Klaus Lackner CEIC Seminar 1-16-08

53
Managing Emissions from Fossil Resources A Challenge to Technology and Policy Klaus S. Lackner Columbia University December 2007

description

Klaus Lackner CEIC Seminar 1-16-08

Transcript of Klaus Lackner CEIC Seminar 1-16-08

Page 1: Klaus Lackner CEIC Seminar 1-16-08

Managing Emissions from Fossil Resources

A Challenge to Technology and Policy

Klaus S. Lackner

Columbia University

December 2007

Page 2: Klaus Lackner CEIC Seminar 1-16-08

IPCC Model Simulations of CO2 Emissions

Page 3: Klaus Lackner CEIC Seminar 1-16-08

Growth in Emissions

0

2

4

6

8

10

12

14

16

18

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Year

Frac

tiona

l Cha

nge

Constant Growth 1.6% Plus Population Growth to 10 billion Closing the Gap at 2%

Energy intensity drop 1%/yr Energy Intensity drop 1.5%/yr Energy Intensity drop 2% per year

Constant growth

Plus Population Growth

Closing the Gap

1% energy intensity reduction

1.5% energy intensity reduction

2.0% energy intensity reduction

Page 4: Klaus Lackner CEIC Seminar 1-16-08

Resource Will Not Run Out

H.H. Rogner, 1997

Page 5: Klaus Lackner CEIC Seminar 1-16-08

Carbon as a Low-Cost Source of Energy

H.H. Rogner, 1997

Lifti

ng C

ost

Cumulative Gt of Carbon Consumed

US1990$ per barrel of oil equivalent

Cumulative Carbon Consumption as of1997

Page 6: Klaus Lackner CEIC Seminar 1-16-08

Refining

Carbon

Diesel

Coal

Shale

Fossil fuels are fungible

Tar

Oil

NaturalGas

Jet Fuel

Heat

Electricity

Ethanol

Methanol

DMEHydrogen

SynthesisGas

Page 7: Klaus Lackner CEIC Seminar 1-16-08

The Challenge:Holding the Stock of CO2 constant

Constant emissions at 2010 rate

33% of 2010 rate

10% of 2010 rate0% of 2010 rate

Extension of Historic Growth

Rates

560 ppm

280 ppm

Page 8: Klaus Lackner CEIC Seminar 1-16-08

Pacala and Socolow, Science 305, 968 – 972, (2004)

Page 9: Klaus Lackner CEIC Seminar 1-16-08

Orders of Magnitude

Page 10: Klaus Lackner CEIC Seminar 1-16-08

A Triad of Large Scale Options

• Solar– Cost reduction and mass-manufacture

• Nuclear– Cost, waste, safety and security

• Fossil Energy– Zero emission, carbon storage and

interconvertibility

Markets will drive efficiency, conservation and alternative energy

Page 11: Klaus Lackner CEIC Seminar 1-16-08

Small Energy Resources

• Hydro-electricity– Cheap but limited

• Biomass– Sun and land limited, severe competition with food

• Wind– Stopping the air over Colorado every day?

• Geothermal– Geographically limited

• Tides, Waves & Ocean Currents– Less than human energy generation

Page 12: Klaus Lackner CEIC Seminar 1-16-08

CCS is technically feasible

It is affordable

It can start today

It is likely to be a major contributor to CO2 reductions

worldwide

Page 13: Klaus Lackner CEIC Seminar 1-16-08

Dividing The Fossil Carbon Pie

900 Gt C

total

550 ppm

Past

10yr

Page 14: Klaus Lackner CEIC Seminar 1-16-08

Removing the Carbon Constraint

5000 Gt C

totalPast

Page 15: Klaus Lackner CEIC Seminar 1-16-08

Net Zero Carbon EconomyNet Zero Carbon Economy

CO2 from distributed emissions

Permanent & safe

disposal

CO2 from concentrated

sourcesCapture from power

plants, cement, steel, refineries, etc.

Geological Storage Mineral carbonate disposal

Capture from air

Page 16: Klaus Lackner CEIC Seminar 1-16-08

Net Zero Carbon EconomyNet Zero Carbon Economy

CO2 from distributed emissions

Permanent & safe disposal

CO2 from concentrated

sources

Capture from power plants, cement, steel,

refineries, etc.

