LaranRFID

download LaranRFID

of 30

Transcript of LaranRFID

  • 7/27/2019 LaranRFID

    1/30

    White Paper

    A BASIC INTRODUCTION TO RFID TECHNOLOGY AND ITS

    USE IN THE SUPPLY CHAIN

    January 2004

  • 7/27/2019 LaranRFID

    2/30

    2

    Confident

    TABLE OF CONTENTS

    EXECUTIVE SUMMARY .................................................................................................3

    INTRODUCTION TO RFID ............................................................................................4

    HOW RFID WORKS ......................................................................................................5

    RFID systems..............................................................................................................5Communication............................................................................................................ 5

    Anti-collision .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ... .... .... .... . 5

    RFID BUILDING BLOCKS.............................................................................................6

    RFID Tags............................................................................................................................................................... 6Packaging ................................................................................................................... 6Examples of different formats............ ........ ......... ........ ......... ......... ........ ......... ........ ....... 6Tag Cost .....................................................................................................................6

    Tag ICs ......................................................................................................................8Tag Classes ................................................................................................................ 8Selecting a tag............................................................................................................. 9

    Active and passive tags .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... .... ... .... .... ... 10How tags communicate .............................................................................................. 11Tag Orientation (polarization)...................................................................................... 13Tag standards............................................................................................................ 14

    RFID Readers.......................................................................................................................................................17Handheld Readers ..................................................................................................... 18

    RFID Label Printers............................................................................................................................................18

    Reader Antennas ................................................................................................................................................19

    RFID TECHNOLOGY IN THE SUPPLY CHAIN............................................................ 20

    Definition of the Supply Chain. .................................................................................... 20How will RFID help improve supply chain efficiency........ ........ ......... ........ ......... ......... ... 20The main benefits of RFID in the supply chain. ........ ......... ........ ......... ........ ......... ........ . 20

    THE EPC ELECTRONIC PRODUCT CODE................................................................ 22

    EPC Origins ..........................................................................................................................................................22

    EPC layout ............................................................................................................................................................22

    EPC infrastructure..............................................................................................................................................23Middleware or Savant Software.................................................................................. 24Object Name Service (ONS)....................................................................................... 24Physical Markup Language (PML)............................................................................... 24How the EPC will automate the supply chain ............................................................... 25

    SECURITY IN RFID SYSTEMS................................................................................... 26

    CONCLUSION ............................................................................................................ 27

    ABOUT THE AUTHOR................................................................................................. 27

    APPENDIX A .......................................................................................................... 28

    More about Near and Far fields ........ ......... ........ ......... ......... ........ ......... ........ ......... ...... 28

    APPENDIX B ........................................................................................................ 30

    EIRP and ERP Power Emissions ................................................................................ 30

  • 7/27/2019 LaranRFID

    3/30

    3

    Confident

    Executive Summary

    In2003RFIDseemedtohaveappearedfromnowhere,andintothespotlightasoneofthehottest technologies around. Everyone from journalists, analysts, VCs, technologycompanies and retail giants like Wal-Mart were making public statements, mandates,predicationsandinvestments,basedonthepromisethatRFIDwassettorevolutionizetheglobalsupplychainonascalenotseensincetheinternetrevolutioninthe1990s.Equallysurprising isthatRFIDisnot new,itsbeenaround forwellover10 years, and isalreadyinuseinapplicationslikeaccesscontrolandtransport.Whilsttherehavebeenmanyfalsestartsandpromisesinthepast,whathasmadethedifferencethistimearound,isthecreation of the EPC (electronic product code) coupled with lower tag costs, and themandated adoption of RFID by Wal-Mart and Tesco for all their suppliers by 2005-6.

    Furthermore,theEuropeanParliamenthasannouncedlegislationwhichobligesallgoodstobe traceable throughout the supply chain by2005. These initiatives, andothers like therecentUS-DODannouncementsarenowdrivingthemarketandincitingmanycompaniesto

    developstrategiesforRFIDcompliance.TheuseofRFIDcombinedwiththeEPCpromisestoprovidedataaboutproductsneveravailablebefore.ManyitemsproducedwilleventuallyhavetheirownuniqueIDnumbers.Allparts of thesupply chain includingmanufactures,distributors and retailerswill beabletohave instant access to information about an individual product. RFID is not expected toreplacebarcodessimplybecausetagsarestilltooexpensiveeventhoughtheirpriceshavefallen to around 20 cents in volume versus0.2 cents for a bar code label. Adoption is

    thereforelikelytohappenfirstatthePaletteandCratelevel,thenastechnologyadvancesandcostsreducefurther,wecanexpecttoseetagsonmoreandmorehighvalueitems.ThewideadoptionofRFIDacrossthesupplychainwillbringsignificantbenefitsleadingtoreducedoperationalcostsandhenceincreasedprofits.Manyanalystssuggestthatthiswill

    happeninthreeprimaryareas.

    Reducedinventoryandshrinkage Benefitfromareductioninstoreandwarehouselaborexpenses Areductioninout-of-stockitems

    Withsomuchhighprofilebacking,momentumandindisputablebenefits,canRFIDfail?Mostanalyststhinknot,butareawareofthemanyobstacles,misconceptionsandissuestoberesolvedonthewayincluding;

    Tagpricesandefficiencies HarmonizationofRFIDstandards, Interoperabilitythroughoutthesupplychain

    ITinfrastructuretohandlelargevolumesofdata Changeofworkandlaborpractices Sharedcostofdeployment Privacyissues

    ThispaperisaimedatbothtechnicalandbusinessprofessionalswhowanttounderstandhowRFIDbasicallyworks,thevariousbuildingblocksandthepotentialthetechnologyhasforthesupplychain.FinallyIhopethatitwillalsoshedlightonsomeofthemysteriesandconfusionsurroundingRFIDandallthatitpromises.

  • 7/27/2019 LaranRFID

    4/30

    4

    Confident

    Introduction to RFID

    Ingeneralterms,RFID(RadioFrequencyIdentification)isameansofidentifyingapersonorobjectusingaradiofrequencytransmission.Thetechnologycanbeusedtoidentify,track,sort or detect a wide variety of objects.Communication takes placebetween a reader(interrogator)andatransponder (SiliconChipconnectedtoanantenna)oftencalledatag.Tagscaneitherbeactive(poweredbybattery)orpassive(poweredbythereaderfield),andcomeinvariousformsincludingSmartcards,Tags,Labels,watchesandevenembeddedin

    mobile phones. The communication frequencies useddepends to a large extent on theapplication, and range from 125KHz to 2.45 GHz. Regulations are imposed by mostcountries(groupedinto3Regions)tocontrolemissionsandpreventinterferencewithotherIndustrial,ScientificandMedicalequipment(ISM).

    Table 1. Most commonly used RFID frequencies for passive tags Performance overview

    LF HF UHF MicrowaveFrequencyRange

  • 7/27/2019 LaranRFID

    5/30

    5

    Confident

    How RFID works

    Figure 1. Typical RFID system

    RFID systemsInatypicalsystemtagsareattachedtoobjects.Eachtaghasacertainamountofinternalmemory (EEPROM) inwhich itstoresinformation abouttheobject, suchasits unique ID

    (serial) number, or in some casesmore details includingmanufacture date andproductcomposition.Whenthesetagspassthroughafieldgeneratedbyareader,theytransmitthisinformationbacktothereader,thereby identifyingtheobject.UntilrecentlythefocusofRFIDtechnology was mainly on tags and readers whichwere being used in systems whererelativelylowvolumesof dataare involved.ThisisnowchangingasRFID inthesupplychainisexpectedtogeneratehugevolumesofdata,whichwillhavetobefilteredandrouted

    to thebackend ITsystems.To solve this problem companies have developed specialsoftwarepackagescalledsavants,whichactasbuffersbetweentheRFIDfrontendantheITbackend.SavantsaretheequivalenttomiddlewareintheITindustry.

