Konsep Matriks

Click here to load reader

  • date post

    18-Mar-2016
  • Category

    Documents

  • view

    188
  • download

    0

Embed Size (px)

description

MATRIKS. Konsep Matriks. MATRIX. Concept of Matrix. Macam-macam Matriks. Kompetensi Dasar : Mendeskripsikan macam-macam matriks Indikator : Matriks ditentukan unsur dan notasinya Matriks dibedakan menurut jenis dan relasinya. Kinds of Matrix. Basic Competences : - PowerPoint PPT Presentation

Transcript of Konsep Matriks

  • Konsep Matriks

    Matriks

  • Concept of Matrix

    Matriks

    Adaptif

    Macam-macam Matriks

    Kompetensi Dasar :Mendeskripsikan macam-macam matriks

    Indikator :Matriks ditentukan unsur dan notasinyaMatriks dibedakan menurut jenis dan relasinya

    Matriks

    Adaptif

    Kinds of Matrix

    Basic Competences :Describing the kinds of matrix

    Indicators :Matrix is determined by its elements and notationsMatriks matrix is distinguished by its kinds and relations

    Matriks

    Adaptif

    Pengertian MatriksMatriks adalah susunan bilangan-bilangan yang terdiri atas baris-baris dan kolom-kolom.

    a11 a12.a1j a1na21 a22 a2j.a2n : : : :ai1 ai2 aij.. ain: : : :am1 am2amj. amn

    A = bariskolomNotasi: Matriks: A = [aij]Elemen: (A)ij = aijOrdo A: m x nMasing-masing bilangan dalam matriks disebut entri atau elemen. Ordo (ukuran) matriks adalah jumlah baris kali jumlah kolom. Macam macam Matriks

    Matriks

    Adaptif

    Definition of MatrixMatrix is the arrangement of numbers which consists of rows and columns.

    a11 a12.a1j a1na21 a22 a2j.a2n : : : :ai1 ai2 aij.. ain: : : :am1 am2amj. amn

    A = rowscolumnNotation: Matrix: A = [aij]Element: (A)ij = aijOrder A: m x nEach of the numbers in matrix is called as entry or element. Order (size) of matrix is the value of the row number multiplied by the number of column. Kinds of Matrix

    Matriks

    Adaptif

    Macam-macam MatriksMatriks baris adalah matriks yang hanya terdiri dari satu baris.

    1. Matriks Baris

    Matriks

    Adaptif

    Kinds of MatrixRow matrix is a matrix which consists of one row.

    1. Row matrix

    Matriks

    Adaptif

    Macam-macam Matriks2. Matriks KolomMatriks Kolom adalah matriks yang hanya terdiri dari satu kolom

    Matriks

    Adaptif

    Kinds of Matrix2. Column matrixColumn matrix is a matrix which consists of one column.

    Matriks

    Adaptif

    3. Matriks PersegiMatriks persegi (bujur sangkar) adalah matriks yang jumlah baris dan jumlah kolom sama.1 2 42 2 23 3 3Trace(A) = 1 + 2 + 3Trace dari matriks adalah jumlahan elemen-elemen diagonal utamadiagonal utama Macam macam Matriks

    Matriks

    Adaptif

    3. Square matrixSquare matrix is a matrix which has the same numbers of rows and columns.1 2 42 2 23 3 3Trace(A) = 1 + 2 + 3Trace from matrix is the total numbers from the main diagonal elements.Main diagonal Kinds of Matrix

    Matriks

    Adaptif

    4. Matriks Nol Matriks nol adalah matriks yang semua elemennya nol

    0 0 00 00 01 00 11 0 00 1 00 0 11 0 0 00 1 0 00 0 1 0 0 0 0 1I2I3I4Matriks identitas adalah matriks persegi yang elemen diagonal utamanya 1 dan elemen lainnya 0 Macam- macam Matriks

    Matriks

    Adaptif

    4. Zero matrix zero matrix is a matrix which all of its elements are zero.

    0 0 00 00 01 00 11 0 00 1 00 0 11 0 0 00 1 0 00 0 1 0 0 0 0 1I2I3I4Matrix identity is a square matrix which its main diagonal element is 1 and the other element is 0. Kinds of Matrix

