Klapec Tox Hrane 2008 Oksidacije

119
1 S v e u č i l i š t e J. J. S t r o s s m a y e r a u O s i j e k u Prehrambeno-tehnološki fakultet Z a v o d z a i s p i t i v a nj e h r a n e i p r e h r a n e O S N O V E T O K S I K O L O G I J E S T O K S I K O L O G I J O M H R A N E Priredio: Tomislav Klapec 2008

Transcript of Klapec Tox Hrane 2008 Oksidacije

Page 1: Klapec Tox Hrane 2008 Oksidacije

1

S v e u č i l i š t e J. J. S t r o s s m a y e r a u O s i j e k u Prehrambeno-tehnološki fakultet

Z a v o d z a i s p i t i v a nj e h r a n e i p r e h r a n e

O S N O V E T O K S I K O L O G I J E

S T O K S I K O L O G I J O M H R A N E

Priredio:

Tomislav Klapec

2008

Page 2: Klapec Tox Hrane 2008 Oksidacije

1

SADRŽAJ hhyyppeerrlliinnkkeedd

str. UVOD........................................................................................................................................................ 3 APSORPCIJA TOKSIKANATA................................................................................................................. 4 Transport toksičnih tvari kroz staničnu membranu................................................................................ 4 Transport toksičnih tvari u gastrointestinalnom traktu............................................................................ 7 Transport toksikanata preko pluća......................................................................................................... 9 Transport toksikanata preko kože.......................................................................................................... 10 RASPODJELA TOKSIKANATA................................................................................................................ 11 METABOLIZAM TOKSIKANATA.............................................................................................................. 15 Enzimske reakcije I faze........................................................................................................................ 17 Enzimske reakcije II faze....................................................................................................................... 21 Faktori koji utječu na biotransformaciju.................................................................................................. 23 Bioaktivacija toksikanata........................................................................................................................ 26 IZLUČIVANJE TOKSIKANATA ................................................................................................................ 28 Izlučivanje urinom.................................................................................................................................. 28 Izlučivanje u žuči.................................................................................................................................... 29 Ostali putevi izlučivanja.......................................................................................................................... 31 TOKSIKOKINETIKA.................................................................................................................................. 32 TOKSIKODINAMIKA................................................................................................................................. 36 Toksično djelovanje posredovano receptorima...................................................................................... 36 Toksično djelovanje neovisno o receptorima......................................................................................... 39 Veza doze i odgovora............................................................................................................................ 42 DJELOVANJE TOKSIKANATA NA ORGANIZAM.................................................................................... 44 Činioci koji utječu na toksičnost............................................................................................................. 44 Posljedice djelovanja toksikanata u organizmu..................................................................................... 48 Remećenje endokrine funkcije............................................................................................................ 48 Imunotoksičnost.................................................................................................................................. 50 Genotoksičnost................................................................................................................................... 52 Karcinogenost..................................................................................................................................... 54 Reproduktivna i razvojna toksičnost................................................................................................... 57 Neurotoksičnost........................................................................................................................................... 58 Toksičnost za ostale organe i tkiva organizma................................................................................... 60 TOKSIKANTI U HRANI............................................................................................................................. 63 Toksikanti iz industrijskog otpada i prirodnog okoliša............................................................................ 63 Klorirani ugljikovodici.......................................................................................................................... 63 Policiklički aromatski ugljikovodici....................................................................................................... 65 Teški metali......................................................................................................................................... 66 Radioaktivni elementi.......................................................................................................................... 68 Ostali elementi.................................................................................................................................... 69 Pesticidi i ostaci od tretiranja životinja i biljaka...................................................................................... 72 Pesticidi……………………………………………………………………………………………………….. 72 Ostaci od tretiranja životinja………………………………………………………………………………… 76 Ostaci od tretiranja biljaka…………………………………………………………………………………... 77 Prirodni toksikanti iz biljnih i životinjskih namirnica................................................................................ 78 Animalni toksini………………………………………………………………………………………………. 78 Biljni toksini…………………………………………………………………………………………………… 79 Suplementi prehrani…………………………………………………………………………………………. 84 Mikrobni toksini………………………………………………………………………………......…………….. 85 Algalni toksini…………………………………………………………………………………………………. 85 Bakterijski toksini…………………………………………………………………………………………….. 86 Mikotoksini……………………………………………………………………………………………………. 87

Page 3: Klapec Tox Hrane 2008 Oksidacije

2

str. Aditivi hrani i tvari u dodiru s hranom i vodom....................................................................................... 90 Aditivi………………………………………………………………………………………………………….. 90 Tvari u dodiru s hranom i vodom………………………………………………..………………………….. 97 Toksikanti koji nastaju obradom hrane……………................................................................................ 99 Toksikanti u genetski modificiranoj hrani………….............................................................................. 100 Produkti Maillardove reakcije i termičke obrade................................................................................. 101 Produkti autooksidacije i toplinske obrade lipida................................................................................ 103 Produkti tretiranja kiselinama i lužinama.…………………………………………………………………... 104 Produkti fermentacije…………………….…………………………………………………………………... 104 Produkti salamurenja…………………….…………………………………………………………………... 106 Produkti obrade ionizirajućim zračenjem.…...……………………………………………………………... 106 Produkti obrade vode…………….…………………………………………………………………………... 106 ODREĐIVANJE TOKSIKANATA U HRANI.............................................................................................. 108 ZAKONSKA REGULATIVA....................................................................................................................... 111 Procjena sigurnosti toksikanata............................................................................................................. 111 Procjena izloženosti............................................................................................................................... 114 Karakterizacija rizika.............................................................................................................................. 114 Rizik u perspektivi.................................................................................................................................. 116 Literatura................................................................................................................................................... 117 Korisni linkovi............................................................................................................................................ 117

Page 4: Klapec Tox Hrane 2008 Oksidacije

3

U V O D

Tradicionalna definicija toksikologije je ‘znanost o otrovima’ (lat. toksikon –otrov, logos –znanost). Podrobnije,

toksikologija bi se mogla opisati kao proučavanje štetnih učinaka kemijskih (npr. cijanid) i fizikalnih

agenasa (npr. radioaktivno zračenje) na ţive organizme. Ovi agensi se općenito nazivaju toksikantima.

Budući da često samo doza čini da neka tvar ima toksično djelovanje (npr. pri malim dozama nema toksično

djelovanje ili čak djeluje blagotvorno), strane tvari se još nazivaju ksenobioticima (grč. xeno –stranac). Veza

izmeĎu doze i odgovora je temeljna zamisao toksikologije, prema tvrdnji Paracelsusa (1525 g.): Sve tvari

su otrovi. Nema nijedne da nije otrov. Samo doza pravi razliku izmeĎu lijeka i otrova. Toksični učinci (tj.

uočljive promjene anatomije i/ili tjelesnih funkcija ili nevidljiva oštećenja tj. tzv. biokemijske lezije) se

mogu svesti na promjene na specifičnim molekulama organizma.

Page 5: Klapec Tox Hrane 2008 Oksidacije

4

A P S O R P C I J A T O K S I K A N A T A

Mnogi činioci utječu na ‘ulazak’ tj. apsorpciju toksikanta u organizmu, te konačno njegov toksični učinak.

MeĎu najvaţnijim su koncentracija ili doza tvari, duţina izloţenosti, fizikalno-kemijska svojstva tvari, put

ulaska, individualna otpornost ovisna o fiziologiji, i dr. Čestice toksikanta (atomi, ioni, molekule) moraju

proći kroz granične površine poput koţe, te epitela probavnog ili respiratornog trakta. Očito je stoga da

osnovni mehanizam apsorpcije toksikanata polazi od prodiranja čestica toksikanta kroz membranu stanica.

TTTrrraaannnssspppooorrrttt tttoookkksssiiičččnnniiihhh tttvvvaaarrriii kkkrrrooozzz ssstttaaannniiičččnnnuuu mmmeeemmmbbbrrraaannnuuu

Stanična membrana predstavlja glavnu barijeru prolazu stranih tvari na putu toksikanta iz vanjske sredine

do ciljnog mjesta u organizmu.

O s n o v n a s t r u k t u r a s t a n i č n e m e m b r a n e

Stanična membrana je bimolekularni sloj

(debljine 7-9 nm) sastavljen od sljedećih

lipidnih molekula: fosfolipida (uglavnom

fosfatidil kolin, fosfatidil etanolamin,

sfingomijelini), glikolipida (cerebrozidi i

gangliozidi), te kolesterola u najvećem broju

membrana (kod eukariota djeluje kao

regulator fluidnosti). Lanci masnih kiselina

membrane su u polutekućem stanju, pri čemu

na fluidnost membrane značajno utječe udio

nezasićenih masnih kiselina: što je veći to je

membrana fluidnija, te je brţi i transport kroz

membranu. Povećan udio polinezasićenih

masnih kiselina se povezuje i s promjenama aktivnosti membranskih proteina (npr. imunosupresivni učinak PUFA

moduliranjem aktivnosti T-stanica). Najveći udio lipida (75%) je u mijelinskim ovojnicama ţivaca, gdje lipidi

sluţe kao izolator (povećavajući brzinu živčanog tj. električnog impulsa).

Membrane sadrţe i dosta proteina. Razlikujemo integralne proteine, koji stvaraju hidrofobne interakcije s

ugljikovodičnim područjem dvosloja, te periferne, koji se veţu na površinu integralnih proteina. Udio

proteina je najčešće oko 50%, a povećava se i na 75% kod membrana uključenih u proizvodnju energije

(unutarnja membrana mitohondrija).

Postoje dva osnovna načina prolaska kroz membranu:

1 - difuzija ili pasivni transport

2 - specijalni ili aktivni transport

P a s i v n i t r a n s p o r t

Difuzija

Većina toksikanata prolazi kroz membranu

običnom difuzijom preko hidrofobnih lipidnih

domena (lipofilne molekule, male hidrofilne

molekule, ioni) ili kroz pore u membrani tj.

proteinske kanale (najveće su pore glomerula

bubrega: 70 nm, dok većina stanica ima kanale promjera

oko 4 nm). Brzina prolaska ovisi o

koncentracijskom gradijentu, a kod lipofilnih

molekula i o topljivosti u masti.

Page 6: Klapec Tox Hrane 2008 Oksidacije

5

Mnogi toksikanti postoje u otopini i u ioniziranom i u

neioniziranom obliku. Ionizirani oblik često ne moţe proći

kroz membranu zbog slabe topljivosti u mastima, pa je

difuzija izravno proporcionalna udjelu neioniziranog oblika

spoja. pKa je pH kod kojeg je 50% kiseline ili baze disocirao.

Disocijacija slabe baze ili kiseline ovisit će prema tome o pH

otopine u kojoj je otopljena i o pKa vrijednosti kiseline ili

baze (visoki pKa –slaba kiselina, niski pKa –jaka kiselina,

obratno za baze). Uopćeno se moţe reći da će kiseline prije

difundirati kroz membranu u kiseloj, a baze u luţnatoj

sredini.

Olakšana difuzija

Riječ je o proteinskim nosačima posredovanom pasivnom

transportu. Supstrat se kreće prema koncentracijskom gradijentu i nije potrebna energija. Npr. transport

glukoze u stanicu (tzv. uniport). Vezanje glukoze dovodi do promjene konformacije proteinske molekule

nosača i oslobaĎanja glukoze s druge strane membrane.

A k t i v n i t r a n s p o r t

Supstance se kreću nasuprot koncentracijskom i elektrokemijskom gradijentu. Sustav je selektivan, te se

njima mogu sluţiti samo toksikanti graĎe slične graĎi tvari koje su predviĎene za transport ovim specifičnim

proteinskim nosačima). Ova vrsta transporta troši metaboličku energiju (ATP i slične molekule). Tvari koje

se transportiraju stvaraju komplekse s nosačima u membrani, što je vaţno kod transporta i eliminacije

stranih tvari iz organizma.

Dobar primjer aktivnog transporta su ionske pumpe poput protonske pumpe ili natrij-kalij crpke (u

potonjem slučaju je ujedno riječ o tzv. antiportu jer se dva supstrata istovremeno transportiraju u

suprotnim smjerovima).

Sekundarni aktivni transport

Ova vrsta prelaska preko stanične membrane se još naziva i kotransport. Koristi se energija za stvaranje

gradijenta koncentracije jednog supstrata s različitih strana membrane, a zatim se koristi ovaj gradijent za

transport odreĎene molekule nasuprot njenom koncentracijskom gradijentu.

Page 7: Klapec Tox Hrane 2008 Oksidacije

6

Primjer je transport glukoze iz probavnog trakta u krv. Glukoza ulazi u stanicu pokretana razlikom

koncentracija Na+ iona koju stvara natrij-kalij crpka, pri čemu se glukoza i ioni natrija kreću u istom smjeru

(tzv. simport).

Kotransport natrija i kalcija je primjer antiporta pri kojem nosač izbacuje Ca2+

ione iz stanica uz

istovremeni povratak Na+ iona u stanicu. Na sličan način se transportiraju ostali šećeri i aminokiseline u

probavnom traktu (dolje je prikazan kotransport H+ iona i saharoze).

Endocitoza

Ovaj tip aktivnog transporta uključuje uvijanje i zatvaranje stanične membrane oko čestica koje time ulaze

u stanicu nasuprot koncentracijskom gradijentu. Riječ je o krupnijim česticama i/ili većoj količini tvari u

odnosu na ostale načine aktivnog transporta. Razlikuju se fagocitoza (velike molekule i čestice), pinocitoza

(kapljice otapala sa ili bez otopljene tvari) i receptorima posredovana endocitoza (gdje vezanje odreĎenih

molekula za receptore dovodi do uvijanja stanične membrane). Ovi procesi su vaţni kod uklanjanja čestica

iz alveola alveolarnom fagocitozom i uklanjanje nekih toksičnih tvari iz krvi retikuloendotelnim sustavom

jetre i slezene.

Page 8: Klapec Tox Hrane 2008 Oksidacije

7

TTTrrraaannnssspppooorrrttt tttoookkksssiiičččnnniiihhh tttvvvaaarrriii uuu gggaaassstttrrroooiiinnnttteeessstttiiinnnaaalllnnnooommm tttrrraaakkktttuuu

Ovo je vaţan put apsorpcije toksikanata iz hrane i vode, ali i kod samoubilačkih i kriminalnih trovanja.

Apsorpcija se moţe dogoditi duţ cijelog probavnog trakta, od usta do rektuma, iako je najvjerojatnija u

crijevima zbog vrlo velike površine apsorpcije (npr. Kerckringovi nabori stijenki crijeva povećavaju površinu

apsorpcije 3 x u odnosu na glatku površinu, vili (30 x) i mikrovili enterocita (600 x) u dodiru s lumenom crijeva).

Utjecaj na apsorpciju toksikanta imaju: veličina i oblik tvari, naboj, topljivost, pH tekućina

probavnog trakta, enzimi, crijevna mikroflora, prisustvo hrane, pokretljivost crijeva te aktivnost

transportnih proteina poput P-glikoproteina i MRP proteina.

Probavni trakt sisavaca ima specijalizirane transportne sustave za apsorpciju hranjivih tvari i

elektrolita (glukoza, galaktoza, aminokiseline, pirimidini, Fe, Ca, Na, i dr.). Neki toksikanti se mogu apsorbirati tim

sustavima aktivnog transporta ukoliko su hranjivim tvarima slični po veličini, obliku, naboju... (npr. 5-

fluorouracil sustavom za pirimidine, Tl, Co, Mn umjesto Fe, Pb umjesto Ca, i dr.). Moguća je i apsorpcija većih

(hidrofilnih) spojeva. Najvjerojatnije je riječ o pinocitozi ili mehanizmu koji uključuje posebne proteine

(npr. zonulin) koji vezanjem za odreĎene receptore na površini stanica dovode do otvaranja prolaza izmeĎu

stanica. Epitel GIT-a moţe apsorbirati i čestice endocitozom.

Iako se uopćeno moţe reći da lipofilnost toksikanta povećava apsorpciju, ekstremno hidrofobni spoj

(lipofilnost se obično izražava kao kao particijski koeficijent, Ko/w, tj. odnos tvari raspodijeljene izmeĎu organskog otapala

(oktanola) i vode; povećava se s povećanjem hidrofobnosti tvari) se neće otopiti u tekućinama probavnog trakta i

apsorpcija će biti slaba. TakoĎer, ako je toksikant u obliku čestica koje su relativno netopljive u

tekućinama GIT-a, spoj će imati ograničen kontakt sa sluznicom GIT-a, pa se neće dobro apsorbirati (zato je

metalna Hg slabo toksična poslije oralnog unosa).

Razlika u pH tekućina gastrointestinalnog trakta (GIT) moţe značajno utjecati na apsorpciju

molekula difuzijom (koja je najjača kad je molekula neionizirana zbog lipidne prirode membrane). Na

stupanj apsorpcije utječe Henderson-Hasselbalchova jednadţba:

oblikioniz

oblikneioniz

.

.logpH - pKa

npr. benzojeva kiselina, 4 pKa

pH ţeluca je otprilike 2 oblikioniz

oblikneioniz

.

.log 2 - 4

oblikioniz

oblikneioniz

.

. log2

Page 9: Klapec Tox Hrane 2008 Oksidacije

8

oblikioniz

oblikneioniz

.

. 102

oblikioniz

oblikneioniz

.

. 100

100 puta više neioniziranog, tj. oblika topljivog u lipidima

pH crijeva je otprilike 6 oblikioniz

oblikneioniz

.

. log 6 - 4

oblikioniz

oblikneioniz

.

. log2 -

oblikioniz

oblikneioniz

.

. 10 2-

oblikioniz

oblikneioniz

.

.

100

1

100 puta više će biti ioniziranog oblika, što podrazumijeva slabu apsorpciju difuzijom u crijevima

Ipak, apsorpcija difuzijom u tankom crijevu (npr. za benzojevu kiselinu) nije slaba jer se ravnoteţa

neprestano tijekom prolaska kroz crijeva (6 - 8,5 m) odrţava na 1% lipidno-topljivog oblika. Osim toga, vrlo

velika površina tankog crijeva povećava ukupni kapacitet kemijske apsorpcije.

Kod organskih baza je obratno, tj. apsorpcija difuzijom je favorizirana u tankom crijevu:

oblikneioniz

oblikioniz

.

.logpH - pKb

Na količinu toksikanta koju stanice epitela probavnog trakta apsorbiraju velik utjecaj ima i

otpornost kemikalija na kiseli pH u ţelucu (npr. penicilin je osjetljiv na kiseli pH), enzime (u odnosu na intravenozni

unos, zmijski otrov (polipeptid) je netoksičan oralno jer ga razgraĎuju probavni enzimi) i mikroorganizme crijeva. Osim

toga, djelovanjem crijevne mikroflore, mogu nastati toksikanti drukčijeg toksiciteta (djeca su podložnija

methemoglobinemiji nakon unosa vode s puno nitrata, jer imaju viši pH u GIT-u i jače razvijenu E. coli koja reducira NO3 u

NO2 ; intestinalna mikroflora može reducirati aromatske nitro skupine u aromatske amine koji mogu biti goitrogeni ili

karcinogeni).

Prisustvo hrane moţe utjecati na stope apsorpcije (npr., zbog konkurencije, manje Cd će se apsorbirati

ukoliko se u hrani nalazi zajedno sa Zn ili Cu jer koristi isti transporter na membrani enterocita tj. DMT ili divalent metal

transporter; takoĎer, lipofilni poliklorirani bifenili će se bolje apsorbirati u prisustvu masti u hrani, zbog poticanja

izlučivanja žuči i boljeg raspršivanja masti), a slično vrijedi i za pokretljivost crijeva (smanjena pokretljivost

povećava apsorpciju zbog duţeg zadrţavanja u proksimalnom dijelu tankog crijeva). UtvrĎeno je i da

razrijeĎene vodene otopine pojačavaju apsorpciju nekih tvari (pri ulasku velikih količina vode u stanicu se

unose i male hidrofilne molekule i ioni).

