Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory...

26
Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl, Charles K. Westbrook Lawrence Livermore National Laboratory May 14, 2013 DOE National Laboratory Advanced Combustion Engine R&D Merit Review and Peer Evaluation Washington, DC This presentation does not contain any proprietary, confidential or otherwise restricted information This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Project ID # ACE013 LLNL-PRES-628234

Transcript of Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory...

Page 1: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

Lawrence Livermore National Laboratory

Chemical Kinetic Research on HCCI & Diesel Fuels

William J. Pitz (PI) Marco Mehl, Charles K. Westbrook

Lawrence Livermore National Laboratory May 14, 2013

DOE National Laboratory Advanced Combustion Engine R&D Merit Review and Peer Evaluation

Washington, DC This presentation does not contain any proprietary, confidential or otherwise restricted information

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Project ID # ACE013

LLNL-PRES-628234

Page 2: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

2 LLNL-PRES-628234 2013 DOE Merit Review

Overview

• Project provides fundamental research to support DOE/ industry advanced engine projects

• Project directions and continuation are evaluated annually

Increases in engine efficiency and decreases in engine emissions are being inhibited by an inadequate ability to simulate in-cylinder combustion and emission formation processes • Chemical kinetic models for fuels are a

critical part of engine simulation models

Project funded by DOE/VT: • FY12: 620K • FY13: 600K

Timeline

Budget

Barriers

• Project Lead: LLNL – W. J. Pitz (PI) • Part of Advanced Engine Combustion (AEC)

working group: • – 15 Industrial partners: auto, engine & energy • – 5 National Labs & 2 Univ. Consortiums • Sandia: Provides engine data for validation of

detailed chemical kinetic mechanisms • FACE Working group

Partners

Page 3: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

3 LLNL-PRES-628234 2013 DOE Merit Review

Objectives and relevance to DOE objectives Objectives:

• Develop predictive chemical kinetic models for gasoline, diesel and next generation fuels so that simulations can be used to overcome technical barriers to low temperature combustion in engines and needed gains in engine efficiency and reductions in pollutant emissions

FY13 Objectives:

1. Develop detailed chemical kinetic models for larger alkyl aromatics relevant to diesel fuels

2. Develop more accurate surrogate kinetics models for gasoline-fueled HCCI, including ethanol

3. Develop improved chemical kinetic models for larger alkyl-cyclohexanes

4. Develop an improved 2-component surrogate mechanism for diesel to be used for multidimensional CFD simulations

Page 4: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

4 LLNL-PRES-628234 2013 DOE Merit Review

Chemical kinetic milestones 1. Develop detailed chemical kinetic

models for larger alkyl aromatics (June, 2013)

2. Develop more accurate surrogate kinetics models for gasoline-fueled HCCI including ethanol (Sept, 2013)

3. Develop improved chemical kinetic models for methyl cyclohexane and a preliminary model for n-butyl cyclohexane (Sept, 2013)

4. Develop an improved 2-component surrogate mechanism for diesel to be used for multidimensional CFD simulations (March, 2013)

Page 5: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

5 LLNL-PRES-628234 2013 DOE Merit Review

Approach Develop chemical kinetic reaction models for each individual fuel

component of importance for fuel surrogates of gasoline, diesel, and next generation fuels

Combine mechanisms for representative fuel components to provide

surrogate models for practical fuels • diesel fuel • gasoline (HCCI and/or SI engines) • addition of ethanol and other biofuels

Reduce mechanisms for use in CFD and multizone HCCI engine codes to

improve the capability to simulate in-cylinder combustion and emission formation/destruction processes in engines

Use the resulting models to simulate practical applications in engines, including diesel, HCCI and spark-ignition, as needed

Iteratively improve models as needed for applications Make models available to industry

Page 6: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

6 LLNL-PRES-628234 2013 DOE Merit Review

Collaborations Our major current industry collaboration is via the DOE working groups on HCCI

and diesel engines • All results presented at Advanced Engine Combustion Working group meetings

(Industry, National labs, U. of Wisc., U. of Mich., MIT, UC Berkeley) • Multiple exchanges of chemical kinetic models with industry • Collaboration on gasoline-ethanol engine experiments with Sandia:

− John Dec on HCCI − Magnus Sjöberg on DISI

• Collaboration with Sibendu Som at Argonne on diesel reacting sprays Second interaction is collaboration with many universities

