KR9700137 KAERI/TR-865/97 Development Status and Research ...

102
Ill KR9700137 KAERI/TR-865/97 Development Status and Research Directions on the Structural Components of the Fuel Assembly 2 8 «« 2 2

Transcript of KR9700137 KAERI/TR-865/97 Development Status and Research ...

IllKR9700137

KAERI/TR-865/97

Development Status and Research Directions on the

Structural Components of the Fuel Assembly

2 8 «« 2 2

KAERI/TR-865/97

as

Development Status and Research Directions on the

Structural Components of the Fuel Assembly

KAERI/TR-865/97

1997

Vendorf-s]

ASME

- l -

SUMMARY

Survey on the structural components of the state-of-the art of the PWR fuel

assembly developed by various nuclear fuel vendors has been performed. As a

result, some developmental directions and mechanical/structural basic technology to

be established for these structural components have been drawn out.

The developmental directions are as follows: The top end piece shall be

designed in shape to reduce its height to accomodate the fuel rod growth for high

bumup and to have a function for easy reconstitution of the fuel assembly. The

bottom end piece shall be designed in shape to reduce its height to accomodate

the fuel rod growth for high burnup and to have a function of debris protection.

The spacer grid shall be designed in shape to have a function of enhancing the

thermal margin and maintaining the fuel rod integrity without fuel failure due to

fuel rod fretting and vibration.

The mechanical/structural basic technology which must be established is as

follows: The stress analysis results shall comply with the stress criteria specified

in the ASME code stress limits and the shape optimization technology shall be

developed for the top/bottom end pieces. For the spacer grid cell, the nonlinear

-analysis model of the fuel rod and the analysis model on the flow-induced fuel

rod vibration, and a study of the mechanism and a quantified model on the fuel

rod fretting wear shall be developed. In addition, numerical analysis model to

estimate the buckling strength of the spacer grid assembly shall be developed.

Besides above technology, technology related the verification test should be

developed.

- 11 -

I.

II. .8. ^

III. Abstract

IV. List of Figures

1. *1 £ 1

2. q$ TEt^gs) TU^S* 3

2.1 -#2^*11 3

2.1.1

2.1.2

2.1.3

2.1.4

2.2 «Va-Ji^^ 8

2.2.1

2.2.2

2.2.3

2.2.4 ^WTf l^Vadoi i c f l ^

2.3 *M3*l-*fl 15

2.3.i

2.3.2

2.3.3

3. «}^ ^ ^ - ^ - ^ 7im#f! 7la>7l^ 20

3.1 -SMr^jl^ *H * ^ 7lHV7l^ 20

3.1.1 # .*K!:J13*II ^i-M^liL^

3.1.2 ^.^^-jL^aisl T-SL^-S. ^ 7 1 - ^ ^

- iii -

3.1.3

3.1.4

3.2 *

32.1

32.2

32.3

3.2.4

7}

24

4.

4.1 tf

4.1.1

4.1.2

4.2 *l

4.2.1

4.2.2

4.2.3

4.2.4

47

47

48

-5. 57

- IV -

List of Figures

Figure 1. KOFA 17x17 Type Fuel Assembly

Figure 2. ABB-CE's 16x16 Type Fuel Assembly

Figure 3. Quick Release Top Nozzle (Westinghouse)

Figure 4. Upper Tie Plate (ABB-CE)

Figure 5. Upper Tie Plate Assembly (SPC)

Figure 6. Top End Piece (Siemens/KWU)

Figure 7. Fuel Failure Inspection Results (ABB-CE)

Figure 8. Axial Evaluation of Debris-Induced Fuel Rod Failure (ABB-CE)

Figure 9. Debris Filter Bottom Nozzle (Westinghouse)

Figure 10. Triple Protection Against Debris (Westinghouse)

Figure 11. Lower End Fitting (ABB-CE)

Figure 12. GUARDIAN™ Grid (ABB-CE)

Figure 13. FUELGUARD™ Lower Tie Plate (SPC)

Figure 14. Bottom End Piece with Debris Separation Sieve (Siemens/KWU)

Figure 15. Integrated Debris Filter(IDF)

Figure 16. Debris Filter Bottom Nozzle(DFBN) in addition to Longer End Plug

Figure. 17 Debris Filter Grid in combination with Low Pressure-drop Bottom

Nozzle (Mitsubish)

Figure 18. Fine-Mesh Debris Filter Attached to New Type Bottom Nozzle

(Mitsubish)

Figure 19. Anti-Debris Drilled Hole Type Model (KAERI)

Figure 20. Anti-Debris Fin and Anti-Debris Double Fin Type Model (KAERI)

Figure 21. Westinghouse's Spacer Grid

Figure 22. Zircaloy Spacer Grid (ABB-CE)

Figure 23. Siemens/KWU's Spacer Grid

Figure 24. Vantage 5H Fuel Assembly Vibration Test Results

Figure 25. SPC's HTP Spacer Grid

- v -

Figure 26. SPC's IFM Grid

Figure 27. Configuration of I-type Grid and Spring

Figure 28. Finite Element Model of Fragema's Top End Piece

Figure 29. Finite Element Model of KOFA's Bottom End Piece

Figure 30. Finite Element Model of KOFA's Top End Piece

- vi -

1. *\ ۥ

TT Figure 1 3 Figure 2% £<>1 UO2

- 7 ] ^ 4 ^ s - g - A>O]OJI ^ S f ^ ^ « 1 - £ S - ^ f e 7 ) ^ n e l J L ^1^1, LOCA

Vendor

7fl

Hardware

KAERI7}- ^ - ^ ^ . S - i 3 1 $ Westinghouse ( W ) ^ ^ ^ S . ^ <a^-?] KOFA

(KOrean Fuel Assembly)7]- 1989\1 ^ 2 ^ 7 H ^-g-o .S . ^ - ^ ^ ©1 efl

- 1 -

#5.7} ABB/CE*}

^ - ^ S ) J L SIA^ 1997\! 5 ^ 3*1! WA> 1 VANTAGE

5H

ELTfl

Vendor*^ *M>°H

Vendorl-^ 7«^-§-^3)- z{- Vendor!-^

- 2 -

2.

2.1

2.1.1

3 0 4 ^ ^ . ^

Ovaloid 3 3 n^o] ^

1: ne]jl ^Hcf-c- ^^^(Holddown Spring)-^^.S. ^ 3 < H Si4

7) 7171-

2.1.2

2.1.2.1 Westinghouse (W)

Nozzle Insert) ifl-^ofl ^ ^ ^ ( L o c k Tube)

•a-(Release Top Nozzle ; RTN)t-

- 3 -

ofl « 3 (Lock Ring)-!-

45* # # 3 # * M £ 3 ^ ^*fl*l|<8 tf#:a3*fl (Quick Release Top

Nozzle ; QRTN)# 7fl£s)-^(Figure 3).u) °1

"32 gj *g*«# 3*1! -Q-^s)^ 3 # H i s tt

(Reconstitution)Al

TIG -8-3.2.

