KOORDINASI KONTROL FACTS MENGGUNAKAN INTERVAL TYPE...

27
KOORDINASI KONTROL FACTS MENGGUNAKAN INTERVAL TYPE-2 FUZZY LOGIC UNTUK MEMPERBAIKI DAMPING OSILASI DAYA PADA SISTEM KELISTRIKAN JAWA BALI 500 KV Oleh WAHYUDI 2206 100 135 Dosen Pembimbing : Prof. Dr. Ir. Imam Robandi, MT

Transcript of KOORDINASI KONTROL FACTS MENGGUNAKAN INTERVAL TYPE...

KOORDINASI KONTROL FACTS MENGGUNAKAN INTERVAL TYPE-2

FUZZY LOGIC UNTUK MEMPERBAIKI DAMPING OSILASI DAYA PADA SISTEM

KELISTRIKAN JAWA BALI 500 KV

OlehWAHYUDI 2206 100 135

Dosen Pembimbing : Prof. Dr. Ir. Imam Robandi, MT

Pendahuluan

Sistem Multimesin

GangguanPerformansi Sistem

Kontrol Fuzzy

Sistem Stabil

UPFC

Tidak Stabil

Batas Masalah

1. Pemodelan sistem nonlinier menggunakan Matlab7.3.

2. UPFC yang dipasang 2 buah3. PSS terpasang disetting secara tetap4. Pengaruh harmonik diabaikan5. Subsynchronous diabaikan6. Pengamatan kestabilan transien akibat gangguan

hubung singkat tiga phasa 4 cycle.

Tujuan

1. Mengetahui hasil penerapan interval type-2 fuzzy logic untuk mengkoordinasi 2 UPFC yang dipasangpada sistem kelistrikan Jawa Bali 500 kV

2. Meningkatkan performansi kestabilan sistem kelistrikan Jawa Bali 500 kV ketika terjadi gangguan besar.

Gambar 1. Flowchart penyelesaian TugasAkhir

Gambar 2. Plant SistemJawa Bali 500 kV

1 Slack Bus7 Generator Bus 15 Load Bus 2 UPFC [7]

1. Suralaya-Gandul2. Tanjungjati-Ungaran

Gambar 3. Skema UPFC

Gambar 4. Struktur Dasar Fuzzy Logic Controller

Gambar 5. Fungsi keanggotaan input Fuzzy tipe 2

-6 -4 -2 0 2 4 60

0.5

1

IBN_UMF=[-5-0.3 -1 -0.2 0.1+0.3];IBN_LMF=[-5+0.3 -1 -0.2 0.1-0.3];IMN_UMF=[-1-0.3 -0.15 0.2+0.3];IMN_LMF=[-1+0.3 -0.15 0.2-0.3];ILN_UMF=[-1-0.3 -0.065 1+0.3 ];ILN_LMF=[-1+0.3 -0.065 1-0.3 ];IZ_UMF =[-1-0.3 0 1+0.3 ];IZ_LMF =[-1+0.3 0 1-0.3 ];ILP_UMF=[-1-0.3 0.065 1+0.3 ];ILP_LMF=[-1+0.3 0.065 1-0.3 ];IMP_UMF=[-0.2-0.3 0.15 1+0.3 ];IMP_LMF=[-0.2+0.3 0.15 1-0.3 ];IBP_UMF=[-0.1-0.3 0.2 1 5+0.3];IBP_LMF=[-0.1+0.3 0.2 1 5-0.3];