• Prof. Sung’s group, U of Conn., Dr. Sarathy, KAUST, and Prof. Dibble, UC Berkeley on gasoline surrogates

• Dr. Curran at Nat’l Univ. of Ireland on n-propyl benzene and n-butyl benzene in RCM and shock tube

• Prof. Reitz, Univ. of Wisc., on development of reduced chemical kinetic models for diesel surrogate components

• Prof. Lu, U. of Conn. on mechanism reduction Participation in other working groups with industrial representation

• Fuels for Advanced Combustion Engines (FACE) Working group and AVFL-18 (Surrogate fuels for kinetic modeling)

• Engine combustion network (ECN)

Page 7: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

7 LLNL-PRES-628234 2013 DOE Merit Review

Technical Accomplishment slides: Diesel components selected for mechanism development in FY13

Components selected from the AVFL-18 Diesel Surrogate palette1:

Previously developed

New

1 CRC AVFL-18 Working Group. Mueller, C. J., Cannella, W. J., Bruno, T. J., Bunting, B., Dettman, H. D., Franz, J. A., Huber, M. L., Natarajan, M., Pitz, W. J., Ratcliff, M. A. and Wright, K., Energy & Fuels 26(6):3284–3303 (2012).

Page 8: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

8 LLNL-PRES-628234 2013 DOE Merit Review

Jet Stirred Reactors

Non Premixed Flames

Premixed Laminar Flames

Engine Combustion

Combustion Parameters

Temperature

Pressure

Mixture fraction (air-fuel ratio)

Mixing of fuel and air

Fuel component and surrogate models validated by comparison to fundamental experimental data

Shock tube

Electric ResistanceHeater

Evaporator

Fuel Inlet

Slide Table

Oxidizer Injector

Optical Access Ports

Sample ProbeWall Heaters

High pressure flow reactors:

Rapid Compression Machine

Page 9: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

9 LLNL-PRES-628234 2013 DOE Merit Review

Objective 1: Develop detailed chemical kinetic models for larger alkyl aromatics relevant to diesel fuels. N-propyl benzene mechanism simulates well ignition in shock tubes and RCM over a wide range of pressures and temperatures

Experiments: Nakamura and Curran , NUI-Galway, Ireland

φ = 2 φ = 1

Shock tube Rapid compression machine (RCM)

Shock tube Shock tube

RCM RCM

Technical accomplishments

Page 10: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

10 LLNL-PRES-628234 2013 DOE Merit Review

Objective 1: (Continued) N-butyl benzene mechanism well simulates ignition in shock tubes and RCM over a wide range of pressures and temperatures

Experiments: Nakamura and Curran , NUI-Galway, Ireland

φ = 2 φ = 1

Shock tube Rapid compression machine (RCM)

Shock tube Shock tube

RCM RCM

Technical accomplishments

Page 11: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

11 LLNL-PRES-628234 2013 DOE Merit Review

Objective 1: (Continued) Our alkyl benzene mechanisms perform very well compared to experimental flame speeds

Experiments:

0

10

20

30

40

50

60

70

0.5 0.7 0.9 1.1 1.3 1.5 1.7Lam

inar

Bur

ning

Vel

ocity

(cm

/s)

Equivalence Ratio

Ethylbenzene - 1 atm

0

10

20

30

40

50

60

70

0.5 0.7 0.9 1.1 1.3 1.5Lam

inar

Bur

ning

Vel

ocity

(cm

/s)

Equivalence Ratio

Propylbenzene - 1 atm

0

10

20

30

40

50

60

70

0.5 0.7 0.9 1.1 1.3 1.5Lam

inar

Bur

ning

Vel

ocity

(cm

/s)

Equivalence Ratio

Butylbenzene - 1 atm

0

10

20

30

40

50

60

70

0.5 0.7 0.9 1.1 1.3 1.5 1.7Lam

inar

Bur

ning

Vel

ocity

(cm

/s)

Equivalence Ratio

Toluene - 1 atm

298K

398K

358K

398K

358K

398K

358K

398K

358K

Dirrenberger, Herbinet, et al., U. S. National Combustion Meeting, 2013.

