Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020....

51
Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura (GSI Helmholtz-Institut Mainz) Talk at PPP2020 Sep. 01, 2020

Transcript of Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020....

Page 1: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Lattice QCD Precision Sciencefor Muon g-2 and EW Physics

Kohtaroh Miura(GSI Helmholtz-Institut Mainz)

Talk at PPP2020Sep. 01, 2020

Page 2: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Muon Anomalous Magnetic Moment a`=e,µ,τ

Dirac Eq. with B:

i~∂ψ∂t

=[α ·(−i~c∇− eA

)+ βc2m` + eA0

]ψ ,

Nonlelativistic Limit, Pauli Eq.:

i~∂φ∂t

=[ (−i~c∇− eA)2

2m`c−M` · B + eA0

]φ ,

Magnetic Moment: M` = g` e2m`c

~σ2 ,

In Dirac Theory:g` = 2 , a` ≡ (g` − 2)/2 = 0 , ωcyc = ωprec.

In QFT (with Loops) for Electron (M.Knecht,NPPP2015):aSM

e = 1 159 652 180.07(6)(4)(77)× 10−12 (O(α5)) ,aexp

e = 1 159 652 180.73(0.28)× 10−12 [0.24ppb] .

B

ps

Muon

Strorage

μ

aexp.µ = aSM

µ ?

Page 3: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Muon Anomalous Magnetic Moment a`=e,µ,τ

Dirac Eq. with B:

i~∂ψ∂t

=[α ·(−i~c∇− eA

)+ βc2m` + eA0

]ψ ,

Nonlelativistic Limit, Pauli Eq.:

i~∂φ∂t

=[ (−i~c∇− eA)2

2m`c−M` · B + eA0

]φ ,

Magnetic Moment: M` = g` e2m`c

~σ2 ,

In Dirac Theory:g` = 2 , a` ≡ (g` − 2)/2 = 0 , ωcyc = ωprec.

In QFT (with Loops) for Electron (M.Knecht,NPPP2015):aSM

e = 1 159 652 180.07(6)(4)(77)× 10−12 (O(α5)) ,aexp

e = 1 159 652 180.73(0.28)× 10−12 [0.24ppb] .

B

ps

Muon

Strorage

μ

aexp.µ = aSM

µ ?

Page 4: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

aexp.µ vs. aSM

µ

SM contribution acontrib.µ × 1010 Ref.

QED [5 loops] 11658471.8951± 0.0080 [Aoyama et al ’12]

LO-HVP(O(α2)) by pheno. 692.8± 2.4 [Keshavarzi et al ’19]694.0± 4.0 [Davier et al ’19]687.1± 3.0 [Benayoun et al ’19]688.1± 4.1 [Jegerlehner ’17]

NLO-HVP(O(α3)) by pheno. −9.84± 0.07 [Hagiwara et al ’11][Kurz et al ’11]

−9.83± 0.04 [KNT19]

NNLO-HVP(O(α4)) by pheno. 1.24± 0.01 [Kurz et al ’14]

HLbyL(O(α3)) 10.5± 2.6 [Prades et al ’09]Weak (2 loops) 15.36± 0.10 [Gnendiger et al ’13]

SM tot [0.42 ppm] 11659180.2± 4.9 [Davier et al ’11][0.43 ppm] 11659182.8± 5.0 [Hagiwara et al ’11][0.51 ppm] 11659184.0± 5.9 [Aoyama et al ’12]

Exp [0.54 ppm] 11659208.9± 6.3 [Bennett et al ’06]Exp − SM 28.7± 8.0 [Davier et al ’11]

26.1± 7.8 [Hagiwara et al ’11]24.9± 8.7 [Aoyama et al ’12]

aLO-HVPµ |NoNewPhys = aex.

µ − (aQEDµ + aEW

µ + a(N)NLO-HVPµ + aHLbL

µ ) ' (720± 7)× 10−10 ,

Page 5: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

a` in QFT

QFT Def. for a`:

= 〈¯−(p)|J µ|`−(p′)〉 = u(p)Γµ(p, p′)u(p′) (1)

Γµ(q = p − p′) = γµF1(q2) +iσµνqν2mµ

F2(q2) + · · · , (2)

F2(0) = a` = (g` − 2)/2 . (3)

Standard Model, Loop Corr.:

a` = α/(2π) + · · · .

BSM = MSSM (Padley et.al.’15) or TC (Kurachi et.al. ’13) etc.:

γ

µ µ

Technicolor

∝ (m`/ΛBSM )2.

Page 6: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Whitepaper (WP): Lattice QCD Consensus

600 650 700 750

No New PhysicsNo New Physics

ETM-18/19Mainz/CLS-19FHM-19PACS-19RBC/UKQCD-18BMW-17Mainz/CLS-17HPQCD-16ETM-13

KNT-19DHMZ-19BDJ-19Jegerlehner-18

RBC/UKQCD-18

aµHVP,LO . 1010

LQCDPheno.

Pheno+LQCD

Muon g-2 Theory Initiative Whitepaper, arXiv:2006.04822.

LQCD Concensus: aLO-HVPµ = 711.6(18.4) · 10−10, BMW-2020 Not Yet Included.

Page 7: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Motivation

Questions

HVPReally aex.

