Kuliah-04&05 Pemilihan Material Dan Desain Tebal Pipa

81
 PEMILIHAN MATERIAL DAN DESAIN TEBAL PIPA PROF. Ir. Ricky  Lukman  Tawekal  , MSE, PhD Eko  Charnius  Ilman  , ST, MT KL4220 PIPA BAWAH LAUT KULIAH #03 Semester II 2014/2015

description

Pemilihan material dan desain tebal pipa, desain tebal pipa, piping, pipeline,desain

Transcript of Kuliah-04&05 Pemilihan Material Dan Desain Tebal Pipa

  • PEMILIHAN MATERIAL DAN

    DESAIN TEBAL PIPA

    PROF. Ir. Ricky Lukman Tawekal, MSE, PhD

    Eko Charnius Ilman, ST, MT

    KL4220 PIPA BAWAH LAUT

    KULIAH #03Semester II 2014/2015

  • topics

    Material selection Corrosion Protection System Hydraulic & Flow Assurance Introduction to Stress & Strain on Pipeline Wall thickness Determination Buckling [Local & General]

    WALL THICKNESS STUDY &

    MATERIAL GRADE SELECTION

  • Material selection

  • Material selection

    A. Material & Grade SelectionGenerally, pipe material is based on the following criteria:

    1.Operating & design condition2.Type of pipe content3.Installation method,4.Material availability5.Codes requirement6.Weight requirement7.Economics, cost8.Resistance to corrosion effects9.Weldability

    The type of material grade of pipeline can be selected based on API 5L, DnV OS-F101 (2000)

  • Material selection

    B. Pipeline Material Component Selection

    Standard fittings: Flanges Valves Bends Tees Bolts&Nuts Tie-In Reducer

  • Valves

    Gate valveBall Valve

    Globe Valve

  • Tie in

    Flange

    Smart FlangeMissalignment

    flange

    Swivel Flange

    Missalignment flange

  • Pipeline Components

    Flanges: Subsea use high integrity ring type joints (RTJ) Pipelines usually use standard ASME/ANSI B16.5 or API For subsea use swivel ring and possibly misalignment flanges

    Tees: Standard Tee Inspection pigging of run only possible if branch size is less than 60% of run (No Inspection pigging from branch)

    Barred TeeInspection pigging of run possible for all branch sizes (No Inspection pigging from branch)

    Normal flow Normal flow

    Norm

    al flo

    w

    Norm

    al flo

    w

    Normal flow

  • Material grade selection

    As API 5-L:The grades covered by this spec are:

    1. Grades A252. A3. B4. X425. X466. X527. X568. X609. X6510. X7011. X80

  • Baja untuk struktur dengan tempa panas dapat diklasifikasikan sebagai:

    Baja karbon (carbon steel),

    Baja paduan rendah berkekuatan tinggi (high strength low alloy steel), dan

    Baja paduan (alloy steel).

    Persyaratan umum untuk jenis-jenis baja sedemikian ini tercakup dalam spesifikasi ANSI / ASTM A6.

    STEEL MATERIAL

  • Baja karbon (carbon steel),

    Baja karbon struktural termasuk. dalam kategori karbon lunak. Suatu baja, misalnya A36, memiliki karbon maksimum antara 0.25- sampai 0.29% tergantung dari ketebalannya. Peningkatan persentase karbon akan meningkatkan kekerasannya namun akan mengurangi kekenyalannya, hingga lebih sulit dilas.

    Baja karbon dibagi menjadi empat kategori berdasarkan presentase karbonnya:

    Karbon rendah (kurang dari 0.15%);

    Karbon lunak (0.15-0.29%);

    Karbon sedang (0.30-0.59%); dan

    Karbon tinggi (0.60-1.70%).

