Laplace Transforms

172
Laplace Transforms Nirav B. Vyas Department of Mathematics Atmiya Institute of Technology and Science Yogidham, Kalavad road Rajkot - 360005 . Gujarat N. B. Vyas Laplace Transforms

description

 

Transcript of Laplace Transforms

Page 1: Laplace Transforms

Laplace Transforms

Nirav B. Vyas

Department of MathematicsAtmiya Institute of Technology and Science

Yogidham, Kalavad roadRajkot - 360005 . Gujarat

N. B. Vyas Laplace Transforms

Page 2: Laplace Transforms

Laplace Transforms

Definition:

Let f(t) be a function of t defined for all t ≥ 0 then Laplacetransform of f(t) is denoted by L{f(t)} or f(s) and isdefined as

L {f (t)} = f (s) =

∞∫0

e−stf (t) dt

provided the integral exists where s is a parameter ( real orcomplex).

N. B. Vyas Laplace Transforms

Page 3: Laplace Transforms

Laplace Transforms

NOTATIONS:

The original functions are denoted by lowercase letters suchas f(t), g(t), ...

Laplace transforms by the same letters with bars such asf(s)g(s), ...

N. B. Vyas Laplace Transforms

Page 4: Laplace Transforms

Linearity of the Laplace Transforms

Theorem 1:

If L {f (t)} = f (s) and L {g (t)} = g (s) then for any constants a and bL {af (t) + bg (t)} = aL {f (t)}+ bL {g (t)}

Corollary 1:

Putting a = 0 and b = 0, we get L[0] = 0

Corollary 2:

Putting b = 0, we get L[af(t)] = aL[f(t)]

Corollary 3:

L [a1f1 (t) + a2f2 (t) + ...+ anfn (t)]

= a1L [f1(t)] + a2L [f2(t)] + ...+ anL [fn(t)]

N. B. Vyas Laplace Transforms

Page 5: Laplace Transforms

Linearity of the Laplace Transforms

Theorem 1:

If L {f (t)} = f (s) and L {g (t)} = g (s) then for any constants a and bL {af (t) + bg (t)} = aL {f (t)}+ bL {g (t)}

Corollary 1:

Putting a = 0 and b = 0, we get L[0] = 0

Corollary 2:

Putting b = 0, we get L[af(t)] = aL[f(t)]

Corollary 3:

L [a1f1 (t) + a2f2 (t) + ...+ anfn (t)]

= a1L [f1(t)] + a2L [f2(t)] + ...+ anL [fn(t)]

N. B. Vyas Laplace Transforms

Page 6: Laplace Transforms

Linearity of the Laplace Transforms

Theorem 1:

If L {f (t)} = f (s) and L {g (t)} = g (s) then for any constants a and bL {af (t) + bg (t)} = aL {f (t)}+ bL {g (t)}

Corollary 1:

Putting a = 0 and b = 0, we get L[0] = 0

Corollary 2:

Putting b = 0, we get L[af(t)] = aL[f(t)]

Corollary 3:

L [a1f1 (t) + a2f2 (t) + ...+ anfn (t)]

= a1L [f1(t)] + a2L [f2(t)] + ...+ anL [fn(t)]

N. B. Vyas Laplace Transforms

Page 7: Laplace Transforms

Linearity of the Laplace Transforms

Theorem 1:

If L {f (t)} = f (s) and L {g (t)} = g (s) then for any constants a and bL {af (t) + bg (t)} = aL {f (t)}+ bL {g (t)}

Corollary 1:

Putting a = 0 and b = 0, we get L[0] = 0

Corollary 2:

Putting b = 0, we get L[af(t)] = aL[f(t)]

Corollary 3:

L [a1f1 (t) + a2f2 (t) + ...+ anfn (t)]

= a1L [f1(t)] + a2L [f2(t)] + ...+ anL [fn(t)]

