Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani...

40
Lattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help from G. Cossu, Y. Hosotani, E. Itou, and J.-I. Noaki James Hetrick LATTICE 2013–Uni. Mainz

Transcript of Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani...

Page 1: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

Lattice investigations of the HosotaniMechanism

James Hetrick

University of the PacificStockton, CA USA

27 Sept. 2012

with help from G. Cossu, Y. Hosotani, E. Itou, and J.-I. Noaki

James Hetrick LATTICE 2013–Uni. Mainz

Page 2: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

Dynamical Symmetry Breaking Mechanisms

Scalar Fields ChiralCondensates

Extra Dimensions

The “HosotaniMechanism”

James Hetrick LATTICE 2013–Uni. Mainz

Page 3: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

The basic ideaY. Hosotani, Phys. Lett. B126, 309 (1983)

N. Manton, Nucl. Phys. B158, 141 (1979)

AM(x , y) in higher dimensions︷ ︸︸ ︷four-dim. components Aµ extra-dim. component Ay

⇓ ⇓4D gauge fields (γ,W ,Z ) = 4D Higgs field (H)

⇓EW symmetry breaking

James Hetrick LATTICE 2013–Uni. Mainz

Page 4: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

The Hosotani Mechanism v. Finite Temperature QCD?

QCD at T 6= 0 (M = R3 × S1)Gross, Pisarski, Yaffe, Rev. Mod. Phys. 53, 43 (1981)

bosons PERIODIC

fermions ANTI-PERIODIC

James Hetrick LATTICE 2013–Uni. Mainz

Page 5: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

The Hosotani Mechanism v. Finite Temperature QCD?

QCD at T 6= 0 (M = R3 × S1)Gross, Pisarski, Yaffe, Rev. Mod. Phys. 53, 43 (1981)

bosons PERIODIC

fermions ANTI-PERIODIC

Gluon Self-energyΠµν(p = 0) ⇒ m2

g = 13 g2T 2(Nc + 1

2 Nf )

James Hetrick LATTICE 2013–Uni. Mainz

Page 6: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

The Hosotani Mechanism v. Finite Temperature QCD?

QCD at T 6= 0 (M = R3 × S1)Gross, Pisarski, Yaffe, Rev. Mod. Phys. 53, 43 (1981)

bosons PERIODIC

fermions ANTI-PERIODIC

Gluon Self-energyΠµν(p = 0) ⇒ m2

g = 13 g2T 2(Nc + 1

2 Nf )

Now Consider:

QCD on M = R3 × S1

bosons PERIODIC

fermions PERIODIC

James Hetrick LATTICE 2013–Uni. Mainz

Page 7: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

The Hosotani Mechanism v. Finite Temperature QCD?

QCD at T 6= 0 (M = R3 × S1)Gross, Pisarski, Yaffe, Rev. Mod. Phys. 53, 43 (1981)

bosons PERIODIC

fermions ANTI-PERIODIC

Gluon Self-energyΠµν(p = 0) ⇒ m2

g = 13 g2T 2(Nc + 1

2 Nf )

Now Consider:

QCD on M = R3 × S1

bosons PERIODIC

fermions PERIODIC

m2g = 1

3 g2T 2(Nc − Nf )

James Hetrick LATTICE 2013–Uni. Mainz

Page 8: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

The Hosotani Mechanism v. Finite Temperature QCD?

QCD at T 6= 0 (M = R3 × S1)Gross, Pisarski, Yaffe, Rev. Mod. Phys. 53, 43 (1981)

bosons PERIODIC

fermions ANTI-PERIODIC

Gluon Self-energyΠµν(p = 0) ⇒ m2

g = 13 g2T 2(Nc + 1

2 Nf )

Now Consider:

QCD on M = R3 × S1

bosons PERIODIC

fermions PERIODIC

m2g = 1

3 g2T 2(Nc − Nf ) What if Nf > Nc ?

James Hetrick LATTICE 2013–Uni. Mainz

Page 9: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

The Hosotani Mechanism v. Finite Temperature QCD?