Gambar 6. Fungsi keanggotaan output Fuzzy tipe 2

OBN_UMF=[-1-0.05 -0.5 -0.4+0.05 ];OBN_LMF=[-1+0.05 -0.5 -0.4-0.05 ];OMN_UMF=[-0.5-0.05 -0.4 -0.3+0.05 ];OMN_LMF=[-0.5+0.05 -0.4 -0.3-0.05 ];OLN_UMF=[-0.4-0.05 -0.3 0+0.05 ];OLN_LMF=[-0.4+0.05 -0.3 0-0.05 ];OBZ_UMF=[-0.3-0.05 0 0.3+0.05 ];OBZ_LMF=[-0.3+0.05 0 0.3-0.05 ];OLZ_UMF=[-0.015-0.005 0 0.015+0.005 ];OLZ_LMF=[-0.015+0.005 0 0.015-0.005 ];OLP_UMF=[0-0.05 0.3 0.4+0.05 ];OLP_LMF=[0+0.05 0.3 0.4-0.05 ];OMP_UMF=[0.3-0.05 0.4 0.5+0.05 ];OMP_LMF=[0.3+0.05 0.4 0.5-0.05 ];OBP_UMF=[0.4-0.05 0.5 1+0.05 ];OBP_LMF=[0.4+0.05 0.5 1-0.05 ];

Tabel 1. Aturan fuzzy

PUPFC1\ PUPFC2 BP MP LP Z LN MN BN

BN BZ LN MN MN BN BN BN

MN LP BZ LN MN MN BN BN

LN MP LP BZ LN LN MN BN

Z BP MP LP LZ LN MN BN

LP BP MP LP LP BZ LN MN

MP BP BP MP MP LP BZ LN

BP BP BP BP MP MP LP BZ

Gambar 7. Defuzzification(Karnik-Mendel Algorithm)

Gambar 8. Koordinasi kontrol UPFC menggunakanfuzzy [1]

Gambar 9. Model nonlinier sistem Jawa Bali 500 kV

Trip

By pass

PQref Vdqref

m

A1

B1C1

A2

B2

C2

UPFC

UPFC2

Trip

By pass

PQref Vdqref

m

A1

B1C1

A2

B2

C2

UPFC

UPFC1

UPFC2

UPFC1

A B C

TanjungJati

A B C

Suralaya

A B C

Static Load Pedan-158 MVar

A B C

Static Load Kediri-193 MVar

A B C

Saguling

A B C

Paiton

A B C

Muaratawar

A B C

Load Ungaran290 MW320 MVar

A B C

Load Tasikmalaya244 MW15 MVar

A B C

Load Surabaya Barat760 MW280 MVar

A B CLoad Pedan462 MW215 MVar

ABC

Load Mandirancan350 MW

120 MVar

ABC

Load Kembangan670 MW

230 MVar

A B C

Load Kediri316 MW182 MVar

A B C

Load Gresik185 MW80 MVar

A B C

Load Grati115 MW170 MVar

A B C

Load Gandul480 MW

160 MVar

ABC

Load Cilegon620 MW

200 MVar

A B C

Load Cibinong615 MW

190 MVar

ABC

Load Cibatu726 MW

280 MVar

ABC

Load Bekasi570 MW

150 MVar

A B C

Load Bandung Selatan520 MW310 MVar

[PQref1]

[PQref2]

[Vdqref1

[Vdqref2]