2.1.2.2 ABB Combustion Engineering (ABB-CE)

Vendort^

(Holddown Plate), Ml 7fls] 3 ^ ^ £ 4 £ ^ ^ ^ , M) 7)1^ fil-^ ojvfl

(Outer Guide Post), «1-M- f oj- 5^E.(Center Post)

Si4.(Figure 4) <>)* -¥-**5) £«^A)fe XJ

Plate Assembly) W * Ml

(Center Nut)* *>l-8-«H * 4 * ^^^J-i- ^ ^ ¥ * ^ Ml

lilt

- 4 -

oi

2.1.2.3 Siemens Power Corporation (SPC)

Siemens l

14X14 « |^S.s i ^ - ^ J L ^ ^ I ^ A B B - C E 4 ^ - ^ ^ ^ ^ ^ ^ | 7 | - cf^- Vendor

^-8-^:(Reaction Plate), Ml 7l)fil aV-g-^^ig (Reaction Spring), Ml 7flfil afl^

M^.(Locking Nuts), Ml 7flfi] -fi-*l#5l ^.(Retaining Sleeves), Ml 7fl^ ^ S ^

^(Spring Cups), «rM-5l ^<S-ulE.(Center Nut), Sj-M-s] -8-¥-Ji^^(Upper

Tie Plate)°.3. ^^s)<H alcf(Figure 5).

M M # 90°

90° ^ ^ A l ^ l ^ £.2:5.=?-*

- 5 -

JMi 90*

2.1.2.4 Siemens/KWU (KWU)

514.

Sli4.

Alofl tfJUHfr 7)7j|7V^«l-^ O ] * 3) Aj ^ ^

FOCUS ^S.ofl Al-g-^ai sa4(Figure 6).910)

_ul -g-^Sl ^V^^-i- ^ ^ A l ^ ^ 5^^ #*]-ul<a-8-^ (Electron Beam Welding

; EBW)-g-

2.1.2.5 Fragema

Fragema-M-fc KWUAV14

FragemaA>£

2.1.3ol2fl Siemens/KWU, ABB-CE

- 6 -

S14. 1995^°!] KAERISJ- S P O W # * * . £ 78*$ INGLES

KAERIS)- KNFCfe-

TIG

2.1.4

SPOM-

- 7 -

2.2

2.2.1

Plate) « £ .

^0] 304^ i iEf lufoiE^ iEflojefl^7j-^ A > ^ - ^ ^ 7l?l|7>* ^ ^ CF-8

0.03«<>l*|-S ^ ^ CF-3^- A>-g-«).7]£ «•) zfl*!

Plate)2j-

iLJl€ ABB-CES] xffiofl s}s)-£ ^ ^ f i . ^ ^ ^ ^ ^ ^o ]^ - o]

66%, ^Ml^^s)- ^S-S-?>fil Sefl^ofl s|^- ^ ^ o ] 7 %5

27%!- *M*|-jl ^ ^ ( F i g u r e 7).

8).

Sflfe o l * ^ 0 ! ^ ^ £ # # HJ-^«|-7| fl^<^ z Vendor** zj"7l ^^^ 0}

Solids

- 8 -

, oje|# t i | 3 3 ^ 3 . oi^-^ofl 3 $ 0 ^ 3 ^^ .o . 3 7 ) )

2.2.2

2.2.2.1 Westinghouse (W)

^^ol^^(Debris FUter Bottom Nozzle; DFBN)

-g- HE]JL o )#^ a j ^ f l ^ ^ ^ - ^ oii-^

(Protective Grid) ^ 3 ) 4 ^ ^ ££•§• H^«V^(ZrO2 coating) ^S.°fl cfl?»-

Si .(Figure 9 ^ 10 ^-2:) S $ a^-^s] ^ - ^ ^ - 0.05%

90%

DFBN°fl 3*11 ^ei^jL ojcfai iLjisl^4.14) 1993V!ofl S ^ ^ Jl

DFBN3 ^-S.^-^^ofl s t rap 3-£ strap

grid-to-rod fretting^-

- 9 -

^ 7j) 7fl (Triple

Protective Design Concepts ° 1 * 3 ^ 4 ^ 3 °1 37)|

ris Capture Capability)^ 3L-§-*M*l

2.2.2.1 ABB Combustion Engineering (ABB-CE)

Solid-^t- «|-ia-JL^*f|(Figure I D *

Solid «!••¥-

GUARDIAN™

TURBO™

12).

2.2.2.3 Siemens Power Corporation (SPC)

FUELGUARD™^:

Insertl- 7fl^-«l-5a4. FUELGUARD™

Blades)-!-

FUELGUARD™

- 10 -

. ^(Pressing).*

1*} ^ t f 1 ^ #^#-fr ^ ^ f 2 ^ Stf-fl* 4M*H FUELGUARD™

tful^^l- # ^ € 4 . oj5]3- FUELGUARD™^

\+^-(coolant turbulance)!- ^t3"*l ^ i ^ ^ ^

^l-ia-JMM ^-^^^r Sife grid-to-rod fretting^

2.2.2.4 Siemens/KWU (Siemens)

*\-%-1l5L $14(Figure 14)8A10)

F i n)

