Lab 7 Leaves - Napa Valley College Pages - Napa Valley...

8
Lab Exercise 7: Leaves (also see Atlas pp. 141150) In most green plants, leaves are the primary photosynthetic organs. They are well adapted for efficient light absorption, carbon fixation, and conduction of photosynthate to the stem for distribution to the rest of the plant. Leaves vary dramatically in size and shape, and numerous modifications of leaf structure have evolved as adaptations to different habitats, environmental conditions, herbivory, and other factors. Upon completion of this lab, the student should be able to: Identify the main parts of a leaf. Differentiate between simple and compound leaves. Identify the various types and parts of compound leaves. Explain the patterns of venation found in dicots and contrast them with the typical pattern found in monocots. Identify the internal parts and tissues of both monocot and dicot leaves. Define or explain the significance of the boldfaced terms found in the exercise. Explain the differences between mesophytes, hydrophytes, and xerophytes, and be able to recognize each type of plant based on the leaf cross section. I. External Morphology of Leaves Examine the leaves of Pelargonium. The leaf consists of a broad, flattened blade or lamina, a petiole (the stalk attaching the leaf blade to the stem), and a pair of stipules, small leaf like structures near the base of the petiole, where it attaches to the stem. These basic parts of the leaf – blade, petiole, and stipules – are highly variable. Some leaves lack a petiole, with the blade attached directly to the stem (sessile leaves). Some leaves lack a blade (e.g. the prehensile tendrils of some plants are modified, bladeless leaves). Stipules are often absent, but can also occur in modified forms as spinelike, tendrillate, or glandular structures (among others). In the space above, make a diagram of a single Pelargonium leaf attached to the stem. Label the blade, petiole, stipules, and stem.

Transcript of Lab 7 Leaves - Napa Valley College Pages - Napa Valley...

Lab  Exercise  7:  Leaves    (also  see  Atlas  pp.  141-­‐150)  

    In  most  green  plants,  leaves  are  the  primary  photosynthetic  organs.    They  are  well  adapted  for  efficient  light  absorption,  carbon  fixation,  and  conduction  of  photosynthate  to  the  stem  for  distribution  to  the  rest  of  the  plant.    Leaves  vary  dramatically  in  size  and  shape,  and  numerous  modifications  of  leaf  structure  have  evolved  as  adaptations  to  different  habitats,  environmental  conditions,  herbivory,  and  other  factors.          Upon  completion  of  this  lab,  the  student  should  be  able  to:        Identify  the  main  parts  of  a  leaf.      Differentiate  between  simple  and  

compound  leaves.  

   Identify  the  various  types  and  parts  of  compound  leaves.  

   Explain  the  patterns  of  venation  found  in  dicots  and  contrast  them  with  the  typical  pattern  found  in  monocots.  

 Identify  the  internal  parts  and  tissues  of  both  monocot  and  dicot  leaves.  

 Define  or  explain  the  significance  of  the  boldfaced  terms  found  in  the  exercise.  

 Explain  the  differences  between  mesophytes,  hydrophytes,  and  xerophytes,  and  be  able  to  recognize  each  type  of  plant  based  on  the  leaf  cross  section.  

 I. External  Morphology  of  Leaves    Examine  the  leaves  of  Pelargonium.    The  leaf  consists  of  a  broad,  flattened  blade  or  lamina,  a  petiole  (the  stalk  attaching  the  leaf  blade  to  the  stem),  and  a  pair  of  stipules,  small  leaf-­‐like  structures  near  the  base  of  the  petiole,  where  it  attaches  to  the  stem.                These  basic  parts  of  the  leaf  –  blade,  petiole,  and  stipules  –  are  highly  variable.    Some  leaves  lack  a  petiole,  with  the  blade  attached  directly  to  the  stem  (sessile  leaves).    Some  leaves  lack  a  blade  (e.g.  the  prehensile  tendrils  of  some  plants  are  modified,  bladeless  leaves).  Stipules  are  often  absent,  but  can  also  occur  in  modified  forms  as  spine-­‐like,  tendrillate,  or  glandular  structures  (among  others).  In  the  space  above,  make  a  diagram  of  a  single  Pelargonium  leaf  attached  to  the  stem.    Label  the  blade,  petiole,  stipules,  and  stem.            