N. B. Vyas Laplace Transforms

Page 8: Laplace Transforms

Laplace Transforms of some elementary functions

1 L(1) =1

s

2 L(eat) =1

s− a

cor.1 If a = 0⇒ L(1) =1

s

cor.2 L[e−at] =1

s+ aif s > −a

cor.3 L[cat] = L[eat log c] =1

s− a logcif s > a log c and c > 0

N. B. Vyas Laplace Transforms

Page 9: Laplace Transforms

Laplace Transforms of some elementary functions

1 L(1) =1

s

2 L(eat) =1

s− a

cor.1 If a = 0⇒ L(1) =1

s

cor.2 L[e−at] =1

s+ aif s > −a

cor.3 L[cat] = L[eat log c] =1

s− a logcif s > a log c and c > 0

N. B. Vyas Laplace Transforms

Page 10: Laplace Transforms

Laplace Transforms of some elementary functions

1 L(1) =1

s

2 L(eat) =1

s− a

cor.1 If a = 0⇒ L(1) =1

s

cor.2 L[e−at] =1

s+ aif s > −a

cor.3 L[cat] = L[eat log c] =1

s− a logcif s > a log c and c > 0

N. B. Vyas Laplace Transforms

Page 11: Laplace Transforms

Laplace Transforms of some elementary functions

1 L(1) =1

s

2 L(eat) =1

s− a

cor.1 If a = 0⇒ L(1) =1

s

cor.2 L[e−at] =1

s+ aif s > −a

cor.3 L[cat] = L[eat log c] =1

s− a logcif s > a log c and c > 0

N. B. Vyas Laplace Transforms

Page 12: Laplace Transforms

Laplace Transforms of some elementary functions

1 L(1) =1

s

2 L(eat) =1

s− a

cor.1 If a = 0⇒ L(1) =1

s

cor.2 L[e−at] =1

s+ aif s > −a

cor.3 L[cat] = L[eat log c] =1

s− a logcif s > a log c and c > 0

N. B. Vyas Laplace Transforms

Page 13: Laplace Transforms

Laplace Transforms of some elementary functions

3 L[sinh at] =a

s2 − a2

4 L[cosh at] =s

s2 − a2

5 L[sin at] =a

s2 + a2

6 L[cos at] =s

s2 + a2, s > 0

cor.1 L[sin t] =1

s2 + 1, s > 0

cor.2 L[cos t] =s

s2 + 1, s > 0

N. B. Vyas Laplace Transforms

Page 14: Laplace Transforms

Laplace Transforms of some elementary functions

3 L[sinh at] =a

s2 − a2

4 L[cosh at] =s

s2 − a2

5 L[sin at] =a

s2 + a2

6 L[cos at] =s

s2 + a2, s > 0

cor.1 L[sin t] =1

s2 + 1, s > 0

cor.2 L[cos t] =s

s2 + 1, s > 0

N. B. Vyas Laplace Transforms

Page 15: Laplace Transforms

Laplace Transforms of some elementary functions

3 L[sinh at] =a

s2 − a2

4 L[cosh at] =s

s2 − a2

5 L[sin at] =a

s2 + a2

6 L[cos at] =s

s2 + a2, s > 0

cor.1 L[sin t] =1

s2 + 1, s > 0

cor.2 L[cos t] =s

s2 + 1, s > 0

N. B. Vyas Laplace Transforms

Page 16: Laplace Transforms

Laplace Transforms of some elementary functions

3 L[sinh at] =a

s2 − a2

4 L[cosh at] =s

s2 − a2

5 L[sin at] =a

s2 + a2

6 L[cos at] =s

s2 + a2, s > 0

cor.1 L[sin t] =1

s2 + 1, s > 0

cor.2 L[cos t] =s

s2 + 1, s > 0

N. B. Vyas Laplace Transforms

Page 17: Laplace Transforms

Laplace Transforms of some elementary functions

3 L[sinh at] =a

s2 − a2

4 L[cosh at] =s

s2 − a2

5 L[sin at] =a

s2 + a2

6 L[cos at] =s

s2 + a2, s > 0

cor.1 L[sin t] =1

s2 + 1, s > 0

cor.2 L[cos t] =s

s2 + 1, s > 0

N. B. Vyas Laplace Transforms

Page 18: Laplace Transforms

Laplace Transforms of some elementary functions

3 L[sinh at] =a

s2 − a2

4 L[cosh at] =s

s2 − a2

5 L[sin at] =a

s2 + a2

6 L[cos at] =s

s2 + a2, s > 0

cor.1 L[sin t] =1

s2 + 1, s > 0

cor.2 L[cos t] =s

s2 + 1, s > 0

N. B. Vyas Laplace Transforms

Page 19: Laplace Transforms

Laplace Transforms of some elementary functions

7 L[tn] =Γ(n+ 1)

sn+1

=n!

sn+1, n = 0, 1, 2, ...

cor.1 If n = 0, L[1] =1

s

cor.2 If n = −1

2

L(t−

12

)=

Γ(12)

s12

=

√π

s

N. B. Vyas Laplace Transforms

Page 20: Laplace Transforms

Laplace Transforms of some elementary functions

7 L[tn] =Γ(n+ 1)

sn+1

=n!

sn+1, n = 0, 1, 2, ...

cor.1 If n = 0, L[1] =1

s

cor.2 If n = −1

2

L(t−

12

)=

Γ(12)

s12

=

√π

s

N. B. Vyas Laplace Transforms

Page 21: Laplace Transforms

Laplace Transforms of some elementary functions

7 L[tn] =Γ(n+ 1)

sn+1

=n!

sn+1, n = 0, 1, 2, ...

cor.1 If n = 0, L[1] =1

s

cor.2 If n = −1

2

L(t−

12

)=

Γ(12)

s12

=

√π

s

N. B. Vyas Laplace Transforms

Page 22: Laplace Transforms

Laplace Transforms of some elementary functions

7 L[tn] =Γ(n+ 1)

sn+1

=n!

sn+1, n = 0, 1, 2, ...

cor.1 If n = 0, L[1] =1

s

cor.2 If n = −1

2

L(t−

12

)=

Γ(12)

s12

=

√π

s

N. B. Vyas Laplace Transforms

Page 23: Laplace Transforms

Laplace Transforms of some elementary functions

7 L[tn] =Γ(n+ 1)

sn+1

=n!

sn+1, n = 0, 1, 2, ...

cor.1 If n = 0, L[1] =1

s

cor.2 If n = −1

2

L(t−

12

)=

Γ(12)

s12

=

√π

s

N. B. Vyas Laplace Transforms

Page 24: Laplace Transforms

Laplace Transforms of some elementary functions

7 L[tn] =Γ(n+ 1)

sn+1

=n!

sn+1, n = 0, 1, 2, ...

cor.1 If n = 0, L[1] =1

s

cor.2 If n = −1

2

L(t−

12

)=

Γ(12)

s12

=

√π

s

N. B. Vyas Laplace Transforms

Page 25: Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}

2 L

{A+B t

12 + C t−

12

}3 L

{eat − 1

a

}4 L {sin(at+ b)}5 L {sin 2t cos 3t}6 L

{cos24t

}7 L

{cos32t

}

N. B. Vyas Laplace Transforms

Page 26: Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}2 L

{A+B t

12 + C t−

12

}

3 L

{eat − 1

a

}4 L {sin(at+ b)}5 L {sin 2t cos 3t}6 L

{cos24t

}7 L

{cos32t

}

N. B. Vyas Laplace Transforms

Page 27: Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}2 L

{A+B t

12 + C t−

12

}3 L

{eat − 1

a

}

4 L {sin(at+ b)}5 L {sin 2t cos 3t}6 L

{cos24t

}7 L

{cos32t

}

N. B. Vyas Laplace Transforms

Page 28: Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}2 L

{A+B t

12 + C t−

12

}3 L

{eat − 1

a

}4 L {sin(at+ b)}

5 L {sin 2t cos 3t}6 L

{cos24t

}7 L

{cos32t

}

N. B. Vyas Laplace Transforms

Page 29: Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}2 L

{A+B t

12 + C t−

12

}3 L

{eat − 1

a

}4 L {sin(at+ b)}5 L {sin 2t cos 3t}

6 L{

cos24t}

7 L{

cos32t}

N. B. Vyas Laplace Transforms

Page 30: Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}2 L

{A+B t

12 + C t−

12

}3 L

{eat − 1

a

}4 L {sin(at+ b)}5 L {sin 2t cos 3t}6 L

{cos24t

}

7 L{

cos32t}

N. B. Vyas Laplace Transforms

Page 31: Laplace Transforms

Examples of Laplace Transform

1 L

{2t3 + e−2t + t

43

}2 L

{A+B t

12 + C t−

12

}3 L

{eat − 1

a

}4 L {sin(at+ b)}5 L {sin 2t cos 3t}6 L

{cos24t

}7 L

{cos32t

}

N. B. Vyas Laplace Transforms

Page 32: Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

Page 33: Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

Page 34: Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

Page 35: Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

Page 36: Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

Page 37: Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

Page 38: Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

Page 39: Laplace Transforms

First Shifting Theorem

If L {f (t)} = f (s) then L{eatf (t)