    CommunicationThecommunicationprocessbetweenthereaderandtagismanagedandcontrolledbyoneof several protocols, such as the ISO15693 and ISO18000-3 forHForthe ISO18000-6,andEPCforUHF.Basicallywhathappensisthatwhenthereaderisswitchedon,itstartsemittingasignalattheselectedfrequencyband(typically860-915MHzforUHFor13.56MHzforHF).

    Anycorrespondingtag inthevicinityofthereaderwilldetectthesignalanduse theenergyfrom it towake up andsupply operatingpower toits internal circuits.Once theTaghasdecodedthesignalasvalid,itrepliestothereader,andindicatesitspresencebymodulating(affecting)thereaderfield.

    Anti-collisionIfmanytagsarepresentthentheywillall replyatthesame time,whichatthereaderendisseen asa signal collision and an indication ofmultiple tags.The reader manages this

    problem by using an anti-collision algorithm designed to allow tags to be sorted andindividuallyselected.Thereare manydifferenttypesofalgorithms(BinaryTree,Aloha....)which are defined as part of the protocol standards. The number of tags that can beidentifieddependson thefrequencyandprotocolused,andcantypically rangefrom50tags/sforHFandupto200tags/sforUHF.Onceatagisselected,thereaderisabletoperformanumberofoperationssuchasreadthetagsidentifiernumber,orinthecaseofaread/writetagwriteinformationtoit.Afterfinishingdialogingwiththetag,thereadercantheneitherremoveitfromthelist,orputitonstandby

    untilalatertime.Thisprocesscontinuesundercontroloftheanticollisionalgorithmuntilalltagshavebeenselected.

  • 7/27/2019 LaranRFID

    6/30

    6

    Confident

    RFID Building Blocks

    RFID Tags.PackagingEveryobject tobe identifiedinanRFIDsystemwillneedtohaveatagattachedtoit.Tagsaremanufacturedinawidevarietyofpackagingformatsdesignedfordifferentapplicationsand environments. Thebasicassemblyprocess (seeFig4.) consistsof first a substratematerial (Paper,PVC,PET...),uponwhichanantennamade from oneofmany differentconductivematerialsincludingSilverink,Aluminumandcopperisdeposited.NexttheTagchipitself is connectedto theantenna,usingtechniquessuchaswirebondingorflip chip(seeFig4.).FinallyaprotectiveoverlaymadefrommaterialssuchasPVClamination,EpoxyResinorAdhesivePaper,isoptional lyaddedtoallowthetagtosupportsomeofthephysicalconditionsfoundinmanyapplicationslikeabrasion,impactandcorrosion.

    Fig 2. Basic Tag Assembly

    Examples of different formats

    Creditcardsizeflexiblelabelswithadhesivebacks Tokensandcoins Embeddedtagsinjectionmoldedintoplasticproductssuchascases Wristbandtags

    Hardtagswithepoxycase Keyfobs

    TagsdesignedspeciallyforPalettesandcases Papertags

    Tag CostThetypeofmaterialsandassemblymethodsusedtopackagetagsimpactdirectlyonthefinal cost ( around 30%), and tosome extent on the communication performance.Inthesupplychain,thecostoftagsisoneofthemainconsiderationsformassadoption,withthe5centtagbeingthemuchtalkedabouttarget.Howtoachievethisfigureiscurrentlyoneofthegreatdebates.Traditionallychipdiesizehasalwaysbeenthekeyfocus,andICcompanies

    havemanagedtogetdiesizes(chiparea)downtoaround0.3mm2forUHFchips,resultinginamanufacturingcostofabout1-2centsdependingontheSiliconprocess.Thisleaves3centsfortherest!whichiswheretherealchallengenowseemstolie.Therearesolutionsin

    PVC

    PET

    PAPER .

    Substrate Antenna

    Copper

    ALU

    Conductive Ink .

    Chip

    Flip chipconnection

    Antenna

    Wire

    Gold

    bumpsChipSurface

    Overlay

    PVC

    Epoxy Resin

    AdhesivePaper

    .

  • 7/27/2019 LaranRFID

    7/30

    7

    Confident

    thepipelinefromcompanieslikeAlienTechnologyandPhilipsSemiconductors,whomhavebothdevelopednewchipassemblytechniqueswhichwhenusedwiththeverylargevolumes(billions of tags) expected in the supply chainpromises to optimize costs to the levelsrequiredinordertoreachthe5centgoal.

    Fig 3. HF (13.56 MHz) Tag examples

    Paperlabelswithconductivesilverinkantennas Flexiblelabelwithanaluminumantenna

    -

    Courtesy of ASK

    Courtesy of Inside Contactless

    Fig 4. UHF (860 930 MHz) tag examples

    Courtesy of MATRICS

    Courtesy of IPICO

    Coil on chip Tags (image courtesy of Maxell)

    A new and fascinating development for tags is based on havingtheantennadepositeddirectlyontothetagchipssurface.Althoughthecommunicationdistanceislimitedtoaround

    3mm,theresultisamicroscopictagwhichcanbeconcealedforexampleinbanknotes,as

    proposedrecentlybyHitachi-Maxell.BothMaxellandInsidecontactlesshavedevelopedworkingversionsofthesetagsatUHF,HF(Maxell)andHF(Inside).

  • 7/27/2019 LaranRFID

    8/30

    8

    Confident

    Tag ICs

    Fig 5. Basic Tag IC architecture

    RFID tag ICs are designed and manufactured using some of the most advancedandsmallestgeometrysiliconprocessesavailable.Theresultisimpressive,whenyouconsiderthatthesizeofaUHFtagchipisaround0.3mm2i.e.aboutthesizeofthesquarebelow

    Intermsofcomputationalpower,RFIDtagsarequitedumb,containingonlybasiclogicandstatemachinescapableofdecodingsimpleinstructions.Thisdoesnotmeanthattheyaresimple to design! In fact very real challenges exist such as, achieving very low powerconsumption,managing noisy RF signals and keepingwithin strictemissionregulations.Other important circuitsallow thechip to transferpower from the reader signal field, andconvertitviaarectifierintoasupplyvoltage.Thechipclockisalsonormallyextractedfrom

    thereadersignal.MostRFIDtagscontainacertainamountofNVM(NonvolatileMemory)likeEEPROMinordertostoredata.Theamountofdatastoreddependsonthechipspecification,andcanrangefromjustsimpleIdentifier numbers of around 96bits tomore information about theproductwith upto32Kbits.However,greaterdatacapacityandstorage(memorysize)leadstolargerchipsizes,andhencemoreexpensivetags.In1999TheAUTO-IDcenter(nowEPCGlobal)basedattheMIT(MassachusettsInstituteofTechnology)intheUS,togetherwithanumberofleadingcompanies, developed the idea of an unique electronic identifier code called the EPC(ElectronicProductCode).TheEPCissimilarinconcepttotheUPC(UniversalProductCode)usedin barcodestoday.Havingjusta simplecodeofupto256bitswouldleadto

    smallerchipsize,andhencelowertagcosts,whichisrecognizedasthekeyfactorforwidespreadadoptionofRFIDinthesupplychain.TagsthatstorejustanIDnumberareoftencalledLicensePlateTags

    Tag ClassesOneofthemainwaysofcategorizingRFIDtagsisbytheircapabilitytoreadandwritedata.

    Thisleadstothefollowing4classes.EPCglobalhasalsodefinedfiveclasseswhicharesimilartotheonesbelow.