Apsorpciju stranih tvari u probavnom sustavu značajno ograničavaju transportni P-glikoprotein, MRP

(multidrug resistance-associated proteins) proteini i slični transporteri koje eksprimiraju stanice crijevnog

epitela i koji iz stanica izbacuju velik broj strukturno različitih spojeva (metabolita i stranih tvari).

Page 10: Klapec Tox Hrane 2008 Oksidacije

9

TTTrrraaannnssspppooorrrttt tttoookkksssiiikkkaaannnaaatttaaa ppprrreeekkkooo pppllluuućććaaa

Najčešće trovanje (CO), i najvaţnija profesionalna bolest (silikoza, SiO2) nastaju nakon apsorpcije preko

pluća. Ovako se apsorbiraju i neki bojni otrovi (klor, fozgen, lewisit), te HCN (plinska komora). Uglavnom

se apsorbiraju plinovi (CO, NO2, SO2), pare (HF), isparljive tvari, otapala (C6H6, CCl4), i aerosoli (azbest).

Apsorpcija aerosola (krutih i tekućih čestica) u dišnom sustavu se moţe podijeliti prema veličini

čestica:

nos i grlo

K

dušnik i dušnice

G

R I

V alveole T

limfa

Čestice promjera 5 m i veće obično zaostaju u nazofaringealnom (nos, grlo) području bez cilija

(pokretne cilije se nalaze na površini stanica i neprestano se svijaju u istom smjeru uzrokujući kretanje sluzi) (zadrţavaju

se na dlačicama i taloţe zbog turbulencije zraka), i uklanjaju se kihanjem i ispuhivanjem nosa. Nazalna

površina s cilijama nosi netopljive čestice do usta gdje gutanjem dospijevaju u GIT. Topljive čestice se

osim toga mogu otopiti u sluzi te prenijeti do grla ili se mogu kroz epitel apsorbirati u krv.

Čestice veličine 2 5 m dospijevaju do traheobronhalnog (dušnik, bronhi) područja pluća, gdje se

uz cilije sluznog sloja prenose do usta (GIT). Kašljanje i kihanje dovode do brzog kretanja sluzi i čestica

prema ustima.

Čestice promjera 1 m i manje prodiru do alveolarnih vrećica pluća. Uklanjanje čestica iz alveola

se odvija: fagocitozom (makrofagi), migracijom u meĎustanični prostor te otapanjem i prelaskom u krv ili

limfu. Općenito, uklanjanje čestica iz alveola je sporo, pri čemu brzina u prvom redu ovisi o topljivosti

čestica (lako topljivi spojevi prolaze kroz alveolarne membrane ako su hidrofobni).

Apsorpcija plinova i para se odvija difuzijom duţ cijelog dišnog trakta. Najbrţa je apsorpcija u

alveolarnoj zoni koja ima veliku površinu (50-100 m2), velik protok krvi te vrlo brzo dolazi do uravnoteţenja

plina u alveolama s krvi u plućnim kapilarama (prema Henryjevu zakonu: C = k∙p gdje je k topljivost tj.

omjer koncentracije plina u krvi prema koncentraciji u plinu kod ravnoteţe). Topljivost hidrofilnih para i

plinova (npr. HF) je bolja u gornjem respiratornom traktu prekrivenom sluzi, dok se pare i plinovi slabije

topljivosti u vodi (NO2) uglavnom apsorbiraju u plućima.

Page 11: Klapec Tox Hrane 2008 Oksidacije

10

TTTrrraaannnssspppooorrrttt tttoookkksssiiikkkaaannnaaatttaaa ppprrreeekkkooo kkkooožžžeee

Koţa je relativno dobra lipidna barijera koja odvaja čovjeka od okoline. Ipak, neke kemikalije se

apsorbiraju u koţi dovoljno dobro da izazovu sistemske učinke (npr. nervni bojni otrovi poput sarina, CCl4, i

dr.).

Najveću površinu koţe pokrivaju epidermalne stanice,

ali toksikant moţe proći i kroz stanice znojnih ili lojnih

ţlijezda, ili ući kroz folikul dlake.

Ulaz perkutanim putem se sastoji od prolaska kroz:

1 -gusto naslagan vanjski sloj roţnatih,

keratiniziranih, epidermalnih stanica

2 –germinativni sloj epidermisa

(vrlo tanak)

3 –dermis

Glavna barijera prolasku toksikanata je površinski sloj

izumrlih stanica epidermisa, ispunjen keratinom (tzv.

stratum corneum). Toksikanti prolaze difuzijom kroz taj sloj (polarni kroz vanjski sloj proteinskih vlakana,

a nepolarni kroz lipidni matriks izmeĎu proteinskih vlakana). Hidracija ovog sloja povećava permeabilnost

koţe deset puta. Dermis je porozni sloj koji toksikanti moraju proći prije ulaska u sistemsku cirkulaciju.

Na apsorpciju preko koţe još utječu: svojstva i koncentracija toksikanta, vrsta nosača (otapala),

pH, temperatura, lokalna prokrvljenost i perspiracija, površina i anatomske odlike kontaminiranog dijela

koţe (ovisne o spolu, dobu, rasi, i sl.).

Page 12: Klapec Tox Hrane 2008 Oksidacije

11

R A S P O D J E L A T O K S I K A N A T A

Apsorpcija preko pluća je brza i odmah izlaţe srce toksikantu. Apsorpcija preko koţe je uglavnom spora i

prvenstveno su izloţena periferna tkiva.

Bioraspoloţivost, tj. količina toksikanta koja uĎe u sistemsku cirkulaciju nakon oralnog unosa, ovisi

o nizu činioca, u prvom redu o količini koju stanice probavnog trakta apsorbiraju. Prije ulaska u cirkulaciju,

spoj mogu metabolizirati stanice probavnog trakta (gdje se većina prisutne količine nekih toksikanata (npr.

tiramina monoamin oksidazama) metabolizira), ili (portalnom venom) dospijeva do jetre, koja ga moţe

metabolizirati i izlučiti u ţuč. Jetra je najvaţnije mjesto metabolizma stranih tvari, te se mnogi toksikanti

na taj način (naravno, ovisno o koncentraciji) neutraliziraju prije nego dospiju u sistemsku cirkulaciju.

Neutralizacija netom apsorbirane doze toksikanta kao posljedica metabolizma u crijevima i jetri se naziva i

tzv. učinkom prvog prolaza. Manji dio toksikanta se moţe apsorbirati i u usnoj šupljini čime se takoĎer

izbjegava prolazak kroz jetru i učinak prvog prolaza (nitroglicerin, lijek za anginu pektoris, se primjenjuje

sublingualno jer progutan može djelovati toksično na jetru).

Nakon apsorpcije, toksikanti ulaze u krv (samo vrlo lipofilni spojevi se nakon apsorpcije

transportiraju limfom), koja ih brzo raznosi po cijelom organizmu. Prolaskom kroz stijenke kapilara,

toksikanti dospijevaju u najrazličitija tkiva organizma. Dio toksikanta dolazi do mjesta djelovanja, dok se

preostali dio zadrţava u neosjetljivim tkivima (tzv. skladišni depoi), ili se metabolizira i izlučuje iz

organizma. Lanac zbivanja tijekom raspodjele toksikanta u organizmu prikazan je dolje:

TKIVA I ORGANI

PLAZMA

vezan za bjelančevine

metabolit

Slobodan

ELIMINACIJA

U početnoj fazi raspodjele toksikanta ona ovisi prvenstveno o snabdjevenosti pojedinih tkiva krvlju,

propusnosti tog tkiva za toksikant i raspoloţivosti mjesta vezanja. Visoka koncentracija tvari se najbrţe

postiţe u onim organima koji su dobro prokrvljeni (pluća, bubrezi, jetra, ţlijezde), dok slabo prokrvljena

tkiva (masno tkivo, mišićno i vezivno tkivo) u početku preuzimaju malu količinu tvari. Poslije se uloga

krvotoka u raspodjeli smanjuje, a više dolaze do izraţaja fizikalno-kemijska svojstva tvari (graĎa, veličina,

oblik, kiralnost, ioniziranost tj. pKa kemijskih skupina, topljivost u mastima, agregatno stanje) koja utječu

na prijelaz preko staničnih membrana i afinitet vezanja tvari za pojedine sastavne dijelove tkiva. To je

presudno za konačnu raspodjelu toksikanta u organizmu (npr. Pb: odmah po apsorpciji najveće razine Pb su u

eritrocitima, jetri i bubrezima; mjesec dana nakon unosa se Pb preraspodjeli u kost).

MJESTO DJELOVANJA

vezan slobodan

SKLADIŠNI DEPO

vezan

slobodan

RAZGRADNJA

IZLUČIVANJE

Page 13: Klapec Tox Hrane 2008 Oksidacije

12

P o h r a n a t o k s i k a n a t a u t k i v i m a

Neki toksikanti imaju najvišu koncentraciju na mjestu toksičnog djelovanja (npr. CO se veže za hemoglobin; ili

herbicid parakvat u plućima), dok se drugi koncentriraju na mjestima nevezanim za toksično djelovanje (Pb u

kostima). Toksikantima pohranjenim u tzv. skladišnim depoima je zapravo umanjen štetni učinak u

organizmu sprječavanjem gomilanja visokih koncentracija toksikanata na mjestu toksičnog djelovanja.

Koncentracija slobodnog oblika toksikanta u tkivima je u ravnoteţi sa slobodnim oblikom toksikanta u

plazmi, te se iz depoa oslobaĎa kako ovaj nestaje iz plazme biotransformacijom ili izlučivanjem. Ujedno,

to je i razlog zašto poluţivot pohranjenih toksikanata moţe biti vrlo dug.

Proteini plazme kao skladišni depoi

Reverzibilno vezanje za proteine plazme uključuje ionske veze i hidrofobne interakcije, koje mogu biti

pojačane van der Waalsovim silama i vodikovim vezama. Albumin je najzastupljeniji od proteina plazme

(60%) i najvaţniji u vezanju toksikanata (veže Ca2+, Cu2+, Zn2+, bilirubin, vitamin C, tetracikline, kloramfenikol, masne

kiseline, penicilin, benzodiazepine, salicilat, sulfonamide, streptomicin, histamin, barbiturate, i dr.). Transferin ( 1-

globulin) veţe ţeljezo i transportira ga po tijelu. Ceruloplazmin ( 2-globulin) veţe bakar. Lipoproteini su

vaţni za transport spojeva topljivih u mastima (vitamini, kolesterol, steroidni hormoni, poliklorirani bifenili), pri

čemu se razlikuju po količini masti i lipofilnih supstanci u jezgri molekule: VLDL (very-low-density

lipoproteins) > LDL (low-density lipoproteins) > HDL (high-density lipoproteins). -globulini su antitijela.

albumin relativna

količina

globulini

1

2 2

1

elektroforetska pokretljivost

Dio toksikanta koji je vezan za proteine plazme nije odmah raspoloţiv za distribuciju u tkiva i organe ili

filtraciju bubrezima jer zbog veličine proteina plazme ne moţe prijeći preko stijenki kapilara. Postoji

ravnoteţa izmeĎu slobodnog oblika toksikanta u plazmi i onog vezanog za proteine plazme, pa kad slobodni

oblik toksikanta napusti kapilaru, vezani oblik disocira s proteina. Nagla disocijacija toksikanta s proteina

plazme (uslijed toga što tvari s većim afinitetom istisnu s nespecifičnih mjesta vezanja tvari sa slabijim

afinitetom) moţe izazvati toksične reakcije (npr. sulfonamidi mogu potaknuti disocijaciju antidijabetičkog lijeka te

dovesti do hipoglikemijske kome).

OdreĎen broj toksikanata se u krvi veţe za krvne stanice, u prvom redu eritrocite (trovalentni Cr se

skoro isključivo veže za proteine plazme, a heksavalentni za eritrocite; slično vrijedi za organsku Hg u usporedbi s

anorganskim oblicima; 96% Pb je vezano za eritrocite).

Jetra i bubreg kao skladišni depoi

Ovi organi imaju velik kapacitet vezanja kemikalija, vjerojatno više od svih ostalih organa zajedno, i to

zato što su vaţni u metabolizmu i uklanjanju toksikanata. Smatra se da toksikante uklanjaju iz krvi

aktivnim transportom, a u pohrani toksikanata ulogu imaju i tzv. intracelularni vezujući proteini poput

ligandina iz citoplazme jetre (ligandinsku aktivnost imaju neki izoenzimi glutation S-transferaze koji na

svojoj površini mogu vezati različite organske molekule) ili metalotioneina (veţe Cd i Zn u jetri i

bubrezima).

Page 14: Klapec Tox Hrane 2008 Oksidacije

13

Masno tkivo kao skladišni depo

Masno tkivo je vaţno za pohranu lipofilnih toksikanata (tvari s većim Ko/w: organoklorni pesticidi, poliklorirani

bifenili) smanjujući koncentraciju toksikanta na mjestu toksičnog djelovanja (uočljivo i kod razlike u djelovanju

tiopentala i pentobarbitala; prvi spada u brzodjelujuće barbiturate jer je topljiviji u mastima i brže dolazi do mjesta

djelovanja u mozgu; istovremeno je i kratkotrajnijeg djelovanja zbog brzog opadanja razine u mozgu i plazmi uslijed

preraspodjele u masno tkivo). Budući da mast moţe činiti od 20-50% tjelesne teţine, osobe s više masnog tkiva

su zaštićenije od djelovanja tvari s većim Ko/w. MeĎutim, kod brze mobilizacije masti za proizvodnju

energije (dijete, gladovanje) dolazi do brzog porasta koncentracije pohranjenog spoja u krvi (na pokusnim

životinjama je dokazano da kratkotrajno izgladnjivanje nakon izloženosti organoklornim pesticidima dovodi do znakova

trovanja).

Kost kao skladišni depo

Kost je rezervoar tvari poput fluorida, Pb (90% količine u organizmu) i Sr. Ulazak u kosti se moţe smatrati

fenomenom površinske kemije pri čemu se odvija ionska izmjena izmeĎu ekstracelularne tekućine i

površine kosti (kristali hidroksilapatita). Toksikant ulazi u kristal, te zbog sličnosti u veličini i naboju, F

moţe zamijeniti OH , dok Pb ili Sr mogu zamijeniti Ca u kristalnoj rešetki hidroksilapatita. Odlaganje

toksikanta u kostima moţe i ne mora biti štetno. Npr. Pb nije toksično za kosti, ali su dobro poznati

kronični učinci odlaganja fluorida (koštana fluoroza) i radioaktivnog Sr (osteosarkom i druge neoplazme).

Olovo se eventualno moţe osloboditi iz kosti, npr. kod mobilizacije uslijed povećanih potreba za kalcijem

(trudnoća), te izazvati toksične učinke.

B a r i j e r e r a s p o d j e l i t o k s i k a n a t a

Postoje tkiva koja su manje propusna za toksikante poput krvno-moţdane barijere, placente ili testisa.

Krvno-moţdana barijera podrazumijeva gusto zbijene stanice stijenki kapilara (endotel) u

središnjem ţivčanom sustavu (CNS) i potporno tkivo oko kapilara (tzv. glijalne stanice na granici krvi i CNS-a i

koroidni epitel na granici krvi i cerebrospinalne tekućine u koju je ‘uronjen’ CNS), što umanjuje propusnost tog sloja.

Prelazak iz krvi u mozak onda mora uključivati prelazak preko stanica umjesto prostora izmeĎu. Stoga

krvno-moţdanu barijeru svladavaju prvenstveno tvari s visokim Ko/w. TakoĎer, stanice krvno-moţdane

barijere proizvode velike količine P-glikoproteina i analogno djelujućih MRP proteina koji aktivno

transportiraju toksikante u izvanstanični prostor stanica (u krv ili cerebrospinalnu tekućinu). Ulaz

toksikanata u mozak se odvija po istim načelima kao kod ostalih stanica tijela: jako lipofilne komponente

lako prodiru u CNS difuzijom preko stanične membrane (npr. metilživa (nekonjugirana) puno lakše od anorganske

Hg), kao i toksikanti koji zbog sličnosti graĎe mogu koristiti sustave aktivnog transporta (npr. metaboliti

ecstasyja (GSH-konjugati) mogu koristiti sustave transporta aminokiselina; metilživa se povezuje s cisteinom pri čemu

nastaje spoj sličan metioninu koji prelazi barijeru uz nosače aminokiselina).

Slično apsorpciji velikih molekula izmeĎu stanica sluznice crijeva, vezanje spomenutih proteina poput

zonulina na specifične receptore moţdanih stanica dovodi do stvaranja pukotina u krvno-moţdanoj barijeri.

KRV

MOZAK

endotel

bazalna membrana

glijalne stanice

Page 15: Klapec Tox Hrane 2008 Oksidacije

14

Krvno-moţdana barijera nije dovoljno razvijena kod novoroĎenčadi, pa je to osnovni razlog zašto su

kemikalije kojima je CNS mjesto toksičnog djelovanja otrovnije za novoroĎenčad nego odrasle (morfin je 10

puta toksičniji za novookoćene štakore od odraslih).

Placenta osigurava hranu plodu, vrši izmjenu majčinih i fetusnih krvnih plinova, uklanja fetalne

izlučevine, te odrţava trudnoću nizom hormonskih mehanizama. Krvne ţile fetusa i majke su razdvojene

nizom slojeva tkiva koje predstavljaju placentalnu barijeru. Prolaz toksikanata kroz placentu je omogućen

lipofilnošću toksikanta, sličnošću njegove graĎe hranjivim tvarima uslijed čega moţe koristiti sustave

aktivnog transporta (npr. analozi pirimidina i purina) te pinocitozom. Posteljica ima i sposobnost metabolizma

toksikanata, a dodatnu zaštitu predstavljaju i transportni sustavi u membrani stanica koje odvajaju krv

majke od krvi ploda, poput gore spomenutog P-glikoproteina i sličnih proteina. Često je ravnoteţna

koncentracija toksikanta u embriju/fetusu niţa od koncentracije u majčinoj cirkulaciji.

Page 16: Klapec Tox Hrane 2008 Oksidacije

15

M E T A B O L I Z A M T O K S I K A N A T A

Tijekom evolucije, genomi organizama su nakupili veći broj gena za enzime koji pruţaju zaštitu od štetnih

kemikalija iz okoliša. Skup enzimskih reakcija sa stranim tvarima (od kojih su neke specifične tj.

ograničene na toksikante) naziva se metabolizmom ksenobiotika ili biotransformacijom i smatra

najvaţnijom determinantom njihove toksičnosti.

Općenito se moţe reći da biotransformacija rezultira pretvorbom lipofilnih spojeva u hidrofilnije

metabolite. Naime, stanica je po graĎi nepolarnija od okoliša čime bi moglo doći do nakupljanja lipofilnih

tvari unutar stanice i veće mogućnosti toksičnog učinka. Osim za toksikante koji se izlučuju preko pluća,

lakoća eliminacije ovisi o topljivosti u vodi, što naročito vrijedi za tvari koje se izlučuju urinom i fecesom

(najveći broj toksikanata). Biotransformacija se moţe podijeliti u dvije faze:

I faza –uvoĎenje funkcionalnih skupina ili njihovo oslobaĎanje, što omogućuje drugu fazu;

ipak, i prvom fazom se već ponekad dobiju spojevi topljiviji u vodi (polarni) koji se mogu brzo izlučiti iz

organizma

II faza –kovalentno vezanje na endogene molekule pri čemu nastaju konjugati sa sulfatom,

glukuronatom, acetatom ili aminokiselinama; riječ je o većim molekulama ioniziranim kod fiziološkog pH

(tj. hidrofilnim); ujedno,

neki transportni sustavi

(proteinske molekule

nosača koji posreduju

olakšanu difuziju ili

aktivni transport)

prepoznaju ove konjugate

Po nekim autorima postoji i III faza biotransformacije koja uključuje proteinske transportere

organskih molekula iz jetre u ţuč, poput P-glikoproteina i MRP.