    Matriks

    Adaptif

    5. Matriks ortogonalMatriks A orthogonal jika dan hanya jika AT = A 1 Jika A adalah matriks orthogonal, maka (A-1)T = (AT)-1= A-1= B-1(A-1)T = (AT)-1 A-1 AT Macam-macam Matriks

    Matriks

    Adaptif

    5. Orthogonal MatrixMatrix A is orthogonal if and only if AT = A 1 If A is orthogonal matrix, so (A-1)T = (AT)-1= A-1= B-1(A-1)T = (AT)-1 A-1 AT Kinds of Matrix

    Matriks

    Adaptif

    Macam macam MatriksDefinisi:Transpose matriks A adalah matriks AT, kolom-kolomnya adalah baris-baris dari A, baris-barisnya adalah kolom-kolom dari A.

    AT = A = 4 5 2 36 -9 7 7Jika A adalah matriks m x n, maka matriks transpose AT berukuran ..[AT]ij = [A]ji n x m

    Matriks

    Adaptif

    Kinds of MatrixDefinisi:Transpose matrix A is matrix AT, its columns are rows of A, its rows is columns of A.

    AT = A = 4 5 2 36 -9 7 7if A is matrix m x n, so matrix transpose AT should be ..[AT]ij = [A]ji n x m

    Matriks

    Adaptif

    Kesamaan dua matriksDua matriks sama jika ukuran sama dan setiap entri yang bersesuaian sama.A = BC DE = F jika x = 1G = H222456907 Macam macam Matriks

    Matriks

    Adaptif

    Similarity of two matrixesTwo matrix are similar if its size is similar and each symmetrical entry is similarA = BC DE = F jika x = 1G = H222456907 Kind of Matrix

    Matriks

    Adaptif

    Matriks SimetriMatriks A disebut simetris jika dan hanya jika A = ATA simetri1 2 3 42 5 7 0 3 7 8 2 4 0 2 9A == AT Macam-macam Matriks

    Matriks

    Adaptif

    Symmetrical matrixMatrix A is called symmetric if and only if A = ATA symmetric1 2 3 42 5 7 0 3 7 8 2 4 0 2 9A == AT Kinds of Matrix

    Matriks

    Adaptif

    Sifat-sifat transpose matriksAAT(AT)T(AT )T = ATranspose dari A transpose adalah A:4 5 2 36 -9 7 74 5 2 36 -9 7 7= AContoh: Macam-macam Matriks

    Matriks

    Adaptif

    properties of transpose matrixAAT(AT)T(AT )T = ATranspose of A transpose is A:4 5 2 36 -9 7 74 5 2 36 -9 7 7= AExample: Kinds of Matrix

    Matriks

    Adaptif

    Macam-macam Matriks2. (A+B)T = AT + BT

    Matriks

    Adaptif

    Kinds of Matrix2. (A+B)T = AT + BT

    Matriks

    Adaptif

    Macam-macam Matriks3. (kA)T = k(A) T untuk skalar k

    kA(kA)T = k(A)TATTk

    Matriks

    Adaptif

    Kinds of Matrix3. (kA)T = k(A) T for scalar k

    kA(kA)T = k(A)TATTk

    Matriks

    Adaptif

    Macam-macam Matriks4. (AB)T = BT AT (AB)T =AB= BTAT

    Matriks

    Adaptif

    Kinds of Matrix4. (AB)T = BT AT (AB)T =AB= BTAT

    Matriks

    Adaptif

    Macam-macam MatriksIsilah titik-titik di bawah iniA simetri maka A + AT= ..((AT)T)T = .(ABC)T = .((k+a)A)T = .....(A + B + C)T = .Kunci:2A ATCTBTAT (k+a)AT AT + BT + CT

    Soal :

