Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

67
laus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC

Transcript of Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Page 1: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006

Disc DIRC

Page 2: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

• quick orientation for non-pandas• brief particle ID motivation• Cherenkov radiation flypast• lightguides and simulations• photo readout and B-field• Plexiglass?• Temperature!• ToP• Test Experiments ...

... the intended agenda ...

Page 3: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

the current GSI

Gesellschaft für Schwerionenforschung

Page 4: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

the new FAIR

SIS 100/300

Facility for Antiproton and Ion Research

planning as of 2004

Page 5: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Antiprotons at FAIR

SIS 100/300

Panda

HESR

1 GeV/c – 15 GeV/c

planning as of 2004

Page 6: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

PANDA Side View

Pbar AND A AntiProton ANihilations at DArmstadt

Page 7: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Particle ID in PANDA

Page 8: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

5 degrees

22 degrees

Particle ID in PANDA

Page 9: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Particle ID & Kinematicspp KK T=5,10,15 GeV/c

pp DD D K T=6.6 GeV/c

pp i.e. charmonium production

need to measure two quantities:

dE/dxenergymomentumvelocitymomentum (tracking in magnetic field)velocity (Cherenkov Radiation)momentum (tracking in magnetic field)velocity (Cherenkov Radiation)

if mass known, particle identified

K K K

K evenor K

--

--

+ +

+ +

+ +

+ +

+ +

-

- +

+

distinguish and K (K and p) ...

D

For what channels do we not have this factor 2-3 reduction?

Page 10: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Cerenkov Radiation

prism: correcting dispersionlens: turning angle into position

parallel light pathschromatic dispersion

=1

<1Cerenkov angle depends on particle speed the cone gives a ring image on a detector plane

material witha differentdispersion

Page 11: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

4-fold direction ambiguityangle and edges crucial

2-fold ambiguity in disc, lifted at readoutonly parallel surfaces required

DIRC: BaBar-type versus Disc

Page 12: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

conservingangles andcircles

90 degrees

45

Solid Angle onto flat surface

Page 13: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

conservingangles andcircles

90 degrees

45

Light transmitted in DISC

Page 14: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

conservingangles andcircles

90 degrees

45

Colour fringes on rings

Page 15: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

90 degrees

45

coordinates measured at rim

Page 16: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

90 degrees

45

3-prong event in DISC

Page 17: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

LiF

side view

front viewfused silica

LiF

polynomialcoefficients:c2= -3.0/(60^2)c3= -0.5/(60^3)c4= -0.1/(60^4)

focussing is better than 1mmover the entire linechosen as focal plane

side view

fused silica

completely within mediumall total reflectioncompact designall solid materialflat focal plane

DIRC Detector Idea

5cm

Page 18: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Location Changes

Page 19: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Location Changes

Page 20: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Location Changes

Page 21: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Lightguide-Designs

polynomialcoefficients:c2= -3.0/(60^2)c3= -0.5/(60^3)c4= -0.1/(60^4)

focussing is better than 1mmover the entire linechosen as focal plane

polynomialcoefficients:c2= -5.4/(60^2)c3= -0.9/(60^3)c4= -0.5/(60^4)

possibly difficult design requirements:1) vertical focal plane (normal to B-field)2) short focal plane (high dispersion deg/mm)

Page 22: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Status of simple Disc Simulations– perfect surfaces– proper directions

• recent improvements– true 3D– analysis of pixel hits

• in the pipeline– angular straggling -important for (e,) and (,)– further optimising– include upstream tracking (necessary?)

