Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates ,...

21
Laplacian in Cylindrical and Spherical Coordinates By David Bosworth

Transcript of Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates ,...

Page 1: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

 

 

 

 

 

 

Laplacian in Cylindrical and Spherical Coordinates 

By 

David Bosworth 

 

 

 

 

 

 

 

 

 

Page 2: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

Cylindrical Geometry 

 

We have a tube of radius a, length L, and they are 

closed at the ends.  We have from the 

Homogeneous Dirichlet boundary conditions at the 

tube of the surface and separation of variables, so 

our eigenmodes have the following form: 

 

where the part in Z we have the constant  2k− , for θ  

we have the constant  2m− , and for the radial part r is 

Page 3: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

given by the substitution of the two separation in 

the equation:  

 

Now we have our partial differential eigenvalue 

problem into three ordinary differential eigenvalue 

with solutions: 

 

Page 4: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

Where the boundary condition is homogeneous, 

that is     and 

 

For the radial dependence part we make a change 

of variable: 

 

So we Bessel’s equation: 

 

and the solutions are the J and Y Bessel functions: 

Page 5: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

 

where we can get rid of the Y Bessel functions 

because they are singular at the origin.  Also, the 

boundary condition is homogeneous Dirichlet, so  

 

  where   is nth zero of  .  

Thus, we have   and finally the 

eigenfunctions of the Laplacian in the cylindrical 

coordinate are 

 

Page 6: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

and the eigenvalues are 

 

with 

 

Also, we know that these eigenmodes form a 

complete orthogonal set because they are 

eigenmodes of a Hermitian operator.  Notice that 

the inner product is the triple integral in the 

cylindrical coordinates,     

Page 7: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

Since the Bessel Functions, the complex 

exponentials and the sines are orthogonal 

functions, then 

 

as expected because the Laplacian is Hermitian for 

these eigenmodes with homogeneous boundary 

conditions.   

Example 

Let    be an inhomegeneous 

boundary conditions and consider the base of the 

cylinder only, where the rest of the cylinder is 

Page 8: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

grounded, we have 

 

Because of the inhomogeneous boundary 

conditions, first we need to have the Poisson’s 

equation in standard form by choosing a function u 

that will satisfy the inhomogeneous boundary 

conditions, for example: 

 

Then we can write: 

 

Page 9: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

so    where 

 

so the Poisson’s equation in standard form is: 

We can start computing: 

 

The Theta integral gives zero unless m = 0.  So we 

must take m = 0 for nontrivial solutions, meaning 

the potential, like its eigenmodes, will have 

cylindrical symmetry (no theta dependence).  This is 

Page 10: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

due to fact that the charge density we started from 

also had cylindrical symmetry.  Let’s solve the 

remaining double integral with Mathematica: 

 

Next, we compute the denominator,    We 

have seen that 

 

Page 11: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

Now, we can write the general solution in 

Mathematica: 

 

Next, we can plot the solution as a contour by 

choosing: 

 

Page 12: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

 

Spherical Symmetry 

Now we can consider the case of homogeneous 

boundary conditions on a spherical shell of radius a.  

Page 13: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

In spherical coordinates  , the eigenmodes 

satisfy:  .  For review the spherical 

coordinates   are defined by the following 

transformation from the Cartesian coordinates: 

 

Page 14: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

Thus, the Laplacian becomes: 

 

Again we separate the variables: 

 

Thus, the equation   becomes 

 

Page 15: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

And can be turned into three ODEs for 

 

 

 

We have already solved the first two equations: 

 

where 

 

Page 16: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

are the spherical harmonics, and   the associated 

Legendre Functions.   

The Spherical Bessel Functions 

The boundary conditions for the radial modes are 

 and   is finite.  With Mathematica 

we can find the solution and change the sign of   

 

 We have previously encountered the Bessel 

functions for cylindrical geometry.  However, those 

Bessel functions were of order   Integers.  Now 

Page 17: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

we have found Bessel functions of order   

and    Since we the boundary condition 

that R(0) is finite, and the function 

 is singular at the origin, we 

keep only the function   that 

is not singular at the origin, as we can see from the 

plot 

Page 18: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

 

and 

 

Page 19: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

So simply the radial mode is: 

 

But we also have another boundary condition: R(a) 

= 0, so  where   is the 

nth zero of   

As you can see from Mathematica: 

 

For fixed l these eigenmodes are orthogonal with 

respect to the radial inner product: 

Page 20: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

 

because 

 

Thus, the final solution is: 

 

where   (n gives the 

radial dependence of the modes –it “counts” the 

zeros of the spherical Bessel functions), 

Page 21: Laplacian in Cylindrical and Spherical Coordinatesaxmann/Math714/Misc/...In spherical coordinates , the eigenmodes satisfy: . For review the spherical coordinates are defined by the

 and runs from 0 to infinity (l gives the 

theta dependence of the mode), and   

(m gives the phi‐dependence).  

The Laplacian operator is Hermitian  so these 

eigenmodes are orthogonal with respect to the 

usual inner product, that is now given by the triple 

integral in spherical coordinates,