QCD at T 6= 0 (M = R3 × S1)Gross, Pisarski, Yaffe, Rev. Mod. Phys. 53, 43 (1981)

bosons PERIODIC

fermions ANTI-PERIODIC

Gluon Self-energyΠµν(p = 0) ⇒ m2

g = 13 g2T 2(Nc + 1

2 Nf )

Now Consider:

QCD on M = R3 × S1 if Nf > Ncbosons PERIODIC

fermions PERIODIC

m2g = 1

3 g2T 2(Nc − Nf ) 〈Ay〉 6= 0

James Hetrick LATTICE 2013–Uni. Mainz

Page 10: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

Whether this occurs depends on:

The matter content: number of scalar and fermion fields,The boundary conditions on the fieldsThe representation of the fields.

F Need matter in higher group representations to get dynamicalsymmetry breaking

James Hetrick LATTICE 2013–Uni. Mainz

Page 11: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

In the compact dimension:

〈Ay 〉 =1

gL

θ1. . .

θN

,

N∑i=1

θi = 0.

〈W (x)〉 ≡ P exp

[ig∫ x,y+L

x,y〈Ay 〉dy

]=

exp iθ1. . .

exp iθN

,

Fµν = 0, however: holonomies, θi , are physical.

〈θi〉 are determined dynamically at the quantum level, fromminimization of Veff(θ1, θ2,...).

James Hetrick LATTICE 2013–Uni. Mainz

Page 12: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

How to calculate Veff(θ)? compact dim. = S1, G = SU(2), massless matter

Veff =∑

(±)i2

tr ln DMDM , DMDM = ∂µ∂µ − D2y , (±) =

(boson

fermion

)

In y -direction, discrete Kaluza-Klein spectrum:

kn(θ) ∼ 1R

(n +θ

2π)

Veff(θ) =∑

(±)12

∫ddp

(2π)d

∑n

ln{

p2 + k2n (θ)

}

James Hetrick LATTICE 2013–Uni. Mainz

Page 13: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

1-loop SU(N) formulae, in d + 1 dimensions, (massless matter):

Veff = V gauge+ghosteff + V matter

eff , θN =N−1∑i=1

−θi ,

V g+gheff = −(d − 2)

Γ(d/2)

πd/2Ld

N∑i,j=1

∞∑n=1

cos[n(θi − θj )]

nd ,

Vψ,feff = Nf · 2[d/2] Γ(d/2)

πd/2Ld

N∑i=1

∞∑n=1

cos[n(θi − βf)]

nd ,

Vψ,adeff = Nad · 2[d/2] Γ(d/2)

πd/2Ld

N∑i,j=1

∞∑n=1

cos[n(θi − θj − βad)]

nd .

Vφ,Reff = Vψ,R

eff (2[d/2]NR → −2NR).

βf and βad are the (simple) B.C.’s on matter: ψ(y + 2πR) = eiβψ(y).

James Hetrick LATTICE 2013–Uni. Mainz

Page 14: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

For massive fermions, use dimensional regularizationH. Hatanaka and Y. Hosotani, arXiv:1111.3756

Veff =12

∫ddp

(2π)d

∑n

ln(p2 + k2n ), kn =

√(n + x

R)2 + M2, x =

θ

=1d

Γ(1− d/2)

(4π)d/2

∑n

kdn

∑n

kdn = − 1

2πi

∮C

dz zd ddz

ln ρ(z),ρ′(z)

ρ(z)=

1z − kn

+ ...

e.g. ρ(z) = 1− sin2 πxsin2 πR

√z2 + M2

Veff =1

(4π)d/2Γ(d/2)

∫ ∞0

dyyd−1 ln ρ(iy)

James Hetrick LATTICE 2013–Uni. Mainz

Page 15: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

V g+gheff Example: SU(2) with Periodic BC’s

V feff

V adeff

James Hetrick LATTICE 2013–Uni. Mainz

Page 16: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

V g+gheff with Fundamental Fermions

V feff

If Nf > Nc : 〈Ay 〉 = π ⇒W ∈ CenterSU(2)

V adeff

James Hetrick LATTICE 2013–Uni. Mainz

Page 17: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

V g+gheff

V feff with Adjoint Fermions

V adeff

Nf > Nc : 〈Ay 〉 = π/2 ⇒W /∈ CenterSU(2)

Gauge Symmetry Dynamically Broken!

