L1.2_Slides

download L1.2_Slides

of 25

Transcript of L1.2_Slides

  • 8/11/2019 L1.2_Slides

    1/25

    CONCORDIA

    VLSI DES IGN LAB

    1

    Fabrication ProcessCrystal Growth

    DopingDeposition

    Patterning

    Lithography

    Oxidation

    Ion Implementation

  • 8/11/2019 L1.2_Slides

    2/25

    CONCORDIA

    VLSI DES IGN LAB

    2

    Fabrication- CMOS Process

    Starting Material Preparation

    1. Produce Metallurgical Grade Silicon (MGS)

    SiO2 (sand) + C in Arc FurnaceSi- liquid 98% pure

    2. Produce Electronic Grade Silicon (EGS)

    HCl + Si (MGS)Successive purification by distillationChemical Vapor Deposition (CVD)

  • 8/11/2019 L1.2_Slides

    3/25

    CONCORDIA

    VLSI DES IGN LAB

    3

    Fabrication: Crystal Growth

    Czochralski Method

    Basic idea: dip seed crystal intoliquid pool

    Slowly pull out at a rate of0.5mm/mincontrolled amount of

    impurities added to melt

    Speed of rotation and pullingrate determine diameter of theingotIngot- 1to 2 meter longDiameter: 4, 6, 8

  • 8/11/2019 L1.2_Slides

    4/25

    CONCORDIA

    VLSI DES IGN LAB

    4

    Fabrication: Wafering

    Finish ingot to precise diameter

    Mill flats Cut wafers by diamond saw:

    Typical thickness 0.5mm

    Polish to give optically flatsurface

  • 8/11/2019 L1.2_Slides

    5/25

    CONCORDIA

    VLSI DES IGN LAB

    5

    Fabrication: Oxidation

    Silicon Dioxide has several uses:- mask against implantor diffusion

    - device isolation- gate oxide- isolation between layers

    SiO2 could be thermally generated or through CVD

    Oxidation consumes silicon

    Wet or dry oxidation

    Quartz Tube

    Wafers

    Quartz Carrier

    Resistance Heater

    O2or Water

    VaporPump

  • 8/11/2019 L1.2_Slides

    6/25

    CONCORDIA

    VLSI DES IGN LAB

    6

    Fabrication: Diffusion Simultaneous creation of p-n junction over

    the entire surface of wafer Doesnt offer precise control

    Good for heavy doping, deep junctions Two steps:Pre-depositionDopant mixed with inert gas introducedin to a furnace at 1000 oC.Atoms diffuse in a thin layer of Si surfaceDrive-inWafers heated without dopant

    Resistance Heater

    wafers

    Temp: 1000

    Dopant Gas

  • 8/11/2019 L1.2_Slides

    7/25

    CONCORDIA

    VLSI DES IGN LAB

    7

    Fabrication: Ion

    ImplantationPrecise control of dopantGood for shallow junctions and threshold adjustDopant gas ionized and acceleratedIons strike silicon surface at high speed

    Depth of lodging is determined by accelerating field

  • 8/11/2019 L1.2_Slides

    8/25

    CONCORDIA

    VLSI DES IGN LAB

    8

    Fabrication: Deposition

    Reactant0.1 -1 Torr

    Loader

    Pump

    Used to form thin film of Polysilicon,Silicon dioxide, Silicon Nitride, Al.

    Applications: Polysilicon, interlayeroxide, LOCOS, metal.

    Common technique: Low PressureChemical Vapor Deposition (CVD).

    SiO2 and Polysilicon deposition at300 to 1000 oC. Aluminum deposition at lower

    temperature- different technique

  • 8/11/2019 L1.2_Slides

    9/25

    CONCORDIA

    VLSI DES IGN LAB

    9

    Fabrication:

    Metallization Standard material is Aluminum

    Low contact resistance to p-type and n-type

    When deposited on SiO2, Al2O3is formed: good adhesive

    All wafer covered with Al

    Deposition techniques:

    Vacuum EvaporationElectron Beam EvaporationRF Sputtering

    Other materials used in conjunction with or replacement to Al

  • 8/11/2019 L1.2_Slides

    10/25

    CONCORDIA

    VLSI DES IGN LAB

    10

    Fabrication: EtchingWet Etching Etchants: hydrofluoric acid (HF), mixture of nitric acid and

    HF Good selectivity Problem:

    - under cut- acid waste disposal

    Dry Etching Physical bombardment with atoms or ions good for small geometries. Various types exists such as:

    Planar Plasma EtchingReactive Ion Etching

    Plasma Reactive species

    RF

  • 8/11/2019 L1.2_Slides

    11/25

    CONCORDIA

    VLSI DES IGN LAB

    11

    Fabrication:

    LithographyMask making

    Most critical part of lithography is conversion from layout tomaster mask

    Masking plate has opaque geometrical shapes correspondingto the area on the wafer surface where certain photochemicalreactions have to be prevented or taken place.