}= f (s− a)

Proof: By the def. of Laplace

L{eatf (t)

}=∞∫0

e−steatf (t) dt

=∞∫0

e−(s−a)tf (t) dt

=∞∫0

e−rtf (t) dt

= f(r)

= f(s− a)

Thus if we know the transformation f(s) of f(t) then we canwrite the transformation of eatf(t) simply replacing s by s− a toget F (s− a)

N. B. Vyas Laplace Transforms

Page 40: Laplace Transforms

First Shifting Theorem

Note:

1 L(eat) =1

s− a

2 L[eattn] =Γ(n+ 1)

(s− a)n+1

3 L[eatsinh bt] =b

(s− a)2 − b2

4 L[eatcosh bt] =s

(s− a)2 − b2

5 L[eatsin bt] =b

(s− a)2 + b2

6 L[eatcos bt] =s− a

(s− a)2 + b2, s > 0

N. B. Vyas Laplace Transforms

Page 41: Laplace Transforms

First Shifting Theorem

Note:

1 L(eat) =1

s− a

2 L[eattn] =Γ(n+ 1)

(s− a)n+1

3 L[eatsinh bt] =b

(s− a)2 − b2

4 L[eatcosh bt] =s

(s− a)2 − b2

5 L[eatsin bt] =b

(s− a)2 + b2

6 L[eatcos bt] =s− a

(s− a)2 + b2, s > 0

N. B. Vyas Laplace Transforms

Page 42: Laplace Transforms

First Shifting Theorem

Note:

1 L(eat) =1

s− a

2 L[eattn] =Γ(n+ 1)

(s− a)n+1

3 L[eatsinh bt] =b

(s− a)2 − b2

4 L[eatcosh bt] =s

(s− a)2 − b2

5 L[eatsin bt] =b

(s− a)2 + b2

6 L[eatcos bt] =s− a

(s− a)2 + b2, s > 0

N. B. Vyas Laplace Transforms

Page 43: Laplace Transforms

First Shifting Theorem

Note:

1 L(eat) =1

s− a

2 L[eattn] =Γ(n+ 1)

(s− a)n+1

3 L[eatsinh bt] =b

(s− a)2 − b2

4 L[eatcosh bt] =s

(s− a)2 − b2

5 L[eatsin bt] =b

(s− a)2 + b2

6 L[eatcos bt] =s− a

(s− a)2 + b2, s > 0

N. B. Vyas Laplace Transforms

Page 44: Laplace Transforms

First Shifting Theorem

Note:

1 L(eat) =1

s− a

2 L[eattn] =Γ(n+ 1)

(s− a)n+1

3 L[eatsinh bt] =b

(s− a)2 − b2

4 L[eatcosh bt] =s

(s− a)2 − b2

5 L[eatsin bt] =b

(s− a)2 + b2

6 L[eatcos bt] =s− a

(s− a)2 + b2, s > 0

N. B. Vyas Laplace Transforms

Page 45: Laplace Transforms

First Shifting Theorem

Note:

1 L(eat) =1

s− a

2 L[eattn] =Γ(n+ 1)

(s− a)n+1

3 L[eatsinh bt] =b

(s− a)2 − b2

4 L[eatcosh bt] =s

(s− a)2 − b2

5 L[eatsin bt] =b

(s− a)2 + b2

6 L[eatcos bt] =s− a

(s− a)2 + b2, s > 0

N. B. Vyas Laplace Transforms

Page 46: Laplace Transforms

Examples

1 Find out the Laplace transform of e−3t (2 cos 5t− 3 sin 5t)

2 L[e−atsinhbt]

3 L[t3e−3t]

4 L[(t+ 2)2et]

5 L[e−tsin2t]

6 L[cosh at sin at]

N. B. Vyas Laplace Transforms

Page 47: Laplace Transforms

Examples

1 Find out the Laplace transform of e−3t (2 cos 5t− 3 sin 5t)

2 L[e−atsinhbt]

3 L[t3e−3t]

4 L[(t+ 2)2et]

5 L[e−tsin2t]

6 L[cosh at sin at]

N. B. Vyas Laplace Transforms

Page 48: Laplace Transforms

Examples

1 Find out the Laplace transform of e−3t (2 cos 5t− 3 sin 5t)

2 L[e−atsinhbt]

3 L[t3e−3t]

4 L[(t+ 2)2et]

5 L[e−tsin2t]

6 L[cosh at sin at]

N. B. Vyas Laplace Transforms

Page 49: Laplace Transforms

Examples

1 Find out the Laplace transform of e−3t (2 cos 5t− 3 sin 5t)

2 L[e−atsinhbt]

3 L[t3e−3t]

4 L[(t+ 2)2et]

5 L[e−tsin2t]

6 L[cosh at sin at]

N. B. Vyas Laplace Transforms

Page 50: Laplace Transforms

Examples

1 Find out the Laplace transform of e−3t (2 cos 5t− 3 sin 5t)

2 L[e−atsinhbt]

3 L[t3e−3t]

4 L[(t+ 2)2et]

5 L[e−tsin2t]

6 L[cosh at sin at]

N. B. Vyas Laplace Transforms

Page 51: Laplace Transforms

Examples

1 Find out the Laplace transform of e−3t (2 cos 5t− 3 sin 5t)

2 L[e−atsinhbt]

3 L[t3e−3t]

4 L[(t+ 2)2et]

5 L[e−tsin2t]

6 L[cosh at sin at]

N. B. Vyas Laplace Transforms

Page 52: Laplace Transforms

Examples

Ex. Find the Laplace transform of the function which is defined as

f(t) =

{t/T 0 < t < T1 when t > T

N. B. Vyas Laplace Transforms

Page 53: Laplace Transforms

Examples

Ex. Find Laplace transform of f(t) =

{sin t 0 < t < π

0 when t > π

N. B. Vyas Laplace Transforms

Page 54: Laplace Transforms

Examples

Ex. Find Laplace transform of f(t) where f(t) =

{t 0 < t < 45 when t > 4

N. B. Vyas Laplace Transforms

Page 55: Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Page 56: Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Page 57: Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Page 58: Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Page 59: Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Page 60: Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Page 61: Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Page 62: Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b

=1

bf

(s− ab

)

N. B. Vyas Laplace Transforms

Page 63: Laplace Transforms

Change of Scale property

If L {f (t)} = f (s) then L{eatf (bt)