James Hetrick LATTICE 2013–Uni. Mainz

Page 18: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

V g+gheff

SU(3) with Periodic BC’s

V feff V ad

eff

James Hetrick LATTICE 2013–Uni. Mainz

Page 19: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

For M3 × S1 with Periodic BC’s:

SU(2)→{

SU(2) for Nf ≤ 2− 4Nad,U(1) for 2− 4Nad < Nf < 8Nad − 4

James Hetrick LATTICE 2013–Uni. Mainz

Page 20: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

and

SU(3)→

SU(3) for Nf ≤ 3− 6Nad,U(1)2 for 3− 6Nad < Nf < 6Nad − 3,

SU(2)× U(1) for 6Nad − 3 ≤ Nf < 18Nad − 9,

James Hetrick LATTICE 2013–Uni. Mainz

Page 21: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

G. Cossu and M. D’Elia (arXiv:0904.1353)d = 3 + 1 (163×4), staggered Nadj = 2, Periodic BC’s

James Hetrick LATTICE 2013–Uni. Mainz

Page 22: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

G. Cossu and M. D’Elia (arXiv:0904.1353)d = 3 + 1 (163×4), staggered Nadj = 2, Periodic BC’s

James Hetrick LATTICE 2013–Uni. Mainz

Page 23: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

G. Cossu and M. D’Elia (arXiv:0904.1353)d = 3 + 1 (163×4), staggered Nadj = 2, Periodic BC’s

James Hetrick LATTICE 2013–Uni. Mainz

Page 24: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

G. Cossu and M. D’Elia (arXiv:0904.1353)d = 3 + 1 (163×4), staggered Nadj = 2, Periodic BC’s

James Hetrick LATTICE 2013–Uni. Mainz

Page 25: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

G. Cossu and M. D’Elia (arXiv:0904.1353)d = 3 + 1 (163×4), staggered Nadj = 2, Periodic BC’s

James Hetrick LATTICE 2013–Uni. Mainz

Page 26: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

Similarly, J. Myers and M. Ogilvie (arXiv:0707.1869v2)d = 3 + 1 (243×4), S = SW +

∑~x HATr AP(~x)

James Hetrick LATTICE 2013–Uni. Mainz

Page 27: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

m-β phase diagram from: G. Cossu and M. D’Elia (arXiv:0904.1353)

Lattices (♦,♦,♦,♦) marked at am = 0.1 provided by E. Itou.

James Hetrick LATTICE 2013–Uni. Mainz

Page 28: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

But, what can we tell about local gauge symmetry(breaking)?

Look at correlators:

In this talk:

Gluon Propagator

Polyakov Loop Correlator

In future:

Meson spectrumStatic quark potentialThermodynamics

James Hetrick LATTICE 2013–Uni. Mainz

Page 29: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

Gluon Propagator

Method:

Lattice Landau Gauge:

For given Uµ(x), maximize I(Uµ; G), with respect to G(x)

I(Uµ; G) = Re eTr∑

x

G†(x)Uµ(x)G(x + µ)

δI(Uµ; G)

δG= 0 ⇒

∑µ

[UGµ (x)− UG

µ (x − µ)]

= 0

Aµ(x) ≡ 12ia

[Uµ(x)− U†µ(x)

]Traceless

Uµ(x) ∼ eiaAµ(x)

Fourier transform Aµ(x)

Compute:

< Aaµ(q)Ab

ν(q′) >≡ Dabµν(q) =

(δµν −

qµqνq2

)δabD(q2)

James Hetrick LATTICE 2013–Uni. Mainz

Page 30: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

For comparison:Typical gluon propagator, q2D(q2), in the confined phase:C. Alexandrou, Ph. de Forcrand, and E. Follana: hep-lat/0008012

James Hetrick LATTICE 2013–Uni. Mainz

Page 31: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

Gluon propagator, q2D(q2), on Adjoint fermion lattices (V = 163 × 4)