    Baja paduan rendah berkekuatan tinggi (high strength low alloy steel),

    Kategori ini meliputi baja-baja yang memiliki tegangan leleh dari 40 sampai dengan 70 ksi (275 sampai dengan 480 MPa). Penambahan sejumlah elemen paduan terhadap baja karbon seperti krom, kolumbium, tembaga, mangan, molibden, nikel, fosfor, vanadium, atau zirkonim, akan memperbaiki sifat-sifat mekanisnya. Bila baja karbon mendapatkan kekuatan dengan penambahan kandungan karbonnya, elemenelemen paduan menciptakan tambahan kekuatan lebih dengan mikrostruktur yang halus ketimbang mikrostruktur yang kasar yang diperoleh selama proses pendinginan baja. Baja paduan rendah berkekuatan tinggi digunakan dalam kondisi seperti tempaan atau kondisi normal; yakni kondisi di mana tidak digunakan perlakuan panas.

    STEEL MATERIAL

  • Baja paduan (alloy steel).

    Baja paduan rendah dapat didinginkan dan disepuh supaya dapat mencapai kekuatan leleh sebesar 80 sampai dengan 110 ksi (550 sampai dengan 760 MPa). Kekuatan leleh biasanya didefinisikan sebagai tegangan pada regangan offset 0.2%, karena baja ini tidak menunjukkan titik leleh yang jelas. Baja paduan rendah ini pada umumnya memiliki kandungan karbon sekitar 0.20% supaya dapat membatasi kekerasan mikrostruktur butilan kasar (martensit) yang mungkin terbentuk selama perlakuan panas atau pengelasan, sehingga dapat mengurangi bahaya retakan.

    STEEL MATERIAL

  • Material grade selection

  • Material grade selection

  • Material grade selection

  • Material grade selection

  • Desain tebal Pipa

  • Pertanyaan..

    Mengapa perlu mendesain tebal pipa?

  • Topics for Wall Thickness Study

    Introduction

    Design Codes & Standard

    Mechanical Perspective

    Internal Pressure Containment

    External Pressure Collapse

    Local Buckling

    Buckle Propagation

  • Material &

    grade select.

    Wall

    thickness

    study

  • CODES & STANDARD TO BE USED

    The following codes & standard will be used:1. API 5L, Specification for Line Pipe, 20002. API RP 1111, Design, Construction, Operation and Maintenance of

    Offshore Hydrocarbons Pipelines. (LRFD)3. ASME B.31-4, Liquid Transportation System for Hydrocarbon, Liquid

    Petroleum Gas, Anhydrous Ammonia and Alcohol. (ASD)4. ASME B.31-8, Gas Transmission and Distribution Piping Systems.

    (ASD)5. BS8010, Codes of Practices for Pipeline, 1993 (ASD)6. DnV 1981, Rules for Submarine Pipeline Systems, 1981 (ASD)7. DnV 2000 (OS F-101), Rules for Submarine Pipeline Systems,

    October 2007 (LRFD)8. ASTM (American Society for Testing & Materials)

    Referances:1. A.H. Mouselli, Introduction to Submarine Pipeline Design Installation,

    and Construction, 19762. Andrew Palmer, Roger A King, Subsea Pipeline Engineering, Penwell

    20043. Yong Bai, Pipeline and Riser, 2000

  • Mechanical design

    Subsea Pipeline:

    Design for code compliance

    Design to resist internal pressure (pressure containment hoop stress)

    Design for other stresses (longitudinal, bending & combined)

    Design to resist external pressure (collapse)

    Pipeline components (fittings, flanges, tees etc)

  • Sebelum masuk ke pembahasan mengenai desaintebal pipa, Dalam slide berikut ini akan dikenalkan mengenai- Konsep Tegangan dan regangan pada pipa- Coating pada pipa

  • Stress strain analysis

    Concept of Stress & Strain

    L

    P

    s = P/Ae = d/LE = s/e (Youngs modulus-modulus elastisitas)d = P.L/A.E

    d

    sy

    PiPe

    sRsL

    sy

    sR

    sL

    Pe

    Pi

    L

    Stress : Stress of a material is the internal resistance per unit area to the deformation caused by applied loadStrain : Strain is unit deformation under applied load.

