KS Design Manual Short

download KS Design Manual Short

of 33

Transcript of KS Design Manual Short

  • 8/11/2019 KS Design Manual Short

    1/33

  • 8/11/2019 KS Design Manual Short

    2/33

    K e y s t o n e R e t ai n i n g W al l U n i t s

    G e o s y n t h e t i c S oi l R ei nf o r c e m e n t

    R e t ai n i n g W al l D es i g n T h e o r y

    T h e D esi g n P r o c es s

    K e y W al l O p e r a ti n g I n s t r u c ti o n s

    A p p e n di c es

    2011 KeystoneRetainingWallSystems, Inc

    OriginalMarch2001

    RevisedAugust2001

    ReprintedJuly 2006

    Revised&ReprintedFebruary, 2011

    & K E Y W ALL O PERA T I N G G U ID E

    Keystone

    D ES I G N M A N U AL

  • 8/11/2019 KS Design Manual Short

    3/33

    i

    I N TR O D U C T I O N

    TableofContents

    PART ONE KeystoneRetainingWallUnits

    KeystoneRetainingWallUnits.................................................................... ..................................................................... . 1.1

    KeystoneMaterials................................................................... ...................................................................... ....................... 1.2

    StandardUnit................................................................ ..................................................................... ................................... 1.2

    CompacUnit.................................................................. ..................................................................... ................................... 1.3

    KeystoneCenturyW

    allU

    nits............................................................ ..................................................................... ............ 1.3133EliteUnit.................................................................. ..................................................................... ................................... 1.4

    UnitShearResistance.............................................................. ...................................................................... ....................... 1.4

    BaseShearResistance.............................................................. ...................................................................... ....................... 1.4

    Inter-UnitShearResistance................................................................ ..................................................................... ............ 1.5

    ShearData&Analysis............................................................. ...................................................................... ....................... 1.5

    TypicalShearResistanceBetweenUnits................................................................ ........................................................... 1.6

    PART TWO GeosyntheticSoilReinforcement

    GeosyntheticSoilReinforcement.................................................................. ..................................................................... . 2.1

    DesignStrength............................................................. ..................................................................... ................................... 2.2

    ReductionFactors.................................................................... ..................................................................... ........................ 2.3

    ConnectionStrength .......................................................................................................................................................2.4-2.5

    GeosyntheticSoilInteractionCoefficient ......................................................................................................................2.5-2.6

    GeogridManufacturersData............................................................ ..................................................................... ............ 2.6

    PART THREE RetainingWallDesignTheory

    RetainingWallDesignTheory .......................................................... ..................................................................... ............ 3.1

    ImportantTechnicalDefinitions.................................................................. ...................................................................... 3.2

    LateralEarthPressureTheories................................................................... ..................................................................... . 3.3

    CoulombEarthPressureTheory .................................................................. ..................................................................... . 3.4

    CoulombEarthPressureEquation ..............................................................................................................................3.4-3.5

    CoulombFailurePlaneLocation.................................................................. ..................................................................... . 3.6

    RankineEarthPressureTheory ................................................................... ..................................................................... . 3.6

    RankineEarthPressureEquations ..............................................................................................................................3.6-3.7

    RankineFailurePlaneLocation................................................................... ..................................................................... . 3.7

    TrialWedgeAnalysis.............................................................. ..................................................................... ........................ 3.8

    BearingCapacity ........................................................... ..................................................................... ................................... 3.9AppliedBearingPressure.................................................................. ...................................................................... ............ 3.9

    CalculatedBearingCapacity .............................................................. ..................................................................... .......... 3.10

    BearingCapacity Factors ...........................................................................................................................................3.10-3.11

    Settlement........................................................... ...................................................................... ............................................ 3.11

    GlobalStability .............................................................. ..................................................................... ................................. 3.12

    SeismicAnalysis............................................................ ..................................................................... ................................. 3.13

    In troduc t ion......................................................................................................................................... iv

    D esign Manual&KeyWall Operat ing Guide ..................................................................................... v

    G e o t echn ica l R esp on s i b i l i ty............................................................................................................. vi

    References.......................................................................................................................................... vii

    TA B L E O F C O N T E N T S

  • 8/11/2019 KS Design Manual Short

    4/33

    D ES I G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    ii

    TA B L E O F C O N T E N T S

    PART FO UR TheDesignProcess

    Introduction ..........................................................................................................................................................4.1

    DesignMethodology ...............................................................................................................................................................4.2

    UnitSelection...........................................................................................................................................................................4.2

    WallBatter ...............................................................................................................................................................................4.3

    HingeHeight...........................................................................................................................................................................4.3

    WallGeometry ........................................................................................................................................................................4.4

    WallEmbedment ....................................................................................................................................................................4.4

    SlopingToe ..............................................................................................................................................................................4.5

    SoilProperties................................................................... ..................................................................... ........................... 4.5-4.6

    Surcharge..................................................................................................................................................................................4.6

    ReinforcementType&Properties ........................................................................................................................................4.7

    SoilReinforcementLength....................................................................................................................................................4.7

    ExternalStability Analysis.....................................................................................................................................................4.8

    BatteredWallDesignOptions ..............................................................................................................................................4.9

    AASHTOLRFD............................................................. ...................................................................... ........................ 4.9-4.10

    SlidingAnalysis .....................................................................................................................................................................4.11

    Coulomb-NCMASliding ..................................................................................................................................................4.12

    Rankine-AASHTOSliding ..............................................................................................................................................4.12

    OverturningAnalysis ...........................................................................................................................................................4.13

    Coulomb-NCMAOverturning ........................................................................................................................................4.14

    Rankine-AASHTOOverturning.................................................................. ...................................................................4.14

    Overturning ...........................................................................................................................................................................4.14

    BearingCapacity ...................................................................................................................................................................4.14

    UltimateBearingCapacity ..................................................................................................................................................4.15

    InternalStability ....................................................................................................................................................................4.15TensileCapacity ....................................................................................................................................................................4.16

    TensionLevelCalculation...................................................................................................................................................4.17

    AASHTOInternalTension................................................................................................................................................4.18

    ConnectionCapacity .............................................................................................................................................................4.18

    PulloutCapacity ............................................................... ..................................................................... ....................... 4.19-4.20

    Stability ofFacing .................................................................................................................................................................4.20

    P A R T FI V E KeyWallOperatingInstructions

    Installation&UsersGuide ....................................................................................................................................................5.1

    Installation ...............................................................................................................................................................................5.2

    Registration ..............................................................................................................................................................................5.3

    KeywallInstallation&Setup .................................................................................................................................................5.4

    LaunchingtheKeywallProgram .........................................................................................................................................5.5KeywallWindowsInterface..................................................................................................................................................5.6

    KeywallInterfaceOptions......................................................... ...................................................................... ............... 5.7-5.8

    KeywallRegistrationDetails.................................................................................................................................................5.8

    GeneralInput.................................................................... ..................................................................... ......................... 5.9-5.10

  • 8/11/2019 KS Design Manual Short

    5/33

    PA RT O N E

    K E Y S T O N E R E T AI NI N G W A L L U N I T S

    Fordland, Lakewood, Colorado;KeystoneCentury&HalfCenturyWall

  • 8/11/2019 KS Design Manual Short

    6/33

    D ES I G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    eystoneretainingwallunitsareazero-slumpconcretemasonry productdevelopedspecifically

    foruseinearthretainingwallstructures. Keystonehasdevelopedawidevariety ofshapesand

    designstoaccommodatemostarchitecturalandstructuralrequirements. Localproducersof

    theKeystoneproductshaveavariety ofcolorsavailable, complementingmostlandscapingand

    structuralretainingwallapplications.