 II. Leaf  Venation    You  compared  the  internal  structure  of  monocot  and  dicot  stems  in  a  previous  lab.    Monocots  and  dicots  also  have  different  leaf  structures.    One  major  and  easily  observed  differentiating  characteristic  is  their  leaf  venation,  the  pattern  of  vascular  bundles  (veins)  in  the  leaf.    Monocots  and  dicots  have  distinctive  arrangements  of  veins  in  their  leaves.  

Monocots  are  characterized  by  parallel  leaf  venation,  with  vascular  bundles  running  the  length  of  the  leaf  more  or  less  parallel  to  each  other.    There  are  relatively  few  cross  veins  connecting  the  vascular  bundles  in  the  leaf,  and  the  veins  rarely  branch.      

Make  a  diagram  of  a  monocot  leaf  based  on  the  plants  on  display,  showing  parallel  venation:  

                           

Dicots  have  netted,  or  reticulate,  venation.    The  veins  branch  many  times,  typically  in  a  random  manner,  to  form  a  network  of  ever-­‐smaller  veins  in  the  leaf.    A  variety  of  dicot  leaves  are  on  display.    Two  major  variations  of  reticulate  venation  may  be  found:  

 A) Pinnate  venation:  in  pinnately-­‐veined  leaves,  there  is  a  single  main  vein  (or  midrib)  

extending  from  the  petiole  through  the  blade,  with  lateral  veins  branching  off  at  various  intervals.      

B) Palmate  venation:  Leaves  with  palmate  venation  typically  lack  a  single  midrib.    Instead,  several  major  veins  branch  off  from  a  common  origin  somewhere  near  the  base  of  the  blade.    

               

III.  Leaf  Blade  Structure  and  Types  of  Leaves        Leaves  can  be  categorized  or  described  based  on  the  condition  of  the  blade.    When  a  leaf  

has  a  single,  intact  blade,  it  is  said  to  be  a  simple  leaf.    If  the  blade  is  divided  into  multiple  smaller  units,  the  leaf  is  said  to  be  compound.    Each  individual  unit  of  a  compound  leaf  blade  is  a  leaflet.      

The  edge  of  the  leaf  is  referred  to  as  the  leaf  margin.    In  many  plants,  the  margin  undulates  so  that  the  blade  is  indented  or  reduced  between  the  major  veins.    Such  leaves  are  said  to  be  lobed,  but  are  still  considered  simple  leaves  as  long  as  the  blade  is  not  divided  into  separate  parts.      The  space  or  indentation  between  two  lobes  is  called  a  sinus.  

The  structure  of  compound  leaves  follows  the  same  pattern  as  venation  in  simple  leaves.    I.e.,  Palmately  compound  leaves  have  all  of  the  leaflets  arising  from  a  common  point  at  the  end  of  the  petiole.    Often,  the  leaflets  of  a  palmately  compound  leaf  will  themselves  exhibit  pinnate  venation.  Pinnately  compound  leaves  have  leaflets  arising  at  intervals  from  a  main  axis  or  rachis,  which  is  an  extension  of  the  petiole.    There  are  two  types  of  pinnately  compound  leaves:  those  with  an  odd  number  of  leaflets  and  those  with  an  even  number.      

Examine  the  herbarium  mounts  of  leaves  from  four  common  trees  on  display,  and  determine  their  leaf  type  (simple  or  compound)  and  venation  pattern  of  the  blade  (palmate  or    pinnate).    Diagram  a  single,  intact  leaf  of  each.  