Metabolička sudbinu ksenobiotika u organizmu ovisi u prvom redu o fizikalno-kemijskim svojstavima

ksenobiotika:

polarni

hidrofilni

kovalentno vezanje za tkivne sastojke

akumulacija u masti

I faza: modifikacija

II faza: konjugacija

izlučivanje urinom ili u žuči (fecesom)

reaktivni jako lipofilni lipofilni polarni hidrofilni

reaktivni

reaktivni

OH O-S-O

faza I faza II

O

O

Page 17: Klapec Tox Hrane 2008 Oksidacije

16

Kemikalija moţe doţivjeti različite transformacije (npr. etanol se može oksidirati u acetaldehid trima različitim

enzimima: citokromom P450, alkohol dehidrogenazom ili katalazom) koje mogu, ali ne moraju uključivati uzastopne

korake (vidi primjer benzo[a]pirena u nastavku). TakoĎer, reakcije biotransformacije ne završavaju uvijek

detoksikacijom, te produkt biotransformacije ponekad moţe biti toksičniji od izvorne tvari. To je tzv.

metabolička aktivacija ili bioaktivacija (vidi dolje).

L o k a l i z a c i j a b i o t r a n s f o r m a c i j e

Jetra je prvi i najvaţniji organ koji provodi ove procese. Kao što je već rečeno gore, krv prvo prolazi kroz

jetru nakon apsorpcije u probavnom traktu. Jetra toksikante ekstrahira i kemijski mijenja prije njihove

pohrane, izlučivanja u ţuč ili osloboĎanja u opću cirkulaciju. Manji značaj u biotransformaciji takoĎer

imaju: pluća, bubreg, crijeva, koţa i spolne ţlijezde. Brzina i ukupni kapacitet biotransformacije ostalih

organa su znatno manji od jetrenog.

Crijevna mikroflora takoĎer ima nezanemariv kapacitet niza biotransformacijskih reakcija. Najvaţnije su

reduktivne reakcije zbog anaerobnih uvjeta te reakcije hidrolize (poput štetne hidrolize konjugata

izlučenih u ţuči, koja ima za posljedicu enterohepatsko kruţenje o kojem će biti više riječi u poglavlju

'Izlučivanje toksikanata') i dehidroksilacije. UtvrĎeno je da je toksičnost nekih ksenobiotika izravno ovisna o

metaboličkim reakcijama koje provodi crijevna mikroflora (npr. nitroaromatski spojevi, ciklamat). Moguće je da

se uočena antikarcinogena svojstva probiotskih mliječnih bakterija, izmeĎu ostalog, osnivaju na promjeni

biotransformacijskih svojstava crijevne mikroflore. Naime, ove bakterije imaju niţu aktivnost enzima koji

mogu rezultirati nastankom karcinogena, za razliku od uobičajenih crijevnih anaeroba.

Unutar stanice, enzimi I faze se nalaze prvenstveno u endoplazmatskom retikulumu (mreţa

povezanih kanalića u citoplazmi). Enzimi su vezani za membrane ER, i to je vaţno jer se lipofilne

komponente zadrţavaju u lipidnom matriksu membrana. Diferencijalnim centrifugiranjem se mogu izdvojiti

mikrosomi (razoreni ER). Zadnji supernatans je citosol u kojem se nalaze enzimi II faze (mnogi vaţni

biotransformacijski enzimi se nazivaju citosolnim ili mikrosomalnim).

Page 18: Klapec Tox Hrane 2008 Oksidacije

17

EEEnnnzzziiimmmssskkkeee rrreeeaaakkkccciiijjjeee III fffaaazzzeee

Reakcije I faze uključuju: reakcije oksidacije (P450 monooksigenaze, amin oksidaze, peroksidaze, ksantin oksidaza,

dioksigenaze, i dr.), reakcije redukcije (P450 monooksigenaze, ketoreduktaza, glutation peroksidaze) te hidrolitičke

reakcije (epoksid hidrolaza, amidaze, karboksilesteraze).

R e a k c i j e o k s i d a c i j e i r e d u k c i j e

Sustav monooksigenaza ovisnih o citokromu P450

Ovo je najvaţnija skupina enzima u metabolizmu stranih spojeva. Smještene su u endoplazmatskom

retikulumu i sastoje se od dva enzima: NADPH-citokrom P450 reduktaze (flavoprotein reduktaza) i

citokroma P450 s hemom (porfirinska jezgra & Fe) kao kofaktorom.

Princip djelovanja:

(oksidirani citokrom P450 (Fe3+) se povezuje s toksikantom u kompleks; NADPH daje elektron flavoprotein reduktazi, koja

zatim reducira nastali kompleks (Fe2+); drugi elektron iz NADPH preko iste flavoprotein reduktaze (ili preko citokroma b5 uz

citokrom P450 reduktazu ili citokrom b5 reduktazu) reducira molekularni kisik, pri čemu nastaje kompleks tzv. aktiviranog

kisika, spoja i citokroma P450; dolazi do prijenosa aktiviranog kisika na toksikant uz nastanak oksidiranog produkta, dok dva

elektrona ostaju na drugom atomu kisika koji uz dva protona daje molekulu vode)

Snaţna oksidacijska moć 'aktiviranog kisika' omogućava oksidaciju širokog opsega supstrata. Jedino

zajedničko strukturno svojstvo toksikanata koje metabolizira ovaj enzimni kompleks je velika lipofilnost.

Specifičnost za supstrate je vrlo mala. Postoji velik broj izoenzima citokroma P450 (40 kod ljudi;

označavaju se kraticama CYP2B1, CYP3A4, itd.) koji kataliziraju više od 60 različitih vrsta reakcija (vidi

primjer benzo[a]pirena koji moţe biti supstrat većeg broja citokroma P450 uz nastanak različitih

produkata). Primjeri oksidativnih reakcija kataliziranih sustavom citokroma P450:

Alifatska hidroksilacija

RH + O2 ROH + H2O

citokrom P-450

NADPH NADP+

FeIII

FeIII (RH)

FeII (RH)

FeII (O2)(RH)

FeII (O2. )(RH)

FeIV (O. )(RH)

e-

e-

2 H+

H2O

ROH RH

FeIII (O2.)(RH)

O2

R R

OH

Page 19: Klapec Tox Hrane 2008 Oksidacije

18

Aromatska hidroksilacija

OH

Epoksidacija R R R R

O

O

Dealkilacija heteroatoma (N, O, S) RO

CH3 ROH

+ CH2 O

N-hidroksilacija

RNH

O

RN

O

OH

Sulfoksidacija R

SR R

SR

O

Deaminacija R NH2

+ NH3R CO

H

Desulfuracija

P R

R

R

S

P R

R

R

O

+ S

Dehalogenacija

C H

H

R

X

C

HR

O

+ HX

Kod reduktivne biotransformacije uz sustav citokroma P450 elektrone prima supstrat, a ne kisik, te su

ovakve reakcije moguće jedino u uvjetima niskog parcijalnog pritiska kisika (poput uvjeta rasta crijevne

mikroflore). Primjeri:

Azo redukcija N R2R1 +N R1 NH2 R2 NH2

Aromatska nitro redukcija

NO2 NH2

Reduktivna dehalogenacija

C X

X

R

X

+ HXC H

X

R

X

Page 20: Klapec Tox Hrane 2008 Oksidacije

19

Sustav monooksigenaza koje sadrže flavin

Flavin monooksigenaze (najmanje pet izoenzima, FMO1-FMO5) su smještene u endoplazmatskom

retikulumu, a ime su dobile zbog činjenice da sadrţe FAD kao kofaktor. Obično kataliziraju reakcije

oksidacije na N ili S atomu (reduciraju FAD uz NADPH, prijenos elektrona na molekulu kisika uz nastanak vode i prijenos

atoma kisika na supstrat), organofosforne spojeve, ali i anorganske tvari (jod, jodid, jodate, sulfide,

tiocijanate, selenide, itd.), pri čemu mnoge od ovih reakcija provodi i citokrom P450, npr.:

N-oksidacija

R NH

OH

R1

R NH

R1

R N

OH

R1

R2R N

R2

R1

NH NHOH

S-oksidacija RSH RRSS RSSR RSSR

O

NH

SHN

NH

SO2HN

P-oksidacija

P CH3 P CH3O

Ph

Ph

Ph

Ph

Amin oksidaze

Monoamin oksidaze (izoenzimi MAO A i MAO B, te SSAO - amin oksidaza osjetljiva na semikarbazid) i diamin

oksidaze dovode do oksidativne deaminacije (MAO: isti princip kao kod gornjeg primjera oksidativne deaminacije

citokrom P450 ovisnim monooksigenazama osim što atom kisika potječe iz vode; FAD je kofaktor koji se najprije reducira, a

zatim reoksidira redukcijom molekule kisika u H2O2; DAO i SSAO: Cu kao kofaktor). Glavna uloga ovih nemikrosomalnih

enzima (smještenih u mitohondrijskoj membrani) je razgradnja endogenih biogenih amina (adrenalin,

dopamin, histamin, serotonin, itd.), ali mogu metabolizirati i strane spojeve s amino skupinom ili biogene

amine iz hrane (dopamin, fenetilamin, histamin, tiramin, itd.), te značajno pridonose razgradnji amina

apsorbiranih iz hrane u stanicama crijevne sluznice (efekt prvog prolaza).

Oksidacijsko-redukcijski sustavi za alkohole, aldehide i ketone

Uključuju enzime poput aldehid/keton reduktaze te alkohol i aldehid dehidrogenaze:

Aldehid/keton reduktaza R

C

O

R

R C

OH

R

HNADPH

Aldehid dehidrogenaza

R CNAD

+ O

OH

R C

O

H

Page 21: Klapec Tox Hrane 2008 Oksidacije

20

Alkohol dehidrogenaza

R C

OH

H

H R CNAD

+ O

H

Ostali važni enzimi u oksidoredukciji ksenobiotika i njihovih produkata su npr.:

Ksantin oksidaza koja oksidira ksantine uz nastajanje keto skupine (npr. pretvorba ksantina u mokraćnu kiselinu),

ali i druge spojeve uz oksidaciju karbonilne u karboksilnu skupinu, i sl.

Superoksid dismutaza koja katalizira pretvorbu superoksid radikala (O2 ∙) (nastaje i endogeno (prijenosom

jednog elektrona na molekularni kisik), npr. u respiratornom lancu, ili ga proizvode fagociti tijekom imunološke

reakcije) u molekularni kisik i vodik peroksid.

Glutation peroksidaze koje (uz glutation kao kofaktor) reduciraju organske perokside i vodikov peroksid.

Katalaza koja razgraĎuje vodikov peroksid, ali moţe provoditi i tzv. peroksidativnu reakciju (oksidacija

alkohola, formaldehida i sl. spojeva): RH2 + H2O2 R + 2 H2O.

Prostaglandin sintetaza ili ciklooksigenaza koja je sastavni dio puta biosinteze prostaglandina, ali moţe

oksidirati neke ksenobiotike (paracetamol, benzo[a]piren).

R e a k c i j e h i d r o l i z e

Epoksid hidrolaze

Kataliziraju hidraciju aren oksida i alifatskih epoksida. Postoji mikrosomalni (vezan za ER) i citosolni oblik

ovog enzima koji se nadopunjuju po specifičnosti za supstrate. Epoksidi su reaktivni elektrofilni spojevi koji

s nukleofilima stvaraju kovalentne veze. Ako je nukleofil (npr. SH, NH2, OH i sl. skupine) dio vaţne

makromolekule poput DNA, proteina, i sl., nastala biokemijska lezija moţe dovesti do različitih patoloških

promjena, uključujući rak.

O

HO

OH

HOH

RR

O

RR

HO OHHOH

aren oksid trans-dihidrodiol alifatski epoksid diol

Hidracijom nastaju dioli koji su manje elektrofilni i time manje reaktivni od epoksida (na gornjem primjeru

benzo[a]pirena je zapravo utvrĎeno da su najreaktivniji metaboliti (izraženo nastajanjem tzv. DNA adukata tj. vezanjem za

DNA) diolepoksidi i to oni koji nastaju u tzv. 'zaljevskom području' (C7-C10) molekule).

Esteraze i amidaze

OslobaĎaju COOH skupinu uz nastajanje amina, alkohola i tiola koji se dalje konjugiraju. Kataliziraju tri

skupine reakcija:

Hidroliza estera

R1 OHHOH

R C

O

OR1

R C

O

OH

+

Hidroliza amida

R1 NH2

HOHR C

O

NHR1

R C

O

OH

+

Hidroliza tioestera

R1 SHHOH

R C

O

SR1

R C

O

OH

+

Page 22: Klapec Tox Hrane 2008 Oksidacije

21

EEEnnnzzziiimmmssskkkeee rrreeeaaakkkccciiijjjeee III III fffaaazzzeee

Za provedbu ovih biosintetskih reakcija (izmeĎu endogenih molekula i stranih tvari) je potrebna energija

što se postiţe aktivacijom kofaktora (u jednom slučaju i supstrata) u visokoenergetske meĎuprodukte (uz

ATP). Nastali konjugati se izlučuju u ţuči (glukuronidi, glutationski konjugati) ili urinom (glukuronidi,

sulfati, aminokiselinski konjugati, glutationski konjugati). Konjugati su supstrati hidrolitičkih enzima

crijevne mikroflore (vidi odlomak o enterohepatskom ciklusu u poglavlju ‘Izlučivanje’) ili su nestabilni te se

raspadaju (npr. uslijed kiselog pH urina).

Glukuronoziltransferaze

Provode najvaţniju konjugaciju kod sisavaca.

Nalaze se u ER-u nasuprot većini enzima II faze.

UDP-glukuronoziltransferaze kataliziraju reakciju

izmeĎu visokoenergetskog nukleotida (UDP-

glukuronske kiseline) i funkcionalne skupine

akceptorske molekule:

Reakcije koje ovi enzimi kataliziraju se mogu podijeliti prema tipovima glukuronida koji nastaju napadom

nukleofilnog atoma toksikanta (O, N, S, C) na elektrofilni C atom u molekuli glukuronske kiseline:

O-glukuronidi

O CGalkoholi

O CG

O karboksilne kiseline

O NG N-hidroksi spojevi

N-glukuronidi NH ArG arilamini

NH CG

O

O

karbamati

NH SO2G sulfonamidi

S-glukuronidi S ArG ariltioli

S CG

S ditiokarbaminska kiselina

C-glukuronidi

CHG

C

C

O

O

1,3-dikarbonili (uzrokuju nukleofilni C-atom)

Sulfotransferaze

Prenose anorganski sulfat na OH (fenoli, alkoholi) i NH2-skupine (alifatski i aromatski amini, hidroksilamini)

toksikanata (nukleofilni atomi toksikanta napadaju elektrofilni atom S u sulfatu). Kofaktor je PAPS (3’-

fosfoadenozin-5’-fosfosulfat).

N

NH

O

OO

OH

OH

OPOPO

O

OH

HOHO

COOH

R-OH

OO

OHOH

Page 23: Klapec Tox Hrane 2008 Oksidacije

22

N

N N

N

NH2

HOOPO3

-

O P

O

O-

O S

O

O-

O-

R-OH

Metiltransferaze

Ovi enzimi su vaţni u metabolizmu endogenih spojeva, pa će sličnost tim supstratima uvjetovati

metabolizam ksenobiotika. Metilacija maskira funkcionalnu skupinu (OH (fenoli, alkoholi), NH2 (alifatski i

aromatski amini) i SH-skupine), te smanjuje topljivost u vodi i daljnju konjugaciju. Prednost je smanjenje

reaktivnosti nastalih spojeva. Enzimi su N-metil, S-metil i O-metil transferaze (katehol O-metil transferaza

(COMT) je poznati enzim koji razgraĎuje endogene i strane spojeve s kateholaminskom graĎom poput neurotransmitera

dopamina, adrenalina, noradrenalina, ili flavonoida). Metilna skupina se na ksenobiotik prenosi s

visokoenergetskog kofaktora S-adenozil metionina (S odvlači elektrone, pa se zapravo prenosi CH3+).

N-acetil transferaze

Ovo je još jedan primjer maskiranja funkcionalne (NH2) skupine i glavni put biotransformacije alifatskih i

arilamina, hidrazina (R-NH-NH2), sulfonamida (R-SO2-NH2), i dr. Kofaktor je koenzim A (nukleofilni atom

dušika toksikanta napada elektrofilni C atom acetilne skupine).

N-acil transferaze

Formiraju amide izmeĎu ksenobiotika sa COOH skupinom (npr. aromatske i heterocikličke karboksilne

kiseline, ariloctene kiseline, itd.) i NH2 skupine jedne od endogenih aminokiselina (glicin, glutamin (ljudi),

ornitin (ptice, reptili), taurin (NH2-CH2-CH2-SO3 ) za konjugaciju ţučnih kiselina, i dr.). Dvije osnovne

reakcije su:

1-aktivacija kiseline u tioesterski derivat koenzima A (ATP-ovisne kiselina-CoA ligaze) i 2-prijenos acila

tioestera koenzima A na amino skupinu aminokiseline (uz N-acil transferaze)

N

N N

N

NH2

HOOH

S

CH3

COOH+

R-OH

NH2

R-NH2

CoA S CO CH3

CO

R

SCoACOOH

CHH2N

R

Page 24: Klapec Tox Hrane 2008 Oksidacije

23

Glutation S-transferaze

Kataliziraju početni korak u stvaranju derivata N-acetilcisteina (to su tzv. merkapturne kiseline). Nalaze se

i u citosolu i u ER-u. Kofaktor u ovim reakcijama je tripeptid glutation (GSH):

HOOC Glu COOHCys Gly

SH

Nukleofilna SH-skupine GSH reagira s elektrofilnim atomom (C, N, S, O) spojeva. Glutationski konjugati se

zatim cijepaju na derivate cisteina, koji se zatim acetiliraju, te nastaju konjugati N-acetilcisteina.

Velika je vaţnost nukleofilnih reakcija koje kataliziraju glutation S-transferaze. Sustav citokroma P450

često stvara jako reaktivne elektrofilne spojeve koji se mogu kovalentno vezati za različite makromolekule

stanice, ili se mogu vezati za GSH. Kod visokih doza ksenobiotika moţe doći do iscrpljivanja zaliha GSH, pa

gomilanje elektrofila dovodi do toksičnih učinaka (npr. paracetamol, brombenzen).

RX + GSHglutation S-transferaza

Cys Gly

S

Glu

R

gama-glutamiltranspeptidaza

Cys Gly

S

R

cisteinilglicinaza

Cys

S

RCys

S

R

N-acetil transferaza NH

CH3C O

Osim kataliziranja reakcije izmeĎu ksenobiotika i GSH, glutation S-transferaze mogu vezati elektrofile na

površinu enzima (što moţe i ne mora inhibirati katalitičku aktivnost enzima) ili aktivno mjesto enzima

(stvaraju se kovalentne veze koje inhibiraju enzim), čime se spriječava vezanje elektrofila za nukleofilna

mjesta vaţnih makromolekula. Ova ‘ligandinska’ aktivnost nekih izoenzima glutation S-transferaza

predstavlja dodatni detoksikacijski mehanizam.

Od ostalih citosolnih enzima vaţnih u neutralizaciji toksikanata se moţe spomenuti rodanaza koja provodi

detoksikaciju cijanida po reakciji: CN + S2O32

SCN + SO32

FFFaaakkktttooorrriii kkkooojjjiii uuutttjjjeeečččuuu nnnaaa bbbiiioootttrrraaannnsssfffooorrrmmmaaaccciiijjjuuu

Intrinzički faktori vezani uz toksikant

Ovi faktori utječu na koncentraciju ksenobiotika u aktivnim središtima enzima. Npr.:

Fizikalno-kemijska svojstva (graĎa, veličina, oblik, kiralnost, ioniziranost tj. pKa kemijskih skupina,

topljivost u mastima, agregatno stanje) utječu na apsorpciju difuzijom i prolaz kroz stanične membrane.