Siemens^ ^^rS-^lfe Figure 15^ ^°1

(Intergrated Debris Filter; IDF)* ^ ^ 4-8-«fal 5a -»4 2 £ ^ ^ 4 ^ 1 SPC

4€- Vendorl-si

2.2.2.5 Fragema

(Anti Debris Filter)* AFA-2G ^ MK-BW^iS«| ^-8-«r^4.1117) Fragema

^ 3mm ^ o ] ^

- 11 -

3 3! A3. Ji^^cf. o)^-^ o^j!}-^^^ t }^ . Vendorl-sl

AFA-3G* ^

(Laser Beam Welding; LBWH4 EBW^-S. ^ f l i^ ^ ^ J l ^ ^ ^ - s i -

Cribbed structure)^ tfl ?|f«>H pin^: 4-g-sH ^^-

o)^-^ «j-x] (advanced anti-debris plate)^-

debris°l| ^^V OJ.JE.O|| ^ ^ ^ o ^ s . 7]7(|aj 7j-£7f # ^ AISI 660

2.2.2.6 Mitsubishi^l-

a f ^ J i ^ ^ -fi-S.^sl ^ ^ - i - Figure 164 £

^^(Debris Filter Bottom Nozzle ; DFBN)4

^^(Debris-trapping Filter Grid)!-

Pressure Drop Bottom Nozzle; LPBN)» 4-8-«!-J1 Slfe^l (Figure

17 # a ) ©ll-^ ^ 4 ^ ^ r ^ A mL* ^ ^ H £A]e|

Debris Filter Grid^ strap

Debris Filter Grid^

meshl- * J I Xi^ filter*

3|(Figure 18

- 12 -

2.2.3

2.2.3.1

KAERI4 SPOl-fc- ABB-CE^

1995\!°fl

FUELGUARD™^

2.2.3.2

7H 7>^-^^ o^^ig^(Anti-debris

Drilled Hole; Figure 19)4

_^^(Anti-debris Fin)4 o ^ ^ ^ (Anti-debris Double Fin; Figure 20)J5.

? « € 4 . oil" ^

Siemens/KWU44

Vendorl-^

2.2.4 ^^/7fl^A>afloi| cfl^-

44

- 13 -

- 14 -

2.3 xl

2.3.1

#£71-

Zircaloy-45.

(ZIRLO

ABB-CEA>, Siemens/KWUAl-

4 * T= Si4(Figure 21, 22, 23).

Grid-to-rod fretting^^H tftQ

'window'l- Si°1|JL ^^-^-71131 ^o ] i - ^7}X)?]v) w e i d c u t o u t

- 15 -

Performance*1'

-Ajofl (Figure 24)

£ # 3 ^(Intermediate Flow Mixers;

IFM)7l- 1983^ W 4 ^ VANTAGE 5

I F M 6 ]

HTP

25, 26).

(W421 Performance+^S" ^ Siemens/KWU4^ FOCUS

., ABB-CE42? TURBO™^^ 4 ^^ 'I'spring, Mitsubishi^} <9s.I8)2] 'I'

Spring ^ ) ^l

_ 4s 5 a ^ ^ * H Grid-to-rod fretting^- #

(ABB-CE4-2; TURBO™^^.^^^ T spring-?-^2} n<q strap

*1fl^-ol# ¥Sa-fr. ^ * W TURB0™££2] xlxl^^ollAi^ spring^

support arch7r spring^ ^ ^ - i - ^^) ^]^S}£.^- S)-^ side-supported

mixing vane^- -?-^-«r^ 7]A^ Q^^Z. ^7^^ £S .^? i£ . -g-ol*>j7

^ ^ i ^ ^ s ) £ ^ - «flt^-)5i 7fl^oi A ) £ S ) J I sacf. -53 Mistsubishi^l-

2] Afls. - T<g Spring^-(Figure 27 ^-S) ^ ^ Mitsubishi^}

Concession Cracking; SCO 3. i i 5 . ^ o l

Mitsubishi*} £S.°flA^ ieaf spring 2|

- 16 -

°fl Corelloy-n

SCC

TIG

beads]

EBW ^)-i-

W421 Performance*, ABB-CE^s) TURBO™ ^£(LBW

HTP ^fi(EBW V-8-) ^2] ^-a 7fl^ ^fiofl A)-g-^3i 5acj-.

Seismic

2.3.2

, Siemens/KWU^g

1987^

- 17 -

KOFA<8

2.3.3

HTP

swirling flow7V

#±*]9]7\ m ^ S * ^Ml ^ = 3SI

- 18 -

7j|^oJ|

- 19 -

3.

-8- U ^ 4 ^ S ] # 1 - f.0.3. ^ . e . ^ ^ 0 . ^ , o|fe ^ f io ] ^7fl/^|SAlaoV^ 7OV

7||«-fr ^ ^ ^ ^ 1 SUfe-H «I^£S) Hardware

i - f-^" 7|7fl/^3:^«y

- 20 -

3.1.1

ANS/ANS-51.1^25' 4 .1 .2^^^ core components.^

? £ # (core support structure)-!- ^ S r J L tt^

ASME code Section m NB-3000^

4»D . KOFA #3. f-)

ASME code Section m NB-3000°fl^

5000 /MABB-CE4

RESAR-3S

Condition I , Q

Condition IB, IV

Non-Operational(Shipping & Handling)

Note : PmP.Pb

s0sm

=0y

C u

ASME Sec.ffl

Level A, B

Level C, D

Stress Category

Pm

Pi

Pm + PiPm + Secondary

Pm

Pm + Pb

ConditionI . OS* * ^

Stress Limit

s m1.5 Sm

1.5 Sm

3.0 Sm

2.4 Sm or 1.07 Su

3.6 Sm or 1.05 S»

-

Primary Membrane Stress IntensityLocal Membrane Stress IntensityPrimary Bending Stress IntensityUltimate StrengthStress Intensitymin. of the {l/3<rymm, 2/3<rymm, 2/3<T«.T, 0S<>U.O2T)

0.2% offset yield stress,Ultimate Stress

- 21 -

3.1.2 #.

3.1.2.1

PlateH

RE. Peterson^]

3.1.2.2

ABB-CE4

# ^(Perforated

3.3.

3g7].

Siemens/KWU4

3.1.2.3

' 8 0 ^ ^ ^ Fragema4^10) 17x17^ W<8

(Adapter plate)4 ^f-^(Enclosure)-i-

(Figure 28) 1 cfl^^ i Adt(Beam element)!-

JE.«i

- 22 -

TIG

3.1.3

3.1.

cf.

ASME

ASME codes] 7

K O F A (KOrean Fuel Assembly)^

£°J ANSYS codes] 3*]-*)

^ ( F i g u r e 29 $ 30 #i)S}-:n. n

U FOCUS™^ DRBEPS]

cfl

3.1.4

3.1.4.1

-8-3.

- 23 -

Vendor** -8-

Inconel o]M- AISI

5a4.

3.1.4.2 ^ H 4 ^ - AB

Vendor**

3.2

3.2.1

LOCAM- ^1^1^4 ^ * ANS Condition m

- 24 -

3.2.2

3.2.2.1

<££.<*] 73

I«•

-o.

- 25 -

Neutron Fluence)

3,7] i »

^ S ^ £ f l , >i = ^ o)^f. gj o S-g- ^Tjoj ^^ofl

5A4.

« •

3.2.3 ^1

3.2.3.1 71) A

- 26 -

4.

FUELGUARD™

DFBN(Debris Filtering Bottom Nozzle) f-°l 514. ° H

GUARDIAN™

) 4.

