Pbsw=0.8

    Pb=0.914212Mjsw=0.1842521

    Cjsw=2.002874e-10Mj=0.4683602

    Cj=9.196812e-4

    Tox=1.01e-8Wwl=0

    Wwn=1

    Wln=1

    Wl=0Wint=2.151118e-7

    Lwl=0

    Lwn=1Lw=0

    Lln=1

    Ll=0Lint=5.519082e-8

    Js=0Rsh=2.2

    Capmod=2

    Mobmod=1Version=3.1

    Idsmod=8

    PMOS=y es

    HarmonicBalanceHB2

    ConvMode=Basic (Fast)

    NoiseConMode=yes

    Noisecon[1]="NC1"EquationName[1]=

    OscPortName="oscport1"

    OscMode=yesUseKrylov =no

    FundOversample=4

    Order[1]=5Freq[1]=2.5 GHz

    HARMONIC BALANCE

    VSS

    MOSFET_NMOS

    MOSFET11

    Width=W umLength=L um

    Model=cmosn

    NoiseConNC1

    NoiseNode[1]=vout2

    PhaseNoise=Phase noise spectrumCarrierIndex[1]=1

    NLNoiseDec=1

    NLNoiseStop=1 MHzNLNoiseStart=10 Hz

    HB NOISE CONTROLLER

    INDQL4

    Rdc=0.0 Ohm

    Mode=proportional to freq

    F=2500.0 MHzQ=80

    L=2.0 nH

    VSSMOSFET_NMOS

    MOSFET8

    Width=W um

    Length=L umModel=cmosn

    VSS

    MOSFET_NMOSMOSFET7

    Width=W umLength=L um

    Model=cmosn

    INDQL3

    Rdc=0.0 OhmMode=proportional to freq

    F=2500.0 MHz

    Q=5L=2.0 nH

    INDQ

    L5

    Rdc=0.0 OhmMode=proportional to f req

    F=2500.0 MHz

    Q=80L=2.0 nH

    VSS

    MOSFET_NMOS

    MOSFET10

    Width=W umLength=L um

    Model=cmosn

    VARVAR2

    L=0.6

    VDD=1.5Vcontrol=1

    W=40

    EqnVar

    MM9_PMOS

    MOSFET4

    Width=700 um

    Length=2.4 um

    MM9_PMOSMOSFET9

    Width=700 um

    Length=2.4 um

    V_DC

    VDDVdc=VDDI_Probe

    IDS

    DC

    DC1

    DC

    I_DC

    SRC2Idc=1100 uA

    OscPort

    oscport1

    MaxLoopGainStep=

    FundIndex=1Steps=10

    NumOctav es=2

    Z=1.1 OhmV=

    V_DC

    VDD1

    Vdc=-VDD

    Figure 14 ADS simulation of the basic L-C oscillator option 1 using harmonic balance. The OscPort is

    used by the harmonic balance simulator, to inject a signal into the circuit to determine the frequency of op-

    eration etc. The fundamental oscillating frequency is entered into the harmonic balance simulator and

    Oscmode is checked.

  • 8/3/2019 LC Oscillator

    14/18

    Sheet

    14 of 18

    m1harmindex=dBm(HB.vout2)=10.982

    1

    1 2 3 40 5

    -30

    -20

    -10

    0

    10

    -40

    20

    harmindex

    dBm(HB.vout2)

    m1harmindex

    012345

    HB.freq

    0.0000 Hz2.531GHz5.062GHz7.593GHz10.12GHz12.65GHz

    100 200 300 400 500 600 7000 800

    -0.5

    0.0

    0.5

    1.0

    1.5

    -1.0

    2.0

    time, psec

    ts(HB.vo

    ut2),V

    m2noisefreq=pnfm=-75.67 dBc

    10.00kHz

    1E2 1E3 1E4 1E51E1 1E6

    -100

    -80

    -60

    -40

    -20

    -120

    0

    noisefreq, Hz

    pnfm,

    dBc

    m2

    DC.IDS.i

    9.859mA

    Figure 15 Resulting plots from the ADS simulation shown in Figure 13. Here the control voltage has been set

    to center the VCO on ~ 2.5GHz.