    AC/DCConverter

    Powercontrol

    Decoder

    EEPROMMemory

    Modulator Encoder

    Instructionsequencer

    Tag antenna

    Connections

    Chip

  • 7/27/2019 LaranRFID

    9/30

    9

    Confident

    CLASS0 READONLY.FactoryprogrammedThesearethesimplesttypeoftags,wherethedata,whichisusuallyasimpleIDnumber,(EPC) iswrittenonlyonce intothe tagduringmanufacture.Thememory is thendisabledfrom any further updates. Class 0 isalso used todefinea categoryof tagscalledEAS(electronicarticlesurveillance)oranti-theftdevices,whichhaveno ID,andonlyannouncetheirpresencewhenpassingthroughanantennafield.CLASS1 WRITEONCEREADONLY(WORM)FactoryorUserprogrammed

    In this case the tagismanufacturedwithnodatawritten into thememory. Datacantheneitherbewrittenby thetagmanufacturerorby theuser onetime.Followingthisnofurtherwritesareallowedandthetagcanonlyberead.TagsofthistypeusuallyactassimpleIdentifiersCLASS2READWRITEThisisthemostflexibletypeoftag,whereusershaveaccesstoreadandwritedataintothetagsmemory.Theyaretypicallyusedasdataloggers,andthereforecontainmorememoryspacethanwhatisneededforjustasimpleIDnumber.

    CLASS3 READWRITEwithonboardsensorsThese tagscontainon-boardsensorsforrecordingparametersliketemperature,pressure,andmotion,whichcanbe recordedbywritinginto the tagsmemory.Assensor readingsmustbetakenintheabsenceofareader,thetagsareeithersemi-passiveoractive.CLASS4READWRITEwithintegratedtransmitters.Thesearelikeminiatureradiodeviceswhichcancommunicatewithothertagsanddeviceswithoutthepresenceofareader.Thismeansthattheyarecompletelyactivewiththeirown

    batterypowersource.

    Table 2. Different tag classes

    Class Knownas Memory PowerSource Appl ica t ion0 EAS EPC[1] None EPC Passive Ant-theft ID

    1 EPC Read-Only Any Identification

    2 EPC Read-Write Any Datalogging

    3 SensorTags Read-Write Semi-Passive/Active Sensors4 SmartDust Read-Write Active AdHocnetworking

    [1]ThesectiononEPCstandardsevolutionshowsthattheEPCclass0islikelytoevolvetoaread-write

    Selecting a tagChoosingtherighttagforaparticularRFIDapplicationisanimportantconsideration,andshouldtakeintoaccountmanyofthefactorslistedbelow:

    Sizeandformfactorwheredoesthetaghavetofit?

    Howclosewilltagsbetoeachother Durabilitywillthetagneedtohaveastrongouterprotectionagainstregularwearandtear. Isthetagre-usable Resistancetoharshenvironments(corrosive,steam...) Polarizationwhatwillbethetagsorientationwithrespecttothereaderfield Exposuretodifferenttemperatureranges Communicationdistance Influenceofmaterialssuchasmetalandliquids Environment(Electricalnoise,otherradiodevicesandequipment) OperatingFrequency(LF,HForUHF) SupportedCommunicationStandardsandprotocols(ISO,EPC)

  • 7/27/2019 LaranRFID

    10/30

    10

    Confident

    RegionalRegulations(US,EuropeandAsia) WillthetagdataneedtostoremorethanjustanIDnumberlikeanEPC Anti-collision-howmanytagsinthefieldatthesametimeandhowquicklymusttheybe

    detected.

    Howfastwilltagsmovethroughthereaderfield Readersupportwhichreaderproductsareabletoreadthetag Doesthetagneedtohavesecurity Dataprotectionbyencryption

    Fig 6. How passive tags are defined

    Active and passive tagsFig6,showsthatthefirstbasicchoicewhenconsideringatagisbetweeneitherpassive,semi-passiveoractive. Passivetagscanbereadatadistanceofupto4-5musingtheUHFfrequencyband,whilsttheothertypesoftags(semi-passiveandactive)canachievemuch

    greaterdistancesofupto100mforsemi-passive,andseveralkilometersforActive.Thislargedifferenceincommunicationperformancecanbeexplainedbythefollowing; Passive tags use the reader field as a source of energy for the chip and for

    communicationfromand tothe reader.Theavailablepower fromthereaderfield,notonly reduces very rapidly with distance ,but is also controlled by strict regulations,resultingina limitedcommunicationdistanceof 4 -5mwhenusingtheUHFfrequency

    band(860Mhz930Mhz). Semi-Passive(batteryassistedbackscatter)tagshavebuiltinbatteriesandthereforedo

    notrequireenergyfromthereaderfieldtopowerthechip.Thisallowsthemtofunctionwithmuchlowersignalpowerlevels,resultingingreaterdistancesofupto100meters.Distance is limited mainly due to the fact that tag does not have an integratedtransmitter,andisstillobligedtousethereaderfieldtocommunicatebacktothereader.

    Activetagsarebatterypowereddevicesthathaveanactivetransmitteronboard.Unlike

    passivetags,activetagsgenerateRFenergyandapplyittotheantenna.Thisautonomyfrom the reader means that they can communicate at distances of over several

    kilometers.Thispaperfocusesonpassivetags.Theexperiencegainedbydifferentcompaniesrunningvarioustrailsandevaluationshassofarshown,thatoutofthedifferentRFIDfrequenciesLF,HF,UHFandmicrowave(seefig1).HFandUHFarethebestsuitedtothesupplychain.Furthermore, it is expected that UHF due to its superior read range, will become thedominantfrequency.ThisdoesnotmeanhoweverthatLFandmicrowavewillnotbeusedincertaincases.

    Passive

    LF, HF

    UHFMicrowave

    Power source Frequency

    Class 0

    Class 1

    Class 2

    18000

    Protocol

    Paper label

    PVC.

    Package

    256 bits

    PropreitarySemi-passive

  • 7/27/2019 LaranRFID

    11/30

    11

    Confident

    Table 3. Comparison of Passive and Active Tags

    Advantages Disadvantages Remarks

    Passive

    Longerlifetime

    Widerrangeofformfactors

    Tags are more mechanicallyflexible

    Lowestcost

    Distancelimitedto4-5m(UHF)

    Strictlycontrolledby

    localregulations

    Most widely used inRFIDapplications.

    TagsareLF,HForUHF

    Semi-Passive

    Usedmainlyinrealtimesystems to track highvalue materials orequipmentthroughoutafactory.

    TagsareUHF

    Active

    Greater communication

    distance

    Canbeusedtomanageotherdevices like sensors (Temp,

    pressureetc) Do not fall under the same

    strict power regulationsimposedonpassivedevices

    Expensive - due tobattery, and tagpackaging

    Reliability - impossible

    todeterminewhetherabatteryisgoodorbad,

    particularly inmultipletransponderenvironments.

    Widespread

    proliferation of activetransponderspresents

    an environmentalhazardfrompotentiallytoxic chemicals inbatteries.

    Used in logistics fortrackingof containersontrains,trucksetc..Tags are UHF or

    microwave

    How tags communicate

    NearandFar f ie ldsInordertoreceiveenergyandcommunicatewithareader,passivetagsuseoneofthetwo

    followingmethodsshowninfig7.Theseare nearfieldwhichemploysinductivecouplingofthetagtothemagneticfieldcirculatingaroundthereaderantenna(likeatransformer),andfarfieldwhichusessimilartechniquesto radar(backscatterreflection)bycouplingwiththeelectricfield.ThenearfieldisgenerallyusedbyRFIDsystemsoperatingintheLFandHFfrequencybands,andthefarfieldforlongerreadrangeUHFandmicrowaveRFIDsystems.Thetheoreticalboundarybetweenthetwofieldsdependsonthefrequencyused,andisin

    factdirectlyproportionalto/2where =wavelength.Thisgivesforexamplearound3.5

    metersforanHFsystemand5cmforUHF,bothofwhicharefurtherreducedwhenotherfactorsaretakenintoaccount.(seeTableA-1AppendixA)Note:AmoredetailedexplanationonnearandfarfieldscanbefoundinAppendixA.

