Lab 3 Manual

10
Engineering 100 – Bright Ideas 1 Laboratory 3 Rotational Motion 1. PRELAB Read and understand this document Answer the following questions on a separate sheet of paper and submit at the beginning of your lab period: 1. Consider a bicycle with front and rear gears both 4 inches in diameter. a. If we replace the rear gear with one that is 3 inches in diameter, how does the speed of the bike change in relation to the base case? (Assume that the pedals are rotated the same number of times in both cases). Would it be “harder” or “easier” to pedal? b. Now, suppose the rear gear is 4 inches in diameter again. If we replace the front gear with one that is 2 inches in diameter, how does the speed of the bike change in relation to the base case? Would it be “harder” or “easier” to pedal? 2. What is the relationship between rotational speed and torque? What is the relationship between rotational speed and power? 3. If you were designing a system to lift/pull a physically heavy load, would you want to maximize rotational speed, torque, or neither? Why? 2. OBJECTIVES This laboratory provides an introduction to rotational motion, torque, and the operation of electric motors. After completing this lab, you should (1) understand the concept of a “gear ratio”, (2) understand the relationship between rotational speed and torque for electric motors, and (3) have a general understanding of motor operation. You will later apply these concepts to your class project. 3. EQUIPMENT 4 PreMade Gear Blocks with Different Gear Ratios Low Voltage DC Electric Motors Power Supply and Electrical Cables Dynamometer with Roller and Magnetic Rotation Sensor SimpleDyno© Computer Software Caliper

Transcript of Lab 3 Manual

Engineering  100  –  Bright  Ideas  

 

1    

Laboratory  3  Rotational  Motion  

 

1. PRE-­‐LAB  • Read  and  understand  this  document  • Answer   the   following   questions   on   a   separate   sheet   of   paper   and   submit   at   the  

beginning  of  your  lab  period:      

1. Consider  a  bicycle  with  front  and  rear  gears  both  4  inches  in  diameter.  a. If  we  replace  the  rear  gear  with  one  that  is  3  inches  in  diameter,  how  does  the  

speed  of  the  bike  change  in  relation  to  the  base  case?  (Assume  that  the  pedals  are   rotated   the  same  number  of   times   in  both  cases).  Would   it  be  “harder”  or  “easier”  to  pedal?  

b. Now,  suppose  the  rear  gear  is  4  inches  in  diameter  again.  If  we  replace  the  front  gear   with   one   that   is   2   inches   in   diameter,   how   does   the   speed   of   the   bike  change  in  relation  to  the  base  case?  Would  it  be  “harder”  or  “easier”  to  pedal?  

2. What  is  the  relationship  between  rotational  speed  and  torque?  What  is  the  relationship  between  rotational  speed  and  power?  

3. If   you  were  designing  a   system  to   lift/pull  a  physically  heavy   load,  would  you  want   to  maximize  rotational  speed,  torque,  or  neither?  Why?  

2. OBJECTIVES  This   laboratory   provides   an   introduction   to   rotational   motion,   torque,   and   the   operation   of  electric  motors.   After   completing   this   lab,   you   should   (1)   understand   the   concept   of   a   “gear  ratio”,  (2)  understand  the  relationship  between  rotational  speed  and  torque  for  electric  motors,  and  (3)  have  a  general  understanding  of  motor  operation.  You  will  later  apply  these  concepts  to  your  class  project.    

3. EQUIPMENT  4  Pre-­‐Made  Gear  Blocks  with  Different  Gear  Ratios  Low  Voltage  DC  Electric  Motors  Power  Supply  and  Electrical  Cables  Dynamometer  with  Roller  and  Magnetic  Rotation  Sensor  SimpleDyno©  Computer  Software  Caliper  

Engineering  100  –  Bright  Ideas  

 