µ 6= aSMµ ?

More specifically, aLO-HVPµ 6= (720± 7)× 10−10?

Impact for ∆hadα(Q2) at EW scale?[c.f. Crivellin et.al.(2003.04886), Keshavarzi et.al.(2006.12666).]

New Experiments

aex.µ : FNAL-E989 0.14ppm (soon 0.5ppm), J-PARC-E34 0.1ppm (2024).

∆hadα(Q2): MUonE, ILC.

THIS TALK

Investigate aLO-HVPµ by Lattice QCD (BMW-2020, arXiv:2002.12347).

Discuss ∆hadα(Q2) by Lattice QCD compared with Data-Driven Dispersion(Jegerlehner et.al.).

Page 8: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Table of Contents

1 Introduction

2 Lattice QCD for HVP and Muon g-2

3 BMW Highlight for Muon g-2

4 Discussion: Lattice vs. Pheno.Window Method for aLO-HVP

µ, udRunning α(s)

5 Summary

Page 9: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Table of Contents

1 Introduction

2 Lattice QCD for HVP and Muon g-2

3 BMW Highlight for Muon g-2

4 Discussion: Lattice vs. Pheno.Window Method for aLO-HVP

µ, udRunning α(s)

5 Summary

Page 10: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Lattice Gauge Theory I

〈O〉 = 1Z

∫D[U, ψ, ψ] e−SG [U]−ψ·D[U,M]·ψO[U, ψ, ψ] ,

= 1Z

∫DU e−SG [U]Det

[D[U,M]

]O[U]wick ,

=∑N

i=1 O[U(i)]wick +O(N−1/2) ,

U(i) created w. P = e−SG · Det[D]/Z .Hybrid Monte Carlo (HMC)↔ Heat-Bath.

Regulalization: UV cutoff a, IR cutoff L3 × T .

Gauge Fields: Uµ ∈ SU(Nc).

Action: SLatGT = SG[U]− ψ · D[U,M] · ψ possesses exact gauge symm.Formalal limit a→ 0 reproduces the continuum theory action.

Renormalization: µ = a→ 0 w. Mπ,K ,···MΩ

fixed around the physical values.

Page 11: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Lattice Gauge Theory II

〈O〉 = 1Z

∫D[U, ψ, ψ] e−SG [U]−ψ·D[U,M]·ψO[U, ψ, ψ] ,

= 1Z

∫DU e−SG [U]Det

[D[U,M]

]O[U]wick ,

=∑N

i=1 O[U(i)]wick +O(N−1/2) ,

U(i) created w. P = e−SG · Det[D]/Z .Hybrid Monte Carlo (HMC)↔ Heat-Bath.

Lattice Gauge Theory

Non-Perturbative Definition of asymptotic-free gauge theory.1 Regulalization: UV cutoff a, IR cutoff L3 × T .2 Renormalization: µ = a→ 0 keeping

Mπ,K ,···MΩ

3 With a mass gap Λ ∼ Fπ ,Mρ, ..., aΛ→ 0 and LΛ→∞ under controlled.

First-Principle Calculations, i.e., No Approximation.

Page 12: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

LQCD Meas. of HVP and aLO-HVPµ

U(i): HMC↓

Df [U] ≡ D[U,mf ]: Dirac Op.

↓ DXYφX = η(r)X ,

∑Nrr=1

η(r)X η

(r)Y

Nr|Nr→∞ = δXY

↓ with Conjugate Gradient Method,

↓ Low-Mode Averaging (Lanczos, No η(r)X ).

D−1f [U]: Quark Propagator.

Page 13: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

LQCD Meas. of HVP and aLO-HVPµ

U(i): HMC↓

Df [U] ≡ D[U,mf ]: Dirac Op.

↓ DXYφX = η(r)X ,

∑Nrr=1

η(r)X η

(r)Y

Nr|Nr→∞ = δXY

↓ with Conjugate Gradient Method,

↓ Low-Mode Averaging (Lanczos, No η(r)X ).

D−1f [U]: Quark Propagator.

Page 14: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

LQCD Meas. of HVP and aLO-HVPµ

U(i): HMC↓

Df [U] ≡ D[U,mf ]: Dirac Op.

↓ DXYφX = η(r)X ,

∑Nrr=1

η(r)X η

(r)Y

Nr|Nr→∞ = δXY

↓ with Conjugate Gradient Method,

↓ Low-Mode Averaging (Lanczos, No η(r)X ).

D−1f [U]: Quark Propagator.↓

Vector Current CorrelatorGfµν(x) = 〈(ψγµψ)x (ψγνψ)y=0〉 −−→

wick

Cfµν(x) = −

⟨ReTr[γµD−1

f (x , 0)γνD−1f (0, x)]

⟩,

Dfµν(x) =

⟨Re[Tr[γµD−1

f (x , x)]Tr[γνD−1f (y , y)]y=0

]⟩,

eγµ eγν

eγµ eγν

Page 15: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

LQCD Meas. of HVP and aLO-HVPµ

U(i): HMC↓

Df [U] ≡ D[U,mf ]: Dirac Op.