Vezanje za proteine (plazme) smanjuje koncentraciju na mjestima metabolizma.

Doza

Postoje enzimi visokog afiniteta, ali malog kapaciteta. Ako se zasite, uključuju se enzimi malog afiniteta,

ali velikog kapaciteta (npr. paracetamol, kod niskih doza (15 mg/kg) preko 90% doze se izlučuje kao sulfatni konjugat,

dok se kod visokih doza (300 mg/kg) samo 43% izluči kao sulfat, ostatak kao glukuronid ili kao merkapturne kiseline).

Page 25: Klapec Tox Hrane 2008 Oksidacije

24

Indukcija biotransformacijskih enzima

Nakon djelovanja na ţivotinje ili ljude

kemikalijama dolazi do jačanja aktivnosti

biotransformacijskih enzima što je posljedica

povećanja brzine njihove sinteze, tzv.

indukcije enzima.

Ksenobiotik aktivira transkripciju

gena koji kodira taj enzim (npr. aromatski

ugljikovodici (poput TCDD na slici) se vežu za tzv.

AhR receptor (receptor aromatskih ugljikovodika)

koji je u citosolu povezan s još najmanje tri dodatna

proteina; vezanjem aromatskog ugljikovodika dolazi

do disocijacije tih proteina, te nakupljanja

kompleksa spoja i AhR u staničnoj jezgri;

povezivanje AhR kompleksa s odreĎenim (ARNT)

proteinom omogućuje vezanje za specifično mjesto u lancu DNA pored gena za citokrom P450 1A1 koji ima svojstvo

hidroksilacije aril ugljikovodika; to potiče transkripciju gena i akumulaciju odgovarajuće mRNA čijom translacijom nastaje

djelatni enzim).

Najpoznatiji induktori su policiklički aromatski ugljikovodici (benzo[a]piren, 3-metilkolantren ili 3-MC,

2,3,7,8-tetraklorodibenzo-p-dioksin ili TCDD), fenobarbital, spojevi iz biljnih namirnica (indoli i

glukozinolati (sulforafan) iz krucifernog povrća, organosumporni spojevi (luk), diterpeni iz kave), i dr.

Prvenstveno se mogu inducirati monooksigenaze ovisne o citokromu P450, tj. mikrosomalni enzimi, dok se

citosolni enzimi (osim GSH S-transferaza) slabo induciraju.

Indukcija enzima moţe značajno utjecati i na kvalitativne aspekte aktivacije tj. udio spoja koji se

detoksificira u odnosu na udio koji postaje toksičniji od početnog spoja. Npr., razni induktori potiču sintezu

različitih izoenzima citokroma P450 (od ukupne količine P450 proteina poslije indukcije 3-MC-om otprilike 50% će činiti

CYP1A1, 24% CYP1A2 itd.; poslije indukcije fenobarbitalom CYP2B1 će imati najveći udjel od 55%), a udjeli izoenzima

koji mogu metabolizirati odabrani supstrat odreĎuju i ukupni učinak metaboličkih reakcija (nastanak

reaktivnih metabolita benzo[a]pirena u znatnoj mjeri ovisi o udjelu izoenzima citokroma P450 (npr. CYP3A4) koji spremno

vrše epoksidaciju nastalih alkohola i diola).

Udio izoenzima utječe na ukupnu brzinu konverzije, regioselektivnost metabolizma (npr., poslije tretmana

različitim induktorima, najzastupljeniji metaboliti brombenzena imaju OH skupinu na različitim mjestima u molekuli; za

razliku od orto oblika, para oblik je hepatotoksičan) i stereoselektivnost (metabolizmom talidomida može nastati

embriotoksični (S)-enantiomer i netoksični (R)-enantiomer).

Inhibicija biotransformacijskih enzima

Podrazumijeva činioce koji smanjuju sposobnost enzima da metaboliziraju ksenobiotike, npr.:

Kompeticija toksikanata za aktivno mjesto (takoĎer sam toksikant moţe biotransformacijom dati spoj koji

ima veći afinitet za aktivno mjesto enzima od početnog spoja).

Vezanje inhibitora za aktivno mjesto enzima (pentaklorofenol inhibira sulfotransferaze; neki sastojci grejpa

inhibiraju neke enzime sustava citokroma P450).

Vezanje za kofaktor (npr. CO se veže za Fe2+ hema).

Utjecaj na biosintezu ili razgradnju kofaktora (npr. kobalt inhibira sintezu hema (kofaktor citokroma P450); vinil

klorid se kovalentno veže na atome dušika hema što dovodi do uništenja hema) ili proteinskog dijela enzima (npr.

kovalentno vezanje za proteinski lanac uz inhibiciju enzima), i sl.

Nakon ireverzibilne inhibicije biotransformacijskih enzima uvijek slijedi brza regeneracija.

Page 26: Klapec Tox Hrane 2008 Oksidacije

25

Vrsta i genetske varijacije

Vrsta -postoje kvalitativne razlike (npr. metabolički putevi karakteristični za vrstu, različiti enzimi, i sl.),

uglavnom vezane za reakcije II faze (psi: nema N-acetilacije, mačke: nema glukuronidacije), te kvantitativne

razlike (razine enzima, prirodnih inhibitora, i sl.), uglavnom kod reakcija I faze.

Genetske varijacije –nazivaju se i genetskim polimorfizmima i označavaju postojanje nekoliko inačica

odreĎenog biotransformacijskog enzima (npr. utvrĎeno je postojanje 10ak neaktivnih ili djelomično aktivnih varijanti

alela CYP2D6); mogu postojati značajne razlike izmeĎu sojeva pokusnih ţivotinja, te se u toksikološkim

studijama rutinski koriste homozigoti (da bi bili sigurni da je uočena razlika izmeĎu dva soja posljedica genetske

različitosti (npr. razlike meĎu sojevima miševa u genu koji kodira hidroksilazu aril ugljikovodika), treba ukloniti utjecaje

okoline koji mogu imati veći ili manji utjecaj na indukciju ili inhibiciju enzima); genetski polimorfizmi su uočeni i kod

ljudi (primjer P450 genetskog polimorfizma: osobe koje sporije vrše O-dealkilaciju fenacetina su izloženije većem

toksikološkom riziku zbog alternativne pretvorbe u N-hidroksi fenetidin koji može uzrokovati methemoglobinemiju; postoje

brzi i spori acetilatori (spori inaktivatori su homozigoti za recesivni alel) antituberkuloznog lijeka izoniazida (Europa: 40%

populacije su brzi acetilatori, Azija: 80%).

Specifičnost metabolizma organa

Postoji razlika u ekspresiji biotransformacijskih enzima u organima. Npr., CYP2F1 se eksprimira isključivo u

plućima, ne u jetri, što moţe rezultirati različitom osjetljivošću organa na pojedine strane tvari (npr. CYP2F1

oksidira naftalen u pneumotoksični naftalen-1,2-oksid).

Obzirom na dominantnu ulogu jetre u metabolizmu ksenobiotika, smanjenje ukupnog kapaciteta

biotransformacije moţe uslijediti zbog kemijskih ili fizičkih oštećenja, bolesti (karcinomi, hepatitis, ciroza,

i dr.), smanjenja protoka krvi kroz jetru, oštećenja bubrega (koje dovodi do slabljenja funkcije jetre), i sl.

Spol i životna dob

Muţjaci i ţenke štakora (što nije utvrĎeno i kod ostalih vrsta) se značajno razlikuju u biotransformaciji, uz

smanjen kapacitet metabolizma ksenobiotika kod ţenki (npr. paration je dvostruko toksičniji za ženke štakora).

UtvrĎeno je da su ove razlike povezane s djelovanjem (spolnih) hormona. Nakon što su ţenke tretirane

androgenim hormonima, biotransformacija postaje slična kao kod muţjaka. Kod ljudi su uočene razlike u

osjetljivosti na različite toksikante (nikotin, etanol, benzodiazepini, estrogeni, acetilsalicilna kiselina, i dr.), ali se

smatra da razlike nisu genetski uvjetovane nego da se mogu pripisati anatomskim i fiziološkim činiocima

koji utječu na apsorpciju, raspodjelu, i izlučivanje toksikanta (npr. žene imaju manje tjelesne vode u odnosu na

muškarca iste tjelesne mase, te postižu više koncentracije u krvi unosom iste količine alkohola).

Fetalne i novookoćene ţivotinje imaju krajnje ograničene sposobnosti metabolizma ksenobiotika,

što je, osim nedovoljne razvijenosti sustava koji utječu na apsorpciju, raspodjelu i izlučivanje stranih tvari,

posljedica i malog metaboličkog kapaciteta (odrasli miševi: 100 g heksobarbitala / g tjelesne težine = 1 h sna,

novookoćeni: 10 g/g tj. t. = 6 h sna; u više od 50% novoroĎenčadi se javlja žutica jer jetra još nema dovoljno

glukuronoziltransferaza kojima konjugira bilirubin i izlučuje ga u žuč). Povećan toksicitet je uočen i kod starijih

ţivotinja. Smatra se da je to posljedica smanjenja biokemijskih i fizioloških funkcija kod starijih

(smanjenje aktivnosti metaboličkih enzima i/ili slabija raspoloţivost kofaktora), što utječe i na odgovor na

toksikante.

Prehrana i okolišni faktori

Nedostatak minerala (Ca, Cu, Fe, Mg, Zn, Mo, Se, i dr.) i vitamina (C, E, B-kompleks) dovodi do slabljenja

biotransformacijske funkcije zbog toga što su kofaktori metaboličkih enzima. Analogno, nedostatak

bjelančevina u prehrani (zbog ograničene sinteze biotransformacijskih enzima) povećava toksicitet

ksenobiotika koji su u početnom obliku aktivni, a smanjuje toksicitet ksenobiotika koji se bioaktiviraju.

Nedostatan unos aminokiselina sa sumporom moţe smanjiti rezerve GSH, te aktivnost glutation S-

transferaza.

Page 27: Klapec Tox Hrane 2008 Oksidacije

26

Kako je već spomenuto gore, neki sastojci hrane i vode (kao i unos lijekova) utječu na biotransformaciju

indukcijom (poput indola povrća, ili policikličkih aromatskih ugljikovodika, npr. iz mesa s roštilja; takoĎer

aditivi, ostaci pesticida, i sl.) ili inhibicijom (sastojci grejpa) enzima (poslije obroka s kupusom i prokulicama,

utvrĎena je 2-3 puta niža koncentracija fenacetina u krvi tih ispitanika u odnosu na kontrole, zbog indukcije citokroma P450

(indol-3 karbinolom) koji ga metaboliziraju).

12-satno gladovanje se često koristi u toksikološkim istraţivanjima jer se time smanjuje sadrţaj probavnog

trakta i pospješuje apsorpcija oralno unešenih kemikalija što podstiče i biotransformaciju, osim nekih

reakcija druge faze. S druge strane, izgladnjivanje (>48 h) dovodi do supresije biotransformacije jer i pored

dostatne količine enzima, oni ne djeluju odgovarajuće zbog niskog energijskog statusa ţivotinja.

Varijacije neuroendokrine funkcije pod utjecajem tzv. cirkadijalnog ritma (tzv. unutarnji sat u

hipotalamusu koji prilagoĎava stanje organizma dnevnim i sezonskim varijacijama svjetla i mraka u okolišu razdvajajući

kataboličke i anaboličke procese) takoĎer mogu utjecati na aktivnost pojedinih metaboličkih enzima (npr.

glutation S-transferaza).

Izloţenost okolišnim kontaminantima modulira sposobnost biotransformacije upravo zbog indukcije

enzima. Ustanovljeno je da pušači brţe metaboliziraju neke toksikante (lijekove), kao i radnici u

tvornicama kemikalija poput pesticida.

BBBiiioooaaakkktttiiivvvaaaccciiijjjaaa tttoookkksssiiikkkaaannnaaatttaaa

Za većinu ksenobiotika biotransformacija podrazumijeva smanjenje toksičnosti, ali postoje i primjeri gdje

je produkt biotransformacije toksičniji od početnog spoja. To je tzv. metabolička aktivacija ili

bioaktivacija.

Reaktivni (elektrofilni) meĎuspojevi mogu reagirati s nukleofilnim mjestima tkivnih sastojaka, npr. SH-

skupinom GSH, NH2-skupinama bjelančevina, OH-skupinama DNA, itd. Ova kovalentna interakcija se smatra

ključnom u toksičnom djelovanju ksenobiotika. Reaktivni meĎuspojevi se mogu detoksificirati ako postoji

ravnoteţa izmeĎu stvaranja i detoksikacije tih spojeva.

ksenobiotik netoksični produkt eliminacija

toksični produkt

kovalentno vezanje

? ?

?

oštećenje tkiva rak

Primjeri nastanka reaktivnih meĎuspojeva sustavom monooksigenaza ovisnih o citokromu P450:

-oksidativne reakcije poput uvoĎenja atoma kisika na dvostruku vezu pri čemu nastaju elektrofilni epoksidi

-oksidativna dehalogenacija (npr. iz kloroforma oksidacijom preko nestabilnog triklorometanola nastaje fosgen koji je

snažan alkilirajući agens zbog elektrofilnog atoma ugljika) CHCl3 CCl3OH Cl–CO-Cl

O

GS

NH2 DNA, proteini...

OH DNA, proteini...

Page 28: Klapec Tox Hrane 2008 Oksidacije

27

-reduktivne reakcije poput dehalogenacija specifičnih halogeniranih alifatskih spojeva pri čemu nastaju

slobodni radikali CCl4 + e CCl3 + Cl

-reakcije amin oksidaza (npr. N-oksidacija arilamina, vidi dolje), i dr.

Enzimi II faze stvaraju reaktivne meĎuspojeve uglavnom pregradnjom nestabilnih konjugata (npr. sulfatni

konjugati metabolita 2-acetil aminofluorena), takoĎer acetilacijom (npr. izoniazida), kao i uz GSH S-transferaze

(npr. konjugacija 1,2-dihaloetana sa GSH).

Nekim glukuronidima se pripisuje vezanje za antigene, čime postaju hapteni, te mogu izazvati imunološku

reakciju. Glukuronidacija ima i neizravnu ulogu u metaboličkoj aktivaciji jer se neki toksikanti u obliku

glukuronida transportiraju do mjesta djelovanja, gdje se razgraĎuju uz nastajanje reaktivnih spojeva

(arilamini se uz P450 sustav prevode u karcinogene N-hidroksiarilamine; ovi uz UDP-glukuronoziltransferaze daju N-

glukuronide koji se transportiraju u mokraćni mjehur; spontano, u kiselom urinu, ili djelovanjem mikrobnih -glukuronidaza

se oslobaĎaju N-hidroksiarilamini).

Toksičniji spojevi mogu nastati i sporednim metaboličkim putem kad se zasite enzimi osnovnog

metaboličkog puta (paracetamol se obično konjugira sa sulfatom i glukuronskom kiselinom, ali kod velikih doza se jedan

dio biotransformira i sustavom citokroma P450 pri čemu nastaje reaktivni meĎuprodukt koji se može kovalentno vezati za

bjelančevine u jetri izazivajući nekrozu).

Br

Br

GS

Br

GS GS +

jetra

krv

urin

NH2 N

citokrom P450

NH OH gluc OH

Ngluc OH NH OH

NH +

reaktivni arilnitrenij ion

pH 5-6

Page 29: Klapec Tox Hrane 2008 Oksidacije

28

I Z L U Č I V A N J E T O K S I K A N A T A

Fizikalno-kemijska svojstva tvari i metabolita su najvaţnije odrednice načina i brzine izlučivanja. Najviše

se toksikanata izlučuje preko bubrega (urinom), pri čemu su u početnom obliku bili hidrofilne molekule ili

se prethodno prevode u vodotopljive oblike. Nešto toksikanata se izlučuje preko jetre u ţuči (DDT, Pb), dok

se plinovi (CO) i neke hlapljive tvari (dimetilselenid, kloroform) izlučuju preko pluća. Vrlo male količine se

izlučuju putem ostalih tjelesnih izlučevina (znoj, mlijeko, suze, probavni sokovi, sjemena tekućina).

Ţivotno doba, spol, zdravlje, genetski polimorfizmi, prehrana, i okolišni faktori mogu utjecati i na

izlučivanje ksenobiotika. Starija ţivotna dob, bolest ili oštećenje jetre ili bubrega slabe bilijarnu odnosno

urinarnu ekskreciju. Ekskretorni sustavi jetre i bubrega (npr. sustavi aktivnog transporta) nisu potpuno

razvijeni kod novoroĎenčadi, što, u većini slučajeva, podrazumijeva veću toksičnost nekih tvari nego za

odrasle. Genetske varijacije mogu, npr., utjecati na kapacitet sustava aktivnog transporta toksikanata, ali

već se i razlike u metabolizmu stranih tvari mogu odraziti na izlučivanje. Metaboliti mogu biti reaktivni

spojevi koji će se duţe zadrţati u organizmu zbog interakcija s tkivnim sastojcima ili mogu koristiti drukčije

puteve izlučivanja (npr. utvrĎena razlika u brzini izlučivanja antipirina kod neidentičnih, za razliku od para identičnih

blizanaca). Jačanje ekskretorne funkcije jetre je utvrĎeno nakon tretiranja s nekim tvarima (fenobarbital)

koje induciraju biotransformacijske enzime što povećava tok ţuči i izlučivanje pojedinih toksikanata. Slično

(indukcijom ili inhibicijom metaboličkih enzima) djeluju tvari iz hrane i okoliša (npr. neki sastojci grejpa

inhibiraju citokrome P450, a neki P-glikoprotein što može značajno usporiti izlučivanje nekih toksikanata).

IIIzzzllluuučččiiivvvaaannnjjjeee uuurrriiinnnooommm

Toksikanti se mokraćom izlučuju istim mehanizmima kojima se preko

bubrega izlučuju produkti metabolizma, a koji uključuju:

glomerularnu filtraciju, tubularnu reapsorpciju i tubularno

izlučivanje (osnovna strukturna jedinica bubrega je nefron koji se sastoji od

glomerula i tubula).

G l o m e r u l a r n a f i l t r a c i j a

Kroz pore glomerularnih kapilara prolaze molekule sa Mr manjom od

60000. Proteini plazme i toksikanti vezani za njih ostaju u plazmi,

dok 20% slobodnog oblika toksikanta odlazi sa 20% vode plazme u

filtrat.

T u b u l a r n a r e a p s o r p c i j a

Glomerularni filtrat na putu prema mokraćnom mjehuru prolazi kroz

tubul u kojima se odvijaju procesi reapsorpcije. ovi uključuju aktivni

transport vaţnih hranjivih tvari (npr. glukoza, voda, Na+, Cl

-) koje

mogu koristiti toksikanti slične graĎe. TakoĎer, lipofilne tvari se

mogu reapsorbirati difuzijom kroz stijenke stanica tubula u krv. Na lipofilnost organskih kiselina i baza

utječe pKa funkcionalnih skupina i pH urina. Općenito će se bazični toksikanti izlučivati (tj. neće se

reapsorbirati) kad je urin kisel, dok će se kiseli spojevi jače izlučivati kad je urin alkaličan (npr. fenobarbital,

pKa=7,2; kiseli pH (R-COOH) -reapsorbira se; lužnati pH (R-COO ) –izlučuje se; stoga se trovanje istim liječi alkalizacijom

urina sa NaHCO3).