    Matriks

    Adaptif

    Kind of MatrixFill in the blanks bellowA symmetric then A + AT= ..((AT)T)T = .(ABC)T = .((k+a)A)T = .....(A + B + C)T = .Answer keys:2A ATCTBTAT (k+a)AT AT + BT + CT

    Quiz :

    Matriks

    Adaptif

    OPERASI MATRIKSKompetesi DasarMenyelesaikan Operasi MatriksIndikatorDua matriks atau lebih ditentukan hasil penjumlahan atau pengurangannyaDua matriks atau lebih ditentukan hasil kalinya

    Matriks

    Adaptif

    OPERATION OF MATRIXBasic competenceFinishing operation matrixIndicatorTwo or more matrixes is defined by the result of their addition or subtraction Two or more matrixes is defined by the result of their multiplication

    Matriks

    Adaptif

    Contoh :

    Penjumlahan dan pengurangan dua matriks OPERASI MATRIKS

    Matriks

    Adaptif

    Example:

    Addition and subtraction of two matixes OPERATION OF MATRIX

    Matriks

    Adaptif

    OPERASI MATRIKSApa syarat agar dua matriks dapat dijumlahkan?

    Jawab:Ordo dua matriks tersebut sama

    A = [aij] dan B = [bij] berukuran sama,

    A + B didefinisikan: (A + B)ij = (A)ij + (B)ij = aij + bij

    Matriks

    Adaptif

    OPERATION OF MATRIXWhat is the condition so that two matrixes can be added?

    Answer:The ordo of the two matrixes are the sameA = [aij] dan B = [bij] have the same size,

    A + B is defined: (A + B)ij = (A)ij + (B)ij = aij + bij

    Matriks

    Adaptif

    Jumlah dua matriks

    D + C = L + K = Apa kesimpulanmu? Apakah jumlahan matriks bersifat komutatif? OPERASI MATRIKS

    Matriks

    Adaptif

    The quantity of two matrixes

    D + C = L + K = What is your conclusion? Is the addition of matrixes commutative? OPERATION OF MATRIX

    Matriks

    Adaptif

    OPERASI MATRIKSSoal:

    C + D =C + E = A + B =

    Feedback:

    Matriks

    Adaptif

    OPERATION OF MATRIXExercise:

    C + D =C + E = A + B =

    Feedback:

    Matriks

    Adaptif

    Hasil kali skalar dengan matriks5A = =250 300 50350 100 150H = H =Diberikan matriks A = [aij] dan skalar c, perkalian skalar cA mempunyai entri-entri sebagai berikut:(cA)ij = c.(A)ij = caijApa hubungan H dengan A?5x55x55x65x25x15x325353010515Catatan: Pada himpunan Mmxn, perkalian matriks dengan skalar bersifat tertutup (menghasilkan matriks dengan ordo yang sama)50A OPERASI MATRIKS

    Matriks

    Adaptif

    The multiplication result of scalar matrix5A = =250 300 50350 100 150H = H =Given matrix A = [aij] aand scalar c, the multiplication of scalar cA have the following entries:(cA)ij = c.(A)ij = caijWhat is the relation between H and A?5x55x55x65x25x15x325353010515Note: In the set of Mmxn, the matrix multiplication with scalar have closed properties (it will have matrix with the same orrdo)50A OPERATION OF MATRIX

    Matriks

    Adaptif

    OPERASI MATRIKSK 3 x 3

    Matriks

    Adaptif

    OPERATION OF MATRIXK 3 x 3

    Matriks

    Adaptif

    OPERASI MATRIKSDiketahui bahwa cA adalah matriks nol. Apa kesimpulan Anda tentang A dan c?

    c = 0c = 7Kasus 1: c = 0 dan A matriks sembarang. Kasus 2: A matriks nol dan c bisa berapa saja.Contoh:kesimpulan

    Matriks

    Adaptif

    OPERATION OF MATRIXKnown that cA is zero matrix. What is your conclusion about A and c?

    c = 0c = 7Case 1: c = 0 and A is any matrixCase 2: A is zero matrix and c can be any numberExample:Conclusion

    Matriks

    Adaptif

    OPERASI MATRIKSDefinisi:J