2    

4. BACKGROUND  

Gears  Gears   or   rotating   parts   are   used   in   simple  machines   to   change   the   speed  or  magnitude  of   a  power   source.   Using   two   or  more   gears   in   tandem   can   change   the   speed   of   rotation   or   the  torque   (turning   force)   of   a   rotating   system.  An   example   that   you   are   likely   familiar  with   is   a  bicycle   with   a   gear-­‐shifting   system.   There   is   one   set   of   gears   connected   to   the   pedals   and  another  set  of  gears  connected  to  the  rear  wheel.  A  chain  connects  the  front  and  rear  gears.  If  the  front  and  rear  gears  have  the  same  diameter  (Figure  1,  Combo  1),  the  rotational  speed  and  torque   will   be   the   same   for   both   the   front   gear   and   the   rear   gear.   If   the   front   gear   has   a  diameter  that  is  four  times  larger  than  the  rear  gear  (Figure  1,  Combo  3),  each  rotation  of  the  front  gear  will  result  in  four  rotations  of  the  rear  gear,  since  the  circumference  of  the  front  gear  is   four   times   larger   than   the   rear   gear.   Your   bicycle  will   therefore   travel   four   times   faster   in  Combo  3   in  comparison  to  Combo  1   for   the  same  number  of  pedal   rotations.  However,   since  the  radius  of  the  rear  gear  is  smaller  in  Combo  3  in  comparison  to  Combo  1,  a  greater  force  is  required   to   produce   the   equivalent   torque   to   propel   the   bicycle.   In   summary,   Combo   3  will  allow  your  bicycle  to  go  four  times  faster,  but  you  will  need  to  exert  four  times  the  force  at  the  pedals  to  get  equivalent  torque.    

 Figure  1:  Illustration  of  a  gear  system  for  a  bicycle  with  three  different  gear  ratios.    

 

Electric  Motors  An  electric  motor  converts  electrical  energy   into  mechanical  energy   in   the   form  of  a   rotating  axle.  The  speed  of  the  motor  will  be  proportional  to  the  applied  voltage  for  the  same  load.  The  torque   of   the  motor   will   be   proportional   to   the   applied   current.   For   a   fixed   voltage   on   the  motor,   the   speed   and   torque   of   the  motor   will   depend   on   the   load   attached   to   the  motor.  Without   a   load,   the   motor   will   rotate   at   maximum   speed,   called   the   no-­‐load   speed.   Under  loading,  the  motor  speed  will  decrease  with  increasing  load.  At  some  point  of  increasing  load,  the  motor  will  no   longer  have  sufficient  torque  to  rotate.  This  point   is  called  the  stall  torque.  The   relationship   between   torque   and   speed   is   typically   linear   as   shown   in   Figure   2(a).   The  mechanical   power   is   given   by   the   product   of   speed   and   torque.   The   relationship   between  

Engineering  100  –  Bright  Ideas  

 

3    

power   and   speed   (or   power   and   torque)   is   a   quadratic   relation   that   has   a   point   where   the  power   is   a  maximum,   as   shown   in   Figure   2(b).   It   is   desirable   to   choose   appropriate   gearing  ratios  for  a  mechanical  system  to  operate  the  motor  at  this  maximum  power  point.      

   Figure   2:   The   (a)   linear   relationship   between   torque   and   speed   for   an   electric   motor   and   (b)   corresponding   quadratic  relationship  between  power  and  speed  needed  to  find  the  maximum  power  for  the  motor.    

 

Dynamometer  A  dynamometer  (often  called  a  “dyno”)  is  a  device  that  measures  force,  torque,  or  power.  The  power  produced  by  a  motor  can  be  determined  using  a  dyno  by  simultaneously  measuring  the  torque  and  rotational  speed.  In  this  laboratory,  you  will  be  using  a  dyno  that  consists  of  a  roller  that   interfaces  with  a  motor.  The   rotational   speed   is  measured  using  a  magnetic   sensor,  and  the  torque  is  determined  by  assuming  values  for  the  rolling  resistance  (drag)  of  the  dyno  roller.  A  dyno   can  be  used   to   construct   the   torque   versus   speed  and  power   versus   speed   curves   in  Figure  2.  Dynos  are  used  often  in  real-­‐world  applications,  particularly  in  the  automotive  field.  In  this   lab,   you  will  use  a  dyno   to  measure   characteristics  of  a   system  powered  by  an  electrical  motor.    

5. PROCEDURE  5.1  Measuring  Gear  Ratios    Each  lab  setup  will  have  a  specific  gear  ratio.  Note  the  number  of  the  station  you  are  working  at  (1-­‐4).  Your   instructor  will  give  you  the  theoretical  gear  ratios  at  the  beginning  of  your   lab.  All  tables  should  be  included  in  your  Post-­‐Lab.    First,  examine  the  set  of  gears  in  your  lab  setup,  and  make  a  note  of  which  gear  ratio  you  are  currently  working  with.  You  should  notice   that   the   system's  overall   gear   ratio   is  a   cascade  of  three   separate   gear   ratios.   The   first   gear   system   on   the   apparatus   consists   of   the   gear  connected  directly  to  the  motor  and  a  gear  immediately  below  it.  We  will  call  this  gear  ratio  R1.  Your  first  task  is  to  measure  R1.  You  may  either  measure  the  diameter  of  the  gears  or  count  the  teeth.   Use   these   measurements   to   find   the   gear   ratio.   Note:   See   Figure   3   to   determine  whether  the  gear  is  referred  to  as  Gear  A  (driver)  or  Gear  B  (driven)  in  this  lab.  It  is  important  