↓ DXYφX = η(r)X ,

∑Nrr=1

η(r)X η

(r)Y

Nr|Nr→∞ = δXY

↓ with Conjugate Gradient Method,

↓ Low-Mode Averaging (Lanczos, No η(r)X ).

D−1f [U]: Quark Propagator.↓

Vector Current CorrelatorGfµν(x) = 〈(ψγµψ)x (ψγνψ)y=0〉 −−→

wick

Cfµν(x) = −

⟨ReTr[γµD−1

f (x , 0)γνD−1f (0, x)]

⟩,

Dfµν(x) =

⟨Re[Tr[γµD−1

f (x , x)]Tr[γνD−1f (y , y)]y=0

]⟩,

Cf (t) = a3

3L3

∑3i=1∑~x Cf

ii (x) .

10-12

10-10

10-8

10-6

10-4

10-2

100

0 1 2 3 4

G(t

) [lattic

e u

nits]

t [fm]

up/downstrange

charm

10-12

10-10

10-8

10-6

10-4

10-2

100

0 1 2 3 4

Figure: BMW2020 finest lattice ensemble.

Page 16: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

LQCD Meas. of HVP and aLO-HVPµ

U(i): HMC↓

Df [U] ≡ D[U,mf ]: Dirac Op.

↓ DXYφX = η(r)X ,

∑Nrr=1

η(r)X η

(r)Y

Nr|Nr→∞ = δXY

↓ with Conjugate Gradient Method,

↓ Low-Mode Averaging (Lanczos, No η(r)X ).

D−1f [U]: Quark Propagator.↓

Vector Current CorrelatorGfµν(x) = 〈(ψγµψ)x (ψγνψ)y=0〉 −−→

wick

Cfµν(x) = −

⟨ReTr[γµD−1

f (x , 0)γνD−1f (0, x)]

⟩,

Dfµν(x) =

⟨Re[Tr[γµD−1

f (x , x)]Tr[γνD−1f (y , y)]y=0

]⟩,

HVP: Πfµν(Q) = F .T .[Gf

µν(x)] .

Πµν(Q) =(

Q2δµν − QµQν)

Π(Q2) ,

Π(Q2) = Π(Q2)− Π(0) .

0

0.02

0.04

0.06

0.08

0 1 2 3 4 5

Πf (Q

2)

Q2 [GeV

2]

up/downstrange

charm

0

0.02

0.04

0.06

0.08

0 1 2 3 4 5

Figure: BMW2020 finest lattice ensemble.

Page 17: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

HVP Phenomenology

HVP in Pheno:

Π(Q2) =∫∞

0 ds Q2

s(s+Q2)

ImΠ(s)π

(dispersion) ,

= Q2

12π2

∫∞0 ds R(s)

s(s+Q2)(optical) .

R-ratio:

R(s) ≡ σ(e+e− → γ∗ → had .)4πα2(s)/(3s)

.

Systematics is challenging to control.Some tension among experiments inσ(e+e− → π+π−).

[Jegerlehner EPJ-Web2016]

Page 18: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

LQCD Meas. of HVP and aLO-HVPµ

U(i): HMC↓

Df [U] ≡ D[U,mf ]: Dirac Op.

↓ DXYφX = η(r)X ,

∑Nrr=1

η(r)X η

(r)Y

Nr|Nr→∞ = δXY

↓ with Conjugate Gradient Method,

↓ Low-Mode Averaging (Lanczos, No η(r)X ).

D−1f [U]: Quark Propagator.↓

Vector Current CorrelatorGfµν(x) = 〈(ψγµψ)x (ψγνψ)y=0〉 −−→

wick

Cfµν(x) = −

⟨ReTr[γµD−1

f (x , 0)γνD−1f (0, x)]

⟩,

Dfµν(x) =

⟨Re[Tr[γµD−1

f (x , x)]Tr[γνD−1f (y , y)]y=0

]⟩,

↓HVP: Πf

µν(Q) = F .T .[Gfµν(x)] ,

Muon g-2: aLO-HVPµ, f = (α

π)2∑

t W (t ,m2µ)Gf (t) .

Lanczos w. λn∼1000 ∼ ms/2→ Permil Phys.!

0

100

200

300

400

0 1 2 3 4

W(t

,mµ)

Cu

d(t

) x 1

01

0 [fm

-1]

t [fm]

wo. LMA, PRD2018w. LMA, 2002.12347

0

100

200

300

400

0 1 2 3 4

⇓ Tail Zoom

0

20

40

60

80

100

2 2.5 3 3.5 4

W(t

,mµ)

Cu

d(t

) x 1

01

0 [fm

-1]

t [fm]

wo. LMA, PRD2018w. LMA, 2002.12347

0

20

40

60

80

100

2 2.5 3 3.5 4

Figure: BMW2020 finest lattice ensemble.

Page 19: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

LQCD Meas. of HVP and aLO-HVPµ

U(i): HMC↓

Df [U] ≡ D[U,mf ]: Dirac Op.

↓ DXYφX = η(r)X ,

∑Nrr=1

η(r)X η

(r)Y

Nr|Nr→∞ = δXY

↓ with Conjugate Gradient Method,

↓ Low-Mode Averaging (Lanczos, No η(r)X ).