    Normal Stress

    sy

    sy : tekanan tangensial (hoop stress)

  • Stress strain analysis

    PiPe

    sRsL

    sy

    sR

    sL

    Pe

    Pi

    L

    Hoop stress around circumference, sy , (i.e pressure containment) Longitudinal stress, sL ,along pipe axis

    sy

    sy : tekanan tangensial (hoop stress)

    sL

  • HOOP STRESS

    Perhatikan silinder bebas dengan jari-jari a , ketebalan dinding t , dan panjang L

    0 0

    2 ( ( ) sin )( )

    L

    F P a t d dz

    0 0

    2 ( ) sin 0

    L

    F P a t d dz

    0

    ( ) sina d

    F P A

    siny y

    r a

    0

    L

    dz

    0 0

    2 ( ) sin

    L

    F P a t d dz

  • HOOP STRESS

    Perhatikan silinder bebas dengan jari-jari a , ketebalan dinding t , dan panjang L

    Struktur silinder tersebut dikenai beban tekanan P, P = Po Pi

    Po, tekanan luar; Pi, tekanan dalam

    Dari free-body pada gambar tersebut, keseimbangan gaya dalam arah vertikal adalah:

    0 0

    2 ( ) sin 0

    L

    F P a t d dz

    0 0

    2 sin 0

    L

    F P a d dz

    0

    2 cos 00

    L

    F P a dz

    0

    2 ( 1 1) 0

    L

    F P a dz

    2 2F PaL F PaL

    A Lt

    2

    F PaL Pa PD

    A Lt t t

    s

    Tekanan tangensial (hoop stress)

    1t

    a

  • HOOP STRESS

  • LONGITUDINAL/AXIAL STRESS

    Silinder juga mengalami tegangan aksial yang disebabkan oleh beban tekanan pada kedua ujungnya dimana gaya aksial yang terjadi adalah:

    F P A 2

    aF P a

    Luas penampang melintang silinder adalah 2at . Maka, tegangan aksial yang terjadi adalah:

    2

    2 2 4

    zz

    F P a Pa PD

    A at t t

    s

  • Longitudinal Stress

    Longitudinal Stress:

    - Pressure (two effects dependent on pipeline restraint)

    - Fully restrained pipeline gives Poissons Effect

    - Unrestrained pipeline gives End Cap Effect

    - Temperature/Thermal Stress

    - Bending Stress (Span, lay radius curvature, residual lay tension)

  • Longitudinal Stress due to Pressure

    Poissons Effect:- Hoop stress creates circumferential (lateral) strain- Poissons ratio = lateral strain/longitudinal strain = 0.3 for steel- Fully restrained pipeline cannot move - tensile stress developed- Longitudinal stress (due to Poissons effect) = 0.3 x Hoop Stress

    End Cap Effect:- pressure differential acting over internal CSA pipe end (hence End Cap)- unrestrained pipeline at ends (near expansion spool) force (due to End Cap)

    = /4. (Di2.Pi-Do2.Po)

    Longl Stress (end-cap) = /4. (Di2.Pi-Do2.Po) / CSA

    = 0.5 sh (for thin walled pipe)

  • Longitudinal Stress due to Temperature

    - Stress dependent upon axial pipeline restraint- stress developed when expansion or contraction (i.e. strain) is prevented- 3 cases: unrestrained, partially restrained, fully restrained- unrestrained - no stress due to temperature- partially restrained - equilibrium between expansion and friction restraint (section of

    pipe which expands)- fully restrained when friction resistance = fully restrained force i.e. no movement

    Temperature stress is as follows : sL = - E (T2 - T1)

    e.g. 6-inch x 14.3mm wt 60 degrees above ambient results in a stress of 145 MPa full restraint force = 1017 kN or 100 tonnes to prevent expansion this restraining force would be required always avoid restraining pipe if possible typical anchor length = 1 to 5 km and expansion 0.5 to 1.5m

  • Longitudinal Stress due to Bending

    Spanning (resting on an irregular seabed) Lay radius curvature Bending within elastic range, formulae as follows : M = s = E I y R Bending is both tensile and compressive about neutral axis - important to remember

    when calculating combined stress. i.e. 2 possible values of longitudinal stress

  • Combined Stress

    Von Mises (maximum distortion energy theory) Allowable design factor for combined equivalent pipeline stress is high, can be