James Hetrick LATTICE 2013–Uni. Mainz

Page 32: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

For qualitative comparison, Pure gauge correlators

V = 163 × 4, same β values: 5.3, 5.7, 5.95, 6.5 only 100 lattices at each β

James Hetrick LATTICE 2013–Uni. Mainz

Page 33: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

Polyakov loop correlators

c(r) = Re < Tr P(x) Tr P†(x + r) > − < Tr P Tr P† >

James Hetrick LATTICE 2013–Uni. Mainz

Page 34: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

Polyakov loop correlators

“Simple” (Tr P) version:

c(r) =< Tr P(x) Tr P†(x + r) > − < Tr P Tr P† >

0.01

0.1

1

0 2 4 6 8 10

beta = 5.30beta = 5.70beta = 5.95beta = 6.50

James Hetrick LATTICE 2013–Uni. Mainz

Page 35: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

Criticism: Tr P “assumes” SU(3) symmetry.

or, at least, dilutes any evidence

Compute correlators of elements: c(r) =< Pij (x)P†mn(x + r) >

James Hetrick LATTICE 2013–Uni. Mainz

Page 36: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

0.005

0.01

0.015

0.02

0.025

0.03

0 2 4 6 8 10

"cp00p01""cp00p02""cp00p12""cp00p11""cp00p22""cp11p01""cp11p02""cp11p12""cp11p22""cp22p01""cp22p02""cp22p12"

β = 5.30 Confined Phase

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Tr P

"GMESb530.dat" u 2:3

symmetry: SU(3)

James Hetrick LATTICE 2013–Uni. Mainz

Page 37: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

0.005

0.01

0.015

0.02

0.025

0.03

0 2 4 6 8 10

"cp00p01""cp00p02""cp00p12""cp00p11""cp00p22""cp11p01""cp11p02""cp11p12""cp11p22""cp22p01""cp22p02""cp22p12"

β = 5.70 De-Confined Phase

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Tr P

"GMESb570.dat" u 2:3

symmetry: SU(3)

James Hetrick LATTICE 2013–Uni. Mainz

Page 38: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

0.005

0.01

0.015

0.02

0.025

0.03

0 2 4 6 8 10

"cp00p01""cp00p02""cp00p12""cp00p11""cp00p22""cp11p01""cp11p02""cp11p12""cp11p22""cp22p01""cp22p02""cp22p12"

β = 5.95 Skewed Phase

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Tr P

"GMESb595.dat" u 2:3

symmetry: SU(2)× U(1)

James Hetrick LATTICE 2013–Uni. Mainz

Page 39: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

0.005

0.01

0.015

0.02

0.025

0.03

0 2 4 6 8 10

"cp00p01""cp00p02""cp00p12""cp00p11""cp00p22""cp11p01""cp11p02""cp11p12""cp11p22""cp22p01""cp22p02""cp22p12"

β = 6.50 Re-Confined Phase

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Tr P

"GMESb650.dat" u 2:3

symmetry: U(1)× U(1)

James Hetrick LATTICE 2013–Uni. Mainz

Page 40: Lattice investigations of the Hosotani Mechanism fileLattice investigations of the Hosotani Mechanism James Hetrick University of the Pacific Stockton, CA USA 27 Sept. 2012 with help

Conclusions:

Starting to simulate the Hosotani Mechanism on the lattice in(dspace = 3)×S1

< P > loop averages agree with effective potentialSee: Guido Cossu’s talk

Gluon propagators do not show significant change fromde-confined phase to Hosotani-broken symmetry phases.< Aa

µ(q)Abν(q′) >≡ Dab

µν(q) =(δµν − qµqν

q2

)δabD(q2)

δab assumes SU(3) symmetry. Possibly compute: Dab(q)?Same for Polyakov loop coorelator:

including c(r) =< Pij (x)P†mn(x + r) >

Could d = 4 + 1 be different?Need to look at Dimensionally Reduced Action for this theory.Seff = 1

T

∫dxd

{F a

ij F aij + Tr [Di ,A0]2 + m2Tr A2

0 + λTr A40 + ...

}

James Hetrick LATTICE 2013–Uni. Mainz