D−1f [U]: Quark Propagator.↓

Vector Current CorrelatorGfµν(x) = 〈(ψγµψ)x (ψγνψ)y=0〉 −−→

wick

Cfµν(x) = −

⟨ReTr[γµD−1

f (x , 0)γνD−1f (0, x)]

⟩,

Dfµν(x) =

⟨Re[Tr[γµD−1

f (x , x)]Tr[γνD−1f (y , y)]y=0

]⟩,

↓HVP: Πf

µν(Q) = F .T .[Gfµν(x)] ,

Muon g-2: aLO-HVPµ, f = (α

π)2∑

t W (t ,m2µ)Gf (t) .

Lanczos w. λn∼1000 ∼ ms/2→ Permil Phys.!

0

100

200

300

400

0 1 2 3 4

W(t

,mµ)

Cu

d(t

) x 1

01

0 [fm

-1]

t [fm]

wo. LMA, PRD2018w. LMA, 2002.12347

0

100

200

300

400

0 1 2 3 4

⇓ Tail Zoom

0

20

40

60

80

100

2 2.5 3 3.5 4

W(t

,mµ)

Cu

d(t

) x 1

01

0 [fm

-1]

t [fm]

wo. LMA, PRD2018w. LMA, 2002.12347

0

20

40

60

80

100

2 2.5 3 3.5 4

Figure: BMW2020 finest lattice ensemble.

Page 20: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Table of Contents

1 Introduction

2 Lattice QCD for HVP and Muon g-2

3 BMW Highlight for Muon g-2

4 Discussion: Lattice vs. Pheno.Window Method for aLO-HVP

µ, udRunning α(s)

5 Summary

Page 21: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Budapest-Marseille-Wuppertal Collaboration

Sz. Borsanyi, Z. Fodor, J.N. Guenther, C. Hoelbling, S.D. Katz,L. Lellouch, T. Lippert, K. Miura, L. Parato, K.K. Szabo, F. Stokes,

B.C. Toth, Cs. Torok, and L. Varnhorst.

References

arXiv:2002.12347.

Phys. Rev. Lett. 121, no. 2, 022002 (2018).

Phys. Rev. D 96, no. 7, 074507 (2017).

Page 22: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

BMW Simulation Setup

0.94

0.96

0.98

1.00

1.02 3.70003.7000

(2M

K2-M

π

2)/

(ph

ys)

3.75003.7500 3.77533.7753

0.94

0.96

0.98

1.00

1.02

0.9

4

0.9

6

0.9

8

1.0

0

1.0

2

3.84003.8400

(2M

K2-M

π

2)/

(ph

ys)

2/(phys)

0.9

4

0.9

6

0.9

8

1.0

0

1.0

2

3.92003.9200

2/(phys)

0.9

4

0.9

6

0.9

8

1.0

0

1.0

2

4.01264.0126

2/(phys)

physomega

w0

6 lattice spacings, 28simulations around phys. pt.

Nf = (2+1+1) staggeredquarks. Isospin Limit.

Large Volume:(L,T ) ∼ (6, 9− 12)fm.

β(a) = 6g2(a)

↔ a[fm] via

M latΩ = Mphys

Ω−a[fm]/(~c).

Input Quark Mass (m0ud ,ms,mc) Tuning[

M2π

M2Ω

]lat'[ M2

π0

M2Ω−

]phys

,[

M2K−M2

π/2M2

Ω

]lat'[

(M2K + +M2

K 0−M2π0 )/2

M2Ω−

]phys

, mcms

= 11.85 .

Page 23: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Control of Various Systematics

M latΩ |w.isb in 0.1%. Scale Setting in 0.4%.

Sophisticated operator/smearing. 4-statesfits and GEVP.

Isospin Break: O(α) ∼ O(

δmΛQCD

)∼ 1%.

Perturb. in α = e2/(4π) & δm = md −mu .QEDL [Hayakawa PTP2008]: Gauss-law andcharged particles in box.

Finite a Effects: 15% corrections withstaggered-XPT etc. in advance tocontinuum extrapolations.

Finite Volume in aLO-HVPµ, ud |iso: ∼ 2.9(0.4)%

correction at continuum. Simulation basedestimate (L = 6.272fm and 10.752fm) andNNLO XPT. c.f. (

mµ2~c )−1 ∼ 4fm.

Fermion choice independence. Additionalsimulations with overlap valence quarks.

ev

es

DetD

540

560

580

600

620

640

660

0.000 0.005 0.010 0.015 0.020

[aµlig

ht ] is

o

a2[fm

2]

NNLO

SSLGS-win

NNLO-win

NLO

none

Page 24: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

aLO-HVPµ Isospin Symmetric Contributions

BMW-2020

Greatly suppressed uncertainties from PRL2018 (left) to Present (right),

aLO-HVPµ, ud : 632.6(7.5)(9.4)[1.9%] → 634.6(2.7)(3.7)[0.7%] .

aLO-HVPµ, s,c and aLO-HVP

µ, disc are well consistent with PRL2018.

Page 25: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

SIB/QED Corrections

BMW-2020

c.f. In PRL2018:Total ISB: 7.8(5.1) by pheno. FV in iso-symmetric: 15.0(15.0) by XPT.