Page 30: Klapec Tox Hrane 2008 Oksidacije

29

T u b u l a r n o i z l u č i v a nje

Stanice tubula bubrega imaju nekoliko sustava aktivnog transporta meĎu kojima su najvaţniji transporteri

organskih aniona tj. kiselina (OAT), transporteri organskih kationa tj. baza (OCT), MRP proteini, BCRP

(breast cancer resistance protein) te P-glikoprotein. Ovi sustavi su ograničenog kapaciteta i relativno niske

specifičnosti, te se različiti spojevi natječu za ove sustave (npr. penicilin se izlučuje sustavom za organske kiseline,

pa je za vrijeme 2. svjetskog rata tražena kiselina (probenecid) koja će se natjecati s penicilinom za renalnu ekskreciju, da

bi se time produžio njegov poluživot i djelovanje). TakoĎer, ovi transportni sustavi prepoznaju metabolite i

konjugate koji nastaju biotransformacijskim reakcijama.

Obzirom na vrlo brzu disocijaciju toksikanta s proteina plazme (uslijed smanjenja koncentracije

slobodnog oblika toksikanta u plazmi), i strane tvari koje imaju visok afinitet vezanja za ove proteine se

mogu (glomerularnom filtracijom i tubularnim sustavima aktivnog transporta) gotovo potpuno ukloniti iz

krvi jednim prolaskom kroz bubreg.

IIIzzzllluuučččiiivvvaaannnjjjeee uuu žžžuuučččiii

Krv iz probavnog trakta prolazi kroz jetru prije ulaska u sistemsku cirkulaciju. Protok krvi kroz jetru je

sporiji od protoka u drugim organima što lipofilnim sastojcima apsorbiranim u probavnom traktu daje

dovoljno vremena za difuziju preko staničnih membrana hepatocita. Time se uklanjaju toksikanti iz krvi i

spriječava njihova raspodjela u druge dijelove tijela. Jetra je i glavno mjesto metabolizma toksikanata, pa

se nastali metaboliti i/ili konjugati mogu izlučiti izravno u ţuč ili u krv odakle dospijevaju do bubrega, te se

izlučuju u urin. Ţuč se skuplja u ţučnoj vrećici i izlučuje u tanko crijevo. U idealnom slučaju, ti toksikanti

nastavljaju put do debelog crijeva, te se izlučuju fecesom.

Postoje tri razreda tvari koje se izlučuju u ţuč (podjela prema odnosu koncentracija ţuč-plazma):

<1 albumin, Zn, Fe, Cr, ...

1 Na, K, glukoza, Cd, Hg, Cs, Co, ...

>1 žučne kiseline, bilirubin, Pb, As, Mn, ...

plazma

pH 7,2

kiseli urin

pH 5,6

plazma

pH 7,2

reapsorpcija reapsorpcija

membrana stanica tubula membrana stanica tubula

izlučivanje izlučivanje

lužnati urin

pH 7,8

COOH

OH

COO

OH

NH2

NH3+

Page 31: Klapec Tox Hrane 2008 Oksidacije

30

Odnos koncentracija u trećoj skupini je obično izmeĎu 10 i 1000, te upućuje na aktivni transport (bilirubin:

žutica se često javlja nakon oštećenja jetre). Ovdje vaţnu ulogu imaju transportni proteini poput P-glikoproteina,

MRP proteina (koji pripadaju skupini tzv. ABC (ATP-binding cassette) transporterskih proteina), BCRP, OAT, OCT, itd.

UtvrĎeno je da polimorfizam gena koji kodiraju ove proteine značajno utječe na potrebnu terapijsku dozu

nekih lijekova (ciklosporin A: manja ekspresija djelatnog P-glikoproteina u jetri sporije izlučivanje lijeka).

MeĎutim, tvar ne mora biti visoko koncentrirana u ţuči da bi njena bilijarna ekskrecija bila vaţna.

Primjerice, Hg se ne koncentrira u ţuči, ali je to glavni put izlučivanja Hg.

Ţuč se moţe smatrati glavnim putem izlučivanja velikih molekula (za razliku od urina) i konjugata

koji nastaju biotransformacijom toksikanata.

Udio ukupno

izlučene količine (%)

Spoj Mr Urin Žuč

Bifenil 154 80 20

4-Monoklorobifenil 188 50 50

4,4'-Diklorobifenil 223 34 66

2,4,5,2',5'-Pentaklorobifenil 326 11 89

2,3,6,2',3',6',-Heksaklorobifenil 361 1 99

Izlučivanje toksikanata putem ţuči moţe usporiti tzv. enterohepatski ciklus do kojeg dolazi

djelovanjem intestinalne mikroflore koja moţe hidrolizirati različite konjugate nastale biotransformacijom.

Obnova lipofilnog karaktera toksikanta omogućuje reapsorpciju u crijevima:

Npr., glukuronidi izlučeni u ţuči su supstrati -glukuronidaze (koja hidrolizira vezu izmeĎu glukuronske

kiseline i toksikanta). Crijevna mikroflora ima ovaj enzim, pa je moguće oslobaĎanje toksikanta iz

konjugata i reapsorpcija difuzijom nakon koje toksikant ponovno dospijeva u jetru itd. Enterohepatsko

kruţenje moţe znatno produţiti vrijeme zadrţavanja toksikanta u organizmu te se kod liječenja trovanja

nekim tvarima nastoji prekinuti ciklus radi ubrzanja eliminacije (npr. kod trovanja metilživom (koja se

kompleksira s glutationom i reapsorbira sustavima aktivnog transporta u stanicama žučne vrećice što čini varijantu

kruženja, tzv. bilijarno-hepatski ciklus) se oralno daje politiolna smola koja na sebe veže metilživu pri čemu ne dolazi do

reapsorpcije).

jetra

žuč krv

tanko crijevo

OH O

faza I faza II

O

OH

COO

HO

hidrofobnii.e. lipofilni spoj

polarni spoj konjugat = hidrofilni spoj

DIFUZIJA PREKO STANIČNIH MEMBRANA IZLUČIVANJE PUTEM URINA I ŽUČI

hidroliza djelovanjem crijevne mikroflore

OH

Page 32: Klapec Tox Hrane 2008 Oksidacije

31

OOOssstttaaallliii pppuuuttteeevvviii iiizzzllluuučččiiivvvaaannnjjjaaa

Izlučivanje izdahnutim zrakom

Plućima se u prvom redu izlučuju tvari koje su u plinovitoj fazi na temperaturi tijela, te isparljive tekućine

u ravnoteţi sa svojom plinovitom fazom. Količina tekućine koju izluče pluća je u vezi s njenim pritiskom

para (praktična primjena ovoga: alko-test). Difuzija je osnovni princip uklanjanja, pri čemu bolja topljivost

u krvi podrazumijeva sporije izlučivanje (npr. kloroform). Eliminaciju hlapljivih spojeva usporava i

odlaganje jako hidrofobnih supstanci u masno tkivo (npr. anestetik halotan se moţe naći u dahu i nekoliko

tjedana nakon anestezije).

Izlučivanje fecesom

Osim u ţuči, toksikant se moţe izlučiti preko probavnog trakta, te eliminirati putem fecesa jer: nije

potpuno apsorbiran nakon oralnog unosa, izlučen je slinom, ţelučanim ili sekretornim fluidima crijeva,

izlučevinama gušterače, ili je uklonjen iz dišnog sustava transportom do usta, te je progutan. Difuzijom ili

aktivnim transportom preko membrana stanica probavnog trakta se takoĎer uklanjaju strane tvari, ali je

to, u većini slučajeva, od malog kvantitativnog značenja. Smatra se da je aktivni transport jako lipofilnih

spojeva u crijevima glavni put njihova uklanjanja.

Izlučivanje cerebrospinalnom tekućinom

Toksikanti topljivi u mastima prolaze preko barijere krv-cerebrospinalna tekućina pasivnom difuzijom,

ostali aktivnim transportom (vidi odlomak o krvno-moţdanoj barijeri u poglavlju ‘Barijere raspodjeli

toksikanata’).

Izlučivanje mlijekom

Vaţno zbog mogućnosti prijenosa toksikanata od majke djetetu koje se doji takvim mlijekom, te

mogućnosti prijenosa s ţivotnja koje daju mlijeko na ljude. Izlučivanje u mlijeko se odvija običnom

difuzijom (pH je oko 6,5, niţi od pH plazme, te više baza ostaje u mlijeku. Organske kiseline su najvećim

dijelom neionizirane, te difundiraju van. Zbog 3-5% masti u mlijeku ono koncentrira hidrofobne toksikante

(poliklorirani bifenili, dioksini, pirolizidinski alkaloidi i mnogi drugi) i moţe biti glavni put njihovog izlučivanja.

TakoĎer nakuplja metale slične Ca poput olova.

Izlučivanje u znoju

Toksikanti u znoj dospijevaju difuzijom neioniziranog oblika. Ovakvo izlučivanje je količinski od vrlo malog

značaja. Neki toksikanti u znoju mogu izazvati dermatitis.

Page 33: Klapec Tox Hrane 2008 Oksidacije

32

T O K S I K O K I N E T I K A

Toksikokinetika označava praćenje kretanja stranih tvari u tijelu tj. apsorpciju, raspodjelu, metabolizam i

izlučivanje, te daje korisne informacije o načinu dospjeća toksikanta na mjesto djelovanja. Naglasak ovog

poglavlja je na kvantitativnim aspektima toksikokinetike tj. mjerljivim parametrima bitnim za procjenu

rizika. Model koji dobro prezentira ove parametre je prikazan dolje:

Toksikantu se nakon apsorpcije koncentracija u krvi uravnoteţuje s koncentracijom u tkivima i organima.

Volumen odjeljaka u koji se toksikant raspodijeljuje se izraţava tzv. volumenom distribucije. Jačina

izlaznog protoka se naziva klirensom (eng. clearance).

Volumen distribucije

Ab je količina toksikanta u tijelu (doza), C je koncentracija u krvi (plazmi). Vd (izraţava se u L po kg

tjelesne teţine) je prividni volumen jer je riječ o volumenu potrebnom za homogenu raspodjelu tvari u

koncentraciji utvrĎenoj u krvi. Stoga Vd ponekad moţe biti znatno veći od ukupnog volumena tjelesnih

tekućina i tkiva, ukoliko je tvar višestruko koncentriranija u ekstravaskularnim tkivima tj. nije homogeno

rasporeĎena. Toksikanti koji se gotovo u potpunosti zadrţavaju u krvi (slobodni i vezani za proteine

plazme) imaju minimalni Vd koji je gotovo jednak volumenu krvnog odjeljka (npr. aspirin: 11 L/70 kg, klorokvin:

13000 L/70 kg).

Klirens

CL je mjera sposobnosti tijela da eliminira stranu tvar tj. količina krvi koja se u jedinici vremena očisti od

pojedinog toksikanta (izraţava se npr. u L / min).

Većina toksikanata ima klirens koji je konstantan u opsegu uobičajenih koncentracija tj. ne dolazi

do zasićenja eliminacije i brzina eliminacije je izravno proporcionalna koncentraciji (brzina eliminacije =

CL ∙ C). CL se moţe izračunati i iz tzv. AUC (area under the curve) vrijednosti ili površine ispod krivulje.

Riječ je o površini ispod krivulje promjene koncentracije u krvi s vremenom:

C

u krvi

t

AUC se ekstrapolira prema beskonačnosti i CL računa prema jednadţbi

Doza = CL ∙ AUC

krv ekstravaskularni

prostor

C

AV b

d

C

eeliminacijbrzinaCL

dtCAUC

0

brzina eliminacije

Page 34: Klapec Tox Hrane 2008 Oksidacije

33

Brzina eliminacije kinetika nultog reda

kinetika prvog reda

gdje je C koncentracija u krvi, t je vrijeme, a k konstanta (izraţava se u količini po jedinici vremena, npr.

g/min). Kod kinetike nultog reda odvija se promjena zadane koncentracije toksikanta u jedinici vremena.

Kinetika prvog reda podrazumijeva promjenu razine toksikanta koja je proporcionalna raspoloţivoj

koncentraciji kemikalije. Veličine koje opisuju brzinu eliminacije su konstanta brzine eliminacije k i

vrijeme poluţivota t1/2.

Većina procesa koji sudjeluju u kretanju kemikalije u organizmu (difuzija, nosačima posredovan

aktivni transport, metabolizam, izlučivanje) se odvijaju kinetikom prvog reda pri niskim koncentracijama.

Reakcije prvog reda se mogu opisati eksponencijalnim funkcijama, te jednadţba za eliminaciju supstance

poprima sljedeći oblik:

C0 je početna koncentracija. SreĎivanjem se dobije jednadţba pravca y = C + m∙x, gdje y predstavlja

ordinatu, x apscisu, m je nagib krivulje, a C presjecište ordinate. U toksikokinetici, graf ln C : vrijeme daje

nagib –k (za graf log C : t, nagib je –k/2,303) i presjecište C0.

C

ln C

t t

Klirens se takoĎer moţe izračunati iz konstante brzine eliminacije jer

Vrijeme poluţivota

Vrijeme poluţivota predstavlja vrijeme potrebno da se koncentracija u krvi smanji na polovicu.

Kinetika i.e. reakcije nultog reda postaju vaţne kod viših koncentracija, pri čemu enzimi i proteini

uključeni u procese aktivnog transporta i biotransformacije imaju ograničeni kapacitet i mogu biti zasićeni,

te povećanje koncentracije strane tvari neće povećati brzinu reakcija. To dovodi do nelinearne ili kinetike

zasićenja.

Michaelis-Menten kinetika opisuje

ovakve procese (KM je M-M konstanta tj.

koncentracija tvari kod koje je brzina

eliminacije 50% maksimalne tj. one kod koje

je enzim zasićen).

v vmax

KM C

kdt

dC

Cdt

dCk

t0 eCC k

tClnCln 0 k

1/2t0

0 eC2

C k

k

2lnt1/2

C0 ln C0

-k

V

CLk

CK

Cvv

M

max

2

vmax

Page 35: Klapec Tox Hrane 2008 Oksidacije

34

C

t

Gornja krivulja prikazuje odnos koncentracije u krvi s vremenom za toksikant koji u organizmu pokazuje

kinetiku zasićenja. Dok je koncentracija toksikanta niţa od KM, moţe se uočiti kinetika prvog reda, dok se

kod viših doza vidi nelinearna eliminacija (npr. visoka koncentracija nadmašuje kapacitet vezanja za proteine

transporta i metabolizma, te se povećava koncentracija slobodnog oblika tvari u krvi; etanol je primjer gdje brzo zasićenje

biotransformacije ograničava brzinu eliminacije, te se konstantna količina biotransformira u jedinici vremena bez obzira na

količinu etanola u tijelu). Doza pri kojoj se brzina eliminacije mijenja iz kinetike prvog reda u kinetiku

zasićenja znači da tijelo postupa s kemikalijom drukčije nego pri niţim dozama, što moţe biti razina pri

kojoj toksikant postaje opasan.

Km i vmax se mogu odrediti iz krivulje prema jednadţbama:

C0e je koncentracija kod t = 0 dobivena ekstrapolacijom linearnog dijela krivulje na ordinatu, a C0a je

izmjerena koncentracija kod t = 0.

Modeliranje toksikokinetike najčešće uključuje tzv. jednodjelni ili dvodjelni otvoreni sustav.

Jednodjelni otvoreni sustav podrazumijeva tijelo kao jedan odjeljak, pri čemu otvoreni znači da se

kemikalija eliminira iz organizma. Riječ je o kinetici prvog reda jer se koncentracija smanjuje za polovicu

u vremenu poluţivota (t1/2), sve dok se sav toksikant ne ukloni.

ln C

6

3

t1/2 t

Odnos koncentracija toksikanta u tkivu i plazmi je stalan, i jednom kad je poznat, koncentracija toksikanta

u tkivu se moţe izračunati iz koncentracije u plazmi.

Matematički i fiziološki je prikladnije tijelo smatrati

dvodjelnim otvorenim sustavom koji se sastoji od centralnog

odjeljka (plazma ili krv) i perifernog odjeljka (ekstravaskularni

prostor tj. ostala tkiva i organi).

središnji k12 periferni

odjeljak odjeljak

1 k21 2

kinetika prvog reda

kinetika nultog reda

tK

vClnCln

m

max0e

)C(Cln

CK

0a0e

0am

-k

doza

kel

Page 36: Klapec Tox Hrane 2008 Oksidacije

35

Ovaj model uključuje sporije uravnoteţenje koncentracije izmeĎu središnjeg i perifernog odjeljka, te u

toksikokinetskim ispitivanjima treba uzeti u obzir brzine prelaska toksikanta izmeĎu ovih odjeljaka (opisane

konstantama k12 i k21). kel je konstanta brzine eliminacije toksikanta iz središnjeg odjeljka. Tipična krivulja

poslije intravenoznog doziranja je dana na donjem grafu:

ln C A B -ß

t

Linearni (terminalni) dio krivulje se ekstrapolira na ordinatu i presjecište je točka B koja predstavlja

početnu koncentraciju u jednom od odjeljaka. Nagib te krivulje je –β. Krivulja nagiba -α se dobije kao

razlika izmjerene koncentracije u krvi i one dobivene ekstrapolacijom gornjeg dijela krivulje. Presjecište

te krivulje je točka A (početna koncentracija u drugom odjeljku). Ove vrijednosti se mogu izračunati i

linearnom regresijom podataka. Konstante k12, k21 i kel se računaju na temelju gore dobivenih vrijednosti.

Ove konstante brzine daju uvid u relativni doprinos procesa raspodjele i eliminacije na C t profil

toksikanta.

Kinetika ponavljanog izlaganja

Ukoliko je vrijeme poluţivota kratko u odnosu na interval izmeĎu izlaganja toksikantu, ovaj će se skoro

potpuno ukloniti za vrijeme tog intervala. S druge strane, ako je poluţivot skoro isti ili veći od intervala

ekspozicije, dosta toksikanta ostaje u tijelu prije drugog i daljnjih izlaganja i toksikant će se gomilati tj.

dolazi do njegove kumulacije.

Kumulativna svojstva najčešće imaju lipofilne tvari koje se dugo

zadrţavaju u masnom tkivu i organima bogatim lipidima (npr.

organoklorni pesticidi). Sklonost kumulaciji imaju i neki spojevi ţive

i fluora, koji stvaraju vrlo čvrste veze s nekim tkivnim sastojcima, te

se zato slabo eliminiraju.

C

t

BA

ABk21

21kkel

elkkk 2112

Page 37: Klapec Tox Hrane 2008 Oksidacije

36

T O K S I K O D I N A M I K A

Toksikodinamika opisuje mehanizam djelovanja toksikanta u organizmu, kao i vezu izmeĎu doze toksikanta

i toksičnog učinka. Toksikanti se mogu vezati za odreĎene molekule u tijelu (tzv. receptore koji specifično

veţu toksikante ili su toksikanti slični endogenim molekulama koje se za njih veţu) ili njihovo djelovanje

moţe biti nasumičnije prirode. Moguće je i ponašanje koje uključuje oba načina djelovanja, dok nastanak

(bioaktivnih) metabolita dodatno komplicira toksikodinamiku stranih spojeva.

TTToookkksssiiičččnnnooo dddjjjeeelllooovvvaaannnjjjeee pppooosssrrreeedddooovvvaaannnooo rrreeeccceeeppptttooorrriiimmmaaa

Receptori su funkcionalno vaţne molekule i molekularni kompleksi na staničnoj membrani, unutar stanice,

ili mogu biti slobodne molekule (npr. enzimi). Vezanje toksikanta za receptor izaziva konformacijske

promjene receptorske molekule koje dovode do učinka (npr. aktivacije enzima ili otvaranja ionskog

kanala).

Interakcija receptora i strane tvari ovisi o afinitetu vezanja toksikanta kojeg odreĎuju fizikalno-

kemijska svojstva njegove molekule poput graĎe, oblika, veličine, prostornog rasporeda, električnog

naboja, i sl.