^-S \J-#

- 27 -

7M-I-

5a<H

, Siemens/KWU4

71 #

- 28 -

3.2.3.2 S

Bending Vibration, Whirling Vibration, Tapping

Impacting^-S.

3.2.3.2.1

^1^^^> ^ S ^ ^ r «|^5L^^-^I - r ^ ^7lofl B14^ ^^$\ 10

3.2.3.2.2

^ ^ ^ - 0.090 ?]*1(2.286

0.045 $1*1(1.143 mm)7>

3.2.3.2.3 -fi- l

3.2.3.2.4

H ^ ^-T-oflS. 10 mils(0.254 m m ) t

- 29 -

3233 = «*«3 42-

3 .233.1 «B4

Vantage SH

# Performance*

3.2.3.3.2 ABB-CEA>

•Ml <S* 3,4 517) o | ^ 3 ^ s . < i ^x)-^ ^-^4ioJlAi A]-^-^«y « jo |a 16

X16 ^«flfe S .¥ 11 7fls) ^l^l^^^|7l-

6255. £)<H SlJL M-^^l 10

2

4 WH «j^5L?l Vantage 5H^ ^^Hl^i ^ ^ ^ ^ %$• Qo]

42-

- 30 -

3.2.3.3.3 SPC4

SPO1- «l 3 5 . 3 ^ 3 %^& ^ £)*)-&£l *]*|3*l-fe- Bi-metallic

# *JS&£.°|-4 *fl;go] ^xf^-ofl o i 3 ^ 7 1 8 ^ =

Bi-metallic

Siemens/KWU4

. ^ , Siemens/KWU^

FOCUS™

HTP (High

Thermal Performance) ^1^1^^°]4. HTP *

HTP

37fl^ IFM (Intermediate Flow Mixer)

?!4. IFM 1 ^1^^*11^ HTP

5a±IFM *W ^^1-

3.2.3.3.4 Siemens/KWUA>

2

- 31 -

3.2.3.4 SefltJ 45L

3.2.3.4.1

0)^.^0]

mode shape 1 3

WECAN 2 £ f o]-§-«)-^ ^i^S-g-sl S.E.*$$3\- *!f-^7l(frequency)

VIBAMP 2 £

OJO.DJ oj nfl«H) . -o. |ofl oj^- ^-^5L3f£ uLBJM. VIBAMP 3HS]

^J^o-S. WECAN 3.B.°\ ^z)- t ^ r ^ ^ ^ l ^ ^ l ^ ^ f e « |^S .^^-^ |

•°1°11 t -c- "^^-^-3L(axial flow distribution)^ ^#^-5.(cross flow

distribution)!-

sUding wear^ofl $*% ^>aL^-^r(wear coefficient)#

pulUng test)<Hl

ction coefficient)^

^ PAD 3 E S ° i | ^ - ,

Bettis

- 32 -

. o] 3.^ 7)

Archard £ . « ^S joa . 5U^^ o]fe cf^-s)

(local plastic deformation)«H1

Archard

1/ - SV ~ 4260//

t S = v\5L ^ &# &, .66 x 10"5)

H = •¥•

(kg/mm2), (^^i # £ 850°J)

F = ^ ^ ^ 2 1 ^ajej (lb)

L = -S-tfl*^- £<>1 (in)

V = or5L *f*\ (in3)

— r— I 4-Lc-D

l

- 33 -

D = *H<£3.& B 1 4 ^ 3 3 (in)

h = *}S. &°] ( in)

V = »}S. ** l (in3)

10

«»•§• ^ H

8171

1000 ^1?}S| m p-A^ A]^-a- f - s ) - ^ ^ ^ S I - J L $14

Tapping

- 34 -

10%

4.-o]

X14.

"I, 10 mUs (0.010 in.)s] »<>1

(Transient Condition)^

- WECAN

- IFM

- Zirconium Oxide

3.2.3.4.2

<$$.

5tU,

7l?}-oi

v\S.

(14X14, 15X15, 16

1000

3 mils(0.003 i t\

- 35 -

12

8iol ^°>Sl^- ^Efl (EOL £3)61711+, 1- 1)7)- ^Tfl (loose

cell 4

, EOL

3.2.3.4.3 SPCA>

€-^°1 ^ - ^ 4 ^ ^ ^ r »8fl«1-3. 5a4.

3? till

HTP * ] S

- 36 -

fl*H 7\% &£• LHGR(Linear Heat Generation Rate)

€• fluencel- #fe «| 3 S.#<>12.3. °1# ^

. LHGR(Linear Heat Generation Rate)*l q ^ S S - f r °l-g-*H

fluence

Bi-metalUc HTP « IFM 1000

bi-metallic * 1 *

"OH S]fe e^oflA^ nJ.JE.7V

HTP

HTPSf IFM

nj.JS.7l-

bi-metalUc

ojofl nl-sf bi-metallic

IFM

3.2.3.4.4 Siemens/KWlMl

Siemens/KWU^l-i S

n] 1000

Jg7l-SVal

FOCUS™

- 37 -

3.2.3.4

3.2.3.

£ ^ 3 . *J^3<y *^o]4. 3 ^ 4 3-g-

1000

Archard« r Si4

« •

5J

4-2-4

- 38 -

. o|n|

5a

*

^01 ^^oflujxii. 01-8-^4 -g- £ ^

eiS #-8-

5tl4.

- 39 -

3.2.4

3.2.4.1 7fl.a_

7l7)

flfccfl -fMI-ft-^-W- (Flow-Induced

Vibration; FIVH

5801*1)^-8:

Mechanism)!-

supported simple beamH4.

- 40 -

^(Single-phase flow)«|^l?> tf^olM^ ^l^-fi-W-(Two-phase flow)*]

^ 7|ol(force-excited)€

7\°$ ^-^(forcing function ^ random pressure

fluctuations)s)- -fr^|/^3:l- ^J:3)-8-(damping and couplingH

3.2.4.2

3.2.4.2.1

vane)!-

(1151,

*r?ll

^^-y-711 (mixing

Figure 31 r38' ^ ^ - ^ s ] ^ ^ u ] ^ 3 0 ] jif-o] ^ o | ^ 2 ^ (Re)7>

- 41 -

Ji Si4. Re < 402]

(downstream)°1M ^ £ $%-7

•fr^r°l * 7 r « H 40 < Re < 150 °

o.s ^^^v+71-fe- «^-(vortex shedding)<>l

-fr^-fr Strauhal number, SS. cf-g-4

S = fs D / U (1)

fs = vortex shedding frequency

D =

U =

Strauhal number^- - g ^ ^ A S . ^ # 4 . Figure 32 1- ^-ol Re <

Strauhal number^; #$7} 7)2\ &<m, Re > 100,00041^ *?-

strauhal number^ Re 2f ^^ISio] 0.18 - 0.22

LS^ ^-^l^- vortex shedding

vortex shedding ^7lfil 2afloflA

(fn)7l- o ] ^ vertex shedding^7]fif

Strauhal number (S)fe 0.3 < S < 0.7

vortex shedding0!!