Page 26: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

BMW-2020 Summary

CHHKS’19

KNT’19

DHMZ’19

BMWc’17

RBC’18

ETM’19

FHM’19

Mainz’19

BMWc’20

660 680 700 720 740

1010

× aLO-HVPµ

lattice

R-ratio

no new physics

Figure: LO-HVP muon g-2 comparison.

c.f. (no new phys.)= (BNL-E821) − (SM wo. LO-HVP).

BMW-2020

aLO-HVPµ = 708.7(2.8)(4.5), 0.75%

w0,∗ = 0.17236(29)(63)[fm], 0.4%

LMA, Simulation-based SIB/QED/FV,full systematics of O(105).

Consistent with “no new physics”.

(2.2/2.7/2.6)σ tension toDHMZ19/KNT19/CHHKS19.

Page 27: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Table of Contents

1 Introduction

2 Lattice QCD for HVP and Muon g-2

3 BMW Highlight for Muon g-2

4 Discussion: Lattice vs. Pheno.Window Method for aLO-HVP

µ, udRunning α(s)

5 Summary

Page 28: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Integrand of aLO-HVPµ,ud I

0

100

200

300

400

500

0 1 2 3 4 5

W(t

,mµ)

Cu

d(t

) x 1

01

0 [fm

-1]

t [fm]

a = 0.134 fma = 0.118 fma = 0.111 fma = 0.095 fma = 0.079 fma = 0.064 fm

0

100

200

300

400

500

0 1 2 3 4 5

aLO-HVPµ =

∑t

W (t ,mµ)C lat (t) , (4)

c.f . Cpheno(t) =

∫ ∞0

ds√

sRhad (s)e−√

s|t| . (5)

Page 29: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Integrand of aLO-HVPµ,ud II

0

100

200

300

400

500

0 1 2 3 4 5

UV

IM

IR

W(t

,mµ)

Cu

d(t

) x 1

01

0 [fm

-1]

t [fm]

a = 0.134 fma = 0.118 fma = 0.111 fma = 0.095 fma = 0.079 fma = 0.064 fm

0

100

200

300

400

500

0 1 2 3 4 5

aLO-HVPµ =

∑t

W (t ,mµ)C lat (t) , (6)

c.f . Cpheno(t) =

∫ ∞0

ds√

sRhad (s)e−√

s|t| . (7)

Page 30: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Window Method

0

100

200

300

400

500

0 1 2 3 4 5

UV

IM

IR

W(t

,mµ)

Cud(t

) x 1

010 [

fm-1

]

t [fm]

a = 0.134 fma = 0.118 fma = 0.111 fma = 0.095 fma = 0.079 fma = 0.064 fm

0

100

200

300

400

500

0 1 2 3 4 5

0

0.25

0.5

0.75

1

0 1 2 3 4 5

UV IM IR

Sm

ea

red

Ste

p F

un

ctio

ns

t [fm]

0

0.25

0.5

0.75

1

0 1 2 3 4 5

UV: SUV (t) = 1.0− (1.0 + tanh[(t − t0)/∆

])/2 , (8)

IM: SIM (t) =12

(tanh

[(t − t0)/∆

]− tanh

[(t − t1)/∆

]), (9)

IR: SIR(t) = (1.0 + tanh[(t − t1)/∆

])/2 , (10)

We shall adopt t0 = 0.4fm , t1 = 1.0fm , ∆ = 0.15fm . (11)

c.f. RBC-UKQCD, arXiv: 1801.07224

Page 31: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Window Method Comparison

198

200

202

204

206

208

210

212

214

R-r

atio

/ la

ttic

e

RB

C’1

8A

ub

in’1

9

BM

Wc’2

0

[alig

ht

µ,w

in] is

o

0.000 0.005 0.010 0.015 0.020

w/o improvement

NLO SXPT improvement

a2[fm

2]

c.f. R-ratio/lattice = R-ratio − (other than connected light quarks)BMW2020.

Page 32: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

LO-HVP Correction for Running α(Q2)

Running Electric Coupling

α(s) = α(0)1−∆α(s) , α(0) = 1

137.03··· .

HVP Corrections with Pheno. (by R-ratio):

∆hadα(M2z ) = 0.02761(11) [Keshavarzi et.al. PRD2019].

Electroweak Global Fits [Keshavarzi et.al. 2006.12666]:

∆hadα(M2z ) = 0.2722(39)(12) and Mhiggs = 94+20

−18.

Page 33: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

EW Global Fits

Figure:From Crivellin et al, 2003.04886. Gray band isProject∞: 1.028 ·∆hadα(M2

Z )|pheno is used asa prior in EW global fits.

Pheno HVP:

∆hadα(s)|pheno = −αs3π

∫∞0 ds′ R(s′)

s′(s′−s).

Pheno Muon g-2:aLO-HVPµ |pheno = (α

π)2 ∫ ds′K (s′,m2

µ)R(s′) .

Project∞:R(s′)→ 1.028 · R(s′) so thataLO-HVPµ |pheno → aLO-HVP

µ |BMW2020. Then,

∆hadα(M2Z )|pheno → 1.028 ·∆hadα(M2

Z )|pheno .