    0.96 Von Mises equivalent Stress, se , is given by:

    2 2 2( ) 3ey L y L

    s s s s s

    -600

    0

    600

    -600 0 600

    Principal Stress - h (HOOP)

    Pri

    nc

    ipa

    l S

    tre

    ss

    -

    l (L

    ON

    GIT

    UD

    INA

    L)

    Von Mises Failure Envelope

  • Stress strain analysis

    Concept of Stress & Strain

    Shear Stress

    = P/Ag = tan = d/LG = / g

    L

    Pd

    xy

  • Stress strain analysis

    Stress Strain Curve

  • Stress strain analysis

    Stress Strain Curve

  • SMYS = Specified Minimum Yield Strength/StressSMTS = Specified Minimum Tensile Strength

    Above SMYS value there is a plastic region SMTS itu tegangan pada saat material mulai mengalami pengecilan luas penampang

    necking pada saat ditarik (titik M) Antara SMYS dan SMTS material tidak mengalami pengecilan luas penampang Akan terjadi necking sebelum material putus Setelah SMTS material mulai mengecil luas penampangnya, tegangan masih tetap

    diberikan namun menurun dari SMTS lalu akhirnya putus (titik F) Failure point (F) Perbandingan antara SMTS/SMYS disebut strength ratio (Y/T) nah sebenernya material

    yang paling ideal untuk struktur dan komponen permesinan adalah yang strength rationya paling besar.

    The parameters, which are used to describe the stress-strain curve of a metal, are the tensile strength, yield strength or yield point, percent elongation, and reduction of area. The first two are strength parameters; the last two indicate ductility.

    Stress strain analysis

  • Untuk material yg sangat getas/rapuh (brittle) misal keramik...yg mungkin tdk mengalami necking sama sekali... SMTS sama dengan tegangan pd saat putus...

    Untuk steel, pada umumnya merupakan material yg tangguh/dapat dibentuk (ductile)... akan terjadi necking sebelum material putus...dimana .titik tertinggi stress terjadi sesaat sebelum necking....itulah SMTS nya

    Stress strain analysis

  • Berikut ini merupakan paparan mengenaiCoating pada pipa

  • Cross section of pipe Line pipe

    Corrosion coating

    FBE

    Adhesive

    Polypropelene

    Concrete coating

    Mat

    erial

    pipa

    Selim

    ut

    koros

    i

    Selimut

    beton

    Content(isi)

    ID

    Ds

    Ds+2tcorr

    Ds+2tcorr+2tcc = Dtot

  • Anti corrosion coating type

    capability

  • fabrication

    Blast Cleaned Pipe (3LPE) 3LPE Inspection

    Internal Coating Pipe Storage

  • Pipe properties

    Coating Cutback

  • Field joint coating section, Anti

    corrosion coating layer (HSS) & Infill

    (PUF)

  • Bahasan Selanjutnya..

    Desain Tebal Pipa

  • No. Data Nilai

    1 Pipe Properties

    Outside Diameter 81.28 cm

    Wall Thickness 1.59 cm

    Yield Stress 483 Mpa

    Average Joint Length 12.19 m

    Steel Weight Density 78500 N/m^3

    Poisson's Ratio 0.3

    2 Pipe Coating Properties

    Corrosion Coating Thickness 0.25 cm

    Corrosion Coating Density 12800 N/m^3

    Concrete Coating Thickness 10

    Concrete Coating Density 30340 N/m^3

    3 Field Joint Properties

    Concrete Coating Cutback 35 cm

    Field Joint Filler Density 18853 N/m^3

    3. Water Depth Var

    cm

    PIPELINE PROPERTIES (sample)

  • WALL THICKNESS

    The required wall thickness is determined in order to satisfied pressure containment as well as local and global buckling criteria.

    Pipeline Section Allowable Stress

    Zone 1

    (Pipeline)

    0.72

    Zone 2

    (Riser & Tie-in Spool)

    0.5

    Note :

    Zone 2, is the region within 500m from either platform or facility.