Smatra se da je jedan dio molekule toksikanta odgovoran za vezanje za receptor, a drugi za djelovanje, što

za posljedicu moţe imati velike razlike u učinku toksikanata slične graĎe (npr. morfin (veže se za endorfinske

receptore i izaziva učinak uslijed konformacijskih promjena) i sintetski nalokson (vezanjem za endorfinske receptore ne

izaziva učinak): nalokson ima C=O umjesto OH-skupine, dodatnu OH-skupinu i duži alkilni lanac na N atomu):

Vaţan je i prostorni raspored uslijed fenomena ‘ključ-brava’ tj. prostorne sukladnosti strane

tvari s aktivnim mjestom na molekuli receptora uslijed čega se moţe vezati (npr. utvrĎena je

ogromna razlika u učinkovitosti L- i D-adrenalina; takoĎer, postoje znatne razlike u oralnoj toksičnosti -

(LD50 = 500 mg/kg štakora), - (LD50 = 6000 mg/kg) i -heksaklorcikloheksana (LD50 = 125 mg/kg) tj.

insekticida lindana).

Veza izmeĎu toksikanta i receptora moţe biti ionska, kovalentna, vodikova, hidrofobna i van der Waalsova

veza. Ionska veza je vaţna za velik broj tvari koje su ionizirane kod fiziološkog pH, pri čemu elektrostatske

sile izmeĎu iona suprotnih naboja privlače ksenobiotik kad se naĎe u blizini receptora. Hidrofobna veza

nastaje izmeĎu nepolarnih dijelova molekule, ne toliko što se privlače, nego se smanjuje entropija

N

HO

HO

O

N

HO

HO

O

O

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Page 38: Klapec Tox Hrane 2008 Oksidacije

37

molekula vode (tj. polarnih spojeva) sabijanjem dviju nepolarnih molekula (kida se manje vodikovih veza oko

jedne veće nego oko dvije manje molekule). Van der Waalsove interakcije su posljedica prisnog dodira neutralnih

atoma ili skupina pri čemu jezgra jednog atoma privlači elektrone drugog atoma i obratno. Kod vodikove

veze se H+ ion raspodijeljuje izmeĎu dva elektronegativna atoma, poput O, S ili N atoma (topljivost u vodi je

uvjetovana vodikovim vezama). Kovalentna veza nastaje dijeljenjem elektrona u elektronskom paru, a poseban

slučaj ove veze je tzv. koordinativna veza kod koje elektronski par neke veze potječe od samo jednog

atoma (npr. CO donira jedan elektronski par Fe2+ atomu hemoglobina).

Veza izmeĎu toksikanta i receptora je uglavnom slaba i reverzibilna i promjene koje nastaju su prolaznog

karaktera, te traju dok je supstanca prisutna u organizmu u aktivnoj koncentraciji. Kod jakih, kovalentnih

veza je riječ o ireverzibilnim promjenama, tj. tzv. biokemijskim lezijama (npr. kovalentno vezanje

toksikanta za DNA, posljedica čega moţe biti mutageni ili karcinogeni proces ili ireverzibilna inhibicija

acetilkolinesteraze organofosfatnim spojevima).

Kvalitativni aspekti interakcije toksikanta i receptora uključuju selektivnost i učinak nakon vezanja

za receptor.

Selektivnost toksikanata podrazumijeva vezanje za jedan

receptor i izazivanje jednog odreĎenog učinka. S druge strane,

neselektivni toksikant će se u tijelu vezati za više različitih

receptora izazivajući nezavisne toksične učinke (npr. heparin,

kiseli šećer negativnog naboja, se veže na proteine koji sudjeluju u

koagulaciji krvi, a koji su pozitivno nabijeni, rezultat čega je

spriječavanje grušanja krvi; neselektivno djeluje difenhidramin

(antihistaminik): veže se za histaminske receptore u različitim tkivima

spriječavajući djelovanje histamina uz antialergijski učinak, ali se istovremeno veže i za acetilkolinske i histaminske

receptore u CNS-u remeteći prijenos živčanih impulsa).

Toksikanti se dijele u tri skupine prema učinku nakon vezanja za receptor:

Učinak agonista je jednak učinku endogene tvari organizma

koja se normalno veţe za taj receptor (npr. morfin i

endorfinski receptori), te izaziva konformacijske promjene

receptorske molekule koje rezultiraju učinkom. Antagonist

nakon vezanja za receptor ne izaziva učinak (npr. već spomenuti nalokson vezanjem za endorfinske receptore) i

istovremeno spriječava agonistu pristup receptoru. Djelovanje parcijalnih agonista je po učinkovitosti

izmeĎu agonista i antagonista, te često vezanjem za receptor ne izazivaju dovoljne konformacijske

promjene koje bi dovele do aktivacije receptora.

Kvantitativni učinak toksikanta nakon interakcije toksikanta i receptora ovisi o količini toksikanta i

receptora, te afinitetu za receptor.

Reakcijom toksikanta i receptora nastaje kompleks (R + A RA) čija količina je izravno proporcionalna

jačini djelovanja toksikanta. Afinitet toksikanta za receptor se moţe ustanoviti odreĎivanjem veze doze i

odgovora (npr. inhibicija enzima). Na donjoj slici je prikazana razlika u jačini odgovora tri toksikanta

(agonisti) koji se veţu za isti receptor različitim afinitetima.

učinak

agonisti 1

parcijalni agonisti 0 – 1 antagonisti 0

Page 39: Klapec Tox Hrane 2008 Oksidacije

38

odgovor 100

(%)

A B C

log doza

Veći afinitet podrazumijeva niţu potrebnu koncentraciju za isti učinak. Dozu ne treba poistovjećivati s

koncentracijom toksikanta na aktivnom mjestu koja varira ovisno o brzinama apsorpcije, distribucije,

biotransformacije i izlučivanja.

Receptori se mogu podijeliti u dvije skupine obzirom na lokalizaciju:

- membranski receptori

- unutarstanični receptori i slobodne molekule

M e m b r a n s k i r e c e p t o r i

Uslijed vezanja za ekstracelularnu domenu membranskog receptora (receptor 2 na slici), promjena

konformacije receptora moţe aktivirati enzimatsku aktivnost citoplazmatske domene receptora (tako djeluje

inzulin, aktivacijom membranskih tirozin kinaza). Neki membranski receptori su povezani s enzimima (npr.

citokinski receptori su povezani s tirozin kinazama) i promjena njihove konformacije aktivira enzim.

Velik broj membranskih receptora su ionski kanali (receptor 3 na slici) i vezanje za njih dovodi do promjena

u propusnosti membrane (npr. vezanje nikotina za acetilkolinske receptore). Transportni proteini se takoĎer mogu

smatrati receptorima u toksikološkom smislu, jer mogu biti meta toksikanata (prozac blokira transportne

proteine serotonina).

Promjena konformacije membranskog receptora takoĎer moţe dovesti i do promjene prostornog rasporeda

tzv. G-proteina (receptor 4) koji zatim ionske kanale ili enzime (E na slici) prevodi u aktivni ili inaktivan

oblik (npr. vezanje adrenalina i noradrenalina za adrenergičke receptore).

U svim slučajevima, aktivacija membranskih receptora dovodi do prijenosa signala stanici (aktivirane

tirozin kinaze fosforiliraju proteine prevodeći ih u aktivan ili inaktivan oblik; aktivirani G-protein receptora aktivira

adenilat ciklazu koja cijepa ATP na 5’,3’-cAMP i PPi; cAMP aktivira protein kinaze koje fosforilacijom aktiviraju ili

inaktiviraju neke enzime; vezanje nikotina za acetilkolinske receptore dovodi do otvaranja ionskog Na+ kanala i

depolarizacije membrane, tj. prijenosa živčanog impulsa, itd.) kojeg podrţavaju toksikanti agonističkog, a

prekidaju oni antagonističkog djelovanja. Toksičnost agonista se temelji na remećenju ravnoteţe

pretjeranom stimulacijom, dok antagonisti remete ravnoteţu spriječavanjem bilo kakve signalizacije preko

ciljnog receptora.

1

2 3 4

Page 40: Klapec Tox Hrane 2008 Oksidacije

39

U n u t a r s t a n i č n i r e c e p t o r i i s l o b o d n e m o l e k u l e

Najčešće je riječ o enzimima i regulatorima genske transkripcije.

Inhibicijom enzima (vezanjem za aktivno mjesto ili alosterički) kod biosintetskih reakcija dolazi do

nedostatka odreĎene supstance, a kod enzima razgradnje do gomilanja supstrata (npr. liječenje kostobolje uz

alopurinol, inhibitor koji se kovalentno veže za ksantin oksidazu koja prevodi ksantin u urat; ili organofosfatni i karbamatski

inhibitori acetilkolinesteraze; glivec inhibira unutarstanične tirozin kinaze remeteći signale koji dovode do stanične

proliferacije).

Regulatori genske transkripcije (poput AhR receptora opisanog u poglavlju ‘Metabolizam toksikanata’) se

nalaze u citoplazmi i vezanje tzv. liganada tj. endogenih spojeva (npr. steroidnih hormona) ili stranih tvari

dovodi do transformacije tih receptora koja im omogućuje vezanje za odreĎene gene u lancu DNA

aktivirajući sintezu proteina kojima je posredovan učinak hormona u stanici (npr. mehanizam djelovanja

steroidnih hormona: receptorski protein (tzv. receptor steroidnih hormona) se sastoji od tri domene: domene koja veže

ligand, domene koja aktivira transkripciju i domene koja se veže za DNA; inhibitorski protein (npr. heat-shock protein,

hsp90) se veže za receptor u odsustvu liganda; vezanje steroidnog hormona ili toksikanta za vezujuću domenu dovodi do

promjene konformacije uslijed koje disocira inhibitorski protein s receptora; ovakva aktivna konfiguracija receptora se

može vezati za odreĎeni slijed u lancu DNA i posebna domena aktivira transkripciju odreĎenih gena).

TTToookkksssiiičččnnnooo dddjjjeeelllooovvvaaannnjjjeee nnneeeooovvviiisssnnnooo ooo rrreeeccceeeppptttooorrriiimmmaaa

Toksičnost nekih tvari nije rezultat vezanja za odreĎene molekule, nego posljedica nasumičnog djelovanja

uslijed fizikalnih ili kemijskih osobina toksikanta.

F i z i k a l n o d j e l o v a n j e

Promjena osmotskog tlaka

Riječ je o tvarima koje veţu vodu na sebe (npr. intravenozni manitol se koristi kao diuretik ili za povećanje

propusnosti krvno-moždane barijere uslijed skupljanja stanica endotela kapilara (voda izlazi iz stanica zbog većeg osmotskog

tlaka krvi); primjer je i laksativno djelovanje netopljivog MgSO4 u crijevima).

Adsorpcija

Tvari poput aktivnog ugljena koji ima jako veliku površinu (700 m2/g) zbog poroznosti, te snaţnu moć

adsorpcije vezanjem (uglavnom) organskih molekula van der Waalsovim silama. Štetni učinak bi se mogao

očitovati kronično smanjenom adsorpcijom vitamina i drugih molekula vaţnih u prehrani.

Lipofilnost

Lipofilne supstance se, primjerice, mogu gomilati u membrani ţivčanih stanica, čime joj remete propusnost

i inhibiraju funkciju neurona.

Page 41: Klapec Tox Hrane 2008 Oksidacije

40

Radioaktivnost

Štetno djelovanje radioaktivnih elemenata je posredovano ionizacijskim zračenjem koje moţe biti:

-elektromagnetsko

-zrake i X-zrake (predstavljaju višak energije koju elektroni oslobaĎaju u obliku fotona) i

-korpuskularno

-čestice (jezgre He (2 p i 2 n), jaka moć ionizacije, slabo prodiru), -čestice (tj. elektroni i pozitroni,

dobro prodiru, slabo ioniziraju), neutroni, protoni (tj. jezgre vodika), i dr.

Sva ova zračenja dovode do ionizacije izravno (izbacivanjem orbitalnog e iz molekule) ili neizravno (e

prelazi na višu energijsku razinu. PobuĎene molekule nemaju dovoljnu energiju za ionizaciju, a oslobaĎaju

višak energije disocirajući u slobodne radikale). Neizravni učinak ionizirajućeg zračenja u biološkim

sustavima započinje ionizacijom vode:

H2O HOH+ + e HOH

+ H

+ + OH∙ e + HOH HOH H∙ + OH

Nastaju jako reaktivni slobodni radikali (H∙ i OH∙), a u prisustvu kisika takoĎer hidroperoksi radikal (HO2∙) i

H2O2. Slobodni radikali reakcijom s biološkim molekulama daju organske slobodne radikale koji su stabilniji

i uzrokuju veću štetu (RH + OH∙ R∙). Slobodni radikali imaju snaţan nepovoljan učinak na stanicu kad

kemijske promjene uključuju molekule od velike vaţnosti za funkcioniranje i ţivot stanice poput DNA (lom

zavojnice, kidanje vodikovih veza, promjena ili gubitak baza, i sl.), lipida (lipidna peroksidacija, premještanje veza,

stvaranje aldehida, i sl.), ugljikohidrata (kidanje glikozidnih veza, oksidacija alkoholnih u aldehidne skupine, i sl.),

bjelančevina (kidanje lanca, modifikacija aminokiselina, denaturacija, i sl.), tiola (oksidacija, redukcija, stvaranje

radikala, unakrsno povezivanje), i dr., koje u stanici izaziva stanje tzv. oksidativnog stresa. Stoga ionizirajuće

zračenje izaziva toksične učinke u svim organima i sustavima organizma (najosjetljivija su ipak tkiva i

stanice koja se brzo obnavljaju poput krvotvornog sustava, embrija/fetusa, sluznice probavnog trakta, i

sl.).

K e m i j s k o d j e l o v a nj e

Neutralizacija

Princip djelovanja tvari poput antacida (npr. aluminij hidroksid) koji neutraliziraju ţelučanu kiselinu, čime

mogu utjecati na apsorpciju pojedinih toksikanata, ali i hranjivih tvari (slabija apsorpcija nehemskog željeza

zbog smanjene redukcije u Fe2+ koju favorizira niski pH želuca).

Proizvodnja slobodnih radikala i oksidacija

OdreĎen broj fizioloških procesa (respiracijski ciklus (oko 4% kisika se reducira u slobodne radikale), oksidativne

reakcije s citokrom P450 enzimima, uništavanje bakterija fagocitima, regulacija glatkih mišića, i dr.)

uključuje nastanak prooksidanata i slobodnih radikala poznatijih kao reaktivne vrste kisika (reactive oxygen

species, ROS) i dušika, npr. superoksid anion (O2 ∙), singlet kisik (1O2 – molekularni kisik višeg energetskog

stanja), hidroksilni radikal (OH∙), peroksilni radikal (ROO∙), vodik peroksid, hipoklorasta kiselina (HClO),

dušik oksid (NO∙), peroksinitrit (ONOO ), itd. Organizam takoĎer ima mehanizme zaštite kojima štetne

nuspojave ovih produkata drţi pod nadzorom. Ovdje spadaju antioksidantni enzimi poput superoksid

dismutaze, glutation peroksidaze, katalaze, i dr., i antioksidanti endogenog (glutation) i egzogenog

podrijetla (vitamin E, C, karotenoidi, polifenoli, i sl.).

Strane tvari i nutrijenti prooksidativnog djelovanja mogu narušiti ravnoteţu i dovesti do

oksidativnog stresa. Osim najrazličitijih organskih spojeva (npr. herbicid parakvat) i teških metala, meĎu

proizvoĎače ROS ubrajaju se etanol, tranzicijski metali poput ţeljeza i bakra te nezasićene masne kiseline.

Masne kiseline ovog tipa su sklone oštećenjima dvostruke veze napadom slobodnih radikala (ili abstrakcijom

elektrona djelovanjem tranzicijskih metala, npr.: ROOH + Cu+ RO∙ + OH

+ Cu

2+ ili Cu

2+ + ROOH ROO· +

H+ + Cu

+), pri čemu nastaje masnokiselinski radikal (inicijacija), koji vezanjem molekularnog kisika prelazi

u peroksil radikal masne kiseline. Reakcijom ovog s još jednom molekulom masne kiseline nastaje

hidroperoksid i masnokiselinski radikal. Ovakva lančana reakcija oksidativne razgradnje lipida se naziva

Page 42: Klapec Tox Hrane 2008 Oksidacije

41

lipidnom peroksidacijom (naročito štetna za stanične membrane) i moţe biti zaustavljena djelovanjem

antioksidanasa poput vitamina E koji stvara stabilne slobodne radikale.

Tranzicijski metali stvaraju ROS Haber-Weissovom reakcijom

Fe3+

+ O2 ∙ Fe

2+ + O2

Fe2+

+ H2O2 Fe3+

+ OH∙ + OH

Lipidna peroksidacija

Stvaranje koordinativnih veza

Toksikološki najrelevantniji je nastanak kelata tj. stvaranje koordinativnih veza s metalnim ionima.

Ksenobiotik se moţe vezati za metalni ion nekog tkivnog sastojka (npr. CO za Fe2+ hemoglobina) ili teški metali

(Pb, Hg, As) stvaraju kelate izmeĎu atoma (najčešće O, S i/ili N) tjelesnih molekula (npr. inhibicija enzima

sa SH-skupinom u aktivnom centru).

OCNH

SH

OCNH

SH

Hg2+

OCNH

S

OCNH

S

Hg

Proizvodnja elektrofila

Štetno djelovanje nekih toksikanata i/ili njihovih metabolita se u prvom redu temelji na elektrofilnom

karakteru molekule. Kao što je već

spomenuto u poglavlju ‘Metabolizam

toksikanata’, elektrofili su jako

reaktivne molekule i vezanje za

nukleofilne atome vaţnih molekula

rezultira tkivnim oštećenjem.

Vjerojatno najvaţnija oštećenja su tzv.

adukti na DNA koji mogu uzrokovati

mutacije i pokrenuti pretvorbu stanice

u stanicu raka.

R H

O2X HX

R. .R OO

HR R.

R OOH

R H

T H T.

Inicijacija

Propagacija

Terminacija

O

OH

HO

N

NN

NH

R

HN

O

OH

HO

HO

benzo[a]piren 9,10-diol epoksid

9

10

9

10

δ+

Page 43: Klapec Tox Hrane 2008 Oksidacije

42

VVVeeezzzaaa dddooozzzeee iii ooodddgggooovvvooorrraaa

Odnos doze i odgovora opisuje promjenu učinka na organizam uzrokovanu izlaganjem različitim razinama

strane tvari. Krivulja za prikaz odnosa jačine odgovora i doze na razini pojedinca je dana dolje.

odgovor

doza

Kod niţih doza, učinak je izravno proporcionalan dozi tj. brţa je promjena odgovora s promjenom doze.

Kod viših doza se jačina odgovora smanjuje do doza pri kojima više nema pojačanja učinka (npr. stupnjeviti

učinak alkohola: euforija --> pospanost --> otežano disanje --> smrt). Ovakva ovisnost je posljedica zaposjedanja

mjesta djelovanja (npr. inhibicije enzima) s kojima toksikant stupa u interakciju. Logaritamskom

transformacijom vrijednosti doza krivulja dobija sigmoidalni oblik.