    Fig 7. Two different ways of Energy and information transfer between reader and tag

    S

    N

    a

    Reader

    Magnetic Field (near field)Inductive cou lin

    LF and HF

    a

    Reader

    UHF

    Electric Field (far field)Backscatter

  • 7/27/2019 LaranRFID

    12/30

    12

    Confident

    LF, HF TagsTagsatthesefrequenciesuseinductivecouplingbetweentwocoils(readerantennaandtagantenna - seefig7)inordertosupplyenergyto thetagandsendinformation.Thecoilsthemselvesareactually tunedLC circuits,whichwhensettotherightfrequency(ex;13.56

    MHz),willmaximize theenergytransferfrom readerto tag. Thehigherthe frequency theless turns required (13.56MHztypicallyuses3 to5 turns).Communicationfromreadertotag occurs by the readermodulating(changing)its fieldamplitudeinaccordancewiththedigital information to be transmitted (base band signal). The result is the well knowntechniquecalledAMorAmplitudeModulation.Thetagsreceivercircuitisabletodetectthemodulatedfield,anddecodetheoriginalinformationfromit.However,whilstthereaderhasthepowertotransmitandmodulateitsfield,apassivetagdoesnot.Howiscommunicationthereforeachievedbackfromtagtoreader?.Theanswerlies inthe inductivecoupling.Justasinatransformerwhenthesecondarycoil(tagantenna)changestheloadandtheresultisseeninthePrimary(readerantenna).The

    tagchipaccomplishesthissameeffectbychangingitsantennaimpedanceviaaninternalcircuit,whichismodulatedatthesamefrequencyasthereadersignal.Infactitsalittlemorecomplicatedthanthisbecause,iftheinformationiscontainedinthesamefrequencyasthereader,thenitwillbeswampedbyit,andnoteasilydetectedduetotheweakcouplingbetweenthereader andtag.Tosolvethisproblem, therealinformationisofteninsteadmodulatedintheside-bandsofahighersub-carrierfrequencywhichismoreeasilydetectedbythereader.

    Fig 8. Creation of two higher frequency side-bands

    UHF tagsPassivetagsoperatingattheUHFandhigherfrequenciesusesimilarmodulationtechniques

    (AM)aslowerfrequencytags,andalsoreceivetheirpowerfromthereaderfield.Whatisdifferent however, is the way that energy is transferred, andthe design ofthe antennasrequiredtocaptureit.Wehavealreadymentionedthatthisisachievedusingthe farfield,whichisin facttheregioninElectromagneticTheorywheretheelectricandmagneticfield

    components of a conductor (antenna) breakaway, and propagate into free spaceas acombinedwave.Atthispoint,thereisnofurtherpossibilityofinductivecouplinglikeinHFsystems,becausethemagneticfieldisnolongerlinkedtotheantenna.Transmissionofthiswaveinthefarfieldisthebasisofallmodernradiocommunication.Insomesystemssuchastransmissionlines(coaxialcables),thepropagationofthesewavesisrestrictedasmuchaspossibleviaspecialshieldingastheyconstituteapowerloss.Forantennasitstheinverse,propagationisencouraged.Whenthepropagatingwavefromthereadercollideswithatagantennaintheformofadipole (seefig7),partoftheenergyisabsorbedtopowerthetagandasmallpartisreflectedbacktothereaderinatechniqueknownasback-scatter.Theory

    showsthatfortheoptimalenergytransferthelengthofthedipolemustbeequalto/2,which

    fc =13.56 MHz

    fsub = 212 KHz

    fc =13.772 MHzfc =13.348 MHz

    Reader Carrier signal0 dB

    -80 dB

    Modulation Informationin subcarrier side bands

    Si nal

  • 7/27/2019 LaranRFID

    13/30

    13

    Confident

    givesa dimensionof around16cm.In reality the dipole ismade upof two /4lengths.Deviatingfromthesedimensionscanhaveaseriousimpactonperformance.Justasforlowerfrequencytagsusingnearfieldinductivecoupling,apassiveUHFtagdoes

    nothavethepowertotransmitindependently.Communicationfromtagtoreaderisachievedbyalteringtheantennainputimpedanceintimewiththedatastreamtobetransmitted.Thisresultsinthepowerreflectedbacktothereaderbeingchangedintimewiththedatai.e.itis

    modulated.Fromanapplicationspointofview,usingthetechniqueoffarfieldback-scattermodulationintroducesmanyproblemsthatarenotsoprevalentinHFandlowerfrequencysystems.Oneofthemostimportantoftheseisduetothefactthatthefieldemittedbythereaderisnotonlyreflectedbythetagantenna,butalsobyanyobjectswithdimensionsintheorderofthewavelengthused.Thesereflectedfields,ifsuperimposedonthemainreaderfieldcanleadtodampingandevencancellation.

    Tag Orientation (polarization)

    How tags are placed with respect to the polarization of the readers field can have asignificanteffectonthecommunicationdistanceforbothHFandUHFtags,resultinginareducedoperatingrangeofupto50%,andinthecaseofthetagbeingdisplacedby90(seefig 9), notbeing able to read the tag . The optimal orientationforHFtags isfor the twoantennacoils(readerandtag)tobeparalleltoeachotherasshownbelowinfig4.UHFtagsareevenmoresensitivetopolarizationduetothedirectionalnatureofthedipolefields.Theproblem of polarization can be overcome to a large extent by different techniquesimplementedeitheratthereaderortagasshownintable4below.Table 4. Managing the problem of tag orientation

    Reader -Antenna Tag UHF-AntennaCircularfieldpolarization HF - Antennas physically placed at

    different locations with in different

    orientations(XYZ) twoantennas90outofphasewitheach

    other 3DTunnelreaders

    UHFTwoantennaspolarized90outofphaseegMatricsdoubledipole

    Fig 9. HF Tag orientation with different antenna configurations

    Tagreadable

    TagUn-readable

    Reader

    Antenna

    1- D field,90 tag

    orientations

  • 7/27/2019 LaranRFID

    14/30

    14

    Confident

    Tag standards

    Avery importantaspectofRFID technologyaretheassociatedstandardsandregulations.

    They are designed to ensure safe operation with respect to other electricalandradioequipment,andguaranteeinteroperabilitybetweendifferentmanufacturersreadersandtags.Regulationsaremainlyconcernedwithreaderpoweremissionsandallocationoffrequencybands, whilst standards like the ISO (International StandardsOrganization) definetheAirinterfacecommunicationbetweenReader->TagandTag->Reader,andincludeparameterssuchas;

    Communicationprotocol SignalModulationtypes

    Datacodingandframes DataTransmissionrates Anti-collision (detectionand sorting ofmany tags intheReaderf ieldatthesame

    time)

    Reader

    Antenna

    3 - D field,

    90 tag

    orientations

    Mux

    Reader

    Antenna2 - D field,90 tag

    orientations

    0 90

    Phase splitter

  • 7/27/2019 LaranRFID

    15/30

    15

    Confident

    ThehistoryofRFIDstandardsoverthelast10yearshasunfortunatelybeenfarfromideal,leadingtotoomanyvariationsandconfusion.ThesituationforthesupplychainandItemmanagementisnodifferentduetothetwoairinterfacestandardscurrentlybeingproposedbyISOandtheEPCglobal(seebelow).Someinitiativesareunderwaytotryandharmonizethetwointooneglobalstandard,whichwouldcertainlybetherecommendedwaytoensurethewidespreadadoption,andhighvolumesofRFIDtagswithinthesupplychain.