  • 8/3/2019 LC Oscillator

    15/18

    Sheet

    15 of 18

    m1harmindex=dBm(HB.vout2)=5.293

    1

    1 2 3 40 5

    -40

    -20

    0

    -60

    20

    harmindex

    dBm(HB.vout2)

    m1 harmindex012345

    HB.freq0.0000 Hz2.072GHz4.145GHz6.217GHz8.289GHz10.36GHz

    0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.0 1.0

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    0.2

    1.6

    time, nsec

    ts(HB.vout2),

    m2noisefreq=pnfm=-86.32 dBc

    10.00kHz

    1E2 1E3 1E4 1E51E1 1E6

    -120

    -100

    -80

    -60

    -40

    -140

    -20

    noisefreq, Hz

    pnfm,

    dBc

    m2

    DC.IDS.i

    9.859mA

    Figure 16 Resulting plots from the ADS simulation shown in Figure 13. Here the control voltage has been set

    to 2.5V giving a resulting oscillating frequency of ~ 2.07GHz.

    m1harmindex=dBm(HB.vout2)=15.327

    1

    1 2 3 40 5

    -20

    -10

    0

    10

    -30

    20

    harmindex

    dBm(HB.vout2)

    m1harmindex

    012345

    HB.freq

    0.0000 Hz3.471GHz6.942GHz10.41GHz13.88GHz17.35GHz

    100 200 300 400 5000 600

    -1

    0

    1

    2

    -2

    3

    time, psec

    ts(H

    B.vout2),V

    m2noisefreq=pnfm=-75.39 dBc

    10.00kHz

    1E2 1E3 1E4 1E51E1 1E6

    -100

    -80

    -60

    -40

    -20

    -120

    0

    noisefreq, Hz

    pnfm,

    dBc

    m2

    DC.IDS.i

    9.859mA

    Figure 17 Resulting plots from the ADS simulation shown in Figure 13. Here the control voltage has been set

    to 0V giving a resulting oscillating frequency of ~ 3.47GHz.

  • 8/3/2019 LC Oscillator

    16/18

    Sheet

    16 of 18

    3.7REDUCING TUNING BANDWIDTHThe previous VCO was designed for maximum band-

    width, by directly connecting the varactor to the induc-tor. If we wish to have a VCO operating over a narrower

    bandwidth then we need to swap one of the varactors

    with a small value capacitor, such that the varactor ca-

    pacitance swing is less dominant. The circuit arrange-

    ment for the resonator is shown in Figure 18. The easiest

    way to determine the value of the coupling capacitor is to

    generate a spreadsheet and enter values of Varactor cou-

    pling capacitor as shown in

    Table 2 Prediction of VCO tuning bandwidth with the

    addition of a coupling capacitor Cc in series with a sin-

    gle MOS varactor. In order to achieve a % bandwidth of

    ~ 10% , the required value of Cc is 0.5pF (This will also

    give us some margin). Note the addition of the resonatorcoupling capacitor Cc will alter these values slightly and

    some adjustments may need to be made to the resonator

    to adjust the center frequency back to 2.5GHz.

    INDQ

    L4

    Rdc=0.0 Ohm

    Mode=proportional to freq

    F=2.5 GHz

    Q=5

    L=6 nH

    V_DC

    VDD1

    Vdc=Vcontrol

    R

    R1

    R=1 kOhm

    C

    C1

    C=0.5 pF

    MM9_PMOS

    MOSFET9

    _M=Fingers

    Width=Wv umLength=L um

    Model=cmosp

    Figure 18 Circuit segment of the L-C Vco showing

    the modified resonator section. One of the varac-

    tors has been replaced with a small value capaci-

    tor to dampen the varactor capacitance swing

    and thus reducing the VCO tuning bandwith.

    Values for the varactor are _M=5, Wv=500 &

    L=0.6 giving a predicted capacitance variation of

    1.279pF to 4.613pF.