Torque

 (τ)

Speed  (ω)

stall  torqueτS

ωn

no-­‐loadspeed

Power  (P)

Speed  (ω) ωn

no-­‐loadspeed

P  =  ωτ =  -­‐(τs/ωn)ω2 +  τsω

τ =  τs -­‐ ωτs/ωn

(a) (b)

Engineering  100  –  Bright  Ideas  

 

4    

to  get  this  correct  and  to  remain  consistent  as  any  discrepancy  can  result  in  incorrect  answers  for  the  post-­‐lab  questions.    

 Figure  3:  Labeling  Convention  for  Gear  Ratios,  R1  

R1  

Station   Gear  A  diameter  (cm)  or  (teeth)  

Gear  B  diameter  (cm)  or  (teeth)  

Measured  Gear  Ratio  (B:A)  

Theoretical  Gear  Ratio  (B:A)  

1          2          3          4              

The  next  gear  ratio  in  the  system,  R2,  consists  of  the  gears  on  the  outside  of  the  upper  block  as  shown  in  figure  4.      

 Figure  4:  Labeling  Convention  for  Gear  Ratios,  R2  

Gear  B    

Gear  A  

Gear  B  

Gear  A  

Engineering  100  –  Bright  Ideas  

 

5    

Taking  Gear  A  as   the  driver  and  Gear  B  as   the  driven  gear   (shown   in  Figure  4),  measure  and  compute  R2  at  each  station.      

R2  

Station   Gear  A  diameter  (cm)  or  (teeth)  

Gear  B  diameter  (cm)  or  (teeth)  

Measured  Gear  Ratio  (B:A)  

Theoretical  Gear  Ratio  (B:A)  

1          2          3          4            

The  final  gear  ratio  in  the  system  consists  of  the  white  pulley  and  the  roller,  where  the  pulley  is  the  driver   (A),   and   the   roller   is   driven   (B).  Measure   these   components  of   the   system  using  a  caliper   and   find   the   gear   ratio,   R3.   R3   will   remain   the   same   for   stations   1-­‐3.   Although   the  thickness  of  the  roller  in  station  4  is  not  of  uniform  thickness,  we  will  measure  the  diameter  of  the  thickest  part  in  order  to  approximate  and  differentiate  the  overall  gear  ratio  from  the  other  setups.    

R3  Station   Pulley    (A)  

diameter  (cm  Roller  (B)  

diameter  (cm)    Measured  Gear  Ratio  (B:A)  

Theoretical  Gear  Ratio  (B:A)  

1-­‐3          4          

 The  overall  gear  ratio  RTotal  for  each  system  can  be  calculated  by  multiplying  the  chain  of  gear  ratios  together  as  such:  

𝑅!"#$% =  𝑅! ∗ 𝑅! ∗ 𝑅!    Use  this  equation  to  calculate  the  overall  system  gear  ration  for  each  station.    

RTotal  

Station   Measured  Gear  Ratio  (B:A)  

Theoretical  Gear  Ratio  (B:A)  

1      2      3      4      

 Be  sure  to  include  all  tables  in  your  Post-­‐Lab.  

       

Engineering  100  –  Bright  Ideas  

 

6    

5.2  Measuring  Speed,  Torque,  and  Power    To   facilitate   the   torque,   speed,   and   power   measurements   for   this   lab,   we   will   be   using   a  dynamometer.    To  automate  the  measurement  of  the  dynamometer,  we  are  using  a  software  package  called  SimpleDyno®.    The  software  measures  the  rotational  rate  of  the  dynamometer  and  extracts  torque  and  power  information  from  the  data.    In  order  to  measure  the  rotational  rate  of  the  dynamometer,  a  strip  of  magnets   is   placed   on   the   roller,   and   a   solenoid   is   connected   to   Line   In   port   on   your   lab  station  computer.    The  changing  magnetic  field  created  by  the  moving  magnets  is  detected  by  the  solenoid  and  fed  into  the  computer  as  electric  pulses.    These  pulses,  illustrated  by  “Signal  1”  in  Figure  5,  can  be  seen  in  the  waveform  viewer  at  the  bottom  of  the  SimpleDyno®  Software.                                      Figure  5:  Electric  Pulses  from  Solenoid  (used  to  determine  speed  of  rotation)      There  are   four   lab  stations   that  each   lab  group  will   rotate   through.  You  and  your   teammates  will  have  to  switch  stations  after  each  experiment.    Each  gear  station  contains  a  gear  block,  four  gears,  axles,  a  motor,  a  power  supply,  and  a  dynamometer.    Each  station  will  have  a  different  fixed  gear  ratio.    See  Figure  6  for  the  correct  setup  for  the  gear  stations.    You  will  use  the  DC  power  supply  to  run  the  motor  at  a  voltage  of  1.75,  2.25,  and  2.75V.    For  each  measurement,  make  sure  the  current  output  of  the  DC  power  supply  is  limited  to  2  A.    