    Table 5. ISO 18000 Information Technology AIDC Techniques-RFID for Item Management - Air

    Interface

    18000 1 Part 1 Generic Parameters for Air Interface Communications for Globally Accepted

    Frequencies 18000 2 Part 2 Parameters for Air Interface Communications below 135 KHz

    18000 3 Part 3 Parameters for Air Interface Communications at 13.56 MHz 18000 4 Part 4 Parameters for Air Interface Communications at 2.45 GHz

    18000 5 Part 5 Parameters for Air Interface Communications at 5.8 GHz

    18000 6 Part 6 - Parameters for Air Interface Communications at 860 930 MHz

    Table 6. EPCglobal standards evolution:

    Protocol Frequency Description

    Class0 UHF Read-only,factoryprogrammed

    Class0Plus UHF Read-writeClass1 HF,UHF WORM,(Write-once,readmany)

    Class1,G2

    UHF

    WORM; can be used globally;merges Classes 0 and 1 andperhapsISO18000-6

    Class2 UHF Aproposedread-writetagSource: RFID Journal Jan 2004 issue

    Regional Regulations and Frequency Allocation

    RFID tags and readers fall under the category of short range devices (SRDs), whichalthoughtheydonotnormallyrequirealicense,theproductsthemselvesaregovernedbythe laws and regulations which vary from country to country. Today, the only globallyacceptedfrequencybandistheHF13.56MHz.ForpassiveUHFRFIDtheproblemismuchmorecomplicatedasfrequenciesallocatedinsomecountriesarenotallowedinothers,duetotheirproximitytoalreadyallocatedbandsfordevicessuchasmobilephonesandalarms.ThisdiscontinuityhasresultedintheITU(InternationalTelecommunicationsUnion)dividingtheworldintothreeregulatoryregions,thesebeing;

    REGION 1: Europe, Middle East, Africa and the former Soviet Union including Siberia

    REGION 2: North and South America and Pacific east of the International Date Line

    REGION 3: Asia, Australia and the Pacific Rim West of the International date line

  • 7/27/2019 LaranRFID

    16/30

    16

    Confident

    The main regulatory bodies in the different regionsREGION1 :IntheUSA,theFederalCommunicationsCommission(FCC).

    For UHF regulations see the FCC-Part 15 (15.249).whichcanbe foundat the followingwebsite:http://www.access.gpo.gov/nara/waisidx_01/47cfr15_01.html

    AllocatedUHFband(902-928MHz), MaxPoweremission4WEIRP-FrequencyHopping

    REGION2:InEurope,CEPT(EuropeanConferenceofPostalandTelecommunications)has

    theresponsibilityoffrequencyassignmentandoutputpower.

    ForUHF regulationsseepublicationERCREC70-73whichcanbe foundat thefollowingwebsitehttp://www.ero.dk/doc98/official/pdf/rec7003e.pdf

    AllocatedUHFfixedband(869.3869.65MHz)

    Poweremissionslimitedto500mWEIRP (expectedtobeenhancedto2Win2004) Readersmustoperatewithina10%dutycycleNoFrequencyorchannelhopping

    ,REGION3:InJAPAN,(MPHPT)MinistryofPublicManagement,HomeAffairs,Postsand

    Telecommunication.

    Regulation:JapaneseRadioLaw.ReferstoARIB(StandardsAssociationofRadioIndustriesandBusiness

    JapanhasonlyrecentlyannouncedtheallocationofaUHFfrequencyat950MHz

    ERP and EIRPThese aretwo reference parametersused todefine thepermittedradiated power inRFsystems.TheyareoftenquotedinRFIDreaderandtagspecifications.TheUStendstouseEIRPandEuropeERP.

    TherelationshipbetweenthetwoisdefinedasEIRP=ERP*1.64MoreinformationaboutERPandEIRPcanbefoundinAppendixB-

  • 7/27/2019 LaranRFID

    17/30

    17

    Confident

    RFID Readers

    HFReader UHFEPCReader

    Courtesy of SAMSYS

    Readers or interrogators as theyare sometimes called, area keyelementin anyRFIDsystem,andwillthereforebepartoftheproductevaluationandselectionprocess.UpuntiltherecentsurgeindevelopmentsforthesupplychainandEPCtags,readersweremainly

    usedin accesscontrolsystemsandother lowvolumeRFIDapplications,whichmeantthattheproblemoftreatingverylargenumbersoftagsandhighvolumesofdatawasnotsuchaserious issue. This is now of course all changing, and many reader manufacturers arestartingto developnextgenerationproductstohandletheapplicationproblemsthatwillbespecifictothesupplychainandEPCinfrastructure.

    Main Criteria for readers

    Operating Frequency (HF or UHF) some companies are developing Multi-frequencyreaders

    ProtocolAgilitySupportfordifferentTagProtocols(ISO,EPC,proprietary)Most

    companiesofferMulti-protocolsupport,butdonotsupportall!

    Differentregionalregulations

    -UHFfrequencyagility902930MHzintheUSand869MHzinEurope-PowerRegulations:4WattsintheUSand500mWinEurope

    -ManageFrequencyHoppingintheUSandDutyCycleinEurope

    Networkingtohostcapability:- TCP/IP-WirelessLAN(802.11)

    -EthernetLAN(10baseT)

    -RS485

    Abilitytonetworkmanyreaderstogether- viaconcentrators

    -viamiddleware

    AbilitytoupgradethereaderFirmwareinthefield - viainternet

    -viaHostinterface

    Managingmultipleantennas- Typically4antennas/reader

  • 7/27/2019 LaranRFID

    18/30

    18

    Confident

    - Howantennasarepolledormultiplexed

    Adaptingtoantennaconditions -Dynamicauto-tuning

    Interfacetomiddlewareproducts

    DigitalI/Oforexternalsensorsandcontrolcircuits

    Handheld Readers

    Thesereadersareusedformanualinterventionwhereatagmayneedtobechecked,oreven updatedoff line. Industrial grade products for HFexist today from companies likePSIONTEKLOGIX.UHFproductsdoexist,butaremainlyeitherbasedaroundcommercialPDAdevices,whichalthoughtheyfunction,arenotclassedasindustrialgradeproducts.

    RFID enabled HF Hand Held reader - Courtesy of PSION TEKLOGIX

    RFID Label Printers

    RFIDcompatiblelabelprintersaredesignedtoprogramdataintothepaperlabel-tags,as

    theypassthroughthemachinefornormalprinting.TheprinterhasaninbuiltUHForHF(orboth)reader,capableoffirstrunningabasicfunctionalitycheckonthetag,forwhichifitfails,proceedstoprintavisiblerejectsignonthetagspapersurface.Tagswillneedtohavethecorrect reel format for specific printers. RFID label printers like the one shown fromPRINTRONIXbelowarecapableofprintingandprogrammingatanaveragethroughputof1.5labels/s,dependingonthelengthofthelabel.

    Courtesy of PRINTRONIX

  • 7/27/2019 LaranRFID

    19/30

    19

    Confident

    Reader AntennasInanRFIDsystem, reader antennasare often themost tricky part todesign in. For low

    powerproximityrange(

  • 7/27/2019 LaranRFID

    20/30

    20

    Confident

    RFID technology in the Supply chain

    Definition of the Supply Chain.

    The supply chain is a complex multi-stage processwhich involveseverythingfrom theprocurementofrawmaterialsusedtodevelopproducts,andtheirdeliverytocustomersviawarehousesanddistributioncenters.Supplychainsexistinbothservice,manufacturingandretailorganizations.Although,thecomplexityof thechainmayvarygreatlyfromindustryto

    industryandfirmtofirm.Supplychainmanagement(SCM)canbeseenasthesupervisionofinformationand financesofthesematerials,astheymovethroughthedifferentprocesses,bycoordinatingandintegratingtheflowswithinandamongthedifferentcompaniesinvolved.Theefficiencyofthesupplychainhasadirectimpactontheprofitabilityofacompany.Itisnosurprisethereforetofindthatmanylargecorporatecompanieshavemadeitakeypartoftheirstrategy,andinvestedheavilyinsoftwaresystems(ERP,WMS..)andITinfrastructuredesignedtocontrolinventory,trackproductsandmanageassociatedfinance.

