Kronig-Penney Model in Reciprocal Spacespin/course/104F/Ch7-2-renew.pdfKronig-Penney Model in...

18
Kronig-Penney Model in Reciprocal Space in 1-D

Transcript of Kronig-Penney Model in Reciprocal Spacespin/course/104F/Ch7-2-renew.pdfKronig-Penney Model in...

Kronig-Penney Model in Reciprocal Space

in 1-D

Equation 40-43

4

ั›2

2๐‘š๐ด= โˆ’

1

๐‘˜ โˆ’2๐œ‹๐‘›๐‘Ž

2

โˆ’2๐‘š๐œ–ั›2

๐‘›

= โˆ’ 1

๐‘˜ โˆ’2๐œ‹๐‘›๐‘Ž +

2๐‘š๐œ–ั›2

๐‘˜ โˆ’2๐œ‹๐‘›๐‘Ž โˆ’

2๐‘š๐œ–ั›2

๐‘›

= โˆ’ 1

๐‘˜ โˆ’2๐œ‹๐‘›๐‘Ž + ๐พ ๐‘˜ โˆ’

2๐œ‹๐‘›๐‘Ž โˆ’ ๐พ

๐‘›

=1

2๐พ

1

๐‘˜ โˆ’2๐œ‹๐‘›๐‘Ž+ ๐พโˆ’

1

๐‘˜ โˆ’2๐œ‹๐‘›๐‘Žโˆ’ ๐พ

๐‘›

=1

2๐พ

1

๐‘˜ +2๐œ‹๐‘›๐‘Ž+ ๐พโˆ’

1

๐‘˜ +2๐œ‹๐‘›๐‘Žโˆ’ ๐พ

๐‘›

n is from โ€“infinite to +infinite

=1

2๐พ

๐‘Ž

2

1

๐œ‹๐‘› +๐‘Ž(๐‘˜ + ๐พ)2

โˆ’1

๐œ‹๐‘› +๐‘Ž(๐‘˜ โˆ’ ๐พ)2

๐‘›

=๐‘Ž

4๐พcot๐‘Ž

2(๐‘˜ + ๐พ) โˆ’ cot

๐‘Ž

2(๐‘˜ โˆ’ ๐พ)

Eq. (40)

Let 2๐‘š๐œ–

ั›2 = K

From eq. (41)

Equation 40-43

5

=๐‘Ž

4๐พ

cos๐‘Ž

2(๐‘˜+๐พ)

sin๐‘Ž

2(๐‘˜+๐พ) โˆ’cos๐‘Ž

2(๐‘˜โˆ’๐พ)

sin๐‘Ž

2(๐‘˜โˆ’๐พ)

=๐‘Ž

4๐พ

sin๐‘Ž

2(๐‘˜โˆ’๐พ) cos

๐‘Ž

2(๐‘˜+๐พ)โˆ’cos

๐‘Ž

2(๐‘˜โˆ’๐พ) sin

๐‘Ž

2(๐‘˜+๐พ)

sin๐‘Ž

2(๐‘˜+๐พ) sin

๐‘Ž

2(๐‘˜โˆ’๐พ)

=๐‘Ž

4๐พ

โˆ’sin๐พ๐‘Ž

sin๐‘Ž2(๐‘˜ + ๐พ) sin

๐‘Ž2(๐‘˜ โˆ’ ๐พ)

=๐‘Ž

4๐พ

โˆ’sin๐พ๐‘Ž

12โˆ’๐‘๐‘œ๐‘ ๐‘˜๐‘Ž + ๐‘๐‘œ๐‘ ๐พ๐‘Ž

=๐‘Ž

2๐พ

sin๐พ๐‘Ž

๐‘๐‘œ๐‘ ๐‘˜๐‘Ž โˆ’ ๐‘๐‘œ๐‘ ๐พ๐‘Ž

๐‘š๐ด๐‘Ž2

ั›21

๐พ๐‘Ž๐‘ ๐‘–๐‘›๐พ๐‘Ž + ๐‘๐‘œ๐‘ ๐พ๐‘Ž = ๐‘๐‘œ๐‘ ๐‘˜๐‘Ž

ั›2

2๐‘š๐ด=๐‘Ž

4๐พcot๐‘Ž

2(๐‘˜ + ๐พ) โˆ’ cot

๐‘Ž

2(๐‘˜ โˆ’ ๐พ)

Technique: ็ฉๅŒ–ๅ’Œๅทฎ

Empty Lattice Approximation

Reduced zone scheme

Free electron bands for a simple cubic lattice in [100]

kx

ky or kz

kx+(ky or kz)

-kx+(ky or kz)

ky+ kz

Reduced zone scheme

Approximate Solution at, and near a Zone Boundary

(I)

for general k near ยฝ G

(II)

ฯตK is symmetric about the ยฝ G zone boundary

Eg = 2U = 0.9

Consider a linear crystal constructed of an even number N of primitive cells

of lattice constant a. In order to count states we apply periodic boundary

conditions to the wavefunctions over the length of the crystal. The allowed values

of the electron wavevector k in the first Brillouin zone are given by (2):

Number of Orbitals in a Band

Each primitive cell contributes exactly one independent value of k to each

energy band. This result carries over into three dimensions.

With account taken of the two independent orientations of the electron spin,

there are 2N independent orbitals in each energy band.

If there is a single atom of valence one in each primitive cell, the band can be

half filled with electrons. If each atom contributes two valence electrons to the

band, the band can be exactly filled. If there are two atoms of valence one in

each primitive cell, the band can also be exactly filled.

We cut the series off at N๐…/L = ๐…/a, for this is the zone boundary. The point

โ€“N๐…/L = โ€“ ๐…/a is not to be counted as an independent point, because it is connected

by a reciprocal lattice vector with ๐…/a. The total number of points for k is exactly

N, the number of primitive cells. โ€œ The # of K is 2N, counting spins x 2 โ€

ยฑ (N/2)2/L L = Na

Metals and Insulators

If the valence electrons exactly fill one or more bands, leaving others empty,

the crystal will be an insulator. An external electric field will not cause current

flow in an insulator.

A crystal can be an insulator only if the number of valence electrons in a

primitive cell of the crystal is an even integer. (An exception must be made for

electrons in tightly bound inner shells which cannot be treated by band theory.)

If a crystal has an even number of valence electrons per primitive cell, it is

necessary to consider whether or not the bands overlap in energy. If the bands

overlap in energy, then instead of one filled band giving an insulator, we can have

two partly filled bands giving a metal (Fig. 11).

The alkali metals and the noble metals have one valence electron per

primitive cell, so that they have to be metals.

The alkaline earth metals have two valence electrons per primitive cell;

they could be insulators, but the bands overlap in energy to give metals, but

not very good metals.

Diamond, silicon, and germanium each have two atoms of valence four, so

that there are eight valence electrons per primitive cell; the bands do not

overlap, and the pure crystals are insulators at absolute zero.

Insulator Metal or semi-metal Metal

Problem set for Chapter 7

1. No. 1

2. No. 2

3. No. 6