Vortex shedding ^ 1 * $ H ^^-«}-^ -S?!cife 'turbulent buffeting %••&

turbulence-induced vibration'°fl S]«r^ ^*<>1 -n-^€ *r Si 4 . turbulent

- 42 -

buffeting^

(shapped band-pass filter)*] 3 *r-8-*M \*fi-

vertex shedding 4 turbulence buffeting^

. Pettigrewfif Gorman^-41'42' ©lfi ^I-^7)^-o

1 (excitation)^- random process^. 7>^«|-J1 buffeting

7>^-|- 2:Sj-^7l(harmonic)S. 7}-^«l-al vertex shedding -§-

^|oi«r5a4. Pettigrew, Gorman HE) 3! Blevins

^ ol*D*j!.Ei # ^ 1 - ^ 1 ^ - 7 l^o] fluidelastic instability

(self-excited vibration)^ ej-JL tbcf. °11-^1

Figure 332)- ^ 4 . Fluidelastic instability^- -

J . °1 ^^-^r 1961 d RoberH]

1970^°)] Connors^^ ^ ^ ^ ^ ^ c ] -g^o.S.-¥-El fluidelastic instability7}

2 ) 1 7 2Uc / fn D = 9.9 (m* / pD2)172 (2)

m = ^ ^ c ] ^ ^ (hydrodynamic mass

8 = logarithmic decrement

P =

Connors^

- 43 -

Blevinsofl damping

Connors^

^r 9.97)-

Uc / fn D = K (mS /

by Peake, K= 3.3 by Pettigrew

fluidelastic instabiUty

3.2.4.2.2

Figure 254 2 4 .

"^•§-A(pressure fluctuation W

turbulent buffeting^ -fr4«|-7fl

band-pass fil ter)^^ *J-8-*H

10"

tfl *f| s] £ 4.

(3)

(K=15.4 by Coit, K= 9.1

. °1# Figure 34°fl iL?]cf.

cfl ^ E ] (snapped

«1^I -(specific amplitude:

TMI-l, Angra,

Beaver VaUy #4.36)

fluidelastic instability^

- 44 -

Turbulent buffeting^}- G°] #*Ml*7]tt ^*£# -fr^ofH Re > 300,0(XW

A^-^cl-al Sj- -HI36' 3 « 3 $ ! 7}<&%^3.$) ±$£ 400,000 < Re <600,000^-

3. "B-BW &<>H °1 $*H t-°m4. *lf!

near-field' 2f far-field A i S . 7 ^ € 4 . near-field

shear

flowsHeJ-JL 471

Wambsganss^fl

Wambsganssfe43' power spectral density (psd)7]- -^HJ-^ ^o] x7V

^*1-534. «:« far-field

Turbulent buffeting^-

hydrodynamic coupUng-lr

turbulence buffeting^: tf#-{r^ ^-fs)- ^ ^ * 1 4 1 -

= Uo (1 + McosQtW £•& 3-f) d-Q^r?) f 7} 2fn / k (k = 1, 2, 3 H

'periodic wake shedding (- --cr parametric resonance)' o]2faL ti"4.

- 45 -

1200 rpm .2.3. 3 - f t 20 Hz, 1800 rpm^ r 3-ffe 30

cfl (0 ~ 50 Hz)7\

Hara f-«l|

u = (pA / El f1 UL

48°fl

7}

cflif u « 0.5 S

parametric resonance^ Paidoussis,

flutters)-

Eigenfrequencyfe Real(cyn)

0 and Im(£yn) <

0 °i n

Paidoussis°fl

«-« 97-100].

(4)

fluidelastic instability

433 *J-3

6.^f o ,

Imaginary(<yn)°1 5 1 ^ ^ ^ -^^r Re(<yn) =

flutter ?tft£: Re(wn) # 0 and Im(<un) <

- 46 -

4.

4.1

4.1.1

5U

. f e -g-^o)

^Ife

- 47 -

4.1.2 -&=4£ *s.

20,000MWD/MTU^

4.2 ^

4.2.1

7.}

- 48 -

7}-*! xl

5 a *

4.2.2 -fr l-8-*

instability)^- $*.2.si\

> *V^ ^ ^ « -fr# (u ^ 05)

- *11 Hl*M «« 37)

5a5ft4. ^ 3 4 -a* « l « a » *)«•

510.

- 49 -

71 £

37})

olH.7)

o. 3.7)7}

70 - l

7\JL

^ • ^ - i - &£\2) ^^ .S. e

fluidelastic instability, turbulence buffetting, n ^ J l vortex shedding f °| 2

- 50 -

fluidelastic instability

1) self-excited

2) forced vibration

3) parametric excitation

371-xlf1 2$*«3 forced vibration^

fl*H 7]-?l^-^ (forcing function)^

pressure fluctuationofl tfl^- p.s.d.

(power spectral density)* ^ ^ ^ ji-fi-a^s. -9-El ^^f 3 ^ * H

3L ^cf. tj-A] fHM -felS- p.s.d» ^ ^ 7 ] 41 « H prototyped

^«V^o> ^-cf^ 3jol4. ^ ^ -fr r ^ ^ 7l«o|A| 7|)^ o)

7\ &q slJi SI71 nij ofl 3 ^ 3 . ^ ^ . ^ 4 7 ] . ^ 6 . ^ ^ 3 1d)°fl tfl* ^^71- Si<Ho> fl ^}o.S- J i t l 4 . ^ ^ ^ l f e Conner, Paidoussis,

Chen, nelJL Wambsganss *«>1 A

- 51 -

(coupling)-i-

4.2.3

Si0.4 4.2.1 U 4.2.2ofl^^ <y^.^^:3 j .^ ^s_s_

J-5.S SBfl«!} nj.Jg.ofl

4-8-4

- 52 -

4.2.3.1 Sefl*e £>£s} jtal|^«J-^ SIM (Solid Mechanical Analysis)

•i-

(1)

(2)

SMr «H («|a^ HTP Grid

- 53 -

°l-g-*M -§-3 *l)^£ «• *r S i - ^ Fourier

Transform £^r -fr$.flL4i*l|4j ^Ij-I: <>l-g-SM°> $ 4 .