}=

1

bf

(s− ab

), b > 0

Proof: By the def. of Laplace

L {f (t)} =

∞∫0

e−stf (t) dt

L{eatf (bt)

}=

∞∫0

e−steatf (bt) dt

=∞∫0

e−(s−a)tf (bt) dt

=∞∫0

e−( s−ab )btf (bt) dt

Let bt = u⇒ b dt = du

L{eatf (bt)

}=∞∫0

e−( s−ab )uf (u)

du

b=

1

bf

(s− ab

)N. B. Vyas Laplace Transforms

Page 64: Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Page 65: Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Page 66: Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Page 67: Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Page 68: Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Page 69: Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Page 70: Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Page 71: Laplace Transforms

Inverse Laplace Transform

If L {f (t)} = f (s) then f(t) is called the inverse Laplacetransform of f(s) and it is denoted by L−1

{f(s)

}= f (t)

1 L−1(

1

s

)= 1

2 L−1(

1

s− a

)= eat

3 L−1(

1

s2 + a2

)=

1

asin at

4 L−1(

s

s2 + a2

)= cos at

5 L−1(

1

s2 − a2

)=

1

asinh at

6 L−1(

s

s2 − a2

)= cosh at

7 L−1(

1

sn

)=

tn−1

(n− 1)!

N. B. Vyas Laplace Transforms

Page 72: Laplace Transforms

Partial Fractions

N. B. Vyas Laplace Transforms

Page 73: Laplace Transforms

Partial Fractions

N. B. Vyas Laplace Transforms

Page 74: Laplace Transforms

Partial Fractions

N. B. Vyas Laplace Transforms

Page 75: Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)

2 L−1[

3

2

(s4 − 2s2 + 1

s5

)]3 L−1

(s+ 7

(s+ 1)2 + 1

)4 L−1

(3s+ 5

(s+ 1)4

)5 L−1

(3s

s2 + 2s− 8

)6 L−1

(3s+ 7

s2 − 2s− 3

)7 L−1

(2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)

N. B. Vyas Laplace Transforms

Page 76: Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)2 L−1

[3

2

(s4 − 2s2 + 1

s5

)]

3 L−1(

s+ 7

(s+ 1)2 + 1

)4 L−1

(3s+ 5

(s+ 1)4

)5 L−1

(3s

s2 + 2s− 8

)6 L−1

(3s+ 7

s2 − 2s− 3

)7 L−1

(2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)

N. B. Vyas Laplace Transforms

Page 77: Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)2 L−1

[3

2

(s4 − 2s2 + 1

s5

)]3 L−1

(s+ 7

(s+ 1)2 + 1

)

4 L−1(

3s+ 5

(s+ 1)4

)5 L−1

(3s

s2 + 2s− 8

)6 L−1

(3s+ 7

s2 − 2s− 3

)7 L−1

(2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)

N. B. Vyas Laplace Transforms

Page 78: Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)2 L−1

[3

2

(s4 − 2s2 + 1

s5

)]3 L−1

(s+ 7

(s+ 1)2 + 1

)4 L−1

(3s+ 5

(s+ 1)4

)

5 L−1(

3s

s2 + 2s− 8

)6 L−1

(3s+ 7

s2 − 2s− 3

)7 L−1

(2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)

N. B. Vyas Laplace Transforms

Page 79: Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)2 L−1

[3

2

(s4 − 2s2 + 1

s5

)]3 L−1

(s+ 7

(s+ 1)2 + 1

)4 L−1

(3s+ 5

(s+ 1)4

)5 L−1

(3s

s2 + 2s− 8

)

6 L−1(

3s+ 7

s2 − 2s− 3

)7 L−1

(2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)

N. B. Vyas Laplace Transforms

Page 80: Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)2 L−1

[3

2

(s4 − 2s2 + 1

s5

)]3 L−1

(s+ 7

(s+ 1)2 + 1

)4 L−1

(3s+ 5

(s+ 1)4

)5 L−1

(3s

s2 + 2s− 8

)6 L−1

(3s+ 7

s2 − 2s− 3

)

7 L−1(

2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)

N. B. Vyas Laplace Transforms

Page 81: Laplace Transforms

Examples of Inverse Laplace Transform - I

1 L−1(s2 − 3s+ 4

s3

)2 L−1

[3

2

(s4 − 2s2 + 1

s5

)]3 L−1

(s+ 7

(s+ 1)2 + 1

)4 L−1

(3s+ 5

(s+ 1)4

)5 L−1

(3s

s2 + 2s− 8

)6 L−1

(3s+ 7

s2 − 2s− 3

)7 L−1

(2s2 − 6s+ 5

s3 − 6s2 + 11s− 6

)N. B. Vyas Laplace Transforms

Page 82: Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)

2 L−1(

s

(s2 − 1)

)3 L−1

(4s+ 5

(s− 1)2(s+ 2)

)4 L−1

(2s2 − 1

(s2 + 1)(s2 + 4)

)5 L−1

(s

s4 + s2 + 1

)6 L−1

(s

s4 + 4a4

)7 L−1

(s+ 3

s2 + 6s+ 13

)

N. B. Vyas Laplace Transforms

Page 83: Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)2 L−1

(s

(s2 − 1)

)

3 L−1(

4s+ 5

(s− 1)2(s+ 2)

)4 L−1

(2s2 − 1

(s2 + 1)(s2 + 4)

)5 L−1

(s

s4 + s2 + 1

)6 L−1

(s

s4 + 4a4

)7 L−1

(s+ 3

s2 + 6s+ 13

)

N. B. Vyas Laplace Transforms

Page 84: Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)2 L−1

(s

(s2 − 1)

)3 L−1

(4s+ 5

(s− 1)2(s+ 2)

)

4 L−1(

2s2 − 1

(s2 + 1)(s2 + 4)

)5 L−1

(s

s4 + s2 + 1

)6 L−1

(s

s4 + 4a4

)7 L−1

(s+ 3

s2 + 6s+ 13

)

N. B. Vyas Laplace Transforms

Page 85: Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)2 L−1

(s

(s2 − 1)

)3 L−1

(4s+ 5

(s− 1)2(s+ 2)

)4 L−1

(2s2 − 1

(s2 + 1)(s2 + 4)

)

5 L−1(

s

s4 + s2 + 1

)6 L−1

(s

s4 + 4a4

)7 L−1

(s+ 3

s2 + 6s+ 13

)

N. B. Vyas Laplace Transforms

Page 86: Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)2 L−1

(s

(s2 − 1)

)3 L−1

(4s+ 5

(s− 1)2(s+ 2)