    Keystonestructuralproductscurrently availableinclude:

    StandardI/StandardII, Figure1:1

    CompacI/CompacII/CompacIII, Figure1:2

    KeystoneCentury Wall, Figure1:3

    133Elite

    , Figure1:4

    TheKeystoneunitslistedabovearedesignedforuseasstructuralretainingwalls, i.e., thoseexceeding6.5 feet

    (2m)inheightand/orsupportingstructuresorhighway loading.

    Inadditiontotheaboveunits,Keystonehasacompletelineofsmallerlandscapeproductsthataremarketedand

    soldthroughretaildistributionandlandscapesupply outlets. Theseproductsaregenerally notconsideredfor

    structuralapplicationsandarenotdiscussedfurtherinthismanual.

    KEYSTONE RETAIN ING WALL UN ITS

    K

    Brentwood Gate, Burnaby, BritishColumbia;Keystone133Elite

    1.1

  • 8/11/2019 KS Design Manual Short

    7/33

    1.2

    P ART O N E

    RetainingWallUnits

    P ART O N E

    RetainingWallUnits

    Keystoneunitsaretypicallymanufacturedof concretewithaminimumcompressivestrengthof3000 psi

    (21MPa)at28 daysandamaximumabsorptionof8%. Alldimensionsareplusorminus18inch(3mm)

    exceptfortheunitdepth, whichvariesduetothesplitrockfinish. Themanufacturingprocessisautomated,

    sothemixing, compaction, andcuringareperformedundercontrolledconditionsandprovideconsistent

    quality.Theunitshavevariousfacetexturesavailable, dependingonyourlocalmanufacturer. Someofour

    mostpopulartexturesaremoldedorsplit-rockfinishinvariousnaturalcolors. Faceshapescanbetri-plane,

    straight, Victorian, orSculpterramoldedfacesuchasHewnstone.

    Standard, Compac,KeystoneCentury Wall&133Elitearevertically interconnectedusinghigh-strength

    pultrudedfiberglasspins.TheKeystoneunitshavecoresthatarefilledwithcleancrushedstonetoprovide

    additionalmechanicalinterlockandinternaldrainage.Thepinsassurearunningbondconfigurationof

    theunitsandprovidesignificantlateralconnectionstrengthbetweenunits.Thepinsimprovetheconnection

    betweentheunitsandthestructuralsoilreinforcementwhileassuringproperplacementofthe

    reinforcementmaterials.

    Theconnectionpinsareavailableinstraightandshouldereddesigns. Straightpinsare5inches(133mm)

    longandinch(12.7mm)indiameter. TheStandardandCompacunitsusestraightpins. Shoulderedpins

    are3inches(95mm)longandinch(12.7mm)indiameter.Theshoulderedlengthis78inch(22mm)

    andtheshouldereddiameterisinch(20mm). TheCentury Walland133Eliteunitsuseshoulderedpins.

    Theminimumpinstrengthis6,400 psi(44MPa)shortbeamshearstrengthand110,000 psi(750MPa)tensile

    strength. Thepinsaremanufacturedofpultrudedfiberglassandwillnotcorrodeordeteriorate. Inaddition,

    thefiberglasspindoesnotchangeproperties(softenorbecomebrittle)duetothetemperaturechanges

    typicalinretainingwallapplications.

    TheStandardunitvariesduetomanufacturingconsiderationsfrom18 to24 inches(457 to600mm)in

    depth, withatypicalfacewidthof18 inches(457mm)andheightof8 inches(203mm).Thegeometry yields

    exactly 1 squarefoot(0.09m)offaceareaperunit. Unitsweighfrom95 to125 pounds(43 to56kg)each,

    varyingwithlocalmanufacturingandaggregates.Thecentroidoftheunitisslightly forwardofcenter

    towardtheface, butfordesignpurposes, itistakenatthecenter. Fordesignpurposes, thein-placedensity

    oftheaggregatefilledunitis120 pcf(18.85 kN /m ).

    Standardunitsaremanufacturedwithadualpinholeconfiguration.Thefrontpinsettingallowstheunits

    tobeplacedataminimumsetbackofapproximately 18-inch(3.2mm)per8 inch(203mm)unitheight

    (1batter, fordesignpurposesuse0). Therearpinsettingallowsplacementoftheunitsataminimum

    1-inch(31.7mm)setbackper8 inch(203mm)unitheight(8batter). Analternateplacementoffront/back

    pinholeallowsasetbackof58-inch(15.9mm)per8 inch(203mm)unitheight(4batter).

    Note:

    Notallunitstypes,

    facetreatmentsand

    colorsareavailable

    atallmanufacturing

    locations. Please

    check withyourlocal

    manufactureror

    Keystonesupplierfor

    availability.

    KEYSTONE MATERIALS

    STAN D ARD UN IT

    F igure 1:1 Standard/Standard IIU n it

  • 8/11/2019 KS Design Manual Short

    8/33

    1.3

    D ESI G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    TheKeystoneCompacunitisa12 inch(305mm)deepunitwithatypicalfacewidthof18 inches(457mm)

    by 8 inches(203mm)high. Thisgeometry yieldsexactly 1 squarefoot(0.09m)offaceareaperunit.Depth

    may vary from11 to12.5 inches(280 to317mm)dependinguponlocalmanufacturingandsplitting

    requirements.Unitsweighfrom70 to95 pounds(32 to43kg)each, varyingwithlocalmanufacturingand

    aggregates. Fordesignpurposes, thein-placedensity oftheaggregatefilledunitis120 pcf(18.85 kN/m).

    Thedualpinholeconfigurationallowsthesame1(0fordesignpurposes), 4, and8setbackasthe

    Standardunit.

    Century Wallisathreepiecesystemthatconsistsofasmall,medium, andlargeunit.Thewidthofthe

    unitsisthevaryingdimensionthatdictatesthesize. Thesmallunitis7 inches(178mm)wide, themedium

    unitis11 inches(279mm)wide, andthelargeunitis18 inches(457mm)wide.ThethreeCentury Wall

    unitsare12 inches(305mm)deepand8 inches(203mm)high.Thesmallunitweighs45 pounds(20kg), the

    mediumunitweighs58 pounds(26kg), andthelargeunitweighs90 pounds(41kg). Weightsmay vary with

    localmanufacturingandaggregates.

    SimilartotheCompacandStandardunits, adualpinholeconfigurationallows1(0fordesignpurposes),

    4, and8setback.

    CO MPAC UN IT

    KEYSTONE CENTURY WALLUN ITS

    F igure 1:3 Century Wa llU n its

    F igure 1:2 Compac / CompacII / CompacIIIU n it

  • 8/11/2019 KS Design Manual Short

    9/33

    1.4

    P ART O N E

    RetainingWallUnits

    P ART O N E

    RetainingWallUnits

    133Eliteunitsare8 inches(203mm)highand24 inches(610mm)widetocreateafaceareaof1.33 square

    feet(0.124m), hencethename133Elite.Thedepthoftheunitis11.5 inches(292mm).Dependingonface

    treatment, theweightofthe133Eliteunitisapproximately 100 pounds(45kg).

    133Eliteunitsaremanufacturedwithonepinpositionthatcreatesanearverticalsetbackequalto38

    inch(9.6mm)per8 inches(203mm)ofunitheight(2.5batter).

    Therearetwoareaswheretheshearresistanceisimportant:

    Levelingpadshearresistance

    Inter-unitshearresistance

    Bothareimportanttothewallsability toresistlateralmovementsduringconstructionandtoholdtheretained

    soilinplace.Theshearandmomentcapacity ofthewallfacingpreventsbulgingofthewallface.

    Apreparedlevelingpadisrequiredtoprovideafirm, levelsurfaceonwhichtoplacethebasecourseunits

    atthedesignelevationsandprovidelocalizedbearingcapacity fortheunits.