Geological Storage Mineral carbonate disposal

Capture from air

Page 17: Klaus Lackner CEIC Seminar 1-16-08

Underground Injection

statoil

Page 18: Klaus Lackner CEIC Seminar 1-16-08

Gravitational TrappingSubocean Floor Disposal

Page 19: Klaus Lackner CEIC Seminar 1-16-08

Energy States of CarbonCarbon

Carbon Dioxide

Carbonate

400 kJ/mole

60...180 kJ/mole

The ground state of carbon is a mineral

carbonate

Page 20: Klaus Lackner CEIC Seminar 1-16-08

Bedrock geology GIS datasets – All U.S. (Surface area)120°W130°W

110°W

110°W

100°W

100°W 90°W

90°W

80°W

80°W

70°W

25°N 25°N

30°N 30°N

35°N 35°N

40°N 40°N

45°N 45°N

$0 1,000,000Meters

Legend

ultramafic rock

67°W

67°W

66°W

66°W

65°W

18°N

18°N19°N

0 140,000Meters

Puerto Rico

8733 km2

920 km2

166 km2Total = 9820 ±100 km2

Page 21: Klaus Lackner CEIC Seminar 1-16-08

Mineral Sequestration

Mg3Si2O5(OH)4 + 3CO2(g) → 3MgCO3 + 2SiO2 +2H2O(l)+63kJ/mol CO2

Rockville Quarry

Page 22: Klaus Lackner CEIC Seminar 1-16-08

Belvidere Mountain, Vermont

Serpentine Tailings

Page 23: Klaus Lackner CEIC Seminar 1-16-08

Oman Peridotite

Photo: Juerg Matter

Page 24: Klaus Lackner CEIC Seminar 1-16-08

Net Zero Carbon EconomyNet Zero Carbon Economy

CO2 from distributed emissions

Permanent & safe

disposal

CO2 from concentrated

sourcesCapture from power

plants, cement, steel, refineries, etc.

Geological Storage Mineral carbonate disposal

Capture from air

Page 25: Klaus Lackner CEIC Seminar 1-16-08

Many Different Options

• Flue gas scrubbing– MEA, chilled ammonia

• Oxyfuel Combustion– Naturally zero emission

• Integrated Gasification Combined Cycle– Difficult as zero emission

• AZEP Cycles– Mixed Oxide Membranes

• Fuel Cell Cycles– Solid Oxide Membranes

Page 26: Klaus Lackner CEIC Seminar 1-16-08

CO2 N2

H2OSOx, NOx and

other Pollutants

Carbon

Air

Zero Emission Principle

Solid Waste

Power Plant

Page 27: Klaus Lackner CEIC Seminar 1-16-08

Boudouard Reaction

Page 28: Klaus Lackner CEIC Seminar 1-16-08

C + O2 CO2no change in mole volumeentropy stays constantΔG = ΔH

2H2 + O2 2H2Olarge reduction in mole volumeentropy decreases in reactantsmade up by heat transfer to surroundingsΔG < ΔH

Carbon makes a better fuel cell

Page 29: Klaus Lackner CEIC Seminar 1-16-08

PCO2CO2 O2-

CO32- CO3

2-CO32- CO3

2-

O2- O2- O2- CO2

Phase I: Solid Oxide

Phase II: Molten Carbonate

Multi-Phase Equilibrium

Proposed Membrane

CO2CO2CO2

CO2

CO2

CO2CO2

CO2

CO2

CO2CO2

CO2

CO2

CO2 + O2- = CO32-

Page 30: Klaus Lackner CEIC Seminar 1-16-08

CO2 extraction from air

Permanent & safe

disposal

CO2 from concentrated

sources

Net Zero Carbon EconomyNet Zero Carbon Economy

Page 31: Klaus Lackner CEIC Seminar 1-16-08

Air Capture: A Different Paradigm

• Leave existing infrastructure intact

• Retain quality transportation fuels

• Eliminate shipping of CO2

• Open remote sites for CO2 disposal

• Enable fuel recycling with low cost electricity

Separate Sources from Sinks

Page 32: Klaus Lackner CEIC Seminar 1-16-08

Relative size of a tank

Electrical, mechanical storage

Batteries etc.

hydrogen

gasoline

Page 33: Klaus Lackner CEIC Seminar 1-16-08

Challenge: CO2 in air is dilute

• Energetics limits options– Work done on air must be small

• compared to heat content of carbon• 10,000 J/m3 of air

• No heating, no compression, no cooling• Low velocity 10m/s (60 J/m3)

Solution: Sorbents remove CO2from air flow

Page 34: Klaus Lackner CEIC Seminar 1-16-08

CO2

1 m3of Air40 moles of gas, 1.16 kg

wind speed 6 m/s

0.015 moles of CO2

produced by 10,000 J of gasoline

2

20 J2

mv=

Volumes are drawn to scale

CO2 Capture from Air

Page 35: Klaus Lackner CEIC Seminar 1-16-08

Air Flow

Ca(OH)2 solution

CO2 diffusion

CO2 mass transfer is limited by diffusion in air boundary layer

Ca(OH)2 as an absorbent

CaCO3 precipitate

Page 36: Klaus Lackner CEIC Seminar 1-16-08

Wind area that carries 22 tons of CO2 per year

Wind area that carries 10 kW

0.2 m 2

for CO2 80 m 2

for Wind Energy

How much wind?(6m/sec)