Technical accomplishments

Page 12: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

12 LLNL-PRES-628234 2013 DOE Merit Review

Objective 1: (Continued) Intermediate species for α-methylnaphthalene oxidation are well predicted in a flow reactor

Residence time [ms] Residence time [ms]

Residence time [ms] Residence time [ms] Residence time [ms]

Residence time [ms]

Mol

e fra

ctio

n

Mol

e fra

ctio

n

Mol

e fra

ctio

n

Mol

e fra

ctio

n

Mol

e fra

ctio

n

Mol

e fra

ctio

n Flow reactor, P = 1 atm, φ = 0.5, (Shaddix et. al., 1997)

0.0E+00

4.0E-04

8.0E-04

1.2E-03

0 50 100 150 2000.0E+00

3.0E-05

6.0E-05

9.0E-05

1.2E-04

0 50 100 150 2000.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

0 50 100 150 200

0.0E+00

2.5E-05

5.0E-05

7.5E-05

1.0E-04

0 50 100 150 2000.0E+00

1.0E-04

2.0E-04

3.0E-04

0 50 100 150 2000.0E+00

4.0E-03

8.0E-03

1.2E-02

1.6E-02

0 50 100 150 200

C2H2

C2H4 CO

CO2

O

OH

Electric ResistanceHeater

Evaporator

Fuel Inlet

Slide Table

Oxidizer Injector

Optical Access Ports

Sample ProbeWall Heaters

fuel

Technical accomplishments

Page 13: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

13 LLNL-PRES-628234 2013 DOE Merit Review

10

100

1000

10000

0.6 0.7 0.8 0.9 1

φ = 1 fuel/ air

Objective 1: (Continued) Ignition delay times for α-methylnaphthalene are reasonable compared to shock tube ignition experiments

1000K/T

Igni

tion

Del

ay T

imes

[µs]

Experiments: Wang and Oehlschlaeger et al., Combust. Flame, 2010

10 atm

Page 14: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

14 LLNL-PRES-628234 2013 DOE Merit Review

Objective 2: Develop surrogate for gasoline-ethanol mixtures: LLNL 4-component surrogate model for gasoline

Liquid Volume % of n-Alkanes

Liquid Volume % of Cyclo-Alkanes

Liquid Volume % of iso-Alkanes

Liquid Volume % of Olefins

Liquid Volume % of Aromatics

LLNL Surrogate

57%

16% 23%

4%

RD387 Gasoline

43%

10% 24%

5%

16%

n-heptane

toluene

2-pentene

iso-octane

25atm 825K

φ=1 in air

n-alkane

cyclo-alkane

iso-alkane

alkene

aromatic

Chemical class (volume %)

Page 15: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

15 LLNL-PRES-628234 2013 DOE Merit Review

Objective 2 (Cont.): Developed surrogate mixtures for each of the gasoline-ethanol mixtures

RD387 E15 E50 E85 E100

iso-octane 57 % 48.4 % 28.5 % 8.55 % ─

n-heptane 16 % 13.6 % 8.0 % 2.40 % ─

toluene 23 % 19.6 % 11.5 % 3.45 % ─

2-pentene 4 % 3.4 % 2.0 % 0.60 % ─

ethanol ─ 15.0 % 50.0 % 85.00 % 100 %

Gasoline-ethanol surrogate composition (volume %)

Page 16: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

16 LLNL-PRES-628234 2013 DOE Merit Review

Objective 2 (Cont.): Gasoline-ethanol surrogate model with ethanol well simulates laminar flame speed for gasoline-ethanol mixtures

20

30

40

50

60

70

80

0.6 0.8 1 1.2 1.4 1.6

Gasoline

E100 (neat ethanol)

E50 E85

E15

Experiments: Runhua Zhao, Egolfopoulos, USC RD387 gasoline-ethanol mixtures: Supplied by Magnus Sjöberg, SNL

Equivalence ratio, φ

Flam

e sp

eed

[cm

/s]

Tunburned = 353 K P = 1 atm

Page 17: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

17 LLNL-PRES-628234 2013 DOE Merit Review

Objective 3: Develop chemical kinetic models for larger alkyl-cyclohexanes. Improved methylcyclohexane (MCH) model simulates RCM ignition well at 15, 25 and 50 bar

RCM

UCONN RCM

15 bar

25 bar

Experiments: Weber and Sung, UCONN

15 bar

15 bar

25 bar

25 bar

50 bar

50 bar 50 bar

Technical accomplishments

Weber, Pitz, Sung et al., 2013 U.S. National

Combustion Meeting

Page 18: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

18 LLNL-PRES-628234 2013 DOE Merit Review

Objective 3 (Cont.) Updated MCH mechanism satisfies a rigorous set of experimental species profiles in flames