Project 1.94 GeV:R(s′)→ 1.028 R(s′) for s′ < 1.942 [GeV 2].

aLO-HVPµ by BMW-2020 leads to inconsistency in EW physics!?

→ Not Necessarily!

Page 34: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

EW Global Fits

Figure:From Crivellin et al, 2003.04886. Gray band isProject∞: 1.028 ·∆hadα(M2

Z )|pheno is used asa prior in EW global fits.

Pheno HVP:

∆hadα(s)|pheno = −αs3π

∫∞0 ds′ R(s′)

s′(s′−s).

Pheno Muon g-2:aLO-HVPµ |pheno = (α

π)2 ∫ ds′K (s′,m2

µ)R(s′) .

Project∞:R(s′)→ 1.028 · R(s′) so thataLO-HVPµ |pheno → aLO-HVP

µ |BMW2020. Then,

∆hadα(M2Z )|pheno → 1.028 ·∆hadα(M2

Z )|pheno .

Project 1.94 GeV:R(s′)→ 1.028 R(s′) for s′ < 1.942 [GeV 2].

aLO-HVPµ by BMW-2020 leads to inconsistency in EW physics!?

→ Not Necessarily!

Page 35: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

EW Global Fits

Figure:From Crivellin et al, 2003.04886. Gray band isProject∞: 1.028 ·∆hadα(M2

Z )|pheno is used asa prior in EW global fits.

Pheno HVP:

∆hadα(s)|pheno = −αs3π

∫∞0 ds′ R(s′)

s′(s′−s).

Pheno Muon g-2:aLO-HVPµ |pheno = (α

π)2 ∫ ds′K (s′,m2

µ)R(s′) .

Project∞:R(s′)→ 1.028 · R(s′) so thataLO-HVPµ |pheno → aLO-HVP

µ |BMW2020. Then,

∆hadα(M2Z )|pheno → 1.028 ·∆hadα(M2

Z )|pheno .

Project 1.94 GeV:R(s′)→ 1.028 R(s′) for s′ < 1.942 [GeV 2].

aLO-HVPµ by BMW-2020 leads to inconsistency in EW physics!?

→ Not Necessarily!

Page 36: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

BMW ∆hadα(−Q2)

0

20

40

60

80

∆α

x 1

04

KNT18+rhadlattice incl. bottom

-0.5

0.0

0.5

1.0

1.5

2.0

0...1 1...10 10...100

[GeV2]

100...1000 1000...M2Z

[Crivellin:2020zul]

[∆α

-

∆α

KN

T] x 1

04

proj(∞)

proj(1.94 GeV)

Figure: BMW2020 ∆hadα(−Q2) iscompared with Data-Driven Pheno(KNT-18 + rhad).

Upper: From the left,

[∆hadα(-1)−∆hadα(0)], [∆hadα(-10)−∆hadα(-1)], [∆hadα(-100)−∆hadα(-10)], · · · .

Lower: KNT-Central Values (KNT-CV)are subtracted from the upper panel.[+] = [KNT(1.028)s≤M2

Z] − [KNT-CV] , [∗] = [KNT(1.028)s≤1.942 ] − [KNT-CV]

BMW-2020 () tends to be compatible to KNT-18 with increasing Q2, sharplycontrasted to Project∞ (+), which is too aggressive extrapolation.

Page 37: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Table of Contents

1 Introduction

2 Lattice QCD for HVP and Muon g-2

3 BMW Highlight for Muon g-2

4 Discussion: Lattice vs. Pheno.Window Method for aLO-HVP

µ, udRunning α(s)

5 Summary

Page 38: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Introduction Lattice QCD for HVP and Muon g-2 BMW Highlight for Muon g-2 Discussion: Lattice vs. Pheno. Summary

Summary

Lattice WP Consensus: aLO-HVPµ = 711.6(18.4) · 10−10 .

BMW-2020: aLO-HVPµ = 708.7(2.8)(4.5) · 10−10 , 0.75% .

Consistent with No New Physics.(2.2/2.7/2.6)σ tension to pheno. DHMZ19/KNT19/CHHKS19.Tention would not be from lattice artifact. (c.f. Window Method)

BMW-2020 does not necessarily spoil EW global fits with ∆hadα(Q2).

Need to specify a source of the Lattice-Pheno tensions. Problem inmodeling the region

√s < 0.7GeV in R-ratio? [Keshavarzi

et.al.(2006.12666)].

Need to establish connection between ∆hadα(M2Z ) and lattice QCD:

∆hadα(M2z ) = ∆hadα(−Q2

0) ←− 4πΠlat (Q20 ∼ 2GeV 2)

+[∆hadα(−M2

z )−∆hadα(−Q20)]

pqcd

+[∆hadα(M2

z )−∆hadα(−M2z )]

pqcd . (12)

Page 39: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

Table of Contents

6 Backups

Page 40: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

Hadronic Light-by-Light (HLbL)

HAD.

µ(p) µ(p′)

q1µq2ν

q3λ

kρO(α3) Contributions.

Need investigate Πµνλρ(q1, q2, q3, k).

Not full related to experimental observables.

Current Status

LQCD: aHLbLµ = 7.87(3.06)stat (1.77sys)× 10−10. [RBC/UKQCD PRL2020.]