(3) 4 a ol^-i-fi] AJAJ£ $}# ^ ^ A]ofl #<go|

7}^(Criteria)*

5U

)(Mixing

- 54 -

4.2.3.2 -g^-fr •§•# - eflfJ £ # £«fi^ (Experimental Analysis &

Fretting Damage Modeling)

£.'8(Archard model)-!- S

7)^-8- ?J-ji Si^ *^r Si£.4 Steam Generator U-TubeS] ^

S°l ' S T 1 ^ ^ J8t^ NRCC (National Research Council Canada) a ^

AECL( Atomic Energy Canada Limited) £) CRNL(Chalk River Nuclear

4.2.4

- 55 -

full size *]£jicHr -f-ii 5x5

full size

- 56 -

5.

1)

2)

3)

- 57 -

REFERENCES

[I] Fuel presentation to KNFC, Westinghouse Presentation Material, 1996.

[2] S.L. Davidson, Reference Core Report VANTAGE 5 Fuel Assembly,

WCAP 10444-P-A, Westinghouse, 1985.

[3] C.L. Cling et al, "ABB Combustion Engineering Nuclear Fuel

Performance Target : Zero Defects, " Proceedings of the 10th KAIF/KNS

Annual Conference, 1995.

[4] TURBO and Korea, ABB-CE Presentation Material, 1996.

[5] R.B. Stout et al, "Presentation to KAERI on Siemens Fuel Group and

the HTP Fuel Design," 1995.

[6] Siemens Fuel Group and the HTP Fuel Design, SPC Presentation

Material, 1996.

[7] R.B. Stout et al, Presentation to KAERI on the HTP Fuel Design,

1994.

[8] FOCUS and HTP Fuel Assemblies for Pressurized Water Reactors,

- Siemens Brochure, 1990.

[9] Advanced Design Features for FOCUS Fuel Assembly, Siemens

Brochure, 1990.

[10] R. Holzer et al, "Fuel Design Advancements by Application of

Siemens FOCUS Technology," Proceedings of the 7th KAIF/KNS Annual

Conference, 1992.

[II] Fragema's Mechanical Design Report, 900 MWe STD Fuel Assembly,

ITB/84/4093, Rev.0, 1988.

[12] Fragema Upgrades the AFA, Fragema Brochure, 1990.

[13] £-§-S*1 13S!,"«I£3. -¥•§• 7)^7^: KAERI/RR-1026/90.

- 58 -

[14] H. W. Wilson et al., "Westinghouse Fuel Performance in Today's

Aggressive Plant Operating Environment," ibid, pp.23-30.

[15] Z. E. Karoutas et al., "ABB-CE's Advanced PWR Fuel Design," The

Fifth International Topical Meeting on Nuclear Thermal Hydraulics,

Operations and Safety(NUTHOS-5), Beijing, China, Apr. 14-18, 1997, pp.

U3-1-U3-8.

[16] K. N. Woods et al., "Siemens Fuel Performance Overview, "ibid, pp.

272-279.

[17] Gilles Ravier et al., "Framatone and FCF Recent Operating Experience

and Advanced Features to Increase Performance and Reliability," ibid, pp.

31-36.

[18] S. Abeta et al., "Design and Performance of Mitsubishi PWR Fuel for

Increased Reliability," Procedeeings of the 1997 International Topical

Meeting on LWR Fuel Performance, Portland,Oregon, Mar.2-6,1997,

pp.309-317.

[19] °}4%, ° ) # ^ ^ 4 SJ-^JI^^I 7fl£, KAERI/RR-1266/93, 1993.

[20] « a ^ ^ , °1*D3, s i -^a l^^ l -ffS.#£] ^ M %%#, KAERJ/TR-518/95,

1995.

[21] U34, £^a , 3^3. **<&s- *t#5L$n *s.#s\ ^n %*m, j . Of

the KNS, Vol. 27, No. 6, 1995.

[22] Advanced Light Water Reactor Utility Requirement Document, Rev. 5,

EPRI, 1992.

[23] *Hje $ 2U -frft-fi-i'S* «l-8-^ *]x}qx\ ^ 5 ^ ^ ^RJ*I)4H

^ ^ , KAERI/TR-523/95, 1995.

[24] £ 3 3 : , ^^fl 'SS.-g- ^1^1^-^^ ajl#,g- ^ ^ S-'fi 7m, KAERI >

-, 1995.

- 59 -

[25] ANSI/ANS-51.1-1983, American National Standard Nuclear Safety

Criteria for the Design of Stationary Pressurized Water Reactor Plants,

[26] W.D. Rabenstein, Mechanical Tests and Evaluation of the 17x17

Optimized Fuel Assembly and Components, WCAP-9363, 1979.

[27] K.N. Song, "Design of the Fuel Assembly Structure with Zircaloy

Spacer Grids," KWU Work Report, U6 312/87/e278, 1987.

[28] K.N. Song and D.S. Sohn, "A Study for the Improvement of Top End

Piece Structural Strength," J. of the Korean Nuclear Society, Vol. 21,

No. 3, 1989.

[29] M.D. Beaumont and J. Skaritka, Verification Testing and Analyses of

the 17X17 Optimized Fuel Assembly, WCAP-9401, 1979.

[30] L. Gesinski, Mechanical Test and Evaluation of the 17X17 Fuel

Assembly, WCAP-8286, 1974.

[31] F. Garzarolli et al, "9th International Symposium on Zirconium in the

Nuclear Industries," 1990.

[32] L.G. Stephens, Bi-metallic Spacer Friction Forces and High Thermal

Performance Friction Forces, Cell Sizes, and Doublet Stiffness Tests,

ANF-DTA-457, Rev. 2.

[33] K.N. Song and K.S. Seo, "A Characteristic Analysis on the Elastic

Stiffness of the Tapered-width Leaf Type Holddown Spring Assembly

Designed in KOFA's Design Space," J. of the Korean Nuclear Society,

Vol. 28, No. 6, 1996.

[34] K.A. Elliott, Results of the 1000 Hours Fretting Test for the ANF 17

X17 HTP Fuel Assembly, EMF-92-123(P), Rev.O.

[35] 3 3 ^ 3 , 3.<&±^ «I^^L 7J11M- Jfl# 7}#7]<g « ! T \ KEPRI94Z-J05,

!, 1995.

- 60 -

[36] M.W. Ken-ard et al, A Study cf Grid-to-Rod Fretting Wear in PWR

Fuel Assemblies, The S.M. Stoller Corporation, 1995.