A B C

Gresik

A B C

Grati

n

m

A B CA B C

Fault

Open this blockto visualize

generator signals

Data Acquisition1

Open this blockto visualize

voltage&Current signals

Data Acquisition

A1 B1 C1

Cirata

Bypass2

Bypass1

A

BC

a

bc

Bus Ungaran

AB

C

ab

c

Bus Tasikmalaya

A

BC

a

bc

Bus Tanjung Jati

A

BC

a

bc

Bus Suralaya

AB

C

ab

c

Bus Surabaya Barat

AB

C

Bus Saguling

AB

C

ab

c

Bus Pedan

AB

C

ab

c

Bus Paiton

A

B

C

Bus Muaratawar

A

BC

a

bc

Bus Mandirancan

A

BC

a

bc

Bus Kembangan

AB

C

ab

c

Bus Kediri

A

BC

Bus Gresik

AB

C

ab

c

Bus Grati

A

BC

a

bc

Bus Gandul

AB

C

ab

c

Bus Depok

A

BC

a

bc

Bus Cirata

AB

C

ab

c

Bus Cilegon

AB

C

ab

c

Bus Cibinong

A

BC

a

bc

Bus Cibatu

A

B

C

a

b

c

Bus Cawang

A

B

C

a

b

c

Bus Bekasi

A

BC

a

bc

Bus Bandung Selatan

A

BC

a

bc

B_UPFC22

A

BC

B_UPFC12

88.363 kmLine Grati-Paiton

81.9 kmLine Cibinong-Saguling

79.41 kmLine Surabaya Barat-Grati

77.1 kmLine Ungaran-Pedan

67.4 kmLine Ungaran-Tanjung Jati1

67.4 kmLine Ungaran-Tanjung Jati2

55.574 kmLine Suralaya-Gandul 2

55.574 kmLine Suralaya-Gandul 1

53 kmLine Muaratawar-Cibinong

48.158 kmLine Muaratawar-Cibatu

48 kmLine Cawang-Muaratawar

46.757 kmLine Cibatu-Cirata

39 kmLine Bandung selatan

-Saguling

37.92 kmLine -Gandul-Depok

37.9 kmLine Bekasi-Cibinong

320.304 kmLine Tanjung Jati-Surabaya Barat

305 kmLine Tasikmalaya-Pedan

30.143 kmLine Kembangan-Gandul

280 kmLine Depok -Tasikmalaya

254.6 kmLine Ungaran-Surabaya Barat

25.166 kmLine Saguling-Cirata

230 kmLine Mandirancan-Ungaran

23.8 kmLine Surabaya Barat-Gresik

21.27 kmLine Gandul- Cibinong

205 kmLine Pedan-Kediri

205 kmLine Kediri-Paiton

19.5 kmLine Bandung selatan

-Saguling2

19.5 kmLine Bandung selatan

-Saguling1

16.84 kmLine Bekasi-Cawang

130.81 kmLine Cilegon-Cibinong

12.48 kmLine Suralaya-Cilegon

119.3 kmLine Bandung selatan-Mandirancan

A B C

Static Load Paiton -96 MVar

ABC

135 MW 40 MVar

A B C

Load Paiton 740 MW 240 MVar

A B C

Load Cirata 600 MW 216 MVar

A B C

Load Cawang 670 MW 160 MVar

A

BC

a

bc

Brk2

A

BC

a

bc

Brk1

doubledouble

double

double

doubledouble

double

double

Gambar 10. Sistem koordinasi Fuzzy

3Q1

2P1

1V

type2

4s

4s+1

Washout

Subtract

UU(E)

UU(E)

UU(E)

UU(E)

UU(E)

UU(E)

Limiter

0.01s+1

0.02s+1Lead-lag 2

0.01s+1

0.02s+1Lead-lag 1

Iabc_Cilegon

Vabc_Suralaya

Iabc_Suralaya

Iabc_Cibinong

Vabc_Cibinong

Vabc_Kembangan

Vabc_Gandul

Iabc_Kembangan

Vabc_Cawang

Iabc_Cawang

Vabc_Mandirancan

abc_Mandirancan

Vabc_Depok

Iabc_Depok

Vabc_Cilegon

Iabc_Gandul

Q_UPFC12

P_UPFC12

2/3 100

Vabc

Iabc

PQ

3-PhaseActive & Reactive Power

(Phasor Type)7

Vabc

IabcPQ

3-PhaseActive & Reactive Power

(Phasor Type)6

Vabc

Iabc

PQ

3-PhaseActive & Reactive Power

(Phasor Type)5

Vabc

Iabc

PQ

3-PhaseActive & Reactive Power

(Phasor Type)4

Vabc

Iabc

PQ

3-PhaseActive & Reactive Power

(Phasor Type)3

Vabc

IabcPQ

3-PhaseActive & Reactive Power

(Phasor Type)2

Vabc

Iabc

PQ

3-PhaseActive & Reactive Power

(Phasor Type)1

Vabc

Iabc

PQ

3-PhaseActive & Reactive Power

(Phasor Type)

HASIL DAN ANALISIS

Pengamatan terhadap respon variasi frekuensi dan respon variasi sudut rotor saat terjadi hubung singkat 3 phasa 4 cycle.Pada simulasi diamati perbandingan respon sistem berikut:

1. Sistem tanpa koordinasi, 2. Sistem dengan koordinasi fuzzy tipe 1, 3. Sistem dengan koordinasi fuzzy tipe 2.

Gambar 11. Respon Variasi Frekuensi PLTU Suralaya

Tabel 2. Data settling time frekuensi pembangkit Jawa Bali 500 kV (detik)

Tabel 3. Data overshoot frekuensi pembangkit Jawa Bali 500 kV (pu)

Pembangkit Tanpa koordinasi

Dengan koordinasi

fuzzy tipe 1

Dengan koordinasi

fuzzy tipe 2PLTU Suralaya

> 10 7.1 3.5

PLTU Muaratawar

> 10 10 5.9

PLTA Cirata

> 10 9.1 4.5

PLTA Saguling

> 10 8.5 4.8

PLTU Paiton

> 10 7.9 4.5

PLTU Grati > 10 6.8 3.9

PLTU Gresik

> 10 6.7 4.1

PLTU Tanjungjati

> 10 5.8 4.4

Pembangkit Tanpa koordinasi

Dengan koordinasi

fuzzy tipe 1

Dengan koordinasi

fuzzy tipe 2PLTU Suralaya

0.000265 0.000235 0.000215

PLTU Muaratawar

0.000262 0.000241 0.000222

PLTA Cirata

0.000263 0.000235 0.000195

PLTA Saguling

0.000262 0.000231 0.000198

PLTU Paiton

0.000295 0.000238 0.000218

PLTU Grati 0.000265 0.000231 0.000205

PLTU Gresik

0.000258 0.000239 0.000182

PLTU Tanjungjati

0.000265 0.000225 0.000202

Gambar 12. Respon Variasi Sudut Rotor PLTU Suralaya

Tabel 4. Data settling time sudut rotor pembangkit Jawa Bali 500 kV (detik)

Tabel 5. Data overshoot sudut rotor pembangkit Jawa Bali 500 kV (pu)

Pembangkit Tanpa koordinasi

Dengan koordinasi

fuzzy tipe 1

Dengan koordinasi fuzzy tipe 2

PLTU Suralaya

>10 7.2 3.8

PLTU Muaratawar

>10 10 6.8

PLTA Cirata >10 8.2 5.5

PLTA Saguling

>10 8.3 5.8

PLTU Paiton

>10 8.2 4.8

PLTU Grati >10 6.3 4.2

PLTU Gresik

>10 7.3 3.8

PLTU Tanjungjati

>10 6.2 4.4

Pembangkit Tanpa koordinasi

Dengan koordinasi

fuzzy tipe 1

Dengan koordinasi

fuzzy tipe 2PLTU Suralaya

0.121 0.109 0.105

PLTU Muaratawar

0.117 0.11 0.102

PLTA Cirata

0.116 0.109 0.091

PLTA Saguling

0.118 0.107 0.093

PLTU Paiton

0.119 0.109 0.105

PLTU Grati 0.122 0.108 0.103

PLTU Gresik

0.121 0.109 0.096

PLTU Tanjungjati

0.124 0.111 0.106

KESIMPULAN

1. Penerapan Interval Type2 Fuzzy Logic dapat digunakan untukmengkoordinasi parameter gain UPFC, sehingga diperoleh parameter gain UPFC optimal yaitu sebesar 0.1268.

2. Penerapan metode Interval Type2 Fuzzy Logic terhadap gain UPFCdapat mempercepat settling time respon variasi frekuensi dan responvariasi sudut rotor ketika terjadi gangguan hubung singkat.

3. Penerapan Interval Type2 Fuzzy Logic dapat mempercepat settling timerespon frekuensi PLTU Suralaya sebesar 3.6 detik dibandingmenggunakan fuzzy tipe 1.

4. Penerapan Interval Type2 Fuzzy Logic juga dapat mempercepat settling time respon sudut rotor PLTU Suralaya sebesar 3.4 detik dibandingmenggunakan fuzzy tipe 1.

SARAN

1. Optimisasi Parameter waktu UPFC dapat dilakukan dengan metode kecerdasan buatan, sehingga diperoleh parameter UPFC yang lebih optimal.