    Levelingpadsmay beconstructedofwell-compactedgravel/crushedstoneorunreinforcedconcrete.Formost

    walls, thegravel/crushedstonelevelingpadisadequate.Fortallerwalls(over15 feetor5m), contractorshave

    foundthatconcretecanleadtofasterwallinstallationandiseasiertouseonthelargerprojects.Theconcrete

    padrequiresmorecareinplacementandmoreexpensivematerials(concreteversusaggregate), butthespeedof

    placingthefirstcoursegenerally offsetstheextracostofmaterials.

    InKeystonewallswithnoearthreinforcement(gravity walls), thetotalresistanceofthewalltolateral

    movement(sliding)isprovidedby thefrictionalongthebaseoftheunits. InsoilreinforcedKeystonewalls,

    unitbasefrictionisalessercomponentoftheslidingcalculationasthereinforcedzoneprovidesmostof

    theresistancealongthebase. Sincethelevelingpadmay beconstructedofvariousmaterials, thefrictional

    resistancevarieswiththeroughnessandshearstrengthofthematerials.

    133ELITEUN IT

    UN ITSHEARRESISTANCE

    BASE SHEARRESISTANCE

    F igure 1:4 133E li te U n it

  • 8/11/2019 KS Design Manual Short

    10/33

    1.5

    D ESI G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    Laboratory testinghasbeenperformedtodeterminetheinter-unitshearresistanceofthevariousKeystone

    units. Theinter-unitshearresistanceistheinternalshearcapacity ofthewallfacing. Withoutadequate

    shearresistancebetweenunits, awallcouldbulgebetweenlayersofreinforcing, shearduringconstruction,

    orinthecaseofagravity wall, shearbetweenany unitabovethebase.

    Forgravity walls, theinter-unitshearcapacity isobtainedbasedonthecalculatednormalforce. Whena

    layerofgeogridreinforcingisincludedinthewallsystem, theshearingresistancebetweenunitsmay be

    reducedbecausethereinforcingcanreducefrictionbetweenunits.Thegranularinterlockisdecreasedand

    theunit-to-unitfrictionmay bereduced. Formany systems, reinforcingmay actually decreasethestability

    ofthefacewhileprovidingstability totheoverallearthmass.

    Inter-unitsheartestinghasbeenperformedonallKeystonestructuralunits. Testingwasinitially doneat

    UtahStateUniversity ontheCompacandStandardunits. Theinter-unitsheartestingontheremainderof

    theunitshasbeencompletedby Bathurst, ClarabutGeotechnicalTestingInc.Theresultsofthetestforthe

    CompacandStandardunitsaregraphically depictedinFigures1:5 and1:6. Laboratory testingprovidesthe

    followingderivedequationsforshearresistancebasedonatotalcalculatednormalforce, N , inlbs/lf.

    N =

    h Wuunitwhere:

    h = DepthtoInterface

    Wu = Widthofunitface

    un it = Unitweightofunitface

    AdditionaldirectsheartestswerecompletedatUtahStateUniversity toevaluatebaseshearusingthree

    typesoflevelingpadmaterials.Theresultsofthattestingislistedbelow:

    TodeterminemetricequivalentsinkN /m , dividethey-interceptby 68.5. Forexample, theStandardunit

    tounitshearequationwouldbeF=35.43+Ntan17.4. SheartestreportsareavailablefromKeystone.

    INTER-UN ITSHEARRESISTANCE

    SHEARD ATA AND ANALYSIS

    Un it to UnitUn it to Unit

    w/geogrid

    Standard F=2427+Ntan17.4 F =1550+ Ntan17.4

    Standard II F =1375 +N tan35 F =1556 +N tan19

    Compac F=769+Ntan26.9 F =769+ Ntan26.9

    CompacII F =1475 +N tan29 F =1250 +N tan29

    CompacIII F =1393+ Ntan34 F =900+ Ntan34

    Century Wall F =900+ Ntan30 F =900+ Ntan30

    133E lite F =1100 +N tan29 F =1100 +N tan29

    Standard Compac

    Crushed Stone Pad F=995+0.31N F=0.92 N

    Concrete Pad F=205+0.30N F=0.90 N

    Sand Pad F=290+0.29N F=0.49 N

    INTER-UNIT SHE AR TABLE

    BASE SHEAR TABLE

  • 8/11/2019 KS Design Manual Short

    11/33

    1.6

    P ART O N E

    RetainingWallUnits

    P ART O N E

    RetainingWallUnits

    Inter-Un it Shear Strength

    0

    1000

    2000

    3000

    4000

    5000

    6000

    0 2000 4000 6000 8000 10000

    NormalF orce (p lf)

    S

    hear

    Force

    (

    pl

    f)

    Standard

    Standard

    w/geog

    rid

    1000 3000 5000 7000 9000 11000

    Un it to Unit

    Un it to Unitw/Geogrid

    TYP ICALSHEARRESISTAN CE BETWEEN UN ITS

    Un it to Un it

    Un it to Un itw/Geogrid

    Inter-Unit Shear Strength

    0

    1000

    2000

    3000

    4000

    0 2000 4000 6000

    NormalF orce (p lf)

    Shear

    Forc

    e

    (

    pl

    f)

    1000 3000 5000

    Comp

    acII

    Comp

    acIIwi

    thGe

    ogrid

    F igure 1:5 Standard Un it Inter-unit Shear Strength

    F igure 1:6 CompacIIU n it Inter-unit Shear Strength

  • 8/11/2019 KS Design Manual Short

    12/33

    PA RT T W O

    G E O S Y N T H E T I C S O I L R E I N F O R C E M E N T

    MartinStreetImprovements, Fredonia, Wisconsin;KeystoneCompacHewnstone

  • 8/11/2019 KS Design Manual Short

    13/33

    D ES I G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    eystoneretainingwallsmay performasgravity retainingwallsforheightsupto6 ft(1.8m)forStandardunits

    and3.3ft(1m)forCompacunits, dependingongeometry, soiltype, andspecificloading. Whenawallexceeds

    safegravity heights, soilreinforcementisrequiredtoprovidestability againstoverturningandsliding. The

    majority ofKeystoneretainingwallsareconstructedusinggeosyntheticreinforcement, whichisthefocusofthis

    manualandtheKeyWallprogram.DesignforinextensiblesteelreinforcementisdiscussedintheKeystoneKeySystem

    designmanualandHITECEvaluation, August2000.

    Soil-reinforcedwallstypically consistofgeosyntheticmaterials, primarily geogrids, whichareconnectedtothe

    Keystoneunitsandplacedinhorizontallayersinthecompactedbackfill. Alimitequilibriumdesignprocedureisused

    todeterminethenumber, strength, length, anddistributionofgeosyntheticreinforcementlayersrequiredtoforma

    stablesoil-reinforcedmass.

    Geosyntheticmaterialdesignparametersinthelimitequilibriumanalysisare:

    Long-TermDesignStrength(LTDS)andallowablestrength, Tal

    Geosynthetic-Keystoneunitconnectionstrength, Tcl, Tsc

    Geosynthetic-soilpulloutinteractioncoefficient, C i

    Geosynthetic-soildirectshearcoefficient, Cds

    Terminology usedtodefinegeosyntheticsoilreinforcementtensilestrengthvariessomewhatbetweenauthors,

    specifiers, andsuppliers. Theterminology usedwithinthissectionisconsistentwiththatofNCMAandAASHTO/

    FHWA, unlessotherwisenoted.

    GEOSYNTHETIC SO ILREINFORCEMENT

    WallconstructionwithGeogrid Reinforcement.

    K

    2.1

  • 8/11/2019 KS Design Manual Short

    14/33

    2.2

    P ART T W O

    GeosyntheticSoilReinforcement

    Thepracticefordeterminingtheallowabletensilestrengthofgeosyntheticreinforcement, (Tal), isbased

    upontheU.S. FederalHighway Administrationguidelines. ThismethodestablishestheLongTerm

    DesignStrength(LTDS), bebasedonsustainedloadtesting, extrapolatedtoadesignlifeforthestructure.