• NOT:– no diffraction– no polarisation– no background (particles and photons)– no maximum likelihood analysis– not free of minor approximations (KISS)

Page 23: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

status of simulationsvertex providedposition providedall from DISC data

64 lightguides (no pixels) 128 (no pixels)

nondispersive materials

fluctuations numerical artefact- it’s on the “to do” list...

unpixelised focal planeno chromatic correction

REALLY

PRELIMIN

ARY

Page 24: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

• further optimisation

• resolution scaling with pixels

• resolution not scaling with pixel size

(momentum resolution) ~ (pixel number * quantum efficiency)4

Page 25: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Yoke

Solenoid Housing

Solenoid and Yoke Environment

Page 26: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Photon Detectors

• phototubes

• APDs

• channel plate phototubes

• optical fibres and external phototubes

• HPDs with magnetic imaging

Page 27: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Position-sensitive Phototubes

H8500 H9500

R3292 10cm

B-field probably too strong

Page 28: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Yoke

Light guide or fibre readout?

determination

determination

Page 29: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

HPD with magnetic imaging

Klaus Föhl 2-June-2004

Page 30: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

fusedsilica

E

BSilicon Strip Detector

e-

photocathode

HPD readout possible?

fused silica

EB

photocathode

Silicon Strip Detector

e-

possibly higherquantum efficiencyin reflectivephotocathodegeometry

Page 31: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Temperature

• cold solenoid, cold EMC

• maybe coolde APDs

• SiO2, LiF different expansion coefficients

• dew, condensation on surfaces

Page 32: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Yoke

Radiation Countermeasures?

what radiation fields?

do we need radiation shielding?

will PB act:--as absorber-or as converter?

Page 33: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Plexiglass as Cerenkov radiator?

maybe not such a stupid idea

• transmission– SiO2 300-600nm N0/mm=14– plexi 400-600nm N0/mm= 7

• radiation hardness– BaBar “Spectrosil” proven– plexiglass “hamm wer doa” not proven

• but: radiation length X0 three times larger– 36cm versus 12cm (40.5g/cm2 vs 26g/cm2) more photons per X0

less chromatic dispersion no UV-grade material necessary (glass, glue, PMT)– focussing optics probably ok for thicker radiator– availability? time stability? radiation hardness?

higher lower dispersion

maybe not such a stupid idea

Page 34: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Time-of-Propagationin a dispersive medium

fused silica (aka quartz)

2%

6%

Light propagation speed perpendicularto Cherenkov-light-emitting particle track:

=300nm photon is 6% slower than 600nm

larger Cherenkov angle – 2% shorter path

4% time difference (=600nm is “faster”) difference equivalent to =0.04

for 120cm radial distance ToP=8.3ns (400nm)

0.33 ns spread in arrival time

Page 35: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

ToP in DISC – some thoughs...

• chromatic time correction – do not see how (I see no space for red light to run extra length) (unless photon detector timing can be made colour-dependent)

• disc not self-timing “GPS altitude problem”• external time reference should be 100ps/sqrt(N)• if time reference from target vertex factor 2

betteroverall situation equivalent to 4.5 metres TOF • >>50*multiplicity pixels needed• multiple hits can be separated if spaced apart

Page 36: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Towards Test Experiments

• Radiator slab (fused silica, plexiglass)

• Focussing lightguide– Edinburgh workshop:

• perspex: ok • quartz: we are happy to try (difficulties anticipated)

• photon readout

• DAQ

Page 37: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Conclusions?

Page 38: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Conclusions?

Page 39: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Material Test

Testing transmission and total internal reflectionof a fused silica sample (G. Schepers and C. Schwarz, GSI)

Page 40: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

• FAIR international accelerator facility

• Particle ID – the physics requirements

• Cerenkov Radiation

• DIRC in PANDA

• Detector performance

• Conclusions and Outlook

Outline

working on Cerenkov detectors for PANDA:

Edinburgh, GSI, Erlangen, Gießen, Dubna, Jülich, Vienna, Cracow, Glasgow

Page 41: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Pion-Kaon-Separation

K

K

K threshold

centrehole

figure of merit N = 152cmN(ideal) = N x 1cm x sin () = 82geometric transmittanceN(detected) = 82 x 0.61 = 50

02

-1

3

fused silica plate 10mm thickness(density 2.2g/cm thus 8% radiation length) detection efficiency 20% (=300-600nm)