    If we re-adjust L to be 5.5nH and Cc set to 0.6pF the

    new maximum and minimum VCO frequencies will be

    2401MHz and 2657MHz. This will give a center fre-

    quency of 2529MHz and a % tuning bandwidth of

    10.2%. This value may well need to be increased to al-

    low for temperature effects etc.

    Table 2 Prediction of VCO tuning bandwidth

    with the addition of a coupling capacitor Cc in

    series with a single MOS varactor. In order to

    achieve a % bandwidth of ~ 10% , the required

    value of Cc is 0.5pF

    The plots of the narrow bandwidth Vco with Vcontrol set

    to 0V and 2.5V are shown in Figure 19 & Figure 20

    Cc

    pF Max C Min C Min Freq Max Freq

    (MHz) (MHz) (MHz/V) (%)

    0.1 0.09787821 0.092748 4644 4771 50.68 2.69

    0.15 0.14527609 0.134255 3812 3965 61.35 3.94

    0.2 0.19168918 0.172955 3318 3494 70.04 5.14

    0.25 0.23714785 0.209124 2983 3177 77.45 6.29

    0.3 0.28168125 0.243002 2737 2947 83.93 7.38

    0.35 0.32531735 0.2748 2547 2772 89.70 8.43

    0.4 0.36808298 0.304705 2395 2632 94.92 9.44

    0.45 0.41000395 0.33288 2269 2518 99.67 10.41

    0.5 0.45110503 0.359472 2163 2423 104.03 11.34

    0.55 0.49141003 0.384609 2073 2343 108.06 12.24

    0.6 0.53094188 0.408409 1994 2273 111.81 13.10

    0.65 0.56972259 0.430975 1925 2213 115.30 13.93

    0.7 0.60777339 0.4524 1864 2160 118.58 14.73

    0.75 0.64511467 0.47277 1809 2113 121.66 15.51

    0.8 0.68176612 0.49216 1760 2071 124.56 16.26

    0.95 0.78776739 0.54511 1637 1968 132.36 18.36

    0.9 0.75307455 0.52827 1674 1999 129.89 17.680.95 0.78776739 0.54511 1637 1968 132.36 18.36

    1 0.82184215 0.561211 1603 1939 134.70 19.01

    Varactor

    Network

    Tuning Range

  • 8/3/2019 LC Oscillator

    17/18

    Sheet

    17 of 18

    m1harmindex=dBm(HB.vout1)=16.570

    1

    1 2 3 40 5

    -30

    -20

    -10

    0

    10

    -40

    20

    harmindex

    dBm(HB.vout1)

    m1

    harmindex

    012345

    HB.freq

    0.0000 Hz2.657GHz5.314GHz7.972GHz10.63GHz13.29GHz

    100 200 300 400 500 600 7000 800

    -2

    -1

    0

    1

    2

    -3

    3

    time, psec

    ts(HB.vout1),V

    m2noisefreq=pnfm=-85.04 dBc

    10.00kHz

    1E2 1E3 1E4 1E51E1 1E6

    -120

    -100

    -80

    -60

    -40

    -140

    -20

    noisefreq, Hz

    pnfm,

    dBc

    m2

    DC.IDS.i

    9.859mA

    Narrow bandwidth L-C VCO with Vcontrol set to 0V

    Figure 19 Prediction of the narrow band L-C VCO performance at a Vcontrol set to 0V.

    m1harmindex=dBm(HB.vout1)=15.839

    1

    1 2 3 40 5

    -20

    -10

    0

    10

    -30

    20

    harmindex

    dBm(HB.vout1

    m1

    harmindex

    012345

    HB.freq

    0.0000 Hz2.401GHz4.801GHz7.202GHz9.602GHz12.00GHz

    100 200 300 400 500 600 700 8000 900

    -1

    0

    1

    2

    -2

    3

    time, psec

    ts(H

    B.vout1),V

    m2noisefreq=pnfm=-89.58 dBc

    10.00kHz

    1E2 1E3 1E4 1E51E1 1E6

    -120

    -100

    -80

    -60

    -40

    -140

    -20

    noi sefreq, Hz

    pnfm,

    dBc

    m2

    DC.IDS.i

    9.859mA

    Narrow bandwidth L-C VCO with Vcontrol set to 2.5V

    Figure 20 Prediction of the narrow band L-C VCO performance at a Vcontrol set to 2.5V.