)4 L−1

(2s2 − 1

(s2 + 1)(s2 + 4)

)5 L−1

(s

s4 + s2 + 1

)

6 L−1(

s

s4 + 4a4

)7 L−1

(s+ 3

s2 + 6s+ 13

)

N. B. Vyas Laplace Transforms

Page 87: Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)2 L−1

(s

(s2 − 1)

)3 L−1

(4s+ 5

(s− 1)2(s+ 2)

)4 L−1

(2s2 − 1

(s2 + 1)(s2 + 4)

)5 L−1

(s

s4 + s2 + 1

)6 L−1

(s

s4 + 4a4

)

7 L−1(

s+ 3

s2 + 6s+ 13

)

N. B. Vyas Laplace Transforms

Page 88: Laplace Transforms

Examples of Inverse Laplace Transform - II

1 L−1(

s+ 29

(s+ 4)(s2 + 9)

)2 L−1

(s

(s2 − 1)

)3 L−1

(4s+ 5

(s− 1)2(s+ 2)

)4 L−1

(2s2 − 1

(s2 + 1)(s2 + 4)

)5 L−1

(s

s4 + s2 + 1

)6 L−1

(s

s4 + 4a4

)7 L−1

(s+ 3

s2 + 6s+ 13

)N. B. Vyas Laplace Transforms

Page 89: Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Page 90: Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Page 91: Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Page 92: Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Page 93: Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Page 94: Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Page 95: Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Page 96: Laplace Transforms

Transformation of Derivatives

Thm: If f ′(t) be continuous and L [f(t)] = f(s) thenL {f ′(t)} = sf(s)− f(0) provided lim

t→∞e−stf(t) = 0

i.e. L {f ′(t)} = sL {f(t)} − f(0)

Simillarly L {f ′′(t)} = sL {f ′(t)} − f ′(0)

= s [sL {f(t)} − f(0)]− f ′(0)

= s2L {f(t)} − sf(0)− f ′(0)

= s2f(s)− sf(0)− f ′(0)

In generalL {fn(t)} = snf(s)− sn−1f(0)− sn−2f ′(0)− . . .− fn−1(0)

N. B. Vyas Laplace Transforms

Page 97: Laplace Transforms

Examples of Transformation of Derivatives

Ex. Derive the Laplace transform of sin at and cos at

Ex. Obtain L {tn} from L(1) =1

sEx. Find L(t sin at)

Ex. Find L(t cos at)

N. B. Vyas Laplace Transforms

Page 98: Laplace Transforms

Examples of Transformation of Derivatives

Ex. Derive the Laplace transform of sin at and cos at

Ex. Obtain L {tn} from L(1) =1

s

Ex. Find L(t sin at)

Ex. Find L(t cos at)

N. B. Vyas Laplace Transforms

Page 99: Laplace Transforms

Examples of Transformation of Derivatives

Ex. Derive the Laplace transform of sin at and cos at

Ex. Obtain L {tn} from L(1) =1

sEx. Find L(t sin at)

Ex. Find L(t cos at)

N. B. Vyas Laplace Transforms

Page 100: Laplace Transforms

Examples of Transformation of Derivatives

Ex. Derive the Laplace transform of sin at and cos at

Ex. Obtain L {tn} from L(1) =1

sEx. Find L(t sin at)

Ex. Find L(t cos at)

N. B. Vyas Laplace Transforms

Page 101: Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Page 102: Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Page 103: Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t)

and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Page 104: Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Page 105: Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Page 106: Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Page 107: Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Page 108: Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}

∴1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Page 109: Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}

∴ L−1{

1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Page 110: Laplace Transforms

Transformation of Integrals

Thm: If L [f(t)] = f(s) then L

{∫ t

0f(u)du

}=

1

sf(s)

Proof: Let I(t) =

∫ t

0f(u)du

∴ I ′(t) =d

dt

[∫ t

0f(u)du

]= f(t) and I(0) = 0

∴ L {f(t)} = L {I ′(t)} = sI(s)− I(0) = sI(s)

∴ L {f(t)} = sI(s)

∴ L {f(t)} = sL {I(t)}

∴ f(s) = sL

{∫ t

0f(u)du

}∴

1

sf(s) = L

{∫ t

0f(u)du

}∴ L−1

{1

sf(s)

}=

∫ t

0f(u)du

N. B. Vyas Laplace Transforms

Page 111: Laplace Transforms

Examples of Transformation of Integrals

Ex. Prove that: L−1(

1

s2 + 1

)= sin t

Ex. Prove that: L−1(

1

s(s2 + 1)

)= 1− cos t

Ex. Find inverse Laplace transform of1

s3(s2 + a2)

N. B. Vyas Laplace Transforms

Page 112: Laplace Transforms

Multiplication by tn

Thm: If L [f(t)] = f(s) then L {tnf(t)} = (−1)ndn

dsn[f(s)

]

if L {tf(t)} = (−1)1d

ds

(f(s)

)then L−1

{f ′(s)

}= −tf(t)

N. B. Vyas Laplace Transforms

Page 113: Laplace Transforms

Multiplication by tn

Thm: If L [f(t)] = f(s) then L {tnf(t)} = (−1)ndn

dsn[f(s)

]if L {tf(t)} = (−1)1

d

ds

(f(s)

)then L−1

{f ′(s)

}= −tf(t)

N. B. Vyas Laplace Transforms

Page 114: Laplace Transforms

Examples of Laplace transform when tn is inmultiplication

1 L{t2eat

}

2 L{t3e−3t

}3 L {tcos at}4 L

{tsin2t

}5 L

{te2tcos 3t

}6 L {tcos(4t+ 3)}

N. B. Vyas Laplace Transforms

Page 115: Laplace Transforms

Examples of Laplace transform when tn is inmultiplication

1 L{t2eat

}2 L

{t3e−3t

}

3 L {tcos at}4 L

{tsin2t

}5 L

{te2tcos 3t

}6 L {tcos(4t+ 3)}

N. B. Vyas Laplace Transforms

Page 116: Laplace Transforms

Examples of Laplace transform when tn is inmultiplication

1 L{t2eat

}2 L

{t3e−3t

}3 L {tcos at}

4 L{tsin2t

}5 L

{te2tcos 3t

}6 L {tcos(4t+ 3)}

N. B. Vyas Laplace Transforms

Page 117: Laplace Transforms

Examples of Laplace transform when tn is inmultiplication

1 L{t2eat

}2 L

{t3e−3t

}3 L {tcos at}4 L

{tsin2t

}

5 L{te2tcos 3t

}6 L {tcos(4t+ 3)}

N. B. Vyas Laplace Transforms

Page 118: Laplace Transforms

Examples of Laplace transform when tn is inmultiplication

1 L{t2eat

}2 L

{t3e−3t

}3 L {tcos at}4 L

{tsin2t

}5 L

{te2tcos 3t

}

6 L {tcos(4t+ 3)}

N. B. Vyas Laplace Transforms

Page 119: Laplace Transforms

Examples of Laplace transform when tn is inmultiplication

1 L{t2eat

}2 L

{t3e−3t

}3 L {tcos at}4 L

{tsin2t

}5 L

{te2tcos 3t

}6 L {tcos(4t+ 3)}

N. B. Vyas Laplace Transforms

Page 120: Laplace Transforms

Division by t

Thm: If L [f(t)] = f(s) then L

{1

tf(t)

}=

∫ ∞s

f(s) provided the

integral exists.