    TheLong-TermDesignStrength(LTDS), forgeogridreinforcementutilizedintheKeystoneRetaining

    Walldesignis:

    Equation(2a) LTDS =

    Therearetwodesignphilosophiescurrently employedinretainingwalldesignandanalysis. AllowableStress

    Design(ASD)istheconventionalworkingstressandfactorofsafetymethodofanalysisthathasbeenused

    foryears. LimitStateDesign(LSD)orLoadandResistanceFactorDesign(LRFD)isthenewermethodthat

    comparesfactoredloadstofactoredresistances.

    Allowable StressD esign

    Thelong-termdesignstrength(LTDS), isreducedby anoverallsafety factor(FS), inAllowableStress

    designtoaccountforallfactorsonloads, uncertainties, etc.

    Equation(2b) Tal =

    Limit State Design (LRFD)

    TheLongTermDesignStrength(LTDS)isreducedby aresistancefactor()inLimitStateDesign/

    (LRFD)toaccountformaterialuncertainty.

    Equation(2c) Tal = GE OLTDS

    TheNCMA, Rankine, AASHTO96, andAASHTOSimplifieddesignmethodsinKeyWallemploy

    AllowableStressdesignprocedures.TheAASHTOLRFD, CanadianLRFDandAustraliandesignmethods

    inKeyWallemployLimitStatedesignprocedures.

    Tensile Strength (Tult)

    TultistheultimatestrengthofgeosyntheticreinforcingwhentestedinawidewidthtestperASTMD4595(geotextile)orD6637 (geogrid).ThisvalueisreportedastheMeanAverageRollValue(MARV),

    asdeterminedby themanufacturersquality controlprocessandaccountingforstatisticalvariation.

    DESIG N STREN GTH

    LTDS

    FS

    Tult

    RFcrx RF idx RFd

  • 8/11/2019 KS Design Manual Short

    15/33

    2.3

    D ESI G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    Note:

    KeyWallpermitsthe

    choiceofthreediffer

    backfillmaterials

    (fine-grained soils,

    34-inch(20 mm)mi

    and 2 inch(50 mm)

    minus), whichestabl

    adefaultvalueforth

    installationdamage

    factorsused inthe

    LTDSdetermination

    based onthe

    manufacturers

    recommendations

    and testing.

    REDUCTION FACTORS

    RFcr

    RFcristhereductionfactortoaccountforthelong-termcreepcharacteristicofpolymetricmaterials. The

    long-termtension-strain-timebehaviorofpolymericreinforcementisdeterminedfromresultsofcontrolled

    laboratory creeptestsconductedonfinished-productspecimensforperiodsupto10,000 hoursperASTM

    D5262 andD6992.Thedataisthenextrapolatedtotheprojectdesignlifeofthestructure, 75 yearsor100

    years. Creeprupturetestingissimilartotheproceduredescribedabove, however, theloadatwhichrupture

    may occurattheendofthedesignlifeispredicted. Acombinationof10,000 hourtestingandcreeprupture

    testingappearstobethecurrentstandardforevaluatinggeosyntheticmaterialcreep.TypicalrangeofRFcr

    is1.4 to5.0.

    RF id

    RFidisthereductionfactorforinstallationdamage(i.e., cuts, nicks, tears, etc.)createdby fillplacementand

    constructionequipmentoperationswithvariousbackfillmaterialthatcanpotentially reducereinforcing

    strengthandperformance. Therecommendedreductionfactorforreinforcementinstallationdamageis

    basedonresultsoffull-scaleconstructiondamagetests. Sitespecificvaluesmay bedeterminedby

    performingconstructiondamagetestsfortheselectedgeosyntheticmaterialwithprojectspecific

    backfillandequipment. TypicalrangeofRFidis1.05 to2.00.

    RFd

    RFdisthereductionfactortoaccountfortheeffectsofchemicalandbiologicalexposuretothe

    reinforcementthataredependentonmaterialcomposition, includingresintype, resingrade, additives,

    manufacturingprocess, andfinalproductphysicalstructure. FormostsoilsusedwiththeKeystoneSystem,

    themanufacturershaveincludedrecommendedfactorstoaccountforpossiblechemicalandbiologicaldegradation. Insoilswherehighalkalinity orotheraggressivefactors(ph9)may bepresent, the

    manufacturershouldbecontactedforspecificrecommendations.TypicalrangeofRFdis1.0 to2.0.

    Forfurtherinformationonthechemicalandbiologicaldurability ofareinforcement, areviewofdurability

    ispresentedinFHWA-NHI-09-087 Corrosion/DegradationofSoilReiforcementforMSEWallsand

    ReinforcedSoilSlopes.

    FS

    FSistheoveralltensionsafety factorformaterial, geometric, andloadinguncertaintiesthatcannotbe

    specifically accountedfor. FSissimilartootheroverallsafety factorsinAllowableStressdesign. A

    minimumfactorofsafety of1.5 isrequiredformostpermanentapplications. Forunusualloading

    conditions, variableorpoorly definedsoilconditions, thisfactormay beincreasedatthediscretionof

    thedesigner.

    GE OGE O isthegeosyntheticresistancefactorformaterialuncertainty usedinLimitStateDesign. TheUSAASHTOLRFDCodeuses0.90 forthetensileresistancefactor. Resistancefactorswillvary inLimit

    StateDesignbasedontheload/resistancefactorsystemadoptedby specificdesigncodes.

  • 8/11/2019 KS Design Manual Short

    16/33

    2.4

    P ART T W O

    GeosyntheticSoilReinforcement

    Theconnectionstrengthisthestrengthstatereinforcement-facingconnectionstrength. Thecapacity is

    dependentupontheverticaldepthtothereinforcement, wallgeometry, typeofKeystoneunitutilized, and

    thespecificgeosyntheticutilized.

    Laboratory testingisrequiredtodefinetheconnectionstrengthforspecificunitsandgeosyntheticmaterials

    atvaryingnormalpressures.Typicalgraphsforanindividualstress-straintestandcompleteseriesplotis

    showninFigure2:1 andFigure2:2 perNCMATestMethodSRWU-1/ASTMD6638.

    Note:

    Reinforced soilwall

    designsareuniqueto

    thespecificKeystone

    unitsandgeosynthetic

    reinforcementused.

    Connectiondatais

    specifictoeach

    combinationand

    reinforcementlevel.

    Substitutionofany

    materialsinvalidatesa

    givenwalldesign.

    F igure 2:1 Load Test at one Norma lF orce

    F igure 2:2 Connect ion Load P lotsa t D iff erent Norma lF orces

    CONNECTIO N STREN GTH

    Peak Load

    Failure

    3 / 4 " De formation

    Load at 3/4"

    Stress/strain p lot

    D isp lacement

    C

    onnecti

    on

    Load

    Norma lF orce

    C

    onne

    cti

    on

    Load

    Peak Load Plot

    3/4" Load Plot

    Tconn = y + N tan Max

    y

    Max

    Max

  • 8/11/2019 KS Design Manual Short

    17/33

    2.5

    D ESI G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    InAllowableStressdesign, thecalculatedtensileloadateachreinforcementlevelinthegeosyntheticmust

    belessthan1)theallowablegeosyntheticdesignstrength, Tal, and2)anultimateconnectionstrengthlimit,

    Tcl, dividedby asafety factor(Tcl/FS).Therecommendedminimumfactorofsafety ontheultimate

    connectionstrengthis1.5.

    InLimitState/LRFDdesign, thefactoredtensileloadateachreinforcementlevelinthegeosyntheticmust

    belessthan1)theallowablegeosyntheticdesignstsrength, Tal, and2)theultimateconnectionstrengthlimit,

    Tcl, timestheappropriateresistancefactor().