    Masks uses photographic emulsion or hard surface

    Two types: dark field or clear field

    Maskmaking: optical or e-beam

  • 8/11/2019 L1.2_Slides

    12/25

  • 8/11/2019 L1.2_Slides

    13/25

    CONCORDIA

    VLSI DES IGN LAB

    13

    Fabrication:

    Lithography

    Step & Repeat

    Printing

    Printing

  • 8/11/2019 L1.2_Slides

    14/25

    CONCORDIA

    VLSI DES IGN LAB

    14

    Lithography: Mask

    makingElectron Beam Technique

    Main problem with optical

    technique: light diffraction

    System resembles ascanning electron microscope +

    beam blanking and computercontrolled deflection

  • 8/11/2019 L1.2_Slides

    15/25

    CONCORDIA

    VLSI DES IGN LAB

    15

    Patterning/ PrintingProcess of transferring mask features to surface of the silicon wafer.

    Optical or Electron-beam

    Photo-resist material (negative or positive):synthetic rubber orpolymer upon exposure to light becomes insoluble ( negative ) orvolatile (positive)

    Developer: typically organic solvant-e.g. Xylen

    A common step in many processes is the creation and selectiveremoval of Silicon Dioxide

  • 8/11/2019 L1.2_Slides

    16/25

    CONCORDIA

    VLSI DES IGN LAB

    16

    Patterning: Pwell mask

  • 8/11/2019 L1.2_Slides

    17/25

    CONCORDIA

    VLSI DES IGN LAB

    17

    Patterning/ Printing

    substrate

    SiO2

  • 8/11/2019 L1.2_Slides

    18/25

    CONCORDIA

    VLSI DES IGN LAB

    18

    Fabrication Steps

    Apply PR

    Pre-bake

    Printer align exposemask

    Develop, rinse, dry

    Post bake

    Inspect, measure

    Etch

    Strip resist

    Deposit or grow layer

  • 8/11/2019 L1.2_Slides

    19/25

    CONCORDIA

    VLSI DES IGN LAB

    19

    Fabrication Steps

  • 8/11/2019 L1.2_Slides

    20/25

    CONCORDIA

    VLSI DES IGN LAB

    20

    Fabrication Steps: P-

    well ProcessDiffusion

    VDD

    Vo

    P well

    P+

    P+

    n+

    n+

    Vin

    p+

    P well

    p+p+ p+n+ n+

    Substrate n-type

  • 8/11/2019 L1.2_Slides

    21/25

    CONCORDIA

    VLSI DES IGN LAB

    21

    Fabrication Steps: P-

    well ProcessDiffusion

    VDD

    Vo

    P well

    P+

    P+

    n+

    n+

    Vin

    p+

    P well

    p+p+ p+n+ n+

    Substrate n-type

  • 8/11/2019 L1.2_Slides

    22/25

    CONCORDIA

    VLSI DES IGN LAB

    22

    Fabrication Steps

    n+n+

    P well

    p+ p+

    Substrate n-type

    P well

    n+ n+p+ p+

  • 8/11/2019 L1.2_Slides

    23/25

    CONCORDIA

    VLSI DES IGN LAB

    23

    Fabrication StepsOxidation

    Substrate n-type

    Patterning of P-well mask

    Substrate n-type

    oxide

  • 8/11/2019 L1.2_Slides

    24/25

    CONCORDIA

    VLSI DES IGN LAB

    24

    Fabrication StepsDiffusion: p dopant,Removal of Oxide

    Deposit Silicon Nitride

    P-well

    P-well

    Si3N4

  • 8/11/2019 L1.2_Slides

    25/25

    CONCORDIA

    VLSI DES IGN LAB

    25

    Fabrication StepsPatterning: Diffusion (active)mask

    Oxidation

    P-well

    substrate

    FOXFOX FOX

    substrate