Konstruksi Jalan

49
2002 Pavement Design Federal Highway Administration June 2001 Thomas P. Harman Asphalt Team Leader

description

2002 Pavement Design

Transcript of Konstruksi Jalan

Page 1: Konstruksi Jalan

2002 Pavement Design

Federal Highway AdministrationJune 2001

Thomas P. HarmanAsphalt Team Leader

Page 2: Konstruksi Jalan

Predicting Pavement Performance

� Pavements are designed to fail

� But how do they perform?

Page 3: Konstruksi Jalan

Defining Performance

� Structural vs. functional� Structural: load carrying capacity� Functional: ride quality and safety

� Associated failures� Load: caused by traffic� Non-load: caused by climate, materials,

and construction

Page 4: Konstruksi Jalan

Performance Modeling

Input DataInput Data

EnvironmentalEffectsModels

EnvironmentalEffectsModels

PavementResponse

Model

PavementResponse

ModelDistressModel

DistressModel

PerformancePredictions

PerformancePredictions

Material Characterization ModelMaterial Characterization Model

Page 5: Konstruksi Jalan

Our Project

� State of Confusion� 10 mile section� 36 feet wide

Page 6: Konstruksi Jalan

Our Project

� Materials� Environment� Traffic� Modeling� Performance Prediction

Page 7: Konstruksi Jalan

Material Characterization

Input DataInput Data

EnvironmentalEffectsModels

EnvironmentalEffectsModels

PavementResponse

Model

PavementResponse

ModelDistressModel

DistressModel

PerformancePredictions

PerformancePredictions

Material Characterization ModelMaterial Characterization Model

Page 8: Konstruksi Jalan

Materials

� 2 layer system

Glooptonyte

Base

Page 9: Konstruksi Jalan

Materials Characterization

� Response to. . . Load

Page 10: Konstruksi Jalan

Materials Characterization

� Response to. . .Load,Temperature

Page 11: Konstruksi Jalan

Materials Characterization

� Response toLoad,Temperature,Moisture

Page 12: Konstruksi Jalan

Materials Characterization

� Response toLoad,Temperature,Moisture, &Time.

Page 13: Konstruksi Jalan

Glooptonyte

� All Glooptonyte is the same� It is homogeneous, isotropic, and elastic� It is not effected by moisture� It is not effected by time

Page 14: Konstruksi Jalan

Glooptonyte

0

20

40

60

80

100

0 2 4 6

Strain (Length/Length)

Str

ess

(Loa

d/Are

a)20°C

0°CE

Page 15: Konstruksi Jalan

Material Characterization Model

� Modulus, E = Stress / Strain� Predictive Model

� Strain = Stress / E

� Does our model work? 0

20

40

60

80

100

0 2 4 6

StrainStr

ess

Page 16: Konstruksi Jalan

Environmental Effects

Input DataInput Data

EnvironmentalEffectsModels

EnvironmentalEffectsModels

PavementResponse

Model

PavementResponse

ModelDistressModel

DistressModel

PerformancePredictions

PerformancePredictions

Material Characterization ModelMaterial Characterization Model

Page 17: Konstruksi Jalan

Glooptonyte

0

5

10

15

20

25

0°C 20°C

Temperature

Mod

ulus

, E

Page 18: Konstruksi Jalan

Environmental Effects Model

� Modulus, E = 20 � 0.5 (T)

� T is the temperature in °C

� Does our model work?05

10152025

0°C 20°C

Page 19: Konstruksi Jalan

Testing the Model

0

5

10

15

20

25

0°C 10°C 20°C

Temperature

Mod

ulus

, E

� E = 20 � 0.5 (T)

� At T = 10°C

� E predicted = ?

16

Page 20: Konstruksi Jalan

Inputs

Input DataInput Data

EnvironmentalEffectsModels

EnvironmentalEffectsModels

PavementResponse

Model

PavementResponse

ModelDistressModel

DistressModel

PerformancePredictions

PerformancePredictions

Material Characterization ModelMaterial Characterization Model

Page 21: Konstruksi Jalan

Environmental Conditions

-10

0

10

20

30

Winter Spring Summer Fall

Season

Tem

pera

ture

, °C

Pavement

Page 22: Konstruksi Jalan

Environmental Effects Model

0

5

10

15

20

25

Winter Spring Summer Fall

Gloo

pton

yte

Mod

ulus

, E E = 20 � 0.5 (T)E = 20 � 0.5 (T)

Page 23: Konstruksi Jalan

Traffic

� No more ESAL�s� Traffic input by

� Vehicle type� Axle weight

� Load Spectra

Page 24: Konstruksi Jalan

Traffic Conditions

� State of Confusion� Unicycles only� Two loadings

Page 25: Konstruksi Jalan

Traffic Conditions

� Category A Unicycle� Load, P 750 lbs� Pressure, p 60 psi� Contact, a 2 in

� Category B Unicycle� Load, P 1250 lbs� Pressure, p 100 psi� Contact, a 2 in

a, contact radius p = P / ( п r2 )

Page 26: Konstruksi Jalan

Traffic Conditions

� Category A� AADT 600,000

� Category B� AADT 400,000

0.00.20.40.60.81.01.2

1 2 3 4 5

Time, years

AADT, (m

illions

)

Total

Cat A

Cat B

No Anticipated GrowthNo Anticipated Growth

Page 27: Konstruksi Jalan

Design Life

� 20 years� Total anticipated traffic:

� Category A = 12 million� Category B = 8 million� TOTAL = 20 million

Page 28: Konstruksi Jalan

Pavement Response

Input DataInput Data

EnvironmentalEffectsModels

EnvironmentalEffectsModels

PavementResponse

Model

PavementResponse

ModelDistressModel

DistressModel

PerformancePredictions

PerformancePredictions

Material Characterization ModelMaterial Characterization Model

Page 29: Konstruksi Jalan

Pavement Response

Page 30: Konstruksi Jalan

To Load

Page 31: Konstruksi Jalan

Pavement Response Tools

� Analytical solutions (e.g. Burmister)� Multi-layer elastic theory� Finite element analysis

� 2D, 3D� Hybrid methods

Page 32: Konstruksi Jalan

Analytical Solution(Burmister)

� Assumptions � µ = 0.5 (Poisson�s ratio)� E BASE = 1/10 E Glooptonyte

Surface deflection = 1.5 p a F2E BASE

F2 = f (a, E2 / E1, t1 )F2 = f (a, E2 / E1, t1 )

Page 33: Konstruksi Jalan

Burmister

� Glooptonyte, t = 8 inches� Category A Unicycle, p = 60 psi, a = 2� Summer time, T = 20°C

� E1 = 20 � 0.5 (T) = 10 ksi� E2 = 1/10 E1 = 1 ksi = 1000 psi� F2 = f (a, E2 / E1, t1 ) = 0.20 (from a Table)

Surface Deflection = 0.04�Surface Deflection = 0.04�

1.5 p a F2E BASE

1.5 p a F2E BASE

Page 34: Konstruksi Jalan

Pavement Sections

4 inches4 inches

8 inches8 inches6 inches6 inches

Page 35: Konstruksi Jalan

Pavement Response Model

δ4� = 0.09δ6� = 0.075δ8� = 0.06

δ4� = 0.06δ6� = 0.05δ8� = 0.04

10 / 1Summer / Fall (Tp = 20°C)

δ4� = 0.045δ6� = 0.038δ8� = 0.03

δ4� = 0.03δ6� = 0.025δ8� = 0.02

20 / 2Winter / Spring (Tp = 0°C)

Category Bp = 100 psi

Category Ap = 60 psi

E1 / E2

psiSeason

Page 36: Konstruksi Jalan

Distress

Input DataInput Data

EnvironmentalEffectsModels

EnvironmentalEffectsModels

PavementResponse

Model

PavementResponse

ModelDistressModel

DistressModel

PerformancePredictions

PerformancePredictions

Material Characterization ModelMaterial Characterization Model

Page 37: Konstruksi Jalan

Glooptonyte

� Only fails in rutting

Page 38: Konstruksi Jalan

Pavement Distress Model

� Empirical� Mechanistic� Mechanistic-Empirical

Page 39: Konstruksi Jalan

Empirical Model

PavementResponse

PavementResponse

TrafficLoadingTraffic

LoadingPavement

PerformancePavement

Performance

Page 40: Konstruksi Jalan

Empirical Model

� Log ( δP / δB ) = C1 + C2 Log (N)

� Where:� δP , Permanent deformation� δB , Burmister deflection� C1 and C2, Constants (-3.1, 0.5)� N, load applications

Page 41: Konstruksi Jalan

Performance Criteria

� What is acceptable performance?

� Rutting < 0.3 inches

Page 42: Konstruksi Jalan

Performance Prediction

Input DataInput Data

EnvironmentalEffectsModels

EnvironmentalEffectsModels

PavementResponse

Model

PavementResponse

ModelDistressModel

DistressModel

PerformancePredictions

PerformancePredictions

Material Characterization ModelMaterial Characterization Model

Page 43: Konstruksi Jalan

Empirical Model

Session Cat t δ B N design δ P W / S A 4 0.030 6,000,000 0.06S / F A 4 0.060 6,000,000 0.12W / S B 4 0.045 4,000,000 0.07S / F B 4 0.090 4,000,000 0.14

0.39Log ( δP / δB ) = C1 + C2 Log (N)Log ( δP / δB ) = C1 + C2 Log (N)

RuttingRutting

Page 44: Konstruksi Jalan

Performance Prediction

0.20

0.25

0.30

0.35

0.40

2 4 6 8 10

Glooptonyte Thickness, inches

Rutt

ing,

inc

hes

Prediction

Criterion

Page 45: Konstruksi Jalan

Performance Prediction

Input DataInput Data

EnvironmentalEffectsModels

EnvironmentalEffectsModels

PavementResponse

Model

PavementResponse

ModelDistressModel

DistressModel

PerformancePredictions

PerformancePredictions

Material Characterization ModelMaterial Characterization Model

8”

Page 46: Konstruksi Jalan

Models Calibration

� Log ( δP / δB ) = β1 C1 + β2 C2 Log (N)

� Where:� β1 , β2 calibration factors

Page 47: Konstruksi Jalan

Models Calibration

Predicted Performance

Mea

sure

d Pe

rfor

man

ce

* *

*

**

*

*

*

**

**

* **

*

β1 , β2β1 , β2

National Then LocalNational Then Local

Page 48: Konstruksi Jalan

Performance Modeling

Input DataInput Data

EnvironmentalEffectsModels

EnvironmentalEffectsModels

PavementResponse

Model

PavementResponse

ModelDistressModel

DistressModel

PerformancePredictions

PerformancePredictions

Material Characterization ModelMaterial Characterization Model

Page 49: Konstruksi Jalan

Thank You