  • 8/3/2019 LC Oscillator

    18/18

    Sheet

    18 of 18

    4 CONCLUSION

    This tutorial described the small signal operation of a L-C oscillator. The relevant design theory was given to-

    gether with several worked examples, both fixed fre-

    quency and voltage controlled versions.

    Harmonic balance ADS simulations were given to simu-

    late the circuits, using the hand calculations derived in

    the examples to predict, output frequency (and harmon-

    ics), output power and phase noise performance.

    It was shown that in order to achieve good phase noise

    performance the use of low Q on-chip inductors was to

    be avoided, opting instead for high Q bond-wire induc-

    tors off-chip.

    The first VCO was designed for maximum tuning range

    by connecting a pair of varactors directly across the in-

    ductor. The resulting tuning bandwidth was 55% (ie 2.07

    to 3.47GHz), centred on 2.5GHz.

    The step by step design of this Vco showed how to de-

    sign the resonator and calculate its loaded Q (and hence

    determine the VCO phase noise) and its RF loss. With

    the knowledge of the loss of the resonator, the gms of

    the reflection amplifier devices could be determined to

    ensure reliable oscillation (with some margin).

    The predicted performance of the wide-band oscillator is

    shown in Table 3.

    Parameter Predicted

    Result

    Units

    Frequency band-

    width

    2.07 3.47 GHz

    Phase Noise > 75 dBc/Hz @

    10KHz

    Tuning Bandwidth 55 %

    O/P Power >5 dBm

    Power Consumption ~ 100 mW

    2nd Harmonic >10 dBc

    Ko ~500 MHz/V

    Table 3 Predicted performance of the wide-

    band L-C VCO.

    The second VCO example was designed to have a

    greatly reduced bandwidth (~10%), thus lowering Ko to

    around 100MHz/V, giving a tuning range of 2.401GHz

    to 2.667GHz centred on 2.532GHz.

    The predicted performance of the narrow-band oscillator

    is shown in Table 4. In both cases the harmonic contentis quite high and so a buffer stage with a tuned output

    will be required to improve this to a more acceptable

    20dc or so.

    Parameter Predicted

    Result

    Units

    Frequency band-

    width

    2.401 2.667 GHz

    Phase Noise > 83 dBc/Hz @

    10KHz

    Tuning Bandwidth 10.5 %

    O/P Power >15 dBm

    Power Consumption ~ 100 mW

    2nd

    Harmonic >10 dBc

    Ko ~100 MHz/V

    Table 4 Predicted performance of the narrow-

    band L-C VCO.

    5 REFERENCES[1] Oscillator Design and Simulation, Randall W Rhea,

    1995, Noble Publishing, ISBN 1-884932-30-4, p111-

    131.

    [2] Thomas Lee, The Design of CMOS Radio-

    Frequency Integrated circuits, Cambridge University

    Press, second edition 2004, ISBN 0-521-835389-9,

    p145.

    [3] P Andreani & S Mattisson, A 1.8GHz CMOS VCO

    Tuned by an Accumulation-Mode MOS Varactor. Com-

    petence Center for Circuit Design, Dept of Applied Elec-

    tronics, Lund University, Sweden. In Proceedings of

    ISCAS 2000, Vol. 1, pp. 315-318, May 2000.

    [4] W.Wong, P.Hui, Z.chen, K.Lau, P.Chan, P.Ko, A

    Wide Tuning Range Gated Varactor, IEEE Journal of

    Solid-State Circuits, Vol. 35, No 5, May 2000.

    [5] R. Jacob Baker, H Li, D Boyce, CMOS Circuit De-

    sign, Layout and Simulation, Wiley Interscience, 2004,

    ISBN 0-471-70055-X.