Konsep Matriks
date post
18-Mar-2016Category
Documents
view
188download
0
Embed Size (px)
description
Transcript of Konsep Matriks
Konsep Matriks
Matriks
Concept of Matrix
Matriks
Adaptif
Macam-macam Matriks
Kompetensi Dasar :Mendeskripsikan macam-macam matriks
Indikator :Matriks ditentukan unsur dan notasinyaMatriks dibedakan menurut jenis dan relasinya
Matriks
Adaptif
Kinds of Matrix
Basic Competences :Describing the kinds of matrix
Indicators :Matrix is determined by its elements and notationsMatriks matrix is distinguished by its kinds and relations
Matriks
Adaptif
Pengertian MatriksMatriks adalah susunan bilangan-bilangan yang terdiri atas baris-baris dan kolom-kolom.
a11 a12.a1j a1na21 a22 a2j.a2n : : : :ai1 ai2 aij.. ain: : : :am1 am2amj. amn
A = bariskolomNotasi: Matriks: A = [aij]Elemen: (A)ij = aijOrdo A: m x nMasing-masing bilangan dalam matriks disebut entri atau elemen. Ordo (ukuran) matriks adalah jumlah baris kali jumlah kolom. Macam macam Matriks
Matriks
Adaptif
Definition of MatrixMatrix is the arrangement of numbers which consists of rows and columns.
a11 a12.a1j a1na21 a22 a2j.a2n : : : :ai1 ai2 aij.. ain: : : :am1 am2amj. amn
A = rowscolumnNotation: Matrix: A = [aij]Element: (A)ij = aijOrder A: m x nEach of the numbers in matrix is called as entry or element. Order (size) of matrix is the value of the row number multiplied by the number of column. Kinds of Matrix
Matriks
Adaptif
Macam-macam MatriksMatriks baris adalah matriks yang hanya terdiri dari satu baris.
1. Matriks Baris
Matriks
Adaptif
Kinds of MatrixRow matrix is a matrix which consists of one row.
1. Row matrix
Matriks
Adaptif
Macam-macam Matriks2. Matriks KolomMatriks Kolom adalah matriks yang hanya terdiri dari satu kolom
Matriks
Adaptif
Kinds of Matrix2. Column matrixColumn matrix is a matrix which consists of one column.
Matriks
Adaptif
3. Matriks PersegiMatriks persegi (bujur sangkar) adalah matriks yang jumlah baris dan jumlah kolom sama.1 2 42 2 23 3 3Trace(A) = 1 + 2 + 3Trace dari matriks adalah jumlahan elemen-elemen diagonal utamadiagonal utama Macam macam Matriks
Matriks
Adaptif
3. Square matrixSquare matrix is a matrix which has the same numbers of rows and columns.1 2 42 2 23 3 3Trace(A) = 1 + 2 + 3Trace from matrix is the total numbers from the main diagonal elements.Main diagonal Kinds of Matrix
Matriks
Adaptif
4. Matriks Nol Matriks nol adalah matriks yang semua elemennya nol
0 0 00 00 01 00 11 0 00 1 00 0 11 0 0 00 1 0 00 0 1 0 0 0 0 1I2I3I4Matriks identitas adalah matriks persegi yang elemen diagonal utamanya 1 dan elemen lainnya 0 Macam- macam Matriks
Matriks
Adaptif
4. Zero matrix zero matrix is a matrix which all of its elements are zero.
0 0 00 00 01 00 11 0 00 1 00 0 11 0 0 00 1 0 00 0 1 0 0 0 0 1I2I3I4Matrix identity is a square matrix which its main diagonal element is 1 and the other element is 0. Kinds of Matrix
Matriks
Adaptif
5. Matriks ortogonalMatriks A orthogonal jika dan hanya jika AT = A 1 Jika A adalah matriks orthogonal, maka (A-1)T = (AT)-1= A-1= B-1(A-1)T = (AT)-1 A-1 AT Macam-macam Matriks
Matriks
Adaptif
5. Orthogonal MatrixMatrix A is orthogonal if and only if AT = A 1 If A is orthogonal matrix, so (A-1)T = (AT)-1= A-1= B-1(A-1)T = (AT)-1 A-1 AT Kinds of Matrix
Matriks
Adaptif
Macam macam MatriksDefinisi:Transpose matriks A adalah matriks AT, kolom-kolomnya adalah baris-baris dari A, baris-barisnya adalah kolom-kolom dari A.
AT = A = 4 5 2 36 -9 7 7Jika A adalah matriks m x n, maka matriks transpose AT berukuran ..[AT]ij = [A]ji n x m
Matriks
Adaptif
Kinds of MatrixDefinisi:Transpose matrix A is matrix AT, its columns are rows of A, its rows is columns of A.