    Serviceability strength, Tsc, isdefinedastheconnectionstrengthatamaximum0.75-inch(20mm)

    movement, asdeterminedwiththeNCMATestMethodSRWU-1/ASTMD6638. Serviceability criteriais

    only consideredwhenaservicestateanalysisisbeingperformed. Thisisrarely consideredincurrentMSE

    walldesignasservicestatedeformationisnotwellundersood.NCMAandAASHTOdesigncodes

    generally ignoretheservicestateconditionandrequireastrengthanalysisonly.

    Twotypesofsoil-reinforcementinteractioncoefficientsorinterfaceshearstrengthparametersareusedfor

    designofsoilreinforcedstructures:pulloutinteractioncoefficient, C i,anddirectshearcoefficient, Cds.

    Thepulloutinteractioncoefficientisusedinstability analysistocomputethefrictionalresistancealong

    thereinforcement/soilinterfaceinthezonebeyondadefinedplaneoffailure.

    Thecalculationyieldsthe

    capacity toresistpulloutofthereinforcementfromthesoil.

    Thedirectshearcoefficientisusedtodeterminethefactorofsafety againstoutwardslidingofthewallmass

    alongthelayersofreinforcement.Thecoefficientsaredeterminedinthelaboratory andareafunctionof

    soilandgeosyntheticmaterialtypes.

    Designpulloutresistanceofthegeosyntheticreinforcementisdefinedastheultimatetensileload

    requiredtogeneratemovementofthereinforcementthroughthesoilmassmeasuredatamaximum

    inch(19mm)displacement. Therecommendedminimumfactorofsafety againstgeosyntheticpulloutis

    1.5. Equivalentresistancefactorsareusedinlimitstatedesign. ASTMD6706may beusedtodetermine

    pulloutcoefficientsforgeogrids.

    Note:AASHTO requiresthat1000 hoursustained load testingbeperformed onallgeosyntheticconnection

    schemesforMSEwallsperFHWAguidelines. Thistestingcanresultinanadditionalreductionfactorthat

    reducesconnectioncapacityoverthelifeofthestructure. Thereisnoevidencethatconnectioncreep isalongterm

    performanceconsiderationbased onthethousandsofwallsconstructed sincethe1980s. NCMAdoesnotrecognize

    theconceptintheirDesignManualforSegmentalRetainingWallsand Keystonehasnotobserved thisin

    practice. ThemostprobableexplanationisthattheDesignloadsnevermaterializeattheconnectionasextensible

    reinforcementcanyieldtoreleaseanystressbuild up whilethesurroundingsoiland reinforcementpicksup the

    load (ie, arching). CurrentUSpracticeistoanalyzetheconnectionat100%ofthetheoreticaldesignload inthe

    reinforcementwhichoverstatestheload and probablyexplainsthelack ofcreep related connectionisuses.

    CONNECTIO N STREN GTH

    GEOSYNTHETIC-SO ILINTERACTION COEFFICIENT

  • 8/11/2019 KS Design Manual Short

    18/33

    2.6

    P ART T W O

    GeosyntheticSoilReinforcement

    KeyWall2010 usesthefollowingdefaultvaluesforC iandC dsbaseduponthephiangleinputtedforthe

    reinforcedfillmaterial.

    * (USCistheUnifiedSoilClassificationSystemperASTMD-2487)

    ** (Consultgeogridmanufacturer)

    GEOGRID MANUFACTURERS DATA

    GeogridmanufacturerswerecontactedduringthedevelopmentofthisKeystoneDesignManualandasked

    toprovidetherequiredinformationtoevaluatetheirdesignparameters.Thematerialprovidedandtesting

    performedbyKeystoneisthebasisforthevaluesprogrammedintoKeyWall. Informationprovidedto

    Keystoneby thegeogridmanufacturers/suppliersisavailabledirectly fromthegeogridmanufacturers.

    Note:

    Asnewmaterialsare

    developed ornewdatais

    provided, KeyWallsdata

    fileswillbeupdated.

    Keystoneprovidesthe

    dataasaservicetoits

    customersand toensure

    datauniformityfor

    Keystonedesign. This

    informationisprovided

    withnowrittenor

    implied warrantyasto

    theaccuracyofthedata

    supplied. Datavalues

    should beverified with

    themanufacturers.

    Note:

    Thesecoefficientsdonot

    applytoGeotextilesor

    fatsoils.So ilType (USC*) A N GLE C i Cd

    Crushed Stone ,Grave l(G W ,GM) > 32 0.9 0.9

    Sand ,Grave l,Silty Sands(SW ,SM ,SP) > 28 0.8 0.8

    Sandy Silt,Lean C lay (SC ,ML,CL) > 25 0.7 0.7

    Other clay (CL/CH) < 25 0.6** 0.6**

    GEOSYNTHETIC-SO ILINTERACTION COEFFICIENT

  • 8/11/2019 KS Design Manual Short

    19/33

    P A RT T H R E E

    R E T AI NI N G W A L L D E S I G N T H E O R Y

    ArborLakes, Beaverton, Oregon;KeystoneCenturyWall

  • 8/11/2019 KS Design Manual Short

    20/33

    D ES I G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    3.1

    arthretainingwallstructuresrequirethreeprimary areasofdesignanalysis:1)lateralearthpressures

    2)foundationbearingcapacity, and3)globaloroverallstability.Theanalysisofeachisbasedonthe

    followingengineeringpropertiesofthesoil(s):angleofinternalfriction(), soilcohesion(c), andthe

    density ()ofthesoils.

    Inthischapter, thebasicmechanismsoflateralearthpressuresandstability offoundationsarepresented.Global

    stability andseismicanalysisarebeyondthescopeofthisdesignmanualbutabriefdescriptionisprovided.Once

    thebasicconceptsandmechanismsofearthpressuresareunderstood, simplificationofthecalculationstodevelop

    theCoulombandRankineearthpressuretheoriescanbeexamined.Therearefurthersimplificationsmadetothe

    theorieswhenadaptedfordesignofmechanically stabilizedearth(MSE)structures. By startingwiththebasictheory,

    itiseasiertounderstandthemechanismsofperformanceandfailureandadaptthedesigntospecialconditionsnot

    directly addressedby thesimplifiedmethods.

    Theusershouldrefertorecentgeotechnicaltextbooks, theNCMADesignManualforSegmentalRetaining

    Walls,FHWADesignand ConstructionofMechanicallyStabilized EarthWallsand Slopes, andAASHTOStandard

    SpecificationsforHighwayBridges,foradditionalmaterialandinformationonsoilsandMSEstructures. Thismanual

    issolely intendedtoprovideinsightintotheKeyWalldesignsoftwareandthegeneralprinciplesofmodularwall

    designwithoutbeinganexhaustivesummary ofsoilmechanics.

    RETA IN ING WALL DESIG N THEORY

    E

    Thurgood MarshallMiddleSchool, SanDiego, California;KeystoneStandard &Compac

  • 8/11/2019 KS Design Manual Short

    21/33

    3.2

    P ART T HR E E

    RetainingWallDesignTheory

    Effective StressD esign

    Thesoilstrengthparametersarebasedondrainedconditionsthatareapplicabletogranularsoilsandfine

    grainedsoilsforlongterm, drainedconditions. (Note:thesepropertiesarereferredtoasandcinmost

    textbooks. Inthismanual, andcwillbeusedforsimplicity andrepresentseffectivestressanalysis.)

    Angle of InternalFriction ()Thisvaluerepresentsthefrictionalshearstrengthofthesoilwhentestedundercompactedandconfined

    conditions.Thisvalueshouldnotbeconfusedwithasoilangleofrepose,whichreflectstheanglethata

    pileofloosesoilwillnaturally stand.

    Peak Strength

    Thepeakshearstrengthofasoilisthemaximumloadmeasuredduringatestatanominaldisplacement.

    Thismanualwillutilizepeakshearstrengthvaluesineffectivestressanalysisunlessotherwisenoted.