N. B. Vyas Laplace Transforms

Page 121: Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}

2 L

{1− cos 2t

t

}3 L

{e−at − e−bt

t

}4 L

{cos 2t− cos 3t

t

}5 L

{1− et

t

}6 L

{cos at− cos bt

t

}7 L

{e−tsin t

t

}

N. B. Vyas Laplace Transforms

Page 122: Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}2 L

{1− cos 2t

t

}

3 L

{e−at − e−bt

t

}4 L

{cos 2t− cos 3t

t

}5 L

{1− et

t

}6 L

{cos at− cos bt

t

}7 L

{e−tsin t

t

}

N. B. Vyas Laplace Transforms

Page 123: Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}2 L

{1− cos 2t

t

}3 L

{e−at − e−bt

t

}

4 L

{cos 2t− cos 3t

t

}5 L

{1− et

t

}6 L

{cos at− cos bt

t

}7 L

{e−tsin t

t

}

N. B. Vyas Laplace Transforms

Page 124: Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}2 L

{1− cos 2t

t

}3 L

{e−at − e−bt

t

}4 L

{cos 2t− cos 3t

t

}

5 L

{1− et

t

}6 L

{cos at− cos bt

t

}7 L

{e−tsin t

t

}

N. B. Vyas Laplace Transforms

Page 125: Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}2 L

{1− cos 2t

t

}3 L

{e−at − e−bt

t

}4 L

{cos 2t− cos 3t

t

}5 L

{1− et

t

}

6 L

{cos at− cos bt

t

}7 L

{e−tsin t

t

}

N. B. Vyas Laplace Transforms

Page 126: Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}2 L

{1− cos 2t

t

}3 L

{e−at − e−bt

t

}4 L

{cos 2t− cos 3t

t

}5 L

{1− et

t

}6 L

{cos at− cos bt

t

}

7 L

{e−tsin t

t

}

N. B. Vyas Laplace Transforms

Page 127: Laplace Transforms

Examples of Laplace Transform when t is in division

1 L

{sin t

t

}2 L

{1− cos 2t

t

}3 L

{e−at − e−bt

t

}4 L

{cos 2t− cos 3t

t

}5 L

{1− et

t

}6 L

{cos at− cos bt

t

}7 L

{e−tsin t

t

}N. B. Vyas Laplace Transforms

Page 128: Laplace Transforms

Examples of infinite integral using Laplace Transform

1 Find

∫ ∞0

te−2tsin t dt

2 Find

∫ ∞0

sinmt

tdt

3 Find

∫ ∞0

e−t − e−3t

tdt

4 Find

∫ ∞0

e−tsin2 t

tdt

N. B. Vyas Laplace Transforms

Page 129: Laplace Transforms

Examples of infinite integral using Laplace Transform

1 Find

∫ ∞0

te−2tsin t dt

2 Find

∫ ∞0

sinmt

tdt

3 Find

∫ ∞0

e−t − e−3t

tdt

4 Find

∫ ∞0

e−tsin2 t

tdt

N. B. Vyas Laplace Transforms

Page 130: Laplace Transforms

Examples of infinite integral using Laplace Transform

1 Find

∫ ∞0

te−2tsin t dt

2 Find

∫ ∞0

sinmt

tdt

3 Find

∫ ∞0

e−t − e−3t

tdt

4 Find

∫ ∞0

e−tsin2 t

tdt

N. B. Vyas Laplace Transforms

Page 131: Laplace Transforms

Examples of infinite integral using Laplace Transform

1 Find

∫ ∞0

te−2tsin t dt

2 Find

∫ ∞0

sinmt

tdt

3 Find

∫ ∞0

e−t − e−3t

tdt

4 Find

∫ ∞0

e−tsin2 t

tdt

N. B. Vyas Laplace Transforms

Page 132: Laplace Transforms

Examples of Inverse Laplace Transform

1 L−1(

s

(s2 + a2)2

)

2 L−1(cot−1

s

a

)3 L−1

(log

(s+ 1

s− 1

))

N. B. Vyas Laplace Transforms

Page 133: Laplace Transforms

Examples of Inverse Laplace Transform

1 L−1(

s

(s2 + a2)2

)2 L−1

(cot−1

s

a

)

3 L−1(log

(s+ 1

s− 1

))

N. B. Vyas Laplace Transforms

Page 134: Laplace Transforms

Examples of Inverse Laplace Transform

1 L−1(

s

(s2 + a2)2

)2 L−1

(cot−1

s

a

)3 L−1

(log

(s+ 1

s− 1

))

N. B. Vyas Laplace Transforms

Page 135: Laplace Transforms

Convolution

Defn:Convolution of function f(t) and g(t) is denoted f(t) ∗ g(t) and

defined as f(t) ∗ g(t) =

∫ t

0f(u)g(t− u) du

Theorem: Convolution theorem

If L−1{f(s)

}= f(t) and L−1 {g(s)} = g(t) then

L−1(f(s)g(s)

)=

∫ t

0f(u)g(t− u) du

N. B. Vyas Laplace Transforms

Page 136: Laplace Transforms

Convolution

Defn:Convolution of function f(t) and g(t) is denoted f(t) ∗ g(t) and

defined as f(t) ∗ g(t) =

∫ t

0f(u)g(t− u) du

Theorem: Convolution theorem

If L−1{f(s)

}= f(t) and L−1 {g(s)} = g(t) then

L−1(f(s)g(s)

)=

∫ t

0f(u)g(t− u) du

N. B. Vyas Laplace Transforms

Page 137: Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Page 138: Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Page 139: Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Page 140: Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Page 141: Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Page 142: Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Page 143: Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Page 144: Laplace Transforms