0

64 segments in each with 48 rectangular pixels

overall 3072 pixels

Page 42: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Conclusions

• optical properties of this design are good enough

• performance depends on number of pixels

• optical test bench

• phototubes + electronics

• operational detector slice

• testbeam experiments

Page 43: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Side View

10mm fused silica plate (density 2.2g/cm , 8% radiation length)

plate radius 1500mm , detection plane radius 2000mmwavelength range 300-600nm, detection efficiency 20%figure of merit N = 152cmN(ideal) = N x 1cm x sin () = 82N(detected) = 82 x 0.61 = 50 geometry transmittance

0

02

-1

3

1500mm

2000mm

Page 44: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Photon Lines in space

target

particlevertices

point

Page 45: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Lensing

cylinder lense

N.B. to be comparedwith 10mm pixel height

spread over prism width

Page 46: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Chromatic Correction

higherdispersionglass

spread =300nm to 600nm

Page 47: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Lensing

cylinder lense

N.B. to be comparedwith 10mm pixel height

spread over prism width

Page 48: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Chromatic Correction

higherdispersionglass

spread =300nm to 600nm

Page 49: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Chromatic Correction

higherdispersionglass

effective pixel heightspread =300nm to 600nm

+

Page 50: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Cherenkov radiation

wavefrontPoyn

ting

vect

orc

Page 51: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Cherenkov radiationin a dispersive medium

wavefrontPoynt

ing

vect

orc

Page 52: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Cherenkov radiationin a dispersive medium

fused silica (aka quartz)

2%

6%

Page 53: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Momentum Thresholds

fused silica n=1.47

aerogel n=1.05

K

K p

p

total internal reflection limit

n=1.47

K p

Page 54: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

tracks in Solenoid field

solenoid field taken to be homogenous

within the real field shape the particlesare better aligned with the field lines

Page 55: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

fused silica

B. Morosov, P. Vlasov et al.December 2004

fused silica

LiF side view

front view

fused silica

LiF

Page 56: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

adjusting polynomial coefficients(c2 fixed, c3 and c4 so far used only)to find a mirror shape that providesoverall acceptable focussing alonga straight line (easier to instrument)

concurrent optimisation goals

minimise:• lensing errors• warping of focal plane

1.

2.

Page 57: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

conservingangles andcircles

Page 58: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.
Page 59: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.
Page 60: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

side view

fused silica polynomialcoefficients:c2= 1/1200c3= -0.5/(60^3)c4= -0.1/(60^4)

focussing is better than 1mmover the entire linechosen as focal plane

completely within mediumall total reflectioncompact designall solid materialflat focal plane

Page 61: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Particle ID in PANDA

5 degrees

22 degrees

For particle ID, two quantities are required:dE/dxenergymomentum (tracking in magnetic field)velocity (Cherenkov Radiation)

If particle mass is known, the particle is identified.

For particle ID, two quantities are required:dE/dxenergymomentum (tracking in magnetic field)velocity (Cherenkov Radiation)

Page 62: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

briefly on Barrel-DIRC

time-of-propagation version

Klaus Föhl, FAIR-Panda-PID-meeting, 5/12/2005

Page 63: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Cherenkov radiationin a dispersive medium

=0.95

=1

incident particleat 45 degrees

fused silica slab3m long

=600nm=300nm correction1=300nm=300nm correction2

=0.99

Page 64: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

Cherenkov radiationin a dispersive medium

fused silica (aka quartz)

2%

6%

reduce wavelength rangeto improve sensitivity

Page 65: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

dispersion correction

correction needs to cover entire angular range of incident particles

Page 66: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

dispersion correction

no correction improving over the entire angular range

Page 67: Klaus Föhl, PANDA Cerenkov workshop in Glasgow, 11 May 2006 Disc DIRC.

my conclusions Barrel-DIRC

• photon group velocity in dispersive medium

• photon detector number set by statistics

• dispersive correction not covering all relevant angles

• reference timing provided by first arriving photons

standard PMT timing is enoughconsider to cut out <400nm

photons/pixel << 1most stringent requirement

configuration angle-dependentuseless for the barrel

no external timing requiredto analyse barrel DIRC data