    Residualstrengthvaluesrequiregreatermovementofthesoilthanisintendedby thedesignofreinforced

    soilstructuresbutmay beappropriateinsomecaseswithcohesivesoils.

    Globa lStabili ty

    Conventionalretainingwalldesignonly looksatsimplesliding, overturning, andbearingasfailuremodes.

    Thismanualreferstoglobalstability asallothercombinationsofinternalandexternalstability, slope

    stability, andcompoundfailureplanesthatmay compromisethewallstructure.

    Fa ilure Plane

    Soilfailureplanesaretypically non-linearandareoftenrepresentedby alog-spiralcurve. Internally, thefailureplane(locusofmaximumstresspoints)ismodeledasastraightlinefollowingtheappropriate

    RankineorCoulombdefinitionoftheslopeangleforsimplification.

    Bearing Capacity Factors

    Thegeneralbearingcapacity formulaasproposedbyTerzaghiisused.However, differentbearingcapacity

    factorshavebeenpublishedby Meyerhof,Hansen, andVesicovertheyears. Thismanualusesthefactors

    proposedby Vesic(1975), whichisconsistentwiththeotherdocumentsdiscussingMSEwalls. (Note:All

    factorsassumelevelgroundandmustbeadjustedforslopinggroundconditions.)

    Soilmechanicstextbooksincludesectionsonpassiveandactiveearthpressures. They describethe

    theoriesofCoulombandRankineandmethodsofsolutionviaformulas, graphicalmethods, and

    computeranalysis. Thismanualwillbriefly discussthemethodsofactiveearthpressurecalculation

    asitrelatestoreinforcedsoilstructuresandaccepteddesignprincipals. Passivepressuresaretypically

    neglectedandnotcoveredinthismanual.

    IMPORTA NTTECHNICALDEFIN ITIO NS

  • 8/11/2019 KS Design Manual Short

    22/33

    3.3

    D ESI G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    TheNCMADesignManualforSegmentalRetainingWalls, Second and Third editions, isbasedonCoulomb

    earthpressuretheory.Thebasicassumptionsforthisactivewedgetheory weredevelopedby Coulomb

    (1776).Theothermajormethodology isRankineearthpressuretheory (1857), whichisbasedonthestate

    ofstressthatexistsintheretainedsoilmass. Boththeoriesessentiallymodeltheweightofthesoilmass

    slidingalongatheoreticalplaneoffailure(Figure3.2 and3.3). Thelateralearthpressure, Pa, isthenetforce

    requiredtoholdthewedgeofsoilinplaceandsatisfy equilibrium.

    ThemajordifferencebetweenthetwotheoriesisthattheCoulombmodelandequationsaccount

    forfrictionbetweenthebackofthewallandthesoilmassaswellaswallbatter. Rankineequations

    moreconservatively assumenowallfrictionatthesoil-wallinterfaceandaverticalwallstructure

    whichgreatly simplifiesthemathematicsoftheproblem. Thefrictionatthebackofthewallfaceand

    atthebackofthereinforcedzoneforexternalstability computations, providesanadditionalforce

    componentthathelpssupporttheunstablewedgeofsoil. Becauseoftheseadditionalresistingforces,

    thelateralearthpressurecalculatedby Coulombisgenerally lessthantheearthpressurethatwouldbe

    predictedby theRankineequations.

    AASHTOdesignmethodologiesgenerally appliesRankineearthpressuretheory forearthreinforced

    structures. AASHTOdesignmethodology isrequiredonmosttransportationrelatedprojectsoperating

    underthismoreconservativedesigncriteria.

    LATERALEARTH PRESSURE THEORIES

    Note:

    Whenthebackslope

    equaltotheassumed

    frictionattheback

    ofthewall(=),

    Coulomband Ranki

    formulasprovide

    identicalearthpressu

    coefficientsand resul

    forcesforverticalwa

    Note:

    Forthoseinterested i

    comparingCoulomb

    versusRankineversu

    AASHTO, KeyWall

    allowstheuserto

    selecteachdesign

    methodology. NCMA

    istheCoulombanaly

    pertheNCMAdesign

    manual;Rankinean

    AASHTOuseaRan

    approach, butwill

    accountforwallbatt

    entered intheKeyWa

    Geometryselection

  • 8/11/2019 KS Design Manual Short

    23/33

    3.4

    P ART T HR E E

    RetainingWallDesignTheory

    Thereadershouldnotethatforhorizontalsurfaces(levelsurcharge)orinfiniteslopingsurfaces(extending

    beyondthetheoreticalCoulombfailureplane), aclosed-formequationsolutionisapplicableandeasily

    derived. Forgeometrieswheretheslopechangeswithinthezoneoffailure(brokenbackslope), thesimple

    equationsarenolongerapplicableandmay beunnecessarily conservative. Forexample, ifashortbroken

    backslopeismodeledasaninfiniteslope, thedesignmay requiresignificantlymorereinforcementand

    excavationthanifmodeledcorrectly. Fortheseconditions, thetrialwedgemethodisusedintheanalysis.

    Thisisaniterativetrialwedgeprocesswheresuccessivefailuresurfacesaremodeleduntilamaximum

    earthpressureforceiscalculatedforthegeometry andloadinggiven(SeeFigure3:4).

    Theearthpressurebehindthewallfaceoratthebackofthereinforcedzoneisrepresentedby atriangular

    pressuredistributionforactivesoilpressureandarectangulardistributionforuniformsurchargepressure

    asisshowninFigure3:1.

    TheappropriateCoulombearthpressureequationsforearthandsurchargepressureareasfollows:

    Equation(3a) Pa =H ka

    Equation(3b) Pq =q Hka

    where:

    ka = coefficientofactiveearthpressure

    = moistunitweightofthesoil

    H = totaldesignheightofthewall

    q = uniformsurcharge

    COULOMB EARTH PRESSURE THEORY

    H/3H/2

    H Pa

    Pq

    q

    F igure 3:1 Earth Pressure D iagram

    COULOMB EARTH PRESSURE EQUATIO N

  • 8/11/2019 KS Design Manual Short

    24/33

    3.5

    D ESI G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    COULOMB EARTH PRESSURE EQUATIO N

    Theactiveearthpressurecoefficient, ka, isdeterminedfromanevaluationoftheCoulombwedgegeometry

    showninFigure3:2 andresultsinthefollowingkacoefficient:

    Equation(3c) ka =

    where:

    = angleofbatterfromhorizontal

    = angleofinternalfrictionofsoil

    =

    slopeangleabovewall = angleoffrictionatbackofwall

    Thisequationisfoundindifferingformsinothertextsduetothetrigonometricassumptionsmadeinthe

    formuladerivation.ThederivationofthisCoulombformulacanbefoundingeotechnicaltextbookssuchas

    FoundationAnalysisand Designby Bowles(1996).

    H

    R

    W

    Pa

    F igure 3:2 Cou lomb Wedge D iagram

    sin(+ )

    sinsin () 1 +

    sin(+ )sin()sin()sin(+ )

  • 8/11/2019 KS Design Manual Short

    25/33

    3.6

    P ART T HR E E

    RetainingWallDesignTheory

    TheCoulombfailureplanevariesasafunctionofthewallgeometry andfrictionanglesforboththesoils

    andthesoil/wallinterface. Forlevelsurchargeandinfiniteslopeconditions, therelationshipforis:

    Equation(3d) tan (- ) =

    where:

    = angleofinternalfriction

    = batterofwallmeasuredfromvertical(-90)

    = slopeangleabovethewall

    = angleoffrictionatbackofwall

    (orreinforcedmass)

    TablesareavailableintheNCMADesignManualandelsewherethattabulatethesevaluesandassistin

    determiningtheappropriateCoulombearthpressurecoefficientsandfailureplaneorientationbasedupon

    thewallgeometry andsoilparameters. TheKeyWallprogramcalculatesthesevaluesforeachgeometry.

    Forbrokenbackconditions, atrialwedgecalculationisusedinsteadoftheformulas.