 Figure  6:  Gear  Station  Setup  

Signal  1  (waveform  of  interest)  Threshold  Trigger    for  Signal  1  

Signal  2  (not  used  in  this  lab)  Threshold  Trigger    for  Signal  2  

Engineering  100  –  Bright  Ideas  

 

7    

Setting  Up  the  SimpleDyno®  Software    The  SimpleDyno®  program  is  not  installed  on  your  computer  by  default.    However,  you  can  download  it  easily  from  the  link  provided  by  your  instructor.    Once  you  have  the  software  downloaded,  you  can  open  the  program  (If  prompted  by  Windows,  click  “Run”).    The  SimpleDyno®  software  consists  of  a  “Main,”  “Dyno,”  and  “Analysis”  tab.    You  will  be  using  the  “Main”  and  the  “Dyno”  tabs  during  the   lab  experiment.    The  “Main”  tab  displays  the  real  time   signal   input   from   the   solenoid   along   with   several   calculated   parameters   including   the  rotational   rate  of   the   roller.     The   “Dyno”   screen   characterizes   the  dynamometer   (dyno)  with  inputs   of   size,  mass,   and   input   signal   type.     It   is   very   important   that   you   fill   in   these   inputs  yourself  as  they  are  used  in  the  calculations  of  speed,  torque,  and  power.    The  following  values  in  Figure  7  correspond  to  our  current  lab  setup.    

Figure  7:”Dyno”  Tab  Critical  Parameters  

 NOTE:  Due   to   the   altered   state   of   the   roller   at   Station   4,   Roller  Mass   (g)   =   494   and   Roller  Diameter  (mm)  =  37.5    at  Station  4  only.  All  other  parameters  should  remain  the  same.  Be  sure  to   change   these   two   parameters   back   to   the   Roller  Mass   and   Roller   Diameter   values   shown  above  after  you  have  completed  Station  4.    Amplifying  and  Detecting  the  Solenoid  Signal  In   order   for   the   software   to   detect   the   electric   pulses   from   the   solenoid,  we  must  manually  configure   the   signal   threshold   and   amplitude.     In   “Main”   of   the   SimpleDyno®   software,   the  signal   threshold   level   (Channel   1,   green   line)  must   be   set   below   the   peaks   of   the   signal.     A  revolution  of  the  roller  is  detected  when  the  signal  peak  intersects  the  threshold  line.  

Engineering  100  –  Bright  Ideas  

 

8    

If  your  signal  does  not   resemble   the  “Good”  or  “Better”  examples   in  Figure  8,  go   to  “Control  Panel”à“Hardware  and  Sounds”à”Manage  Audio  Devices”.    Right  click  on  “Line  In”  and  click  “Properties”.    Set  the  Line  In  level  to  approximately  30%.      

o Bad  example:  

 o Good  example:  

 o Better  example:  

   

Figure  8:  Solenoid  Input  Signal  Examples  

 Connecting  the  Power  Supply  to  the  Motor    Because  of  the  method  that  the  SimpleDyno©software  uses  for  determining  speed,  torque,  and  power,   it   is   important   that   the  motor   receive  a   “step”   input  of   voltage.     In  other  words,   it   is  important  that  the  power  to  the  motor  is  applied  quickly  and  at  full  voltage.    To  facilitate  this,  there   is  an   inline  electrical   switch  to   the  motor.    Before  turning  on  the  power  supply,  ensure  that  the  switch  is  in  the  off  position.        Adjust  the  Power  Supply  Voltage  to  either  1.75,  2.25,  or  2.75V  using  the  tuning  knobs  on  the  front  panel  of  the  DC  power  supply.    Once  you  are  satisfied  with  your  voltage  adjustment,  click  the  “Turn  on  Sensor”  button   in   the  “Main”   tab  of   the  software.    Next,  click   the  “Power  Run”  button  and  provide  a  descriptive  name  for  the  measurement  you  are  about  to  perform.    (Make  sure  you  remember  where  you  save  the  files,  as  you  will  need  them  for  your  lab  report.)    Approximately  2  seconds  after  you  click  “Save”  in  the  dialog  window  you  can  throw  the  switch  to   apply   power   to   the  motor.  Watch   the   display   graph   of   RPM   vs.   time   as   the  motor   speed  increases  and  then  reaches  a  steady-­‐state  value.    Once  your  motor  has  reached  steady  state,  