    Zone 1, otherwise

  • Pipeline Section Remarks Allowable Stress

    Zone 1 (Pipeline) >500m 0.72

    Zone 2 (Riser & Tie-in Spool) the region within 500m from either platform or facility

    0.5

    ZONE

    500m

    500m

    Zone 1

    Zone 2

    The required wall thickness is

    determined in order to satisfied pressure

    containment as well as local and global

    buckling criteria.

  • Allowable Stress Criteria

    A: Weight; B: Pressure; C: Temperature; D: Environment; E: Hoop Stress; F: Von Mises Equivalent Stress; Note 1- Allowable stresses are : 0.72 at Sagbend and 0.96 at Stinger Overbend

    ALLOWABLE STRESS AS A FACTOR SMYS LOAD COMBINATION

    PIPELINE RISER LOAD CONDITION

    A B C D E F E F

    1 OPERATING (Functional) X X X 0.72 0.72 0.5 0.5

    2 OPERATING + 100 YR ENVIRONMENTAL X X X X 0.72 0.96 0.5 0.67

    3 HYDROTEST (Functional) X X X 0.90 1.00 0.90 1.00

    4 HYDROTEST + 1 YR ENVIRONMENTAL X X X 0.90 1.00 0.90 1.00

    5 INSTALLATION (Functional) Note 1 X -

    0.72 0.96 -

    0.72 0.96

    6 INSTALLATION + 1 YR ENVIRONMENTAL X X - 0.96 - 0.96

    7 ONSHORE PIPELINE X X X 0.6

  • Mechanical design

    Additional Considerations

    Negative mill tolerance (API 5L or DnV OSF 101)

    Corrosion allowance (CA)

    Temperature de-rating factors

    generally applicable to higher temperatures than encountered in subsea pipelines

    Weld joint factors for relatively high cyclic loading i.e. for fatigue implications

  • Langkah desain tebal pipa

    Input Data Pipa, Properti material, data operasi dan lingkungan pipa.

    Calc 1 Internal Pressure Containment

    Calc 2 Collapse due to External Pressure

    Calc 3 Propagation Buckling

    Calc 4 Local Buckling

    Pilih Tebal Pipa sesuai API 5L

  • Internal Pressure Containment

    Perhitungan 1

  • Hoop Stress:Pipeline is design to be strong enough to withstand the maximum tangential (hoop) stress due to internal pressure. This stress cannot exceed the allowable stress. The hoop stress due to internal pressure is given by (barlow formulae):

    sy = hoop stress (tensile) Pi = internal pressure Pe = external pressure Do = outside diameter t = nominal pipe wall thickness

    o

    ei

    y Dt

    PP

    2

    )( s

    1. Internal Pressure Containment

  • ASME B31.8

    Where,D = Outside Diameter of PipeE = Longitudinal Joint FactorF = Design FactorP = Design Pressure (Pi), Pe = Ext PressureS = Specified Min. Yield Strength (SMYS)T = Temperature Derating Factort = Nominal Wall ThicknessCR = Corrosion Rate (mmpy)DL = Design Life (20-25years)MT = Mill Tolerances (12.5%)t selected > t req (Lihat Tabel Standard Pipa)

    FETD

    StP

    2 ( )

    2

    i eP P DtS F E T

    ASME B31.4

    . .eP g h

    (1 )

    Areq

    t tt

    MT

    .A R Lt C D

    1. Internal Pressure Containment

  • API RP 1111 The following equations must be

    satisfied:

    betdt PfffP

    td PP 80.0

    ta PP 90.0

    a)

    b)

    c)

    1. Internal Pressure Containment

    Where,

    fd = Internal Pressure Design Factor

    fe = Weld Joint Factor Factor

    ft = Internal Pressure Design Factor

    Pa = Incidental Overpressure

    Pb = Specified Minimum Burst Pressure

    Pd = Pipeline Design Pressure

    Pt = Hydrostatic Test Pressure

    The specified minimum burst pressure (Pb) is determined by one of the following formulae:

    (1)

    (2)