Low pressure MCH flame experiments (Skeen and Hansen, Sandia)

allyl radical methyl radical

benzene

Technical accomplishments

Pitz, Skeen, Hansen, and Mehl 2013 U.S. National

Combustion Meeting

Page 19: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

19 LLNL-PRES-628234 2013 DOE Merit Review

Objective 4: Develop improved 2-component surrogate mechanism for diesel to be used for multidimensional CFD simulations. Developing reduced model for diesel surrogate for Engine Combustion Network (ECN)

23% m-xylene / 77% n-dodecane (by liquid volume)

Technical accomplishments

~ 18

tim

es re

duct

ion

LLNL Detailed Mechanism 2885 species, 11754 reactions

Skeletal Mechanism

163 species, 887 reactions

DRG related algorithms developed by Prof. T. Lu at University of Connecticut

2-component diesel surrogate:

Collaboration with Sibendu Som at ANL:

Reduction of mechanism in collaboration with UCONN

On-going work: extensive validation against ECN spray-combustion and engine data

Page 20: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

20 LLNL-PRES-628234 2013 DOE Merit Review

Mechanisms are available on LLNL website and by email

LLNL-PRES-427539

http://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion

Page 21: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

21 LLNL-PRES-628234 2013 DOE Merit Review

Future plans for next year:

Fill-out the 9 component surrogate palette for diesel (CRC AVFL-18 effort, “Surrogate fuels for kinetic modeling”) Develop mechanism for:

• multi-ring saturated cyclic • larger alkyl aromatic • multi-ring cycloalkane

AVFL-18 palette:

Develop surrogates models for 5 of the FACE gasoline fuels • Validate surrogate models using experiments to

be performed by KAUST, UC Berkeley, UCONN, and Rensselaer Polytechnic Institute

Modeling of engine combustion with reduced models for diesel surrogate fuels for the Engine Combustion Network

Page 22: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

22 LLNL-PRES-628234 2013 DOE Merit Review

Detailed chemical kinetic modeling summary

1. Developed detailed chemical kinetic models for larger alkyl aromatics relevant to diesel fuels

2. Developed surrogate kinetics models for gasoline-ethanol blends

3. Developing improved chemical kinetic models for larger alkyl-cyclohexanes

4. Developed an improved 2-component surrogate mechanism for diesel to be used for multidimensional CFD simulations

Developing fuel surrogate models for gasoline and diesel fuels to enable accurate engine simulations with fuel effects

Page 23: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

23 LLNL-PRES-628234 2013 DOE Merit Review

23

Technical Back-Up Slides

Page 24: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

24 LLNL-PRES-628234 2013 DOE Merit Review

Chemical kinetic model development for practical fuels:

Reaction rate rules

Accurate reaction rates

Application to engines

Ab initio calculations

Model Reduction

Validation against fundamental

combustion data

Reaction paths

Detailed Chemical

Kinetic Models

Fundamental Experiments

NUIG, UCONN, USC, CNRS, RPI

Species thermodynamic

properties

Page 25: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

25 LLNL-PRES-628234 2013 DOE Merit Review

Gasoline surrogate formulation using model-derived correlations

Calculated ignition delay times can be correlated to octane characteristics of real fuels

-3.1

-2.9

-2.7

-2.5

-2.3

-2.1

-1.9

-1.7

-1.5

1 1.1 1.2 1.3 1.4

AKI = 85SEN = 0

AKI = 83.65SEN = 11.2

AKI = 86.5SEN = 3

Log

(Igni

tion

Del

ay T

ime)

1000K/T

PRFs (RON-MON=0)

Sensitive Fuels (0<RON-MON<10)

Highly Sensitive Fuels (RON-MON>11)

-3.1

-2.9

-2.7

-2.5

-2.3

-2.1

-1.9

-1.7

-1.5

1 1.1 1.2 1.3 1.4

Page 26: Lawrence Livermore National Laboratory · 2014. 4. 4. · Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI) Marco Mehl,

26 LLNL-PRES-628234 2013 DOE Merit Review

Correlations for gasoline surrogate formulation

25atm 825K

φ=1 in air

25atm 825K

φ=1 in air