                 1)  Plant  name:____________________________     2)  Plant  name:___________________________              ____________________/____________________        ____________________/____________________                              

         

3)  Plant  name:____________________________     4)  Plant  name:___________________________              

                                     ____________________/____________________        ____________________/____________________  

IV.  Internal  structure  of  leaves    

For  this  part  of  the  exercise,  obtain  a  prepared  slide  of  dicot  and  monocot  leaf  cross  sections  (both  sections  are  included  on  the  same  slide).    A.  Dicot  Leaf    The  “typical”  dicot  used  in  this  slide  is  Syringa  (the  common  lilac).    Note  the  

organization  of  the  three  plant  tissue  systems  in  the  leaf:  the  dermal  tissue  (consisting  of  an  upper  and  lower  epidermis),  the  ground  tissue  (tissue  between  the  two  epidermal  layers,  known  as  the  mesophyll  in  the  leaf),  and  the  vascular  tissue  (the  veins  of  the  leaf,  bundles  of  xylem  and  phloem  that  conduct  water  and  nutrients  AND  provide  a  measure  of  structural  support  to  the  leaf  blade).  

 1) Examine  the  epidermis.    In  this  species,  the  epidermis  is  only  a  single  layer  of  cells.    Look  for  the  cuticle  on  the  upper  epidermis.    The  cuticle  and  the  epidermal  cells  function  as  a  unit.    What  is  their  main  function?  (1)  

2) Look  for  guard  cells  and  associated  stomata  in  the  lower  epidermis.    This  is  a  cross  section  of  a  leaf,  so  these  cells  will  not  have  the  characteristic  bean-­‐  or  crescent-­‐shaped  appearance  seen  previously.    

3) The  mesophyll  is  separated  into  two  distinct  regions.    The  palisade  mesophyll  is  found  in  the  upper  portion  of  the  leaf,  and  the  spongy  mesophyll  in  the  lower  portion.      

4) Examine  the  midrib  or  main  vein.    Which  tissue  is  on  top,  the  xylem  or  phloem?  (2)  The  leaf  model  as  well,  and  understand  why  the  tissues  are  arranged  in  this  way.  

5) In  the  leaf  cross  section  below,  label  the  palisade  mesophyll,  spongy  mesophyll,  guard  cells,  upper  epidermis,  lower  epidermis,  and  cuticle.    

                       

 B.  Monocot  Leaf    Now  examine  the  corn  leaf  cross  section,  located  on  the  same  slide.  Remember,  corn  is  a  

monocot.  Notice  the  mesophyll  consists  of  relatively  homogenous  parenchyma  cells.    Can  you  distinguish  palisage  and  spongy  mesophyll  layers?  Notice  too  that  guard  cells  and  stomata  are  found  in  both  epidermal  layers  (this  is  not  unique  to  monocots,  btw).  

The  epidermis  contains  enlarged  bulliform  cells  (bulliform  =  swollen  or  round).    It  is  thought  that  these  cells  lose  water  more  rapidly  than  surrounding  epidermal  and  mesophyll  cells.    As  they  lose  water,  they  collapse,  causing  the  leaf  to  fold  during  dry  conditions,  possibly  preventing  excessive  water  loss.  Are  the  bulliform  cells  more  abundant  in  the  upper  or  lower  epidermis?    How  do  you  know  which  epidermis  is  the  upper  epidermis,  anyway?  (3)    

Examine  the  smaller  vascular  bundles.    They  are  surrounded  by  several  large  cells  known  as  bundle  sheath  cells.    The  distinctive  appearance  of  the  bundle  is  referred  to  as  Kranz  anatomy;  it  is  an  important  feature  of  plants  with  the  C4  photosynthetic  process.  The  larger  vascular  bundles  resemble  those  of  the  stem  (having  a  face-­‐like  appearance).    These  larger  bundles  have  conspicuous  bundle  sheath  extensions  of  sclerenchyma  fibers  extending  to  each  epidermis.      

 Label  the  upper  and  lower  epidermis,  bulliform  cells,  bundle  sheath,  phloem,  

xylem,  mesophyll,  and  bundle  sheath  extension  in  the  photo  below.        