Convolution

Proof: Let φ(t) =

∫ t

0f(u)g(t− u) du

then L(φ(t)) =

∫ ∞0

e−st{∫ t

0f(u)g(t− u) du

}dt

=

∫ ∞0

∫ t

0e−stf(u)g(t− u) du dt

The region integration for this double integration is entire arealying between the lines u = 0 and u = t. On changing the orderof integration, we get

L(φ(t)) =

∫ ∞0

∫ ∞u

e−stf(u)g(t− u) dt du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−st+sug(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−s(t−u)g(t− u) dt

}du

=

∫ ∞0

e−suf(u)

{∫ ∞u

e−svg(v) dv

}du, Putting t− u = v

N. B. Vyas Laplace Transforms

Page 145: Laplace Transforms

Convolution

=

∫ ∞0

e−suf(u)g(s)du

= g(s)

∫ ∞0

e−suf(u)du

∴ L(φ(t)) = g(s)f(s)

L−1{g(s)f(s)

}= φ(t) =

∫ t

0f(u)g(t− u) du

N. B. Vyas Laplace Transforms

Page 146: Laplace Transforms

Convolution

=

∫ ∞0

e−suf(u)g(s)du

= g(s)

∫ ∞0

e−suf(u)du

∴ L(φ(t)) = g(s)f(s)

L−1{g(s)f(s)

}= φ(t) =

∫ t

0f(u)g(t− u) du

N. B. Vyas Laplace Transforms

Page 147: Laplace Transforms

Convolution

=

∫ ∞0

e−suf(u)g(s)du

= g(s)

∫ ∞0

e−suf(u)du

∴ L(φ(t)) = g(s)f(s)

L−1{g(s)f(s)

}= φ(t) =

∫ t

0f(u)g(t− u) du

N. B. Vyas Laplace Transforms

Page 148: Laplace Transforms

Convolution

=

∫ ∞0

e−suf(u)g(s)du

= g(s)

∫ ∞0

e−suf(u)du

∴ L(φ(t)) = g(s)f(s)

L−1{g(s)f(s)

}= φ(t) =

∫ t

0f(u)g(t− u) du

N. B. Vyas Laplace Transforms

Page 149: Laplace Transforms

Examples of Convolution theorem

Apply convolution theorem to evaluate:

Ex. L−1{

1

s2(s− 1)

}

Ex. L−1{

s

(s2 + 4)2

}Ex. L−1

{1

(s+ a)(s+ b)

}Ex. L−1

{1

s(s2 + 4)

}

N. B. Vyas Laplace Transforms

Page 150: Laplace Transforms

Examples of Convolution theorem

Apply convolution theorem to evaluate:

Ex. L−1{

1

s2(s− 1)

}Ex. L−1

{s

(s2 + 4)2

}

Ex. L−1{

1

(s+ a)(s+ b)

}Ex. L−1

{1

s(s2 + 4)

}

N. B. Vyas Laplace Transforms

Page 151: Laplace Transforms

Examples of Convolution theorem

Apply convolution theorem to evaluate:

Ex. L−1{

1

s2(s− 1)

}Ex. L−1

{s

(s2 + 4)2

}Ex. L−1

{1

(s+ a)(s+ b)

}

Ex. L−1{

1

s(s2 + 4)

}

N. B. Vyas Laplace Transforms

Page 152: Laplace Transforms

Examples of Convolution theorem

Apply convolution theorem to evaluate:

Ex. L−1{

1

s2(s− 1)

}Ex. L−1

{s

(s2 + 4)2

}Ex. L−1

{1

(s+ a)(s+ b)

}Ex. L−1

{1

s(s2 + 4)

}

N. B. Vyas Laplace Transforms

Page 153: Laplace Transforms

Application to Differential Equations

Ex. Use transform method to solve y′′ + 3y′ + 2y = et, y(0) = 1 ,y′(0) = 0

Ex. Solve the equation x′′ + 2x′ + 5x = e−t sin t, x(0) = 0 , x′(0) = 1

N. B. Vyas Laplace Transforms

Page 154: Laplace Transforms

Application to Differential Equations

Ex. Use transform method to solve y′′ + 3y′ + 2y = et, y(0) = 1 ,y′(0) = 0

Ex. Solve the equation x′′ + 2x′ + 5x = e−t sin t, x(0) = 0 , x′(0) = 1

N. B. Vyas Laplace Transforms

Page 155: Laplace Transforms

Laplace transform of Periodic function

If f(t) is sectionally continuous function over aninterval of length p (0 ≤ t ≤ p) and f(t) is aperiodic function with period p (p > 0), that isf(t+ p) = f(t), then its Laplace transform existsand

L{f(t)} =1

1− e−ps

∫ p

0

e−stf(t)dt, (s > 0)

N. B. Vyas Laplace Transforms

Page 156: Laplace Transforms

Laplace transform of Periodic function

Periodic Square Wave

Ex. Find the Laplace transform of the square wavefunction of period 2a defined as

f(t) =

{k if 0 ≤ t < a−k if a < t ≤ 2a

N. B. Vyas Laplace Transforms

Page 157: Laplace Transforms

Laplace transform of Periodic function

Periodic Triangular Wave

Ex. Find the Laplace transform of periodic function

f(t) =

{t if 0 < t < a2a− t if a < t < 2a

with period 2a

N. B. Vyas Laplace Transforms

Page 158: Laplace Transforms

Unit Step function or Heaviside’s unit function

The Heaviside step function, or the unit stepfunction, usually denoted by H (but sometimes uor θ), is a discontinuous function whose value iszero for negative argument and one for positiveargument.

The function is used in the mathematics of controltheory, signal processing, structural mechanics,etc..

N. B. Vyas Laplace Transforms

Page 159: Laplace Transforms

Unit Step function or Heaviside’s unit function

The Heaviside step function, or the unit stepfunction, usually denoted by H (but sometimes uor θ), is a discontinuous function whose value iszero for negative argument and one for positiveargument.

The function is used in the mathematics of controltheory, signal processing, structural mechanics,etc..