    Where

    D = outside diameter of pipe

    Di = D 2t = inside diameter of pipe

    S = Specified minimum yield strength of pipe

    t = Nominal wall thickness of pipe

    U = Specified ultimate tensile strength of pipe

    For low D/t pipe (D/t < 15), formula (2) is recommended

    tD

    tUSP

    D

    DUSP

    b

    i

    b

    )(90.0

    ln)(45.0

  • t = nominal wall thickness

    Pi = pressure internal (pressure design)

    Pe = external pressure

    D = outside diameter

    = usage factor

    kt = temperature de-rating factor

    S = SMYS (specified minimum yield stress)

    t

    ei

    kS

    DPPt

    ...2

    ).(

    1. Internal Pressure Containment

    DNV 1981

  • DnV OS-F101

    The pressure containment shall fulfill the following criteria:

    3

    2.

    2)(, SMYS

    tD

    ttP sb

    3

    22)(,

    SMTS

    tD

    ttP ub

    ( ( ( ( tptpMintp ubsbb ,, ;(

    Where

    (

    mSC

    beli

    tppp

    gg

    1. Internal Pressure Containment

    Where,

    pb,s(t) = Yielding Limit State

    pb,u(t) = Bursting Limit Limit State

    pli = Local Incidental Pressure

    gSC = Safety Class Resistance Factor

    gm = Material Resistance Factor

  • External Pressure Collapse

    Perhitungan 2

  • API RP 1111

    The following criteria must be satisfied:

    (

    ( 2

    3

    22

    12

    2

    v

    D

    t

    EP

    D

    tSP

    PP

    PPP

    PfPP

    e

    y

    ey

    ey

    c

    coio

    Where

    2. External Pressure Collapse

    Where,

    fo = Collapse Factor

    Pc = Collapse Pressure of Pipe

    Pe = Elastic Collapse Pressure of Pipe

    P0 = External Hydrostatic Pressure

    Py = Yield Pressure at Collapse

    v = Poissons Ratio (0.3 for steel)

  • DnV OS-F101

    The following criteria must be met:

    ( ( t

    Dfppppppp opecpcec 1

    22

    1

    (

    D

    DDf

    D

    tSp

    v

    D

    tE

    p

    o

    fabp

    e

    minmax

    2

    3

    1

    2

    1

    2

    Where

    2. External Pressure Collapse

  • Where,

    pc = Characteristic Collapse Pressure

    pe1 = Elastic Collapse Pressure

    pp = Plastic Collapse Pressure

    fo = Ovality

    fab = Fabrication Factor

    SCm

    ce

    pp

    gg

    1.1

    DnV OS-F101

    2. External Pressure Collapse

  • LOCAL BUCKLING

  • Buckling and Collapse

    Pipeline buckling and collapse may occur from : Hydrostatic (external) pressure Axial compression Applied bending Combination of all of the above

    More likely during installation : External pressure - no internal pressure High bending stress in sag bend (near seafloor) High bending stress in over bend region Dynamic considerations, complex behaviour prediction

  • Installation AnalysisAs Input to

    Buckle Analysis

  • Layability

    The allowable stress for pipeline subjected to both functional and environmental loads during installation, in accordance with DNV 1981, is 96%. However, for a conservative design margin, the following stress criteria are adopted in line with standard industry practice:

    Allowable Overbend Stress: 85% of SMYS

    Allowable Sagbend Stress : 72% of SMYS

  • Buckling and Collapse

    Three buckling scenarios to consider :collapse - water depth where collapse can occur with negligible longitudinal stressinitiation - water depth where a buckle may be initiated due to a combination of effects propagation - water depth where a previously initiated buckle would propagate to.

    Always size wall for collapse, initiation checked during lay analysis Propagation can be limited by use of buckle arrestors (thicker section of pipe), see A.H. Mouselli Book

    DnV OS-F101, 2007:Collapse Pressure - the pressure required to buckle a pipeline.Initiation pressure - the pressure required to start a propagating buckle from a given buckle. This pressure will depend on the size of the initial bucklePropagating pressure - the pressure required to continue a propagating buckle. A propagating buckle will stop when the pressure is less than the propagating pressure.