Pheno.: aHLbLµ = 9.2(1.9)× 10−10. [Whitepaper 2006.04822.]

LQCD and Phenomenology are consistent. HLbL seems not to be asource of the muon g-2 discrepancy.

Page 41: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

Low Mode Averaging

Consider the connected vector current correlator,

C(t) =−a3

12L3

3∑i=1

∑~x

⟨ReTr[DiM−1(x , 0)DiM−1(0, x)]

⟩, (13)

where M and Dµ are a staggered Dirac op. and a shift op., respectively.

Low eigen values λn and vectors vn of M are effectively extracted by theKrylov-Schur algorithm (c.f. SLEPc Toolkit). λn∼1000 ∼ ms/2.

Split M−1 into M−1eig and M−1

rest, where,

M−1eig =

∑λn.(ms/2)

vnv†nλn

, M−1rest = M−1

(1−

∑λn.(ms/2)

vnv†n)

(14)

Then, C(t) = (Cee + Cre + Crr )(t),Cee: eig-eig part, amounts to calculating w. sources at all ~x .Cre: rest-eig part, single M−1

rest needs one CG for M preconditioned by vn.Crr : rest-rest part, double M−1

rest needs two CG for M preconditioned by vn.

Page 42: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

Impact of LMA

1.0e-10

1.0e-09

1.0e-08

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

0 1 2 3 4

a = 0.064 fm (finest)

Cud(t

)

t [fm]

oldnew

525

550

575

600

625

650

0 0.005 0.01 0.015 0.02

,ud

LO

-HV

P x

10

10

a2[fm

2]

wo. LMA

w. LMA

525

550

575

600

625

650

0 0.005 0.01 0.015 0.02

Left: Cud (t) = −a3

12L3

∑i

∑~x

⟨ReTr[DiM−1

ud (x , 0)DiM−1ud (0, x)]

⟩.

Right: aLO-HVPµ, ud =

(απ

)2 59 a∑

tKTMR (mµ t)

m2µ

· Cud (t) .

Page 43: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

4-State Fit:h(t ,A,M) = A0h+(M0, t) + A1h−(M1, t) + A2h+(M2, t) + A3h−(M3, t) ,h+(M, t) = e−Mt + (−1)t−1e−M(T−t) , h−(M, t) = −h+(M,T − t) .

GEVP: Construct

H(t) =

Ht+0 Ht+1 Ht+2 Ht+3

Ht+1 Ht+2 Ht+3 Ht+4

Ht+2 Ht+3 Ht+4 Ht+5

Ht+3 Ht+4 Ht+5 Ht+6

. (15)

Solve H(ta)v(ta, tb) = λ(ta, tb)H(tb)v(ta, tb).Project out the ground state: v+(ta, tb)H(t)v(ta, tb).Fit the grand state to exp[−MΩt ].

Page 44: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

QED and Strong-Isospin BreakingCorrections

O(α) ∼ O(

md −mu

ΛQCD

)∼ 1% Correction .

Page 45: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

Isospin Breaking Perturbatively

Iso-symm. LQCD (U) + Stochastic QED (Aµ with P ∝ e−Sγ ).

Z =

∫DU e−Sg [U]

∫DA e−Sγ [A]

∏f =u,d,s,c

Det D[Ueieqf A,mf ] . (16)

QEDL [Hayakawa PTP2008] in Coulomb gauge.

Remove spatial zero-mode, a3∑~x Aµ,x = 0. c.f. Gauss’s Law.

Preserve reflection positivity, i.e. well-defined charged particles.(no constraint like limξ→∞ exp[−a4∑

t,~x Aµ,x/ξ2].)

Expand w.r.t. α = e2/(4π) and δm = md −mu :

〈O[Ueiev qf A,mf ]〉 = 〈O[U,m0f ]〉U

+ δmm0

ud〈O〉′m + e2

v 〈O〉′′20 + ev es〈O〉′′11 + e2s〈O〉′′02 ,

e.g. 〈O〉′′11 =⟨⟨

∂O∂ev

∣∣ev→0

∂∂es

∏f

Det D[Ueiesqf A,m0f ]

Det D[U,m0f ]

⟩A

∣∣es→0

⟩U.

Larger num. of stochastic Aµ with sea-quarks. for noise control.

ev

es

DetD

Page 46: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

Isospin Breaking Perturbatively

Iso-symm. LQCD (U) + Stochastic QED (Aµ with P ∝ e−Sγ ).

Z =

∫DU e−Sg [U]

∫DA e−Sγ [A]

∏f =u,d,s,c

Det D[Ueieqf A,mf ] . (16)

QEDL [Hayakawa PTP2008] in Coulomb gauge.

Remove spatial zero-mode, a3∑~x Aµ,x = 0. c.f. Gauss’s Law.

Preserve reflection positivity, i.e. well-defined charged particles.(no constraint like limξ→∞ exp[−a4∑

t,~x Aµ,x/ξ2].)

Expand w.r.t. α = e2/(4π) and δm = md −mu :

〈O[Ueiev qf A,mf ]〉 = 〈O[U,m0f ]〉U

+ δmm0

ud〈O〉′m + e2

v 〈O〉′′20 + ev es〈O〉′′11 + e2s〈O〉′′02 ,

e.g. 〈O〉′′11 =⟨⟨

∂O∂ev

∣∣ev→0

∂∂es

∏f

Det D[Ueiesqf A,m0f ]

Det D[U,m0f ]

⟩A

∣∣es→0

⟩U.