AT = A = 4 5 2 36 -9 7 7if A is matrix m x n, so matrix transpose AT should be ..[AT]ij = [A]ji n x m
Matriks
Adaptif
Kesamaan dua matriksDua matriks sama jika ukuran sama dan setiap entri yang bersesuaian sama.A = BC DE = F jika x = 1G = H222456907 Macam macam Matriks
Matriks
Adaptif
Similarity of two matrixesTwo matrix are similar if its size is similar and each symmetrical entry is similarA = BC DE = F jika x = 1G = H222456907 Kind of Matrix
Matriks
Adaptif
Matriks SimetriMatriks A disebut simetris jika dan hanya jika A = ATA simetri1 2 3 42 5 7 0 3 7 8 2 4 0 2 9A == AT Macam-macam Matriks
Matriks
Adaptif
Symmetrical matrixMatrix A is called symmetric if and only if A = ATA symmetric1 2 3 42 5 7 0 3 7 8 2 4 0 2 9A == AT Kinds of Matrix
Matriks
Adaptif
Sifat-sifat transpose matriksAAT(AT)T(AT )T = ATranspose dari A transpose adalah A:4 5 2 36 -9 7 74 5 2 36 -9 7 7= AContoh: Macam-macam Matriks
Matriks
Adaptif
properties of transpose matrixAAT(AT)T(AT )T = ATranspose of A transpose is A:4 5 2 36 -9 7 74 5 2 36 -9 7 7= AExample: Kinds of Matrix
Matriks
Adaptif
Macam-macam Matriks2. (A+B)T = AT + BT
Matriks
Adaptif
Kinds of Matrix2. (A+B)T = AT + BT
Matriks
Adaptif
Macam-macam Matriks3. (kA)T = k(A) T untuk skalar k
kA(kA)T = k(A)TATTk
Matriks
Adaptif
Kinds of Matrix3. (kA)T = k(A) T for scalar k
kA(kA)T = k(A)TATTk
Matriks
Adaptif
Macam-macam Matriks4. (AB)T = BT AT (AB)T =AB= BTAT
Matriks
Adaptif
Kinds of Matrix4. (AB)T = BT AT (AB)T =AB= BTAT
Matriks
Adaptif
Macam-macam MatriksIsilah titik-titik di bawah iniA simetri maka A + AT= ..((AT)T)T = .(ABC)T = .((k+a)A)T = .....(A + B + C)T = .Kunci:2A ATCTBTAT (k+a)AT AT + BT + CT
Soal :
Matriks
Adaptif
Kind of MatrixFill in the blanks bellowA symmetric then A + AT= ..((AT)T)T = .(ABC)T = .((k+a)A)T = .....(A + B + C)T = .Answer keys:2A ATCTBTAT (k+a)AT AT + BT + CT
Quiz :
Matriks
Adaptif
OPERASI MATRIKSKompetesi DasarMenyelesaikan Operasi MatriksIndikatorDua matriks atau lebih ditentukan hasil penjumlahan atau pengurangannyaDua matriks atau lebih ditentukan hasil kalinya
Matriks
Adaptif
OPERATION OF MATRIXBasic competenceFinishing operation matrixIndicatorTwo or more matrixes is defined by the result of their addition or subtraction Two or more matrixes is defined by the result of their multiplication
Matriks
Adaptif
Contoh :
Penjumlahan dan pengurangan dua matriks OPERASI MATRIKS
Matriks
Adaptif
Example:
Addition and subtraction of two matixes OPERATION OF MATRIX
Matriks
Adaptif
OPERASI MATRIKSApa syarat agar dua matriks dapat dijumlahkan?
Jawab:Ordo dua matriks tersebut sama
A = [aij] dan B = [bij] berukuran sama,
A + B didefinisikan: (A + B)ij = (A)ij + (B)ij = aij + bij
Matriks
Adaptif
OPERATION OF MATRIXWhat is the condition so that two matrixes can be added?
Answer:The ordo of the two matrixes are the sameA = [aij] dan B = [bij] have the same size,
A + B is defined: (A + B)ij = (A)ij + (B)ij = aij + bij
Matriks
Adaptif
Jumlah dua matriks
D + C = L + K = Apa kesimpulanmu? Apakah jumlahan matriks bersifat komutatif? OPERASI MATRIKS
Matriks
Adaptif
The quantity of two matrixes
D + C = L + K = What is your conclusion? Is the addition of matrixes commutative? OPERATION OF MATRIX
Matriks
Adaptif
OPERASI MATRIKSSoal:
C + D =C + E = A + B =
Feedback:
Matriks
Adaptif
OPERATION OF MATRIXExercise:
C + D =C + E = A + B =
Feedback:
Matriks
Adaptif
Hasil kali skalar dengan matriks5A = =250 300 50350 100 150H = H =Diberikan matriks A = [aij] dan skalar c, perkalian skalar cA mempunyai entri-entri sebagai berikut:(cA)ij = c.(A)ij = caijApa hubungan H dengan A?5x55x55x65x25x15x325353010515Catatan: Pada himpunan Mmxn, perkalian matriks dengan skalar bersifat tertutup (menghasilkan matriks dengan ordo yang sama)50A OPERASI MATRIKS
Matriks
Adaptif
The multiplication result of scalar matrix5A = =250 300 50350 100 150H = H =Given matrix A = [aij] aand scalar c, the multiplication of scalar cA have the following entries:(cA)ij = c.(A)ij = caijWhat is the relation between H and A?5x55x55x65x25x15x325353010515Note: In the set of Mmxn, the matrix multiplication with scalar have closed properties (it will have matrix with the same orrdo)50A OPERATION OF MATRIX
Matriks
Adaptif
OPERASI MATRIKSK 3 x 3
Matriks
Adaptif
OPERATION OF MATRIXK 3 x 3
Matriks
Adaptif
OPERASI MATRIKSDiketahui bahwa cA adalah matriks nol. Apa kesimpulan Anda tentang A dan c?
c = 0c = 7Kasus 1: c = 0 dan A matriks sembarang. Kasus 2: A matriks nol dan c bisa berapa saja.Contoh:kesimpulan
Matriks
Adaptif
OPERATION OF MATRIXKnown that cA is zero matrix. What is your conclusion about A and c?
c = 0c = 7Case 1: c = 0 and A is any matrixCase 2: A is zero matrix and c can be any numberExample:Conclusion
Matriks
Adaptif
OPERASI MATRIKSDefinisi:J