    How will RFID help improve supply chain efficiencyRFIDwillbringanewdimensiontosupplychainmanagementbyprovidingamoreefficientwayofbeingabletoidentifyandtrackitemsatthevariousstagesthroughoutthesupplychain.Itwillallowproductdatatobecapturedautomatically,andthereforebemorequicklyavailableforusebyotherprocessessuchasASN,stockmanagementandrealtimebilling.

    Comparison of Bar codes and RFIDBarcodesarepredominatelyusedtodayforidentifyingandtrackingproductsthroughoutthesupplychain.Eventhoughtheycanachieveefficienciesintheorderof90%,therearestillanumberofdeficienciesinthetechnology,forwhichRFID,isabletoprovideabettersolution

    andfurtheroptimization.

    Barcodedef iciency RFIDimprovedsolu t ionLineofSightTechnology AbletoScanandreadfromdifferentanglesand

    throughcertainmaterials

    Unable to withstand harsh conditions (dust,corrosive),mustbecleanandnotdeformed

    abletofunctioninmuchharsherenvironments

    NopotentialforfurtherTechnologyadvancement Technology advancement possible due to newchipandpackagingtechniques

    Can only identify items generically and not asuniqueobjects

    EPCcodewillbeabletoidentifyuniquelytypicallyup-to2

    96items

    Poortrackingtechnology,laborintensiveandslow Potentialto trackitems inreal timea theymovethroughthesupplychain

    The main benefits of RFID in the supply chain.EventhoughRFIDapplicationsarestillattheearlystagesofdeployment,manycompaniesrunningpilotsystemshavebeenabletodemonstratesomeofthesignificantbenefitsthatRFIDpromises.Thereisnodoubtthatmorewillbediscoveredastheindustryadoptsthetechnologyonawiderscale.Thefollowingareexamplesofwhathasbeenidentifiedsofarbythedifferentstudiesandtests/pilotsrecentlycompletedwithinthesupplychain.

  • 7/27/2019 LaranRFID

    21/30

    21

    Confident

    AdvancedShipp ingNot ices(ASN)

    RFIDisabletoautomaticallydetectwheneitherapalletorshipmenthasleftthewarehouseorDistributionCenter.ThiswillallowtonotonlygenerateanelectronicASNand notify the recipient, but also tobill clients inreal time insteadofwaitinguntiltheendoftheweekormonth,anddoingabatchoperation.

    Shrinkage

    Oneofthemajorproblemsinthesupplychainisproductlossorshrinkage,which

    can account for anything from 2 to 5 % of stock. The causes mayvaryfrommisplacedorders,employeeandcustomertheftorinefficientstockmanagement.RFIDwithitssuperiortrackingandidentificationcapabilitywillbeableto localizewherelossesareoccurring.

    ReturnedGoods

    Fullvisibilityandautomationcanbepotentiallyachievedonreturnedgoodstherebyreducingfraud.

    Anti -counte rf ei t Illegalduplicationandmanufactureofhighvalueproducts,isoneoftheindustries

    mostwellknownproblems.Byintegratingatagintoitems,forexamplethebodyofanexpensiveladieshandbag,RFIDhasthepotentialtoauthenticateaproduct,andcombatthesaleoffalsegoodsontheblackmarkets.

    SupplyChaineff iciencyRFID will enable the traceability and reduction in the numberof discrepanciesbetweenwhatasupplierinvoiced,andwhatacustomeractuallyreceived.

    Improvedstockmanagement Managingstockisthekeypriorityformanyretailers.Studieshaveshownthatonaverage,productsarenotonthestoreshelves7%ofthetimeduetoinefficiencies

    in stock management, which means of course a potential purchase loss.ImplementingRFIDattheitemlevelandonshelveswillgiveanautomaticwayofknowingandmanagingstocklevels.Howeverinordertoachievethisonalargescale,itisrecognizedthat tagswillhavetocomedowninpricetoaround5centsorless,andreaderstoaround100USD.

    ReductioninlaborcostsAt DC s (Distribution Centers) labor accounts for nearly 70% of costs. It isestimated that RFIDcould reduce this bynearly 30%by removingtheneedformanualinterventionanduseofbarcodeswhenloadingcasesorstockingpallets.

  • 7/27/2019 LaranRFID

    22/30

    22

    Confident

    The EPC TM Electronic Product Code

    At theheart of the currentRFIDbasedtechnologydrive to improvesupplychainefficiencyandreduceoperatingcosts,isTheEPC(ElectronicProductCode).WithoutitanditsmanygiantindustrialbackerslikeWal-Mart,RFIDinthesupplychainwouldstillbewhereitwas5yearsago,atechnologylookingforabusinesscase.Themomentumhasbeentremendous,andhassparkedoneoftheraretechnologyrevolutionswhereendusercompaniesareinthe

    drivingseat.

    EPC OriginsIn October 1999 the Auto-ID center was created in the Department of MechanicalEngineeringbyanumberofleadingfiguresatMIT.ThepotentialbenefitsofRFIDtagshadbeenidentifiedlongbefore,whatwasstoppingtheadoptionofthetechnologyinthesupply

    chainwasthecostofthetags.TheAutoIDrecognizedthatinordertosolvethisproblem,tagsneededtobeassimpleaspossible,andactinsteadaspointerstoinformationheldonserversinthesamewayasinformationisstoredontheinternet.Thisleadto the ideaoftheEPC(ElectronicProductCode)whichwouldprovidefastanddetailedinformationofproductsanywhereinthesupplychain.Thegoalhowever,wasnottoreplacebarcodes,butrathertocreateamigrationpathforcompaniestomovefrombarcodetoRFID.

    TheAuto-IDCenterofficiallyclosedonOctober26th,2003.Thefinalboardmeetingwasheldin Tokyo, Japan. The Center had completed its work and transferred its technology toEPCglobal(www.epcglobalinc.org),whichwilladministeranddevelopEPCstandardsgoingforward.

    EPC layoutThecodeissimilarto theUPC(UniversalProductCode)usedinbarcodes, andrangesfrom64bitsto256bitswith4 distinct fieldsdescribedbelowin fig10..Whatsets theEPC

    apartfrombarcodesisitsserialnumberwhichallowstodistinguishtheuniquenessofanitem,andtrackitthroughthesupplychain.

    Fig 10. Layout of an EPC which is 96 bits in length

    Header(0-7)bitsTheHeaderis8bits,anddefinesthelengthofthecodeinthiscaseO1indicates

    anEPCtype1numberwhichis96bitsinlength.TheEPClengthrangesfrom64to256bits.

  • 7/27/2019 LaranRFID

    23/30

    23

    Confident

    EPCmanager(8-35)bitsWilltypicallycontainthemanufactureroftheProducttheEPCtagisattachedto

    ObjectClass(36-59)bits ReferstotheexacttypeofproductinthesamewayaanSKU(StockKeepingUnit)

    SerialNumber(6096)bits

    Providesauniqueidentifierforupto296products

    EPC infrastructure

    fig. 11 The basic steps of EPC infrastructure

    An EPC is stored into an RFID tag/label

    and attached to an item Tag Tag Sensor

    Reader scans and reads the EPC Sends Data to a computer running middleware

    Reader

    Temp.

    ePC s

    Filter Data Query ONS (Object naming Service)

    Manage Readers

    Middleware/Savant

    ID

    Internet PML server

    ONS database maps the EPC to a URL

    URL points to the location whereinformation is stored using PML

    ONS

    Database

    PML data

  • 7/27/2019 LaranRFID

    24/30

    24

    Confident

    EPC infrastructurewill allow immediate access to information, whichwillnotonlyoptimizeexistingservicessuchASN,butalsohavethepotentialtocreatenewservices,forexample;aretailercouldautomaticallylowerpricesastheexpirydateapproaches,oramanufacturercould recall a specific batch of products duetohealthconcerns,andifneededpinpointsourceoftheproblemdowntoauniqueproduct.