                 

     

IV.  Leaf  Modifications    Plants  that  grow  in  moderate  environments  that  are  neither  extremely  moist  nor  extremely  dry  are  called  mesophytes.    An  example  of  a  mesophyte  is  Syringa  (lilac),  whose  leaves  were  examined  above  as  an  example  of  a  typical  dicot  leaf.    The  leaf  anatomy  of  mesophytes  is  generally  unspecialized.  Plants  adapted  to  grow  in  more  arid  conditions  are  known  as  xerophytes,  while  plants  that  actually  grow  in  water  called  hydrophytes.      The  leaves  of  xerophytes  and  hydrophytes  often  exhibit  characteristic  adaptations  related  to  survival  in  their  extreme  habitats.    Several  demonstration  microscopes  have  been  set  up  in  which  you  can  observe  xerophytic  and  hydrophytic  leaves.      A.  Xerophyte:  Nerium  oleander    Examine  the  slide  of  Nerium  oleander,  the  commonly-­‐planted  “oleander”  plant.    Nerium  

is  an  evergreen  shrub  thought  to  be  native  to  the  arid  Mediterranean  region,  Northern  Africa,  or  the  Middle  East.    In  this  leaf  cross  section,  you  can  observe  several  ecologically-­‐significant  features:  

1.  Thickened  cuticle.    The  top  of  the  leaf  has  a  very  thick  cuticle,  a  layer  of  waxy,  hydrophobic  substances  and  forms  a  barrier  against  water  loss.    All  plant  epidermis  has  a  cuticle,  but  it  is  generally  significantly  thickened  in  xerophytes.  

2.  Multiple  epidermis  layers.  These  additional  cell  layers  lining  both  the  upper  and  lower  epidermis  may  function  as  water-­‐storage  cells.    

3.  Stomatal  Crypts.    The  guard  cells  and  stomata  are  located  only  in  the  lower  epidermis,  within  small  cavities  in  the  leaf  surface.    Called  stomatal  crypts,  these  cavities  provide  shelter  to  the  stomata,  and  are  a  common  adaptation  in  xerophytic  plants.    The  stomatal  crypts  of  Nerium  are  also  packed  with  tiny  hairs  or  trichomes.        

   B.  Hydrophyte:  Nymphaea  sp.    Examine  the  prepared  slide  of  a  cross  section  of  water  lily  (Nymphaea)  leaf.  Notice  that  

there  are  many  stomata,  but  they  are  located  on  only  the  upper  epidermis.    The  cuticle  is  very  thin  (not  noticeable),  and  the  epidermal  cells  are  small  and  thin-­‐walled.    Throughout  the  mesophyll  are  scattered  numerous  star-­‐shaped  sclereids  (astrosclereids).    Their  function  is  not  known,  but  they  may  help  to  support  the  leaf  structure  or  deter  predation.      

What  other  adaptation  can  you  see  that  indicates  this  leaf  floats  on  the  surface  of  the  water?      

       

 

   In  the  Nerium  leaf  cross  section  above,  label  the  cuticle,  upper  epidermis,  lower  epidermis,  palisade  mesophyll,  and  stomatal  crypt.    In  the  Nymphaea  cross  section  below,  label  the  upper  and  lower  epidermis,  palisade  and  spongy  mesophyll,  air  chamber,  and  astrosclereid.    

   

(This  lab  exercise  was  adapted  in  part  from  Exercises  for  the  Botany  Laboratory,  Kazmiersky  1999).    

                    Name:________________________________      

BIOL  241  Lab  5  Questions:  Leaves      1)  Name  three  features  characteristic  of  xerophytic  (aka  xeromorphic)  leaves:          2)  How  does  the  mesophyll  of  a  monocot  (corn)  differ  from  that  of  a  typical  dicot  (like  Syringa,  lilac)?  (2  pts)      a.  monocot  (corn):        b.  dicot  (lilac):        3)  How  do  stomatal  crypts  aid  survival  in  xerophytic  plants?  (2  pts)              4)  A  leaf  cross  section  is  pictured  below.    Do  you  think  it  is  from  the  leaf  of  a  xerophyte,  mesophyte,  or  hydrophyte?    What  evidence  is  your  conclusion  based  on?  (3  pts)