    Rankineearthpressureisastateofstressevaluationofthesoilbehindaretainingstructurethattraditionally

    assumesaverticalwallandnofrictionbetweenthesoil/wallinterface.Theorientationoftheresultantearth

    pressureisparalleltothebackslopesurface.

    Theearthpressurebehindthewallfaceoratthebackofthereinforcedzoneisrepresentedby a

    triangularpressuredistributionsimilartothatshowninFigure3:1.Theearthpressureequations

    arethesameasCoulomb:

    Equation(3e) Pa =H k a

    Equation(3f) Pq =q Hka

    where:

    ka = coefficientofactiveearthpressure

    = moistunitweightofthesoil

    h = totaldesignheightofthewall

    q = uniformliveloadsurcharge

    RA NKINE EARTH PRESSURE EQUATIO NS

    RA NKINE EARTH PRESSURE THEORY

    COULOMB FA ILURE PLANE LOCATIO N

    tan"#$tan"#%tan"# $ cot"+ #&%' $ tan"# cot"+ #&

    1 + tan"#%tan "# $ cot "+ #&

  • 8/11/2019 KS Design Manual Short

    26/33

    3.7

    D ESI G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    kacandeterminedfromanevaluationoftheRankinewedgegeometry similartotheCoulombwedge

    analysisasshowninFigure3:3.

    Thisresultsinthefollowingequationsforka:

    Verticalwall, levelbackslope

    Equation(3g)

    ka=

    tan(45 -2)

    Verticalwall, backslope

    Equation(3g) ka = cos

    where:

    = angleofinternalfrictionofsoil = slopeangleabovewall

    TheRankinefailureplanelocationistypically assumedtobeat:

    Equation(3h) = 45+2

    Whereisfixedandmeasuredfromhorizontalunderalldesignscenarios, whichisonly technically correct

    forlevelsurchargeapplicationsandminimalwallbatter. Intheory, theRankinefailureplanevariesunder

    backslopeconditions.However, itiscustomary tofixthefailureplaneat45+2inearthreinforcement

    design, thusbestrepresentingthecurvedfailuresurfaceandlocusofmaximumstresspointsfora

    reinforcedsoilmass.

    Note:

    TheCoulombearth

    pressureequation

    willprovideidentica

    Rankineearthpressu

    coefficientsbysetting

    theinterfacefriction

    angle, , equaltothe

    backslope, , fora

    specificdesigncase.

    TheKeyWallprogra

    actuallyusesthis

    method tocalculate

    Rankineearthpressu

    coefficientsasit

    permitswallbatter

    tobeincluded in

    thecalculation

    whenrequired.

    RA NKINE FAILURE PLANE LOCATIO N

    H

    = 45 + /2

    W

    R

    Pa

    F igure 3:3 Rank ine Wedge D iagram

    RA NKINE EARTH PRESSURE EQUATIO NS

    cos coscos

    cos $coscos

  • 8/11/2019 KS Design Manual Short

    27/33

    3.8

    P ART T HR E E

    RetainingWallDesignTheory

    Thelimitationofclosedformsolutions, suchastheCoulombandRankineequations, isthatonly simple

    levelandinfiniteslopingsurchargeswithuniformloadingscanbeanalyzed. Itisnecessary tolookata

    trialwedgemethodorapproximationmethodwhenattemptingtoanalyzebrokenbackslopesorother

    slope/loadcombinations.

    AASHTOandNCMAsuggestanapproximationmethodforbroken-backslopeconditionsthatdefines

    equivalentdesignslopesfortheexternalanalysis.However, theinternalanalysisisnotwelldefinedfor

    unusualslopesandloadingconditionsandthedesignerisexpectedtouseengineeringjudgementwiththe

    simplifiedmethods.

    TheKeyWallprogramusesatrialwedgeanalysisfordeterminingtheinternalandexternalforces

    inordertoprovidethecorrectresultsformorecomplicateddesigngeometries.Thetrialwedge

    calculationisaniterativeprocessthatdeterminestheloadingatsuccessivefailureplaneorientationsuntil

    amaximumloadingisdeterminedforthegeometry andsurchargeloading(SeeFigure3:4).

    TheKeyWalltrialwedgeanalysisusedisconsistentwiththefundamentalassumptionsoftheapplicable

    Coulomband Rankinetheoriesby setting=. Trialwedgeresultsmatchtheequationsolutionsfor

    thelevelandinfiniteslopeconditions, butwilldeterminethecorrectinternalandexternalvaluesfor

    brokenbackslopeconditionsandoffsetliveanddeadloads. Thismethodofanalysispermitsthedesigner

    toproperlymodelmany typicaldesignconditionsandnotoverly simplify theanalysisduetolimitationsof

    equationsolutionsandotherdesignsoftware.

    F igure 3:4 Tr ia lWedge D iagram

    H

    R

    W

    WR

    ForceD iagram

    W1W2

    W3 W4 W5 W6

    Wedges

    TRIALWEDGE ANALYSIS

    Note:

    TheAASHTO

    Simplified, AASHTO

    LRFD, and CAN

    LRFDmethodsusethe

    AASHTO Simplified

    method forcalculatinginternalpressuresand

    thetrialwedgefor

    calculatingexternal

    loadingconditions.

  • 8/11/2019 KS Design Manual Short

    28/33

    3.9

    D ESI G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    Bearingcapacity istheability ofthefoundationsoiltosupportadditionalloadingimposedonthesurface

    fromthecompletedwallsystem. Bearingcapacity isanalyzedconsideringtwocriteria:

    Shearcapacity ofthesoil

    Totalanddifferentialsettlement

    Shearcapacity ofthesoilisafunctionofthefoundationsoilstrength, thesoilmassequivalentfootingsize,

    thedepthofembedment, andany groundwaterconditionsasdeterminedby thegeotechnicalinvestigation.

    Figure3:5 showstheMeyerhofdistributionofappliedbearingpressureforflexiblefoundationsystemsthat

    istypically utilizedwithearthreinforcementstructures.

    Theequivalentfootingwidthandappliedbearingpressurearecalculatedasfollows:

    Equation(3i) e = B 2- (Mr- M o)/Rv

    Equation(3j) v = Rv(B - 2e)

    where: e = eccentricity ofreaction

    B = totallengthofbase

    Mr = sumofresistingmoments

    Mo = sumofoverturningmoments

    Rv = sumofverticalreactions

    BEARING CAPACITY

    W

    q

    e

    D

    R

    v

    B-2e

    B

    Foundation So

    il

    - shear strengthc- coh esion- un it w e ight

    F igure 3:5 App li ed Bearing Pressure D iagram

    APPLIED BEARIN G PRESSURE

  • 8/11/2019 KS Design Manual Short

    29/33

    3.10

    P ART T HR E E

    RetainingWallDesignTheory

    Qultistheultimatebearingcapacity ofthefoundationsoilsbasedonthesoilandgeometry parameters.

    Theultimatefoundationbearingcapacity canbecalculatedfromthefollowingMeyerhofequation:

    Q ult = cNcscdc+ D N qsqdq+ 0.5BNsd

    Forwhichinfinitely longstripfootingwithshapeanddepthfactors=1.0, andeffectivebasewidthof

    B - 2e, simplifiesto:

    Equation(3k) Q ult = cN c+D N q+ 0.5(B - 2e)N

    where:

    c = cohesionoffoundationsoil

    = unitweightoffoundationsoil

    D = depthofembedmentbelowgrade

    B-2e = effectivefootingwidth

    Nc = bearingcapacity factorforcohesion

    N q = bearingcapacity factorforembedment

    N = bearingcapacity forfootingwidth

    Bearingcapacity factorsforthebearingcapacity equation(throughVesic1975)areasfollows:

    Nc = (N q- 1)cot N q = e

    tantan(45+2) N = 2(N q +1)t an

    Thefactorofsafety forbearingcapacity istheratioofultimatebearingcapacity tothecalculated

    appliedbearingpressure.