Krivulje koje opisuju distribuciju odgovora na različite doze u populaciji su prikazane na donjem

grafikonu.

frekvencija B kumulativni

odgovora odgovor

A

LOAEL 50%

NOAEL

X doza

Krivulja frekvencije odgovora

Krivulja A je krivulja normalne razdiobe s odgovorom na toksikant na ordinati (frekvencija tj. postotak

ukupnih organizama (pokusne ţivotinje, ispitanici) koji ima specifični odgovor kod odreĎene doze) i dozom

toksikanta na apscisi. Postoji odreĎen opseg niskih doza gdje nijedan organizam ne reagira. Unutar opsega

toksičnih doza neće svi organizmi razviti toksične simptome kod iste doze, nego postoji opseg doza kod

kojih organizmi u ispitivanoj skupini reagiraju na sličan način. Očito, najviše organizama reagira oko

srednje doze i sve manje pri većim ili manjim koncentracijama toksikanta. Mali broj organizama, tj.

najosjetljiviji dio populacije, reagira na doze koje su puno niţe od srednje doze. Druga krajnost su

organizmi koji reagiraju na doze puno više od srednje doze (desni dio krivulje). Ukupno, 95,5% populacije

reagira na sličan način u opsegu doza X 2 SD (npr. opseg doza hipertenziva se daje skupini ispitanika uz prethodno

utvrĎeni specifični odgovor tj. tlak 140/100 mmHg; povećavanjem doze se povećava postotak ispitanika koji na dozu

odgovara tlakom od 140/100 mmHg sve do odreĎene doze kad maksimalni broj ispitanika odgovara ovim tlakom; ova doza je

tzv. srednja doza za postignuće specifičnog odgovora; ako se doza dalje povisuje, ispitanici koji su prije odgovorili s

definiranim tlakom će reagirati još višim tlakovima, te će se konačno dostići doza kod koje će svi ispitanici u skupini

odgovoriti tlakovima koji su viši od definiranog tlaka 140/100 mmHg).

Page 44: Klapec Tox Hrane 2008 Oksidacije

43

Krivulja kumulativnog odgovora

Krivulja B prikazuje na ordinati ukupni postotak organizama u skupini koji na odreĎenu dozu reagira na

specifičan način (npr. pojavom tumora). Kod srednje doze, sukladno normalnoj razdiobi, oko 50%

organizama reagira specifičnim odgovorom. Najviša od doza na koju nema odgovora je tzv. razina bez

uočenog štetnog učinka ili NOAEL (no-observed-adverse-effect level). TakoĎer, iz krivulje se moţe očitati i

LOAEL (lowest-observed-adverse-effect level) tj. najniţa doza kod koje je uočen štetni učinak. Pomoću

ovih veličina se utvrĎuje prag djelovanja toksikanta.

Iz krivulje kumulativnog odgovora se moţe očitati srednja letalna doza ili LD50. Ova vrijednost

predstavlja statistički utvrĎenu dozu tvari koja uzrokuje smrt 50% ţivotinja (tj. specifični odgovor je smrt

pokusnih ţivotinja). Ukoliko se u procjeni sigurnosti tvari uzimaju u obzir i štetni učinci koji ne dovode do

smrti ţivotinja, moţe se utvrditi i tzv. efektivna doza ili ED50, koja se odnosi na dozu koja izaziva odreĎeni

učinak u 50% ţivotinja ispitivane populacije.

Krivulje doze i odgovora obično mogu imati dva oblika: linearni bez praga djelovanja (tzv. LNT

(linear non-threshold) model) ili model s pragom djelovanja. Danas je najprihvaćeniji model s pragom

djelovanja koji polazi od pretpostavke da doza nema učinka dok se ne dostigne odreĎeni prag. Prema LNT

modelu, odgovor je izravno proporcionalan dozi, bez praga, te uvijek postoji odreĎena razina odgovora čak

i kod najniţe moguće doze. Uglavnom se za (genotoksične) karcinogene pretpostavlja valjanost ovakvog

modela.

Model s pragom djelovanja:

odgovor

kontrola

doza

LNT model:

odgovor

kontrola

doza

Page 45: Klapec Tox Hrane 2008 Oksidacije

44

D J E L O V A N J E T O K S I K A N A T A N A

O R G A N I Z A M

Prema lokalizaciji učinka razlikujemo lokalno i sistemsko djelovanje toksikanta.

Lokalni učinci su oni koji nastaju na mjestu dodira s organizmom, npr. na koţi, očima i sluznici

respiratornog i probavnog trakta (uglavnom kiseline, lužine i druge nagrizajuće tvari).

Sistemski učinci nastaju poslije apsorpcije toksikanta i to na pojedinim organima ili cjelinama

organizma, poput probavnog sustava, krvotoka, respiratornog sustava, i sl. (benzen apsorbiran preko dišnog

trakta je toksičan za stanice koštane srži i može uzrokovati leukemiju).

Neke tvari uzrokuju istovremeno i lokalne i sistemne učinke (koncentrirana fluorovodična kiselina u dodiru sa 2,5%

površine kože može izazvati smrt poslije apsorpcije zbog stvaranja netopljivih soli izmeĎu fluorida i Ca i Mg).

Obzirom na tijek djelovanja postoje akutni i kronični učinci toksikanta.

Akutni učinci nastaju neposredno po apsorpciji razmjerno velike doze toksikanta koja brzo uzrokuje

toksičnu razinu u krvi i tkivima.

Kronični učinci se očituju tek poslije izvjesnog vremena, obično su blaţi, a ponekad i kvalitativno

drukčiji od akutnih učinaka. Nastaju kao rezultat višekratnog unošenja malih doza toksikanta, nedovoljnih

da izazovu akutne učinke. Kronični učinci obično nastaju uslijed kumulacije toksikanta ili zbrojem štetnih

učinaka svake pojedine doze ukoliko je oporavak od štete spor ili nepotpun do izlaganja novoj dozi.

Akutna

toksičnost

Kronična

toksičnost

etanol depresija CNSa ciroza jetre

anorganski arsen oštećenja GITa rak jetre

ČČČiiinnniiioooccciii kkkooojjjiii uuutttjjjeeečččuuu nnnaaa tttoookkksssiiičččnnnooosssttt

Mnogi činioci utječu na jačinu i trajanje djelovanja toksikanta. Jedni ovise o svojstvima toksikanta i načinu

ekspozicije, dok drugi ovise o stanju organizma.

Intrinzička svojstva toksikanta

Fizikalno-kemijska svojstva toksikanta utječu na brzinu apsorpcije, raspodjele, metabolizam i izlučivanje.

Osobine koje navedeno pospješuju su: topljivost u mastima (uz istovremenu dovoljnu topljivost u vodi i.e.

umjeren stupanj ioniziranosti), mala molekulska masa (npr. plinovi), tekuće stanje (dobro širenje na

površini apsorpcije), fina usitnjenost (bolje otapanje), i sl. Ujedno, intrinzički faktori su od presudne

vaţnosti i za interakciju s ciljnim mjestima u organizmu (vidi poglavlje ‘Toksikodinamika’).

Doza

Doza ili količina doze koja se apsorbira (za toksikante kojima se toksično djelovanje očituje tek nakon

apsorpcije), utječe na koncentraciju na mjestu djelovanja. Mjerljivi štetni učinci nastaju nakon prelaska

odreĎenog praga koncentracije na osjetljivom mjestu. Ispod praga neke tvari nisu štetne, a neke izazivaju

biokemijske lezije (npr. mutagene i karcinogene tvari) tj. oštećenje vaţnih molekula.

Popratne tvari i nečistoće

Nečistoće u nekom komercijalnom pripravku često mogu biti puno toksičnije od aktivne tvari (npr. herbicid

2,4,5-triklorfenoksioctena kiselina (tzv. agent orange korišten u vijetnamskom ratu) je pri prvobitnim uvjetima proizvodnje

sadržavao primjese dioksina (TCDD) koji je vrlo snažan akutni otrov, mutagen i karcinogen). TakoĎer, popratne tvari

poput nosača, otapala i dr., koji se mogu naći u pojedinim proizvodima mogu mijenjati toksičnost aktivne

tvari uglavnom utječući na apsorpciju. Primjerice, otapala poboljšavaju apsorpciju širenjem na površini

apsorpcije ili uklanjanjem zaštitnog sloja masti na koţi, a inertni nosači i punila u preparatima (kreda, talk,

Page 46: Klapec Tox Hrane 2008 Oksidacije

45

infuzorijska zemlja) smanjuju uslijed adsorpcije aktivne tvari što umanjuje njenu apsorpciju u probavnom

traktu.

Nasljedni činioci

Genetski polimorfizmi mogu uzrokovati kvalitativne i kvantitativne razlike izmeĎu osoba u odgovoru

organizma na toksikant. Kvantitativne razlike podrazumijevaju različite doze za odreĎeni odgovor u

promatranoj populaciji. Kvalitativne razlike su zapravo drukčiji odgovor na neki ksenobiotik uslijed

genetski uvjetovanih promjena graĎe ili količine enzima i drugih funkcionalnih proteina (npr. nekonjugirane

hiperbilirubinemije kod pojedinaca kojima nedostaje enzim (UDP-glukuronoziltransferaza) kojim se konjugira bilirubin (e.g.

Gilbertov sindrom, 10% populacije), a smanjena je i sposobnost metabolizma nekih stranih tvari poput mentola i

paracetamola; postoji više varijanti gena koji kodira citokrom CYP2D6; defektne verzije gena kod pojedinaca mogu

rezultirati manjkom djelatnog oblika enzima te su takvi pojedinci tzv. ‘poor metabolizers’ koji sporije razgraĎuju lijekove,

ali imaju i manji rizik raka pluća (izmeĎu ostalog, CYP2D6 bioaktivira nitrozamin iz duhanskog dima u snažan karcinogen);

postoji i alel s dupliciranim genom i velikom aktivnošću enzima čiji nositelji su ‘ultrarapid metabolizers’ za koje je utvrĎen

veći rizik obolijevanja od raka pluća kod pušača).

Spol, životna dob i zdravstveni status

Osim spomenute nedovoljne razvijenosti sustava apsorpcije, raspodjele, metabolizma i izlučivanja kod

novoroĎenčadi, ili smanjene aktivnosti navedenih sustava u starosti, te prvenstveno anatomskih razloga

razlika u osjetljivosti meĎu spolovima (vidi poglavlje ‘Metabolizam toksikanata’), postoje specifične

fiziološke odlike subpopulacija, uključujući ponašanje, koje su vaţne u procjeni rizika od toksikanata (npr.

mala djeca mogu biti podložnija izloženosti olovu zbog tendencije ispitivanja svijeta oko sebe ustima, a ujedno su i

osjetljivija na štetno djelovanje Pb na razvoj mozga; starije osobe bi mogle biti izloženije Pb tijekom osteoporoze i

oslobaĎanja Pb iz kostiju; fetusi i embriji su osjetljivi na djelovanje mutagena i karcinogena zbog velike brzine dijeljenja

stanica). TakoĎer, osjetljivost na djelovanje spolnim hormonima sličnih tvari ovisi o spolu jedinke (muški

fetusi su osjetljiviji na djelovanje antiandrogena). Opće zdravstveno stanje značajno utječe na odgovor

organizma na stranu tvar. Oboljenja ili oštećenja jetre umanjuju biotransformaciju i izlučivanje ţuči.

Renalna insuficijencija (neadekvatna funkcija bubrega) ima za posljedicu smanjeno izlučivanje hidrosolubilnih

tvari. Oslabljeni imuni sustav kod nekih bolesti (HIV-infekcija) moţe podrţati karcinogeni učinak tvari zbog

neadekvatnog uništavanja promijenjenih stanica. Uočeno je da postupanje sa ţivotinjama tijekom

toksikoloških ispitivanja (veličina kaveza, skupno ili pojedinačno držanje, i sl.) utječe na odgovor na toksikant.

Pretpostavlja se da stres ima sličan utjecaj i kod čovjeka, analogno njegovoj ulozi povećanja rizika

obolijevanja od kroničnih bolesti.

Prehrana i okolišni faktori

Optimalno funkcioniranje sustava apsorpcije, raspodjele, metabolizma i izlučivanja toksikanata ovisi o

odgovarajućoj opskrbi organizma kofaktorima enzima (vitamini i minerali), bjelančevinama i energijom.

Osim toga, neki sastojci hrane, osim utjecaja na funkcioniranje biotransformacijskog sustava (vidi poglavlje

‘Metabolizam toksikanata’), mogu utjecati na apsorpciju i izlučivanje toksikanata, npr. interferirajući

sustavima aktivnog transporta (neki sastojci grejpa inhibiraju P-glikoprotein koji iz stanica izbacuje strane tvari), ili

mijenjajući pH urina (prehrana bogata bjelančevinama daje blago kiseli urin, a vegetarijanska blago alkaličan). Sastojci

hrane mogu i izravno stupati u interakcije s toksikantima u probavnom traktu (npr. askorbinska kiselina reducira

nitrite i time spriječava reakciju nitrita sa sekundarnim ili tercijarnim aminima i nastanak karcinogenih nitrozamina) ili

poslije apsorpcije (antioksidantni vitamini).

Kemikalije iz okoliša (duhanski dim, izloţenost kemikalijama na radnom mjestu, i dr.) mogu utjecati

na sposobnost organizma da metabolizira toksikant, indukcijom ili inhibicijom biotransformacijskih enzima.

Temperatura povećava fluidnost i isparljivost toksikanata, tlak podrazumijeva veći ili manji parcijalni tlak

kisika, dok je za ionizirajuće zračenje utvrĎeno da usporava metabolizam ksenobiotika kod pokusnih

ţivotinja. Spojevi u koţi mogu apsorbirati energiju zračenja (UV) sunčanog svjetla i prelaze u pobuĎeno

Page 47: Klapec Tox Hrane 2008 Oksidacije

46

stanje što im mijenja toksičnost. Fototoksične reakcije npr., pri čemu se pobuĎena molekula prevodi u

toksični spoj ili stvara slobodne radikale koji oštećuju lokalno tkivo (sulfonamidi, tetraciklini, ibuprofen, i dr.).

Pri fotoalergijskim reakcijama se kemikalija prevodi u alergeni oblik u koţi nakon izlaganja UV zračenju

(vidi odlomak ‘Alergijske reakcije’ u poglavlju ‘Posljedice djelovanja toksikanata’).

Interakcije pri istovremenoj izloženosti različitim ksenobioticima

Za razliku od testova na pokusnim ţivotinjama gdje se najčešće toksičnost ispituje izlaganjem samo jednoj

tvari, organizam je obično istovremeno izloţen smjesi toksikanata (toksikanti u vodi, hrani, uzimanje

lijekova, pušenje, itd.). Toksičnost kombinacije kemikalija moţe biti jača ili slabija od one koja se

predviĎa na temelju djelovanja pojedinačnih sastojaka uslijed meĎudjelovanja kemikalija. Postoje

sljedeće vrste interakcija:

Antagonizam

Jedna tvar umanjuje toksičnost druge. Djelovanje se temelji na principu antidota tj. natječu se za mjesto

vezanja (receptor) (npr. nalokson, antagonist morfina), na adsorpciji (npr. aktivni ugljen, nosači i razrijeĎivači

praškastih pesticida), neutralizaciji (antacidi), i dr. Tvari koje induciraju biotransformacijske enzime mogu

djelovati antagonistički (ubrzavanjem razgradnje toksikanta (vidi primjer s prokarcinogenom na donjoj slici)), kao

i tvari koje inhibiraju ove enzime kojima se neki toksikant bioaktivira tj. prevodi u toksičniji metabolit

(etanol je kompeticijski inhibitor alkohol dehidrogenaze kojom se metanol prevodi u formaldehid, a zatim u toksičnu

mravlju kiselinu). Antagonistički djeluju i kemikalije koje ubrzavaju izlučivanje pojedinog toksikanta

(utjecajem na pH; npr. organske kiseline će se bolje izlučivati u alkaličnom urinu).

udio populacije (%) sa simptomima toksičnosti

toksični učinak

tvari A toksični učinak

tvari B toksični učinak

kombinacije A + B

antagonizam 20% 30% 5%

aditivnost 20% 30% 50%

potencijacija 0% 20% 50%

sinergizam 5% 10% 100%

Aditivnost

Toksičnost kombinacije dvije tvari je jednaka sumi toksičnih učinaka pojedinačnih komponenti (npr.

organofosfatni insekticidi: dva različita proizvoda koja djeluju na isti način tj. inhibicijom acetilkolinesteraze koja sudjeluje

u prijenosu živčanih impulsa; slično djeluju alkohol i sredstva za smirenje = depresija CNS-a, te klorirani insekticidi i

halogenirana otapala = hepatotoksičnost).

Potencijacija i sinergizam

Obje interakcije dovode do jačanja

učinka kombinacije u odnosu na

pojedinačne sastojke i to zbog:

poboljšavanja apsorpcije (citrat poboljšava

apsorpciju aluminija), interakcija u

probavnom traktu (nitriti u kiselom mediju

želuca daju nitrozil ion koji reagira s aminima

iz hrane dajući karcinogene nitrozamine),

oslobaĎanja iz skladišnih depoa,

indukcije (ukoliko će metabolizam rezultirati

toksičnijim spojem; vidi primjer s

bioaktivacijom prokarcinogena na slici) ili

inhibicije biotransformacijskih enzima (ako enzim detoksificira ksenobiotik), usporavanja izlučivanja (npr.

prokarcinogen

inaktivni metaboliti

Faza I

aktivni metaboliti elektrofili

Faza I

reakcija s DNA

inaktivni metaboliti

Faza II

Page 48: Klapec Tox Hrane 2008 Oksidacije

47

organske baze se mogu reapsorbirati difuzijom u alkaličnom urin; takoĎer kompeticijom za sustave aktivnog tubularnog

izlučivanja) (vidi poglavlje ‘Izlučivanje toksikanata’), itd. Potencijacija se javlja kad kemikalija koja nema

specifični toksični učinak, čini neki toksikant toksičnijim. Primjer je vezanje za proteine plazme, pri čemu

netoksična tvar moţe potaknuti disocijaciju toksikanta s proteina plazme, povisujući koncentraciju

slobodnog oblika koji dospjeva do mjesta djelovanja (npr. sulfonamidi (antibiotici) mogu potaknuti disocijaciju

sulfonilurea (antidijabetici) s plazma proteina, naglo povisujući koncentraciju slobodnog oblika što može dovesti do

hipoglikemijskog šoka).

Sinergizam dovodi do drastičnog povećanja toksičnog učinka kombinacije dva toksikanta. Stvarni toksični

učinak je znatno veći od sume toksičnih učinaka pojedinačnih sastojaka (npr. rizik raka pluća uslijed izloženosti

azbestu i duhanskom dimu je značajno veći od sume rizika pojedinačnih toksikanata; CCl4 i alkohol = znatno veća

hepatotoksičnost).

Ista kombinacija toksikanata moţe pokazivati različite tipove interakcija na različitim mjestima u

organizmu (npr. klorirani insekticidi i halogenirana otapala djeluju aditivno u jetri, ali imaju antagonističke učinke u CNS-

u: klorirani ugljikovodici dovode do stimulacije, a halogenirana otapala do depresije CNS-a).

Promjena reakcije organizma nakon izlaganja

Jačanje reakcije

Najčešće uslijed nakupljanja toksikanta u organizmu tijekom ponavljanog izlaganja. Osim toga, moguća je i

kumulacija štete, ukoliko organizam ne uspije popraviti štetne učinke prethodne doze prije izlaganja novoj

dozi (npr. ireverzibilna inhibicija acetilkolinesteraze organofosfornim spojevima; ponovljenom izloženošću malim, ali

netoksičnim dozama, aktivnost ovog enzima neprestano opada i može pasti ispod kritične razine, ako izloženost ne

prestane). Alergijska reakcija je još jedan način višestrukog jačanja reakcije na neke toksikante (Vidi

poglavlje ‘Posljedice djelovanja toksikanata u organizmu’).

Slabljenje reakcije

Odgovor organizma na toksikant moţe slabiti uslijed tzv. stečene tolerancije (npr. na alkohol, nitrite, i sl.).

Najčešći uzrok tolerancije je indukcija enzima koji sudjeluju u inaktivaciji toksikanta (npr. tolerancija na

alkohol se pripisuje indukciji alkohol dehidrogenaze).

Hormeza

Hormeza je adaptivni odgovor na niske razine stresa ili oštećenja koji moţe imati za posljedicu pojačanu

otpornost na toksikante. UtvrĎeno je da odreĎene, niske razine toksikanta mogu potaknuti ubrzanu sintezu

sustava popravka i zaštite, koje će rezultirati slabijim toksičnim učinkom u odnosu na više, ali i niţe doze.