    Middleware or Savant Software

    ThesheerpotentialvolumeofdatacreatedbybillionsofEPCtagswouldveryquicklygrindmost existing companies enterprise software and IT infrastructure to a standstill within amatterofminutes.TheanswertothisproblemismiddlewareorSavants.RFIDsavantsserveasasoftwarebufferwhichsitsalmostinvisiblebetweentheRFIDreaders,andtheserversstoring the product information. Itallowscompaniesto process relativelyunstructuredtagdatatakenfrommanyRFIDreaders,anddirectittotheappropriateinformationsystems.Savantsareabletoperformmanydifferentoperations,suchasmonitortheRFIDreader

    devices,managefalsereads,cachedataandfinallyqueryanObjectNamingService(ONS).

    Object Name Service (ONS)

    ONSmatches theEPC code toinformationabout the product viaa queryingmechanismsimilartotheDNS(DomainNamingsystem)usedintheinternet,whichisalreadyproventechnologycapableofhandlingthevolumesdataexpectedin anEPCRFIDsystem.TheONSserverprovidestheIPaddressofaPMLServerthatstoresinformationrelevanttotheEPC.

    Physical Markup Language (PML)WhilsttheEPCisabletoidentifytheindividualproduct,therealusefulinformationiswritteninanewstandardsoftwarelanguagecalledPhysicalMarkupLanguage.PMLitselfisbasedon the widely used and accepted extensible markup language (XML), designed as adocumentformattoexchangedataacrosstheinternet.Itisnotsurprisingtherefore,withsomuchof the infrastructurefor EPCbeingborrowedfrom theinternet(DNS,XML..), that it isoftenreferredtoas theinternetofthings.

    PMLisdesignedtostoreanyrelevantinformationaboutaproduct;forexample,

    (1) Locationinformation e.g., tag X was detected by reader Y, which is located atloadingdockZ;

    (2) Telemetry information [Physical properties of an object e.g., its mass; Physicalpropertiesoftheenvironment,inwhichagroupofobjectsislocated,e.g.,ambienttemperature];

    (3) Compositioninformatione.g.,thecompositionofanindividuallogisticalunitmadeupofapallet,casesanditemsTheinformationmodelwillalsoincludethehistoryofthevariousinformationelementslisted above e.g., a collectionof the various single

    locationreadingswillresultinalocationtrace.(4) manufacturingandexpirydates

  • 7/27/2019 LaranRFID

    25/30

    25

    Confident

    How the EPC will automate the supply chain (courtesy of EPCglobal and XPLANE) Atthep roducta ssembly-p ackagingl ine.

    1.Each Item contains an RFIDtagwhich has a uniqueidentifiercalledanEPCstoredinitsmemory.

    2.Items can now be automatically and cost-effectivelyidentified,countedandtracked.Casesand pallets canalsocarrytheirownuniquetags.3.As pallets leave the manufacturer, an RFID readerpositionedattheloadingdockdoorbeamsaradiowavethatwakesupthetags.

    4.a) TheTagscommunicatetheirindividualEPCs

    tothe reader,which rapidlyswitches themonandoffinsequence(anti-collision),untilallareread.

    b) The reader sends the EPC to a computer

    calledSavantTM,whichinturn,sendstheEPCovertheinternettoanObjectNamingService(ONS) database, which produces acorrespondingaddress.TheONSmatchestheEPC toanother server (PML), whichhas thefulldetailsabouttheproduct.

    c) ThePML(PhysicalMarkupLanguage)server

    stores details about the manufacturersproducts.Becauseitknowswheretheproductwasmade, ifan accident involving adefectarises, the source of the problem can betrackedandtheproductsimmediatelyrecalled.

    Savant ONS server PML serverComputer

    EPC: Look under Can of Cherry

    Fxyzz3t0nn;4x;CC Super Cola Inc Soda, shippedFrom Boston,MA

    5. At theDistr ibuti onCenterIftheunloadingareacontainsanRFIDreader,theresno need to open the packages and examine theircontents.ASAVANTprovidesacargolist,andthepalletisquicklyroutedtotheappropriatetruck.

    6. At theRetailSto re As soon as it arrives , retail systems are updated toinclude every item. In this way storescan locatetheirentireinventoryautomatically,accuratelyandatlowcost.Reader enabled smart shelves can automaticallyordermoreproduct from thesystemandthereforekeepstocktocost-effectiveandefficientlevels.

  • 7/27/2019 LaranRFID

    26/30

    26

    Confident

    Security in RFID Systems

    RFIDtagsusedinthesupplychainwillcontaindatarangingfromsimpleIDnumbers(EPC),

    tomoreimportantinformationaboutaproduct.Forexampleinthehealthindustry,itcouldbe

    thebloodtypeofasample.Themaingoalofanysecuritysystemdesignedtoprotectdatastoredinmediumssuchastags,computerdiskdrives,orsmartcardsisbasicallytopreventanyunauthorizedpersonfrombeingabletoeither;

    a) Obtainaccessandlearnthedatacontentsb) Obtainaccessandmodify/corrupt/erasethedatacontentsc) Copythedatacontentstoasimilarstoragedevice(duplicate)

    In a completesystem, security of data asdefined abovenot only involves the storagemedium,butalsohowdataiscreatedandtransferredfromahosttothemedium(orvice

    versa).Forexample,whenanengineerbrokethesecurityofaFrenchbankcreditcardafewyearsago,hediditnotbycompromisingthechipsecurity,butbyhackingthereaderterminal.

    Thefollowingarescenariosthatcouldhappeninthesupplychain.

    1) IndustrialSabotagesomebodywithagrievanceagainstacompanydecidestostartcorruptingdataintagsbyusingahandhelddevice,anderasingormodifyingthecontents.

    2) IndustrialEspionage Aratherunlawful competitorwouldliketoknowhowmany,

    andwhattypeofproductsarebeingmanufactured,andshippedbyyourcompany.Hecouldpossiblyachievethisinthefollowingways

    i. Eavesdropping l istening in on longer range communication

    systemslikeUHFwhichbroadcastsignals(albeitveryweak)upto

    100meters someprotocolshave abasic securitywhichensuresthattheIDNisnevertransmittedcompletelyinonestream.ii. PlacingboguswellconcealedreaderslinkedtoaPCsomewherein

    theproximityofthetagsmovingthroughtheproductionlineiii. Usinghandhelddevices

    3) Counterfeiting Beingabletoreadorinterceptdatabeingwrittenintoatagwhich

    uniquelyidentifiesorcertifiesaproduct.Oncethedataisknown,similarread/writetagscouldbepurchasedandupdatedwiththeauthenticdata,thuscreatingtherealpossibilityofcounterfeitingproductswhicharesupposedtobeprotectedbyatag.

    Alltheabovescenariosarepotential risksifnosecurityisimplementedinthetagandreader.The importance attached to protecting data in the supply chain will depend on theapplication, andthe companies strategy towards security. In some cases legislationwill

    imposeit.Ofcoursebarcodeswhichareusedtoday,canbeeasilyread,decrypted,andevendestroyed,butnotonthewide-spreadandautomaticscalepossiblewithRFID.Eventhesimplestsecuritycostssiliconarea,andthereforewillimpactonthefinaltagprice.This goes against the current trendof trying to produce the smallest, andcheapest tagpossible.Everycompanyisthereforefacedwiththistradeoffbetweencheaperunsecuredtags,andthepotentialsecurityriskstheyentail.