[37] J.F. Archard, "Contact and Rubbing of Flat Surfaces," J. of Applied

Physics, Vol. 24, No. 8, 1953.

[38] Robert D. Blevins, Flow-Induced Vibration, Van Nostrand Reinhol&

1990

[39] M. J. Pettigrew, "Vibration analysis of heat exchanger and steam

generator designs," Nuclear Engineering and Design Vol. 48(1978) pp.

97-115

[40] R.M.C. So and Savkar, "Buffeting forces on rigid circular cylinders in

cross flows," Journal of Fluid Mechanics VoL 105 (1981) pp. 397-425

[41] M. J. Pettigrew and D. J. Gorman, Vibration of heat exchange

components in liquid and two-phase cross flow, paper 2.3 in Proceedings

BNES International conference, 1978

[42] M. J. Pettigrew and D. J. Gorman, "Vibration of heat exchanger tube

bundles in liquid and two-phase cross flow," PVP-Vol. 52(1981) pp.

89-110

[43] M. P. Paidoussis, "A review of flow-induced vibrations in reactor

components," Nuclear Engineering and Design, Vol. 74(1982) pp. 31-60

[44] H.J. Jr. Connors, "Fluidelastic vibration of tube arrays excited by

cross flow," ASME-Flow-induced vibration in heat exchangers, New

York (1970) pp. 42-56

[45] R.D. Blevins, "Fluidelastic whirling of tube rows and tube arrays,"

ASME-Joumal of Fluid Engineering VoL 99(1977) pp. 457-460

[46] R.D. Blevins, "Fluid damping and whirling instability of tube arrays,"

S.S Chen (eds) ASME-Fluid-Induced vibrations, (1979) pp. 35-39

- 61 -

[47] M.W. Wambsganss, T.M. Mulcahy, Flow-induced vibration of nuclear

reactor fuel'- Part I, Modeling,

[48] M.P. Paidoussis, "Fluidelastic vibration of cylinder arrays in axial and

cross flow, state of the art," Journal of Sound and Vibrations, Vol. 76

(1981) 326-360

[49] Shin, Y.W., Two-phase flow-induced vibrations of Rods in parallel

flow: A state of the art review, GEAT-24148/ANL-CL-78-18/C004175-4

(1978)

[50] L. V. Corsetti et al., Improved BWR and PWR Fuel Designs and

Operating Experience at ABB, pp. 280-286.

[51] Aisch and Schmucker, Minimum Necessary Spacer Springs Force,

KWU Work Report, B12/el67/79, 1979.

[52] R. E. Peterson, " Stress Concentration Factors," 1974, John Wiley &

Sons, New York.

[53] R. S. Miller et al., "Westinghouse Fuel Operating at High Burnup and

with Advanced Features," International Topical Meeting on LWR Fuel

Performance, 1994.

[54] & « 3 9^, " tf.*r# 5

-H," KAERI/TR-866/97, 1997.

- 62 -

BOTTOM I-MP PIE'CK

Figure 1. KOFA 17x17 Type FueJ Assembly

j ^ UPPER END FITTING ASSEMBLY

taasmSMCUGIID

OTTO 8QIK1UU

OCBKt 5MCEI GRID

LOHEK END FITtttB

Figure 2. ABB-CE's 16x16 Type Fuel Assembly

- 64 -

Top Plate L-ORTN L SupportEdge Joini(iG) insert

location (0)

InslrumenlTube Hole

^ n s * n Sleeve^ (Umgaan

GuW» Tlwntrie!

Figure 3. Quick Release Top Nozzle (Westinghouse)

- 65 -

FUEL ASSEMBLYSERIAL NUKBER

OUTER POST (4)

HOLOOOUN PLATE ( I )

HOLOOOVM SPRING (4)

CEHTER POST ( I )

FLOW PLATE ( I )

Figure 4. Upper Tie Plate (ABB-CE)

- 66 -

Figure 5. Upper Tie Plate Assembly (SPC)

- 67 -

Figure 6. Top End Piece (Siemens/KWU)

- 68 -

Debris Fret t ing66% Unknown Cause

27%

Grid- to-Rod Frett ing7%

Figure 7. Fuel Failure Inspection Results (ABB-CE)

- 69 -

ApproilmaieElevation olCenter a< LowarSupport A/th*( l . U Incnesl

IncfMS•ollom of

Elevation olLower Cage olflrw u X UG/td Ctae12-30 incites)

\

Solid Meiom ^\j O . .ol Fuel Hi-'End Cap(O.J« I

7 V V

Actual Cl««atian ol C M I M T II< Support Arcn^47 lnen«a. tmorior Suip. 2M IDCIMC. Cst««Mton Slnp

4.0

3.0

2.0

ia) 4 Fud

App<aatnui«Cloviriofl olCenter ol LowerSupport

\A 1

Lowar (oo* olK m if X K

Solid Moiohlol fuel Hod

(0.C3 Indies)

I

•noesFro*•oiiom olfuel Aod

1.0

1.0

0

Actual eievalion o< Cemer ol Support'Arcn2.00 Inches. MNenor Strip. 2.04 Incite*. Etttmion Strip

f\tm\ Hod erlorawon

fuel Hod w«ar

<h> Iri.xlrj

Figure 8. Axial Evaluation of Debris-Induced Fuel Rod Failure (ABB-CE)

- 70 -POORCMMUTYI

ORiam

Fuel Rod

flow Hole

Grid Dimple

Bollom View

Figure 9. Debris Filter Bottom Nozzle (Westinghouse)

- 71 -

Coated cladding

Protective grid,fonger-«nd *plugs

DFBN

Coated CladdingN. fifejR Bottom<Support Grid

InnerStrapHeight

ProtectiveGrid

Solid Bottom End P1u«

Figure 10. Triple Protection Against Debris (Westinghouse)

- 72 -

OOOQOOQQQOCDee

o -T--' ooeoooooo®ooooooooooooooooo 050 oooooo

OOOOOOOCbOOOOOOQ-OO ^ OOOOO .-;£N OOOOf£>4OOOOOf^OOO O f £ > O O O O O ^ O OOO ^ ' ' OOOOO ' OO000000000000000NOQQOQQQQOQQOQOQJ

• FLOW HOLE

U i LV^> I Kli :

CIRCUUR GROOVE FORRECEIVING THE CENTERGUIOE TUBE

LEAO-IN FOR THE IN-CORE INSTR,

Figure 11. Lower End Fitting ( A B B - C E )

- 73 -

BOTTOM NOZZLEFLOW HOLE

FUEL RODS

GUARDIAN STIUIM-VG FEATURES

Figure 12. GUARDIAN™ Grid (ABB-CE)