2. Optimisasi parameter waktu UPFC dapat dilakukan secara bersamaan dengan proses koordinasi gain UPFC menggunakan Fuzzy.

REFERENSI1. Lijun Cai dan István Erlich, "Fuzzy Coordination of FACTS Controllers for

Damping Power System Oscillations", IEEE Transactions On Fuzzy Sys-tems, Vol. 15, No. 1, February 2008

2. Imam Robandi dan Bedy Kharisma,"Design of Interval Type-2 Fuzzy Logic Based Power System Stabilizer",Proceedings Of World Academy Of Science, Engineering And Technology Volume 31 July 2008

3. Imam Robandi, “Desain Sistem Tenaga Modern”, Andi Yogyakarta, 20064. A.J.F.Keri, X.Lombard, dan A.A.Edris, "Unified Power Flow Controller

(UPFC): Modeling and Analysis",IEEE Transactions on Power Delivery, Vol.14,No.2,April 1999

5. Phumin Kirawanich dan Robert M. O’Connell,"Fuzzy Logic Control of an Active Power Line Conditioner",IEEE Transactions On Power Electronics, Vol. 19, No. 6, November 2004

6. Mendel dan Robert I. Bob John,"Type-2 Fuzzy Sets Made Simple Jerry", IEEE Transactions On Fuzzy Systems, Vol. 10, No. 2, APRIL 2002

7. Mochamad Ashari,"An Overview of FACTS Controllers", surabaya,Department of Electrical Engineering, Faculty of Industrial TechnologyInstitut Teknologi Sepuluh Nopember (ITS), 2000

8. Julio Romero Agüero dan Alberto Vargas,"Calculating Functions of Interval Type-2 Fuzzy Numbers for Fault Current Analysis",IEEETransactions On Fuzzy Systems, Vol. 15, No. 1, February 2007.

9. S. Limyingcharone, U. D. Annakkage, and N. C. Pahalawaththa, “Fuzzy logic based unified power flow controllers for transient stability improvement”, IEE Proc. vol. 145, No. 3, 1998, pp. 225–232

10. Mark Gordon and David J. Hill, “ Flexible Nonlinear Voltage Control Design for Power Systems” IEEE International Conference on Control Applications Part of IEEE Multi-conference on Systems and Control Singapore, 1-3 October 2007

11. ……, “Fuzzy Logic Toolbox for Use with MATLAB”, The Mathworks, 2002.

12. ……, MATLAB help version 7.3, 2006.13. ……, Fuzzy Logic Toolbox for use with MATLAB user’s guide,

version 2, 1998.14. P. Kundur, “Power System Stability and Control”, McGraw-Hill,1993.

15. P.M. Anderson & A.A. Fouad, Power System Control and Stability, The Iowa State University Press: 1977.

16. Jerry M.Mendel, Feilong Liu, “Super-Exponential Convergence of the Karnik–Mendel Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set”, IEEE, April 2007

17. QilianLiangand, Jerry M. Mendel, “Interval Type-2 Fuzzy Logic System Theory and Design”, IEEE, October, 2000.

18. Jerry M. Mendel, Robert I.Bob John, “Type-2 Fuzzy Sets Made Simple”, IEEE, April, 2002.

19. Xuzheng Chai, Xidong Liang, "Flexible Compact AC Transmission System - a New Mode for Large-capacity and Long-distance Power Transmission",IEEE 2006

20. Joseph Mutale and Goran Strbac, "Transmission Network Reinforcement Versus FACTS: An Economic Assessment",IEEE Transactions On Power Systems, VOL. 15, NO. 3, August 2000

21. John J. Paserba, "How FACTS Controllers Benefit AC Transmission Systems",IEEE 2004

22. Swakshar Ray and anesh K.Venayagamoorthy, “A wide area measurement based neuro control for generation excitation systems”, Engineering Applications of Artificial Intelligence, 2008

23. D. Menniti, A. Pinnarelli and U. De Martinis,A. Andreotti, Modelling of Unified Power Flow Controller into Power Systems using P-Spice, IEEE, 2005

SekianSekian

TerimaTerima KasihKasih