  • 7/27/2019 LaranRFID

    27/30

    27

    Confident

    Conclusion

    The interest in RFID as a solution to optimize further the supply chain is gatheringmomentumataneverincreasingpace,withmoreandmorecompaniesannouncingtrials

    andmandatestotheirsuppliers.Thetechnologyisstillnotyetwidelyunderstoodorinstalledin the supply chain, and cost/ROI models far from established. Many companies arethereforenowfacedwith thedifficultchoicein decidingwhethertheyshouldbelookingatRFIDnow,orwaitinguntildeploymentismorewidespread.ThereisastrongtemptationtogetcarriedawaybyallthehypeandpublicitysurroundingRFIDtoday,whichisallthemorereason tohave asenseofrealityastowhatitmeanstointegrateRFID,whyyourcompanywould want to do it , and what would be the acceptable time frames for the perceivedbenefits.InvestinginRFIDonthescalerequiredforthesupplychainwillbeaverycostlyexercise,andifnotmanagedcorrectlycouldleadtounnecessarylosses.Thetechnologyisnotplugandplay,andwillhavetobeadaptedtoeachapplication.Furthermore,implementingan

    infrastructuretosupportEPCdatacouldhaveaconsiderableimpactonexistingITsystems.EvenatthisearlystageintheadoptionofRFIDinthesupplychain,thereisenoughevidencetodemonstratethatwiththerightstrategies,RFIDwillbringbenefits.Thetechnologyisheretostay,andwilleventuallybecomewidelyadoptedwithinthesupplychain.Thosecompaniesprepared to invest now will not only become theearly winners,butalsobenefitfromtheexperiencebybeingcapableofextendingtheapplicationofRFIDintonewservices

    About the Author.Steve Lewis

    IsthefounderofLARANacompanysetuptoprovideprofessionalconsultingandmarketingservicesforRFIDtechnology.QualifiedwithamicroelectronicsdegreefromtheuniversityofWales,hehasacombinedexperienceofover20 years in thesemi-conductorandRFIDindustries, having held positions in IC silicon design, product marketing, and businessdevelopment.Heisaveteranoftwosiliconstartups,ES2andINSIDETechnologies,andhas spent the last 8 years working in a wide range of RFIDapplications andmarketsincluding;VehicleKeylessEntrysystems,AccessControl,IDandtransport.

    ContactDetails

    Email:[email protected]

    Website:www.laranrfid.com

  • 7/27/2019 LaranRFID

    28/30

    28

    Confident

    Appendix A

    More about Near and Far fields

    Up until recently, nearly all passive RFID systems in production were either LF or HF.Designing systems at these frequencies was based on a few equations relating to

    inductance,mutualinductanceandtheknowledgethatthemagneticfieldreducedrapidlywith distance (1/r

    3). With the recent explosion of RFID in the supply chain came the

    recognition thatUHF wouldallow longer read range,andfaster detectionof many tags.EngineersusedtodevelopingLFandHFsystems,arenowfacedwithacompletelydifferentconceptandsetofchallengeswithUHF.OneofthenewconceptsencounteredwhenlookingatUHFforthefirsttime,istheideaoftwo distinct and different regions around an antenna called the near fieldand far field.ElectromagnetictheorydevelopedbyMaxwellinthe19

    thcenturyshowsthatanyconductor

    (e.g.antenna)suppliedwithanalternatingcurrentproducesavaryingmagneticfield(H-field)whichinturn,producesElectricFieldlines(E-field)inspace.Thisistermedthenearfield.

    InthenearfieldboththeEandHfieldsarerelativelystaticwithnopropagation.Theyonlyvary instrengthas thecurrentvaries ,withthemagneticfluxof theH-fieldcomingoutfromtheantenna,andgoingbackin,andtheE-fieldemanatingout-wards.Maxwellalsoprovedthatbeyondthisquasi-staticnear field,both theE-fieldsandH-fieldsatacertaindistance,detachedthemselvesfromtheconductorandpropagatedintofreespaceasa combined

    wave,movingatthespeedoflightwithaconstantratioofE/H=120or377.(Ohmsareusedbecause theE-fieldismeasuredinvoltspermeterV/MandtheH-fieldinampspermeterA/M.).Thepointatwhichthishappensiscalledthe farfield.

    Fig A-1 Transition region between near and far fields

    Becausechangesinelectromagneticfieldsoccurgradually,theboundarybetweenthetwofieldsisnotexactlydefined.Thedistanceatwhichthetwoseparateoutfromthesourceasafixedplanewavecanbemodeledinanumberofways.Thesimpler2-regionmodelshownin

    figA-2givesadistanceof /2wherethefalloffis1/r3(dominantfield)and1/r

    2inthenear

    fieldregion,and1/r inthe far field. The 3-regionmodelismuchmorecomplicatedwithatransitionregionwherecomponentsdecayas1/r,1/r

    2and1/r

    3..

    r /0.1 1.0 10

    10

    100

    1000

    10000

    Magnetic field

    Electric field

    Transitional field

    Plane waveWave impedence,

    OhmsZo = 377Ohms

    r

    0.011/2

    Near Field Far Field

    5.0

  • 7/27/2019 LaranRFID

    29/30

    29

    Confident

    Fig A-2 Different Region models

    Thedistancemeasureof/2canbeconsideredasareferencepoint,whereifthetagisinaregionmuchlessthan1/20wavelengths,thenwearedefinitelyinthenearfield.Fordistancesgreaterthan5wavelengthswearedefinitelyinthefarfield.ThisisshowninTableA-1

    Table A-1 Near and Far field limits

    Band NearFieldRegion FarFieldRegion

    LF 12Km

    HF 110mUHF 1.65m

    Microwave 0.25cm

    ApplyingsomepracticalsensewecandrawthefollowingconclusionsforRFIDtags

    1) AtLF,tagsalwaysworkinthenearfield2) Atmicrowave,tagsalwaysworkinthefarfield3) AtHF,tagsworkinthenearfieldbutsomeintermediate(transition)fieldcomponents

    areeffectiveatantennaemissionmeasurementranges.4) AtUHF,passivetagsoperateinthetransitionfieldareaortheFarfield

    1/r 1/r 1/r 1/r1/r.1/r

    Dominant

    Terms

    in the region

    3- REGION MODEL 2- REGION MODEL

    FAR FIELD NEAR FIELD NEAR FIELD FAR FIELD

    TRANSITION

    ZONE

  • 7/27/2019 LaranRFID

    30/30

    Confident

    APPENDIX B

    EIRP and ERP Power Emissions

    EIRP(EquivalentIsotropicRadiatedPower)EIRPrefers totheproductof thepowersuppliedtotheantennaandtheantennagaininagivendirectionrelativetoanisotropicantennaAnIsotropicantennaisonewhichradiatespowerequallyinalldirections(e.gasphere)ERP(EffectiveRadiatedPower)ERPreferstotheproductofthepowersuppliedtotheantenna anditsgainrelativetoahalf-wavedipoleinagivendirection.

    EIRP=ERPx1.64

    Comment:Itwouldmakemoresenseofcoursetojusthaveoneharmonizedpowerterm,eitherERPorEIRP,howeveras isoften the casewith International standards, its not always easy toachieve.

    Here is an extract from a recent BloonstonLaw Telecom Update from the FCC on thissubject.

    ERP/E IRP issues:

    Although theCommissionrecommended in the 2000BiennialReviewReportthatarule-makingproposalbeinitiatedtoconsiderusingequivalentisotropicallyradiatedpower(EIRP)exclusively in Commission rules, it now tentatively concludes that the costs ofimplementation and potential for greater confusion that would likely be associated withmaking a wholesale conversion from effective radiated power (ERP)limitsto EIRPlimits,

    outweigh the potential benefits to those licensees whodonotpossess thescientificorengineeringexpertisetodistinguishbetweenthetwostandards.Additionally,theagencystates that theconversion fromERPtoEIRPisasimplecalculation.Such a change in the rules would require extensive modif ications, not only for theCommission(e.g.,reprogrammingtheULS,amendinginternationalagreementsnegotiatedin termsof ERP,etc.),butalso for licensees, frequency coordinators,manufacturers,and

    othersinthewirelessindustry.Moreover,becauseanEIRPlimitisalwaysalargernumberthantheequivalent ERP limit, theFCC believes that restating all ERPlimitsas EIRPlimitscouldlikelycausesomeentities(e.g.,licensees,frequency;coordinators,etc.)tomistakenlythinkthattheCommissionhasincreasedthepermittedpower