50 cents/ton of CO2 for contacting

Page 37: Klaus Lackner CEIC Seminar 1-16-08

A First Attempt

Air contactor:2Na(OH) + CO2 → Na2 CO3

Calciner:CaCO3→CaO+CO2

Ion exchanger:Na2CO3 + Ca(OH)2 →2Na(OH) + CaCO3

Page 38: Klaus Lackner CEIC Seminar 1-16-08

ProcessReactions

Capture Device

Trona Process

Limestone Precipitate

Dryer

Fluidized Bed

Hydroxylation Reactor

Membrane Device

(1)

(2)(3)(6)

(5)

(4)

Membrane

(1) 2NaOH + CO2 → Na2CO3 + H2O ΔHo = - 171.8 kJ/mol(2) Na2CO3 + Ca(OH)2 → 2NaOH + CaCO3 ΔHo = 57.1 kJ/mol

(3) CaCO3 → CaO + CO2 Δ Ho = 179.2 kJ/mol

(4) CaO + H2O → Ca(OH)2 Δ Ho = - 64.5 kJ/mol

(6) H2O (l) → H2O (g) Δ Ho = 41. kJ/mol

(5) CH4 + 2O2 → CO2 + 2H2O Δ Ho = -890.5 kJ/mol

Source: Frank Zeman

CO2

AirDepleted

Air

Page 39: Klaus Lackner CEIC Seminar 1-16-08

1/ρ

Unit Cost

Cost of Contacting the Air

Page 40: Klaus Lackner CEIC Seminar 1-16-08

1/ρ

Unit Cost

Cost of CO2 from Air

Page 41: Klaus Lackner CEIC Seminar 1-16-08

Sorbent Choices

-30

-25

-20

-15

-10

-5

0

100 1000 10000 100000

CO2 Partial Pressure (ppm)

Bin

ding

Ene

rgy

(kJ/

mol

e)

350K

300KAir Power plant

Page 42: Klaus Lackner CEIC Seminar 1-16-08

Cost of CO2 from Air(rescaled)

1/ρ

Unit Cost

Fixed Cost

Page 43: Klaus Lackner CEIC Seminar 1-16-08

60m by 50m

3kg of CO2 per second

90,000 tons per year

4,000 people or

15,000 cars

Would feed EOR for 800 barrels a day.

250,000 units for worldwide CO2 emissions

Page 44: Klaus Lackner CEIC Seminar 1-16-08

GRT’s Vision

Page 45: Klaus Lackner CEIC Seminar 1-16-08

The first of a kind

Page 46: Klaus Lackner CEIC Seminar 1-16-08

EnergySource

EnergyConsumer

H2O H2O

O2

O2

H2

Materially Closed Energy Cycles

Page 47: Klaus Lackner CEIC Seminar 1-16-08

EnergySource

EnergyConsumer

H2O H2O

O2

O2

CO2CO2

H2 CH2

Materially Closed Energy Cycles

Page 48: Klaus Lackner CEIC Seminar 1-16-08

C H

O

Fuels

Oxidizer

Combustion products

Biomass

CO

Fischer Tropsch Synthesis GasMethanol

EthanolNatural Gas

Town Gas

PetroleumCoal

GasolineBenzeneCarbon Hydrogen

CO2 H2O

Oxygen

Increasing Hydrogen Content

Incr

easi

ng O

xida

tion

Stat

e

Methane

Free

O2

Free

C-

H

Page 49: Klaus Lackner CEIC Seminar 1-16-08

C H

O

Fuels

Oxidizer

Combustion products

Biomass

CO

Fischer Tropsch Synthesis GasMethanol

EthanolNatural Gas

Town Gas

PetroleumCoal

GasolineBenzeneCarbon Hydrogen

CO2 H2O

Oxygen

Increasing Hydrogen Content

Incr

easi

ng O

xida

tion

Stat

e

Methane

Free

O2

Free

C-

H

Page 50: Klaus Lackner CEIC Seminar 1-16-08

C H

O

Fuels

Oxidizer

Combustion products

Biomass

CO

Fischer Tropsch Synthesis GasMethanol

EthanolNatural Gas

Town Gas

PetroleumCoal

GasolineBenzeneCarbon Hydrogen

CO2 H2O

Oxygen

Increasing Hydrogen Content

Incr

easi

ng O

xida

tion

Stat

e

Methane

Free

O2

Free

C-

H

Page 51: Klaus Lackner CEIC Seminar 1-16-08

Carbon Capture and Storagefor

Carbon Neutral World

• CCS simplifies Carbon Accounting– Ultimate Cap is Zero– Finite amount of carbon left

Page 52: Klaus Lackner CEIC Seminar 1-16-08

Private SectorCarbon Extraction

CarbonSequestration

Farming, Manufacturing, Service, etc.

Certified Carbon Accounting

certificates

certification

Public Institutionsand Government

Carbon Board

guidance

Permits & Credits

Page 53: Klaus Lackner CEIC Seminar 1-16-08