N. B. Vyas Laplace Transforms

Page 160: Laplace Transforms

Unit Step function or Heaviside’s unit function

It is denoted by ua(t) or u(t− a) or H(t− a) and

is defined as H(t− a) =

{0 t < a1 t ≥ a

In particular, when a = 0

H(t) =

{0 t < 01 t ≥ 0

N. B. Vyas Laplace Transforms

Page 161: Laplace Transforms

Unit Step function or Heaviside’s unit function

It is denoted by ua(t) or u(t− a) or H(t− a) and

is defined as H(t− a) =

{0 t < a1 t ≥ a

In particular, when a = 0

H(t) =

{0 t < 01 t ≥ 0

N. B. Vyas Laplace Transforms

Page 162: Laplace Transforms

Unit Step function or Heaviside’s unit function

N. B. Vyas Laplace Transforms

Page 163: Laplace Transforms

Unit Step function or Heaviside’s unit function

Laplace Transform of Unit Step Function:

By definition of Laplace transform

L{u(t− a)} =

∫ ∞0

e−stu(t− a)dt

=

∫ a

0

e−st(0)dt+

∫ ∞a

e−st(1)dt

=

∫ ∞a

e−stdt =

[e−st

−s

]∞a

=1

se−as

∴ L−1

[1

se−as

]= u(t− a)

In particular, if a = 0

L(u(t)) =1

s⇒ L−1

(1

s

)= u(t)

N. B. Vyas Laplace Transforms

Page 164: Laplace Transforms

Unit Step function or Heaviside’s unit function

Laplace Transform of Unit Step Function:

By definition of Laplace transform

L{u(t− a)} =

∫ ∞0

e−stu(t− a)dt

=

∫ a

0

e−st(0)dt+

∫ ∞a

e−st(1)dt

=

∫ ∞a

e−stdt =

[e−st

−s

]∞a

=1

se−as

∴ L−1

[1

se−as

]= u(t− a)

In particular, if a = 0

L(u(t)) =1

s⇒ L−1

(1

s

)= u(t)

N. B. Vyas Laplace Transforms

Page 165: Laplace Transforms

Unit Step function or Heaviside’s unit function

Laplace Transform of Unit Step Function:

By definition of Laplace transform

L{u(t− a)} =

∫ ∞0

e−stu(t− a)dt

=

∫ a

0

e−st(0)dt+

∫ ∞a

e−st(1)dt

=

∫ ∞a

e−stdt =

[e−st

−s

]∞a

=1

se−as

∴ L−1

[1

se−as

]= u(t− a)

In particular, if a = 0

L(u(t)) =1

s⇒ L−1

(1

s

)= u(t)

N. B. Vyas Laplace Transforms

Page 166: Laplace Transforms

Unit Step function or Heaviside’s unit function

Laplace Transform of Unit Step Function:

By definition of Laplace transform

L{u(t− a)} =

∫ ∞0

e−stu(t− a)dt

=

∫ a

0

e−st(0)dt+

∫ ∞a

e−st(1)dt

=

∫ ∞a

e−stdt =

[e−st

−s

]∞a

=1

se−as

∴ L−1

[1

se−as

]= u(t− a)

In particular, if a = 0

L(u(t)) =1

s⇒ L−1

(1

s

)= u(t)

N. B. Vyas Laplace Transforms

Page 167: Laplace Transforms

Unit Step function or Heaviside’s unit function

Laplace Transform of Unit Step Function:

By definition of Laplace transform

L{u(t− a)} =

∫ ∞0

e−stu(t− a)dt

=

∫ a

0

e−st(0)dt+

∫ ∞a

e−st(1)dt

=

∫ ∞a

e−stdt =

[e−st

−s

]∞a

=1

se−as

∴ L−1

[1

se−as

]= u(t− a)

In particular, if a = 0

L(u(t)) =1

s⇒ L−1

(1

s

)= u(t)

N. B. Vyas Laplace Transforms

Page 168: Laplace Transforms

Unit Step function or Heaviside’s unit function

Laplace Transform of Unit Step Function:

By definition of Laplace transform

L{u(t− a)} =

∫ ∞0

e−stu(t− a)dt

=

∫ a

0

e−st(0)dt+

∫ ∞a

e−st(1)dt

=

∫ ∞a

e−stdt =

[e−st

−s

]∞a

=1

se−as

∴ L−1

[1

se−as

]= u(t− a)

In particular, if a = 0

L(u(t)) =1

s⇒ L−1

(1

s

)= u(t)

N. B. Vyas Laplace Transforms

Page 169: Laplace Transforms

Second Shifting Theorem

Second Shifting Theorem:If L{f(t)} = f(s), then L{f(t− a)u(t− a)} = e−asf(s)

∴ L−1[e−asf(s)] = f(t− a)u(t− a)

Corollary: L{f(t)H(t− a)} = e−asL{f(t+ a)}

Corollary: L{H(t− a)−H(t− b)} =e−as − e−bs

sCorollary:L{f(t) [H(t− a)−H(t− b)]} = e−asL{f(t+a)}−e−bsL{f(t+b)}

N. B. Vyas Laplace Transforms

Page 170: Laplace Transforms

Second Shifting Theorem

Second Shifting Theorem:If L{f(t)} = f(s), then L{f(t− a)u(t− a)} = e−asf(s)∴ L−1[e−asf(s)] = f(t− a)u(t− a)

Corollary: L{f(t)H(t− a)} = e−asL{f(t+ a)}

Corollary: L{H(t− a)−H(t− b)} =e−as − e−bs

sCorollary:L{f(t) [H(t− a)−H(t− b)]} = e−asL{f(t+a)}−e−bsL{f(t+b)}

N. B. Vyas Laplace Transforms

Page 171: Laplace Transforms

Second Shifting Theorem

Second Shifting Theorem:If L{f(t)} = f(s), then L{f(t− a)u(t− a)} = e−asf(s)∴ L−1[e−asf(s)] = f(t− a)u(t− a)

Corollary: L{f(t)H(t− a)} = e−asL{f(t+ a)}

Corollary: L{H(t− a)−H(t− b)} =e−as − e−bs

s

Corollary:L{f(t) [H(t− a)−H(t− b)]} = e−asL{f(t+a)}−e−bsL{f(t+b)}

N. B. Vyas Laplace Transforms

Page 172: Laplace Transforms

Second Shifting Theorem

Second Shifting Theorem:If L{f(t)} = f(s), then L{f(t− a)u(t− a)} = e−asf(s)∴ L−1[e−asf(s)] = f(t− a)u(t− a)

Corollary: L{f(t)H(t− a)} = e−asL{f(t+ a)}

Corollary: L{H(t− a)−H(t− b)} =e−as − e−bs

sCorollary:L{f(t) [H(t− a)−H(t− b)]} = e−asL{f(t+a)}−e−bsL{f(t+b)}

N. B. Vyas Laplace Transforms