Larger num. of stochastic Aµ with sea-quarks. for noise control.

ev

es

DetD

Page 47: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

Isospin Breaking Perturbatively

Iso-symm. LQCD (U) + Stochastic QED (Aµ with P ∝ e−Sγ ).

Z =

∫DU e−Sg [U]

∫DA e−Sγ [A]

∏f =u,d,s,c

Det D[Ueieqf A,mf ] . (16)

QEDL [Hayakawa PTP2008] in Coulomb gauge.

Remove spatial zero-mode, a3∑~x Aµ,x = 0. c.f. Gauss’s Law.

Preserve reflection positivity, i.e. well-defined charged particles.(no constraint like limξ→∞ exp[−a4∑

t,~x Aµ,x/ξ2].)

Expand w.r.t. α = e2/(4π) and δm = md −mu :

〈O[Ueiev qf A,mf ]〉 = 〈O[U,m0f ]〉U

+ δmm0

ud〈O〉′m + e2

v 〈O〉′′20 + ev es〈O〉′′11 + e2s〈O〉′′02 ,

e.g. 〈O〉′′11 =⟨⟨

∂O∂ev

∣∣ev→0

∂∂es

∏f

Det D[Ueiesqf A,m0f ]

Det D[U,m0f ]

⟩A

∣∣es→0

⟩U.

Larger num. of stochastic Aµ with sea-quarks. for noise control.

ev

es

DetD

Page 48: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

SIB/QED in Various Observables

O 〈O〉′m 〈O〉′′20 〈O〉′′11 〈O〉′′02

MΩ,Mπχ ,MKχ — F F F∆M2

K ,∆M2 F F F —w0 — — — FCl=ud (t) F F F FCs(t) — F F FD(t) F F F F

strong isospin: 〈O〉′m = ml⟨∂O∂δm

∣∣δm→0

⟩U,

qed valence-valence: 〈O〉′′20 = 12

⟨⟨∂2O∂e2

v

⟩A

∣∣ev→0

⟩U,

qed sea-valence: 〈O〉′′11 =⟨⟨

∂O∂ev

∂R∂es

⟩A

∣∣ev ,es→0

⟩U,

qed sea-sea: 〈O〉′′02 =⟨O0⟨· 1

2∂2R∂e2

s

⟩A

∣∣es→0

⟩U− 〈O0〉U

⟨⟨ 12∂2R∂e2

s

⟩A

∣∣es→0

⟩U.

Page 49: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

Discretization Corrections

540

560

580

600

620

640

660

0.000 0.005 0.010 0.015 0.020

[aµlig

ht ] 0

a2[fm

2]

NNLO

NLO

none

SLLGS-win

NNLO-win

Corrections depend on Windows: Win1: t ∈ [0.5, 1.3]fm ,Win2: t > 1.3fm.

In advance to the continuum extrapolation, we correct data points as:

[alightµ ]0(L, a)→ [alight

µ ]0(L, a) + (10/9)[aNLO-XPTµ,win1 (6.272fm)− aNLO-SXPT

µ,win1 (L, a)]

+(10/9)[aNNLO-XPTµ,win2 (6.272fm)− aNNLO-SXPT

µ,win2 (L, a)].

Page 50: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

Finite Volume (FV) Effect for Isovector

FV corrections for a continuum extrapolated iso-vector contribution aiso-vµ .

The average spatial extent of main ensembles (4stout): Lref = 6.274fm.

4HEX fermion ensembles: Lhex = 10.752fm, a = 0.112fm with small UVartefact.

FV via HEX and Models combined:

∆FV aiso-vµ ≡ aiso-v

µ (∞)− aiso-vµ (6.274fm) ,

=[aiso-vµ (∞)− aiso-v

µ (10.752fm)]

NNLO XPT etc.

+[aiso-vµ,4hex (10.752fm)− aiso-v

µ,4stout (6.274fm)]

LQCD

= 1.4 + 18.1(2.0)(1.4) = 19.5(2.0)(1.4) .

Page 51: Lattice QCD Precision Science for Muon g-2 and EW Physicsppp.ws/PPP2020/slides/Miura.pdf · 2020. 9. 1. · Lattice QCD Precision Science for Muon g-2 and EW Physics Kohtaroh Miura

Backups

Window Method

198

200

202

204

206

208

210

212

214

R-r

atio

/ la

ttic

e

RB

C’1

8A

ub

in’1

9

BM

Wc’2

0

[alig

ht

µ,w

in] is

o

0.000 0.005 0.010 0.015 0.020

w/o improvement

NLO SXPT improvement

a2[fm

2]

188

190

192

194

196

198

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

[alig

ht

µ,w

in] 0

(L=

3fm

)

a2[fm

2]

4stout-on-4stoutoverlap-on-4stout

Left: [aLO-HVPµ,win, ud ]iso from the window t ∈ [0.4, 1.0]fm.

Right: Comparison of [aLO-HVPµ,win, ud ]iso from 4stout and overlap valence quarks.