    Equation(3l) FSbearing = Q ult/ v

    Aminimumsafety factorof2.0 (NCMA)and2.5 (AASHTOASD)againstbearingcapacity failureis

    consideredacceptableforflexibleearthreinforcedstructures.

    AASHTOLRFDcomputesacapacity demandratio(CDR)forbearingcapacity usingtheequationbelow:

    Equation(3m) C DRbearing = Q ultRFb/v(factored loa ds)

    TheMSEwallbearingresistancefactorisRFb=0.65. Asisalwaysthecase, thebearingcapacity

    demandratiois(1.0.

    CALCULATED BEARING CAPACITY

    BEARING CAPACITY FACTORS

    Note:

    Insomecases, bearing

    capacityisdetermined

    withoutconsideringthe

    wallembedment

    portionoftheequation,

    D N q. SeeKeyWall

    DesignPreferences

    forthisoption.

  • 8/11/2019 KS Design Manual Short

    30/33

    3.11

    D ESI G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    Note:

    Thedesigneris

    cautioned about

    spanningboxculvert

    constructingwallsov

    uncompacted utility

    trenches,goingdirect

    fromarock foundati

    toasoilfoundation,

    transitioningfroman

    elasticbearingsurfac

    toarigid foundation

    surface. Differential

    settlementsinsuch

    ashortdistancewill

    bedetrimentaltoany

    structure, and vertica

    constructionslipjoin

    arerecommended.

    BEARING CAPACITY FACTORS

    Bearingcapacity inKeyWallisbasedsolely onthesoilparametersinputforthefoundationsoilandthe

    embedmentdepthassumingthatthegroundislevelinfrontofthewall.Thedesignermay checkforatotal

    stressconditionby insertingtotalstressparametersforthefoundationsoil.

    Settlementcriteriamay limitdesignbearingpressuresforstructureshavinglargefootingareas, suchas

    mat-typefoundationsandbearingareasunderMSEwallsystems. By reviewingequation(3k), itiseasy

    toseethatwithalargeB, theshearcapacity ofthefoundationisusually sufficient.However, with

    largerfootingwidths, theareaofinfluencebelowtheloadedareabecomesquitelarge, typically 2B, and

    theadditionofthisverticalstressoveralargeareacaninducesignificantsettlement. Itisimportantthat

    thedesignerdistinguishesbetweenallowablebearingcapacity forshearfailure(acatastrophicfailure

    mechanism)andasettlementcriterion(anon-catastrophicevent).

    Totalsettlementislimitedby thedesignersperformancecriteriaandimpactonadjacentstructuresor

    tolerancesonverticalmovements. Aslongasthestructuresettlesuniformly, thereisnosignificant

    structuraleffectonthewallsystem.Differentialsettlement, however, willcauseaflexuralmovementin

    thewallfaceandmay leadtounitrealignmentandcrackstorelievetensilestressesintheconcrete.

    Differentialsettlementstypically shouldbelimitedto1%(i.e., 1 footin100 feet)(NCMA)or%

    (i.e., 1 footin200 feet)(AASHTO).

    Settlementanalysisisbeyondthescopeofthisdocument, andisnotincludedintheKeyWallanalysis.

    Duetothevariability offoundationconditions, potentialinfluencesofgroundwater, andother

    subsurfaceconditions, itisrecommendedtoconsultaqualifiedgeotechnicalengineerforproper

    analysisandspecifications.

    SETTLEMENT

    Bearing Capac ity Facto rs (Vesic1975)

    N c Nq N

    0 5.14 1.00 0.00

    5 6.49 1.57 0.45

    10 8.34 2.47 1.22

    15 10.98 3.94 2.65

    20 14.83 6.40 5.39

    25 20.72 10.66 10.88

    30 30.14 18.40 22.40

    35 46.12 33.30 48.03

    40 75.31 64.20 109.41

    Note:

    LimitStateorLRFD

    analysisrequiresa

    servicestateanalysis

    inadditiontothe

    strengthanalysis.

    KeyWallprovidesth

    bearingpressurein

    additiontothefactor

    bearingpressurefor

    comparison.

  • 8/11/2019 KS Design Manual Short

    31/33

    3.12

    P ART T HR E E

    RetainingWallDesignTheory

    Globalstability analysisisbeyondthescopeofthisdocumentandisnotincludedintheKeyWallprogram.

    However, itcanbeanecessary partofacomprehensivedesignanalysisonlargerprojectsandisbest

    performedby thesitegeotechnicalengineer.

    Globalstability shouldbeinvestigatedany timethefollowingsituationsoccur:

    Steepslopesaway fromthetoeofwall

    Steepslopesabovethetopofwall

    T

    ieredwallconstruction Poorfoundationsoils

    Slopestability isacomplicatedanalysisthatdependsonsitegeometry, constructionmethods, testedsoil

    parametersandpotentialinfluenceofgroundwater. Itisrecommendedthataqualifiedgeotechnical

    engineerbeconsultedforproperanalysisandrecommendations.

    AminimumFactorofSafety of1.3 isrequiredbyNCMAandAASHTO. Ahigherfactor(FS = 1.5)may

    berequiredforcriticalstructuressuchasbridgeabutments. AASHTOLRFDrequiressimilarratios.

    NCMA'sDesignManual, 3rdEdition, introducedtheconceptofinternalcompoundstability (ICS)whichisalimitedformofglobalstability analysisthatcheckscircularfailureplanesthroughthereinforced

    zoneforalimitedsetofconditions.Keystonebelievesthatglobalstability analysisshouldbedoneona

    comprehensivebasis, whenrequired, toavoidthelimitationsoftheICSanalysisanddoesnotcurrently

    includethatfunctioninKeyWall.

    ExternalG lob alStabili ty S lid ing Surface

    InternalG lob a l

    Stabili ty S lid ing Surface

    2nd Tier Load ing

    Method ofSlices

    W

    E1E2

    T1

    T2

    N

    L

    FS = 1.30 m i

    F igure 3:7 G loba lStab il i ty Section

    GLOBALSTABILITY

    INTERN ALCOMPOUND STABILITY ANALYSIS

  • 8/11/2019 KS Design Manual Short

    32/33

    3.13

    D ESI G N M A N U AL& K E Y W A L L O P E R A T I N G G U I D E

    Keystoneretainingwallstructureshaveproventobeearthquakeresistantduetothesystemsinherent

    flexibility thatpermitsminoryieldingduringamajorseismicevent.

    ThemostrecentseismicdesignstandardsarecontainedintheAASHTOStandardSpecificationsforHighway

    Bridges(Chapter11)andinthe3rdeditionoftheNCMADesignManual, whichdescribeapseudo-static

    methodofanalysisbasedontheMononobe-Okabeapplicationofconventionalearthpressuretheory.

    Aschematicofpseudo-staticanalysisconsiderationsisshowninFigure3:8 belowasitpertainsto

    reinforcedsoilstructures.

    Thedetailsofseismicanalysisarebeyondthescopeofthismanualandotherdocumentsshouldbe

    consulted.Therearemany waystoevaluateseismicforces, whicharequitecomplicated.TheKeyWall

    programusesthreedifferentmethodsthatparallelthethreedifferentdesignmethodologiesofCoulomb,

    Rankine, andAASHTO.

    SEISM IC ANALYSIS

    Peak Ground Acce leration ,A

    LateralInert ialForce

    StaticEarthPressure

    DynamicEarthPressure

    EXTERN AL STABILITY

    Structure Acce leration ,Am

    Act iveZone

    Active WedgeInert ialF orce

    FacingInert ialF orce

    INTERNAL STABILITY

    F igure 3:8 Externa lStab il ity

    F igure 3:9 InternalStab il ity

  • 8/11/2019 KS Design Manual Short

    33/33