    The relationship between the different pressures are:Pc>Pinit>Ppr

  • Buckling and Collapse

    Buckle during laying

    Propagating BucklingCollapse pipe

    Buckle during laying

  • Dimana :

    = Longitudinal Stress (MPa)

    = Hoop Stress (MPa)

    = Critical Longitudinal Stress (MPa)

    = Critical Hoop Stress (MPa)

    = Permissible Usage Factor for Longitudinal Stress

    = Permissible Usage Factor for Hoop Stress

    =

    BUCKLING CHECK

    Local Buckling :

    ycr

    y

    t

    D s

    s.

    3001

    xs

    ys

    sxcr

    sycr

    nxp

    nyp

    Based on DnV 1981

    DnV 1981 (combination between internal pressure and longitudinal pressure)

    1yx

    xp xcr yp ycr

    ss

    s s

    3. Local Buckling

  • DNV 1981

    The following criteria must be satisfied:

    S

    A

    F

    M

    x

    AN

    x

    M

    x

    N

    xx

    72.0

    s

    s

    sssa)

    b)

    c)

    3. Local Buckling

  • DNV 1981

    t

    DS

    t

    DS

    M

    xcr

    N

    xcr

    M

    xcr

    x

    M

    xN

    xcr

    x

    N

    xxcr

    0045.035.1

    20001.01

    s

    s

    ss

    ss

    s

    ssd)

    e)

    f)

    3. Local Buckling

  • DNV 1981

    (

    2

    2

    /

    3001

    tD

    tE

    t

    Dpp

    tD

    ycr

    iey

    ycr

    y

    s

    s

    s

    sg)

    h)

    i)

    1

    ycryp

    y

    xcrxp

    x

    s

    s

    s

    s

    j)

    3. Local Buckling

  • DNV 1981

    Where,

    x = Longitudinal Stress

    xN = Longitudinal Stress (Axial)

    xM = Longitudinal Stress (Bending)

    xcr = Critical Longitudinal Stress

    xcrN = Critical Longitudinal Stress (Axial)

    xcrM = Critical Longitudinal Stress (Bending)

    ycr = Critical Hoop Stress (Pressure)

    3. Local Buckling

  • BUCKLE PROPAGATION

  • Propagation Buckling

    Propagating pressure based on DnV 1981

    2

    1,15prt

    p SMYSD t

    Ppr > Pe ----- it is OK

    kPe_max

    1.15 SMYS

    tnomk D

    1 k

  • INITIATION & PROPAGATION BUCKLING

    Buckle cannot be initiated or propagated within a portion of pipe where the maximum external overpressure is less than the propagation of the pipe:

    Initiation buckling (Battele formula):

    Propagation buckling:

    2.064

    0.02bit

    P ED

    Initiation & Propagation Buckle based on API RP 1111

    4.2

    24

    D

    tSP

    PfPP

    p

    ppio Pp = Buckle Propagation Pressure fp = Propagating Buckle Design FactorPo = External Hydrostatic Pressure

  • DnV OS F101

    The following equations have to be satisfied:

    SCm

    pr

    e

    fabpr

    pp

    D

    tSp

    gg

    5.2

    35a)

    b)

  • Comparison Table

    ASME B31.8 API RP 1111 DNV 1981 DNV OS-F101

    Internal Pressure Containment

    20.6 mm 20.46 mm 21.93 mm 19.90 mm

    External Pressure Collapse

    13.80 mm 13.61 mm - 14.25 mm

    Local Buckling - - 22.0 mm -

    Buckle Propagation 21.68 mm 21.35 mm 23.42 mm 21.15 mm

    OD = 914.4 mm; P = 15 MPa; WD = 50 100m; Content density = 200 kg/m3 ; Wave Ht = 3.8 m

    Conservative one is DnV 81 & Least conservative is DnV OS-F101

  • SUMMARY AND CONCLUSIONS

    1. Material Selection is based on the following:

    Operating and design condition

    Type of content

    Installation method

    Material availability

    Weight requirement

    Codes requirement

    Economics, cost

    Resistance to corrosion effects

    Weldability

    2. Things that have to be check in Wall Thickness Design:

    Hoop stress criteria

    Local Buckling check

    Propagation Check

  • SEKIAN..

    TERIMA KASIH