_ 74 _

Hods

QoltoittSpacer \ J • '

Luv/er I: mlCap

f.owcrtie IM.He

Cut veilni;«ics

OOllOliOIIUflollli

Figure 13. FUELGUARD™ Lower Tie Plate (SPC)

- 75 -

/ll II II II 1 (,

11 I I I I I I Jl I I 11-11 I I I I . I I S

V

/ | n i . . L L t in 1,1.. lt

\ \

•41II II

\

I I J l • I I I I - .11. I I . . I I . . I I V

Figure 14. Bottom End Piece with Debris Separation Sieve (Siemens/KWU)

- 76 -

Fig. 15. Integrated Debris Filter (IDF)

- 77 -

[Original Bottom Nozzle]

[OFBN]

Fig. 16. Debris Filter Bottom Nozzle(DFBN) in addition to Longer End Plug

- 78 -

] Grid a * Debris Filter

Grid

LP8N |

[zifcaloy Grfd FuaQ

Fig.17 Debris Filter Grid in combination withLow Pressure-drop Bottom Nozzle (mitsubishn)

Fig. 18 Fine-Mesh Debris Filter Attached to New

Type Bottom Nozzle (Mitsubishi)

- 79 -

I I

SECTIDN B - B

3 Type Hole

2 ) < ^ 4 = 1 0 . ,3 ) 0i=lO.5mr%

Figure 19. Anti-Debris Drilled Hole Type Model (KAERI)

- 80 -

Fig. 20. Anti-Debris Fin and Anti-Debris Double Fin Type Model (KAERI)

- 81 -

Guide Thirtle Sleeve Guide Vanes

Mixing Vanes

Guide Tabs

Grid Spring Support Qtapie

IdentificationHole

Figure 21. Westinghouse's Spacer grid

- 8 2 -

BACKUP ARCH

SPRING TAB

ARCH

INTERSECTIONWELO

GUIOE TUBELOCATIONS

ROD PITCH

SEAM WELD LEAD-IN TAB

Figure 22. Zircaloy Spacer Grid (ABB-CE)

- 83 -

Figure 23. Siemens/KWU's Spacer grid

- 84 -

Vibration Amplitude

LWithout Corrective Actions

With Rotated Gods —

r With Redesijped Grids

1200 1300 1400 1500 1600 1700

Flow Rdl# (Qpffl)

1800 1900 2000

Figure 24. VANTAGE 5H Fuel Assembly Vibration Test Results

- 85 -

FUEL ROD

FLOWDIRECTION

GUIDE TUBE

SPOT WELDINTERNAL. STRIP ASSEMBLY

FLOW MIXING NOZZLES

• SPRINGS COMPRESSED

SPRINGS UNLOADED

Figure 25. SPC's HTP Spacer grid

- 86 -

FLOWDIRECTION

GUIDE TUBE

RJELROO

FLOW MIXINGNOZZLES

Figure 26. SPC's IFM grid

- 87 -

Spring hi* 6t " I -

Figure 27. Configuration of I-Type Grid and Spring

Figure 28. Finite Element Model of Fragema's Top End Piece

- 89 -

!

I

k*GSC5 ( t lx*d ac):kaOSfS.i . c-15 . 5 . O-45-5 { 19 . 5/ -Otnra)

51]

H 1

Si

1i

1

Figure 29. Finite Element Model of KOFA's Bottom End Piece

- 90 -

Figure 30. Finite Element Model of KOFA's Top End Piece

- 91 -

^ *1 3 Ji <£ Q

*********

KAERI/TR-865/97

(TR.AR°] 3-f T*1*H

Hi ^ O t j ^-

92 pages

INIS

•^^T?" ^ -S-^ •§•'^•5., I8'3<l!?i ( ^ T S . ^ ^

£ S. 5fl*( v ), « » ( )

A £3 -7I] uL p] \

1£<8'd ! 1997.06

3 7l 19x26 Cm.

± ^(15-2O#M1^)

71 i

^ ^ Jl^^fi) ^4- ASME code*) •8-^/y7fl7l^«H| Jf^-^fe -tlsl^ •££

2] Hl-id^ ^l^lTl^- €-^7)^ , 'gB.^sl •fr D-ff-U' - sfl-^?!^, ^S.-8-fil

(lO'S'^ifls])

BIBLIOGRAPHIC INFORMATION SHEET

Performing Org.

Report No.

Sponsoring Org.

Report No.

Stamdard Report

No.INIS Subject Code

KAERI/TR-86B/W

Title/SubfitteDevelopment Status and Research Directions onthe Structural Components of the Fuel Assembly

Projectland Department

fSong. Kee Nam(LWR Fuel Development Team)

Researcher and

Department

Kim, Hyung Kyu; Kang, Heung Seok;

Yoon, Kyung Ho; Bang, Je Geon

(LWR Fuel Development Team)Publication

PlaceTaejon Publisher KAERI

Publication

Date1997. 06.

Page 92 p. 111. & Tab. Yes( V ), No ( ) Size 19x26 CmNote

ClassifiedOpen(V), Restricted(

Class DocumentReport Type Research Report

Sponsoring Org. Contract No.

Abstract

(15-20 Lines)

Survey on the structural components of the state-of-the art of the PWRfuel assembly developed by various nuclear fuel vendors has been performed.As a result, some developmental directions and mechanical/structural basictechnology to be established for these structural components have been drawnout The developmental directions are as follows-' The top end piece shall bedesigned in shape to reduce its height to accomodate the fuel rod growth forhigh burnup and to have a function for easy reconstitution of the fuel assembly.The bottom end piece shall be designed in shape to reduce its height toaccomodate the fuel rod growth for high bumup and to have a function ofdebris protection. The spacer grid shall be designed in shape to have a functionof enhancing the thermal margin and maintaining the fuel rod integrity withoutfuel failure due to fuel rod fretting and vibration. The mechanical/structuralbasic technology which must be established is as follows: The stress analysisresults shall comply with the stress criteria specified in the ASME code stresslimits and the shape optimization technology shall be developed for thetop/bottom end pieces. For the spacer grid cell, the nonlinear analysis model ofthe fuel rod and the analysis model on the flow-induced fuel rod vibration, anda study of the mechanism and a quantified model on the fuel rod fretting wearshall be developed. In addition, numerical analysis model to estimate thebuckling strength of the spacer grid assembly shall be developed. Besides abovetechnology, technology related the verification test should be developed.

Subject Keywords(About 10 words)

Top End Piece, Bottom End Piece, Spacer Grid, Fuel Rod FrettingWear, Flow Induced Vibration, Buckling Strength