Microphone  at  5%     Boost  at  +20dB     Power  supply:  2V  

Microphone  at  5%     Boost  at  +20dB     Power  supply:  2V  

Microphone  at  20%     Boost  at  +20dB     Power  supply:  2V  

Does  not  detect  

Engineering  100  –  Bright  Ideas  

 

9    

wait  a  few  seconds,  and  then  throw  the  switch  to  the  off  position.    At  this  point,  the  software  will  take  a  few  seconds  to  calculate  the  power  and  torque  curves  for  your  motor.    The  “Power  Run”   button   will   display   “Done”   when   the   calculations   are   complete.     To   quickly   view   your  results,  there  is  a  radio  button  on  the  bottom  left  of  the  “Main”  tab  that  reads  “Power  Curve.”    By  clicking  on  this  button  you  should  see  a  rough  graph  of  your  data  (note  that  you  cannot  use  a  screen  shot  of  this  for  your  lab  report).    Before  you  leave  the  lab,  make  sure  that  everyone  has  a  copy  of  the  saved  data  files  from  the  Power  Runs.    You  should  have  three  saved  data  files  per  station.    Without  these  files,  you  will  be  unable  to  complete  the  lab  report.  

6. ANALYSIS  

Summary  of  Collected  Data  Using  the  following  table  as  a  guide,  create  a  table  that  summarizes  the  important  values  that  you  found  from  your  lab  experiment.        

Voltage  (V)  

Theoretical  Gear  Ratio  

 

No  Load  Speed  (rpm)  

Stall  Torque  (N*m)  

Stead  State  Speed  (rpm)  

Max  Power  (W)  

xx   xx   xx   xx   xx   xx  

Determine  the  Relationship  of  Torque  and  Gear  Ratio  On  the  same  set  of  axes,  plot  two  torque  curves  taken  at  the  same  input  voltage  but  with  two  different  gear  ratios  (you  can  choose  which  two).      

• How  does  the  gear  ratio  affect  the  torque?  • How  does  the  gear  ratio  affect  the  speed?      • In  a  designed  to  pull  a  heavy  load,  what  should  the  gear  ratio  be  with  reference  to  B:A?    

In  other  words,  should  A  or  B  be  larger  (recall  that  B  is  attached  to  the  wheels)?    Determine  the  Relationship  of  Power  and  Speed  For  two  different  voltages  at  the  same  gear  ratio  (pick  one),  plot  the  power  vs.  rotational  speed  curves  on  the  same  graph  and  compare.  

• Does   the   speed   at   which   the  motor   produces  maximum   power   change?     If   so,   why?  (Hint:  𝑃 =  − !!

!!𝜔! + 𝑇!𝜔    where  𝑇!  is  stall  torque  and  𝜔!  is  no  load  rotational  speed)  

 For   all   plots,   use   a   spreadsheet   or  mathematical   software   program   (e.g.,   Excel,  Matlab,   etc.;  consult  with  instructors  if  you  have  questions  on  this).    Comprehension  Questions  

1. If  the  wheel  that  touches  the  roller  is  spinning  at  an  angular  velocity  of  150  rpm,  what  is  the  angular  velocity  of  the  motor  (Assume  that  R1  and  R2  both  equal  4:3,  and  use  your  measurements  for  R3  to  determine  RTotal)?  

Engineering  100  –  Bright  Ideas  

 

10    

2. If   the  wheel   that   touches   the   roller   is   spinning  with   a   torque   of   1   N*m,   what   is   the  torque  applied  by  the  motor  (assume  the  same  setup  as  Question  1)?  

7. REPORT  REQUIREMENTS  The   analysis   for   this   lab   will   consist   of   a   standard   lab   report.   Include   the   following   in   your  report:  

• Tables  o Gear  ratios  o Results  

• Plots  o Torque  curves  at  different  gear  ratios  (same  graph)  o Power  curves  at  different  voltages  (same  graph)  

• Answer  analysis  questions  • Answer  comprehension  questions