Tipična krivulja hormetičnog odnosa doze i toksičnog odgovora izgleda ovako:

odgovor

doza

Page 49: Klapec Tox Hrane 2008 Oksidacije

48

PPPooosssllljjjeeedddiiiccceee dddjjjeeelllooovvvaaannnjjjaaa tttoookkksssiiikkkaaannnaaatttaaa uuu ooorrrgggaaannniiizzzmmmuuu

R e m e ć e nj e e n d o k r i n e f u n k c i j e

Mnogi toksikanti (tzv. endokrini disruptori), zbog sličnosti graĎe, mogu se vezati za receptore hormona u

organizmu te remetiti normalnu funkciju hormona. Obzirom na endokrini nadzor nad velikim brojem

procesa u organizmu, narušena endokrina ravnoteţa se očituje promjenama na različitim organima i

sustavima organizma, poput reproduktivnog sustava, imunog sustava, i sl. Osnovna svrha endokrinog

sustava je reakcija udaljenog organa na

na signale iz drugog organa ili okoline.

Pojednostavljeno, principom klackalice

prikazanim na slici, nastoji se odrţati

homeostaza ili ravnoteţno stanje (npr.

gušterača izlučuje inzulin kod visoke razine

glukoze u krvi; to dovodi do pada razine

glukoze što potiče izlučivanje glukagona

(takoĎer gušterača) koji potiče razgradnju

glikogena i glukoneogenezu u jetri i povisuje

razinu šećera u krvi; na taj način se održava

razinu glukoze u krvi u poželjnom opsegu;

ukoliko inzulin ne reagira na promjenu razine

glukoze u krvi, rezultat su bolesti poput

dijabetesa). Petlje povratne sprege često

uključuju i ţivčani sustav (CNS

hipotalamus hipofiza organi) te se ovaj sustav naziva i neuroendokrinim sustavom. U svrhu prilagodbe

ţivotnim uvjetima, u fetalnom i neonatalnom razdoblju organizam prolazi fazu programiranja endokrine

homeostaze (odnosno utvrĎivanja razine signala koji će izazvati protureakciju). Upravo u ovoj fazi su

organizmi najosjetljiviji, te abnormalni okoliš moţe dovesti do odgovarajuće adaptacije tj. stanja trajne

neravnoteţe (npr. djeca koja su bila pothranjena tijekom trudnoće mogu razviti tzv. inzulinsku rezistenciju (smanjeno

djelovanje inzulina na mišićne i masne stanice i time slabiji ulazak glukoze u iste) koja perzistira i u odrasloj dobi;

najvjerojatniji uzrok je nedovoljna opskrba glukozom u fetalnom razdoblju uslijed čega je došlo do programiranja odnosa

inzulina i glukokortikoida (izazivaju inzulinsku rezistenciju) koji rezultira smanjenom potrošnjom glukoze u mišićima i

masnom tkivu pri čemu ostaje više glukoze za važnija tkiva poput mozga). Dakle, izloţenost endokrinim disruptorima

u odrasloj dobi se najčešće moţe kompenzirati homeostatskim mehanizmima i neće imati značajniji učinak.

Djelovanje, pak, za vrijeme programiranja endokrinog sustava moţe dovesti do trajne promjene funkcije ili

osjetljivosti na stimulatorne ili inhibicijske signale.

Najvaţniji mehanizmi kojima je posredovano djelovanje endokrinih disruptora su:

Vezanje za regulatorne proteine

Primjerice, transkripcijski faktori steroidnih hormona poput estrogenskih, androgenskih receptora ili AhR

receptora (za mehanizam djelovanja vidi poglavlje ‘Toksikodinamika’). Postoji nekoliko skupina tvari

estrogenog djelovanja: ksenoestrogeni (tvari sintetskog podrijetla) (DDT, poliklorirani bifenili, dioksini, ftalati,

bisfenoli, i dr.), fitoestrogeni (estrogeni iz biljaka) (lignani, flavonoidi, kumestani) i mikoestrogeni koje

sintetiziraju plijesni (zearalenon), pri čemu su najtoksičniji upravo ksenoestrogeni jer su se ljudi tijekom

Page 50: Klapec Tox Hrane 2008 Oksidacije

49

evolucije imali priliku navići na prirodne estrogene te se brţe razgraĎuju i izlučuju. Učinak ovisi o afinitetu

za receptor (o,p-DDT ima 10000 puta manji afinitet za estrogenski receptor od endogenog estrogena estradiola),

agonističkom ili antagonističkom djelovanju nakon vezanja za receptor (o,p-DDT je dvostruko slabiji agonist od

estradiola), razinama cirkulirajućeg hormona u organizmu, i dr. Negativni utjecaj o,p-DDT na reprodukciju

vezanjem za estrogenske receptore rezultat je manjeg afiniteta za estrogenske receptore, zbog čega

konkurencijom umanjuje estrogenske učinke ako je razina estradiola visoka. Ukoliko je razina estradiola

niska, o,p-DDT moţe pojačati estrogenske učinke. S druge strane, dietilheksilftalat je antagonist

androgenih receptora (ili antiandrogen) jer se veţe za iste, konkurirajući endogenom androgenu

(testosteron), ali ne izaziva nikakav učinak. Postoje naznake i da bi smjese tvari estrogenog djelovanja

mogle djelovati sinergistički pojačavajući aktivaciju receptora.

Aktivacija transkripcijskih faktora pojačava ili smanjuje transkripciju gena koji kodiraju različite

proteine (enzime, hormone, gradivne stanične proteine, itd.). Indukcija ili inhibicija enzima na ovaj način

moţe utjecati na endokrinu ravnoteţu pojačavanjem ili smanjivanjem aktivnosti enzima koji sudjeluju u

sintezi ili razgradnji (steroidnih) hormona (npr. poliklorirani bifenili i TCDD induciraju hidroksilazu aril ugljikovodika

(što je zapravo citokrom CYP1A1) koja provodi korak u metabolizmu steroidnih hormona). Uočena je i pojačana

konverzija androgena u estrogene indukcijom aromataze (tj. citokroma CYP19A1; atrazin tim mehanizmom

uzrokuje demaskulinizaciju i feminizaciju vodozemaca).

O

OH

testosteron HO

OH

estradiol

Inhibicija enzima

Toksikanti mogu i izravno inhibirati enzime značajne u sintezi hormona (npr. organokositreni spojevi

(tributilkositar) spriječavaju pretvorbu testosterona u estradiol aromatazom, izazivajući maskulinizaciju riba i školjkaša).

Djelovanje na živčani sustav

Neuroendokrina sprega podrazumijeva odraţavanje promjena u ţivčanom sustavu na endokrinu funkciju

(npr. amfetamini povisuju izlučivanje neurotransmitera dopamina koji smanjuje lučenje prolaktina u hipofizi).

Interakcija s transportnim proteinima hormona

Neki toksikanti se veţu za ili utječu na razine transportnih proteina hormona poput transtiretina

(polibromirani difenil eteri se vežu za ovaj protein plazme bolje od samih tiroidnih hormona), SHBG (sex hormone-

binding globulin), i dr.

Zadnjih desetljeća je zabiljeţen veći broj ekoloških incidenata uzrokovanih prvenstveno sintetskim

endokrinim disruptorima, uz najrazličitije uočene poremećaje koji su ponekad bili popraćeni smanjenjem

populacije ptica, vodozemaca, reptila, riba ili sisavaca. TakoĎer, brojna laboratorijska ispitivanja upućuju

na opasnosti od tvari s hormonskim djelovanjem (tretman skotnih ženki miševa bisfenolom A: muško potomstvo je

Page 51: Klapec Tox Hrane 2008 Oksidacije

50

bilo sklonije malformacijama spolnih organa, a ženke raku dojke), a utvrĎena je i veza pojedinih poremećaja kod

ljudi s izloţenošću ovim toksikantima (npr., povećan broj malformacija spolnih organa s većom izloženosti ftalatima).

MeĎu najčešće manifestacije djelovanja endokrinih disruptora ulaze:

Reproduktivni i razvojni poremećaji. Kompromitirano razmnoţavanje uslijed stanjivanja kore jajeta

(kod ptica), takoĎer uslijed demaskulinizacije i feminizacije muţjaka ili maskulinizacije i defeminizacije

ţenki, malformacije reproduktivnih organa muţjaka, smanjena plodnost (smanjen broj spermija u ejakulatu),

promjena omjera spolova tj. veći udjel ţenki, spontani pobačaji, uranjen pubertet, i dr.).

Poremećaji ţivčanog sustava. Obično je riječ o endokrinim disruptorima izazvanim morfološkim i/ili

funkcionalnim promjenama neuroendokrinog sustava (npr. tijekom fetalnog ili neonatalnog perioda) koje

izazivaju trajne neurobihejvioralne posljedice (promjene funkcije i ponašanja; npr. djeca majki izloženih smjesi

polikloriranih bifenila i polikloriranih dibenzofurana (Yu-Cheng incident, Tajvan) su imala IQ deficite). Spolni hormoni

imaju ulogu u regeneraciji ţivčanog tkiva, zaštiti od štetnih tvari i sl., pa ga remećenje njihove funkcije

moţe učiniti podloţnijim štetnim procesima.

Jačanje ili slabljenje funkcije imunog sustava. Imuni i neuroendokrini sustavi suraĎuju u odrţavanju

fiziološke homeostaze te postoji potencijal štetnog djelovanja na imuni sustav remećenjem endokrine

funkcije, koje je i dokazano uz posljedice poput veće sklonosti autoimunim bolestima (dietilstilbestrol) ili

veće učestalosti infekcija (poliklorirani bifenili, dioksin).

Rak. Uočeno je povećanje učestalosti raka organa osjetljivih na djelovanje hormona poput: dojke,

testisa, prostate, maternice, štinjače, i sl. Dokazi ukazuju na vjerojatnost kratke izloţenosti fetusa,

novoroĎenčeta ili adolescenta i razvoja raka odmah ili kasnije. Hormoni mogu djelovati kao promotori

karcinogeneze (vidi poglavlje ‘Karcinogenost’) poslije djelovanja genotoksičnih agenasa. Slabljenje imunog

sustava endokrinim disruptorima takoĎer moţe uzrokovati veću podloţnost raku.

I m u n o t o k s i č n o s t

Očitovanje imunotoksičnog djelovanja moţe uključivati izravno djelovanje kemikalije na imuni sustav

rezultirajući imunosupresijom (uz smanjenu otpornost na infektivne bolesti i rak) ili strana tvar moţe

svojim antigenskim svojstvima izazvati alergijske reakcije (reakcija na kemikaliju) ili autoimunost (reakcija

na promijenjene molekule tijela).

Imuni sustav domaćina, kao zaštita od infektivnih agenasa i tumorskih stanica, moţe se ugrubo

podijeliti na nespecifični ili uroĎeni odgovor (npr. fagociti (leukociti poput monocita i makrofaga,

polimorfonuklearnih neutrofila, NK-stanica (natural killer), i dr.)) i specifičnu ili stečenu imunost koja se inducira

nakon prvog dodira s patogenom. Specifična imunost se temelji na prepoznavanju antigena patogena ili

strane tvari uz receptore na površini B ili T-stanica što dovodi do njihova umnoţavanja. T-stanice nakon

dodira s antigenom diferenciraju u citotoksične T stanice (Tc) ili pomoćničke T-stanice (Th) koje čine

osnovu tzv. stanične imunosti. Tc leukociti izravno uništavaju stanice koje nose odreĎeni antigen, dok Th

leukociti izlučuju signalne tvari (citokine) kojima privlače i aktiviraju druge leukocite (Tc i fagocite te B

stanice). B-stanice nakon dodira s antigenom (uz asistenciju Th stanica koje im potiču umnaţanje) izlučuju

cirkulirajuća protutijela (imunoglobuline). To je tzv. humoralna imunost. Svaki sljedeći dodir s tim

antigenom dovodi do reakcije antigen-antitijelo i označavanja patogena ili strane tvari uroĎenom dijelu

imunog sustava, što mu znatno poboljšava učinkovitost. Strana kemijska tvar ili antigen moţe biti veće

molekulske mase (bjelančevine, veliki polisaharidi, veliki lipoproteini), te su antigeni sami po sebi, ili moţe

biti riječ o maloj molekuli (tzv. hapten) koja se prethodno veţe za veću antigensku molekulu i time i sama

postaje antigen.

Page 52: Klapec Tox Hrane 2008 Oksidacije

51

Najpoznatiji oblici imunosupresije, tj. smanjenja imunog odgovora, su rezultat štetnog djelovanja

na stanične prekursore imunih stanica (hematopoetske matične stanice) u koštanoj srţi (npr. metotreksat

(kemoterapija tumora), azatioprin (liječenje autoimunih bolesti i spriječavanje odbacivanja kod transplantacije organa),

benzen, i dr.) ili remećenja maturacije i proliferacije B ili T stanica (organokositreni spojevi, policklički aromatski

ugljikovodici, dioksin, itd.). TakoĎer, meĎusobna regulacija neuroendokrinog i imunog sustava upućuje na

osjetljivost imunog sustava na djelovanje endokrinih disruptora (poliklorirani bifenili) i/ili neurotoksičnih tvari

(etanol), pri čemu najopseţnije promjene, uz relativno male izloţenosti, nastaju u kontekstu razvojne

toksičnosti.

OdreĎen broj toksikanata moţe dovesti do imunostimulacije ili jačanja imunog odgovora,

pokretanjem mehanizama specifične imunosti. Riječ je o reakcijama preosjetljivosti kod osoba koje su kod

prvog dodira s ksenobiotikom ili sastojkom hrane postale senzibilizirane na tu tvar (reakcijom antigena s

antitijelom ili specifičnim receptorom T-stanica). Postoje četiri tipa ovih reakcija:

Tip I ili anafilaktička preosjetljivost

Prvi dodir s antigenom dovodi do umnoţavanja specifičnih imunoglobulina E koji se veţu za receptore na

površini odreĎenih leukocita (bazofila, eozinofila

i mastocita). Vezanjem antigena alergena za IgE

dovodi do izlučivanja medijatora upale iz ovih

stanica (histamin, prostaglandini, citokini, i

dr.) uz učinke poput vazodilatacije i povećane

propusnosti kapilara, boli, bronhokonstrikcije,

privlačenja drugih leukocita (fagocita i

eozinofila) i trombocita, itd., što rezultira

simptomima alergije. Simptomi mogu biti

lokalnog karaktera ili sistemski, što se naziva

anafilaktičkim šokom. Ovaj, najčešći tip

preosjetljivosti, mogu izazvati brojne tvari i

antigeni iz hrane: sulfonamidi, svinjski inzulin,

bjelančevine kikirikija, oraha, mlijeka, jaja,

školjkaša, i dr.

Tip II ili reakcije preosjetljivosti uzrokovane djelovanjem protutijela prema stanicama

Naziva se i citotoksičnom preosjetljivosti. Protutijela (IgG i IgM) se veţu na antigene na površini stanica i

time mogu: aktivirati komplement (proteini u krvi koji se vežu za kompleks antigena i antitijela i uništavaju označenu

stanicu), olakšati fagocitozu, omogućiti citotoksično djelovanje ubilačkih stanica (NK-stanice). Antigeni mogu

biti sastavni dio stanične membrane ili se radi o haptenima vezanim na membranu stanica. Javlja se kod

hemolitičke anemije (imuni sustav napada eritrocite) uzrokovane ksenobioticima poput cefalosporina ili

levodope, ili autoimunih bolesti poput mijastenije gravis (imuni sustav napada stanice s acetilkolinskim

receptorima).

Tip III ili reakcije preosjetljivosti uzrokovane imunokompleksima

Nastaju kompleksi antigena i IgG ili IgM protutijela u krvi. Imunokompleksi u pravilu ne uzrokuju oštećenja,

već se brzo uklanjaju fagocitozom. Ako je, pak, količina antigena velika, takva ostaje dulje vrijeme, a

odstranjivanje imunokompleksa nije dovoljno brzo, imunokompleks moţe aktivirati komplement i fagocite

što uzrokuje upalnu reakciju. Ove reakcije se javljaju kod autoimunih bolesti (tzv. ‘farmerska pluća’ su reakcija

izazvana imunokompleksima inhaliranih antigena; serumska bolest se javlja kao reakcija na antigene iz cjepiva poput

Page 53: Klapec Tox Hrane 2008 Oksidacije

52

tetanus antitoksina; glomerulonefritis može nastati kao posljedica odlaganja imunokompleksa u bubrezima), dugotrajnih

infekcija, i sl. Različite kemijske tvari mogu izazvati autoimune reakcije ovog tipa: poliklorirani bifenili,

ţiva, kadmij, srebro, zlato, lindan, SiO2, i dr.

Tip IV ili preosjetljivost posredovana stanicama

Naziva se i kasna preosjetljivost jer se najjači simptomi javljaju tek nakon 24 h. Nakon fagocitiranja

antigena, makrofagi ga prezentiraju na svojoj površini (uz tzv. MHC (major histocompatibility complex) antigene

koje leukociti prepoznaju kao vlastite; ukoliko su samo vlastiti antigeni prezentirani, stanica neće biti napadnuta). Strane

antigene prepoznaju specifični leukociti (Tc i Th stanice) koji se aktiviraju i umnaţaju. Pri ponovnom dodiru s

istim antigenom Th stanice izlučuju citokine koji privlače i aktiviraju citotoksične T-stanice i fagocite koji

uništavaju stanice s antigenom, oštećujući okolno tkivo, rezultat čega je upalna reakcija. Primjer je

kontaktni dermatitis izazvan različitim organskim i anorganskim tvarima: nikl iz nakita, toksin iz otrovnog

bršljana, kromati, te tzv. fotoalergija koju izaziva fotoantigen u koţi nakon ekscitacije ultraljubičastim

zračenjem (npr. p-aminobenzojeva kiselina iz pripravaka za sunčanje ili 6-metilkumarin iz parfema). Reumatoidni

artritis i multipla skleroza su autoimune bolesti koje nastaju ovim mehanizmom preosjetljivosti.

Postoje i tvari koje mogu izazvati više tipova reakcija preosjetljivosti. Primjerice, penicilin

posreduje sva četiri tipa preosjetljivosti. Ponekad se moţe uočiti i progresija preosjetljivosti poput lateks

alergena koji u početku obično izazivaju kontaktnu osjetljivost (tip IV) koja uzastopnim izlaganjem moţe

prijeći u anafilaktički oblik preosjetljivosti (npr. ustanovljeni su tragovi lateksnog brtvila pakovanja čokoladica na

proizvodu što može izazvati anafilaktički šok kod senzibiliziranih osoba). Zabiljeţeni su i slučajevi unakrsne reakcije

na antigene (p-aminobenzojeva kiselina je kontaktni alergen, ali može povećati rizik od reakcija preosjetljivosti tipa I na

lokalne anestetike (benzokain) zbog slične kemijske graĎe).

G e n o t o k s i č n o s t

Riječ je o sposobnosti toksikanta da ošteti genetski sklop tj. DNA, pri čemu, ako je riječ o stabilnim

promjenama, nastaju mutacije. Spontane (kemijska nestabilnost baza i greške pri replikaciji) i/ili

inducirane (genotoksične tvari, UV-zračenje, ionizirajuće zračenje) mutacije mogu uzrokovati bolesti i

poremećaje promjenama DNA spolnih ili somatskih stanica. Mutacije spolnih stanica uzrokuju nasljedne

bolesti (Downov sindrom, hemofilija, anemija srpastih stanica, i dr.), neplodnost, teratogene i druge učinke.

Mutacije somatskih stanica mogu rezultirati bolestima poput raka ili ateroskleroze, te poremećajima poput

teratogeneze ili starenja. Postoji vrlo dobra korelacija izmeĎu mutagena i karcinogena, pri čemu se 70%

tvari koje su karcinogene kod

ţivotinja pokazalo genotoksičnim u

jednom ili više vrsta testova.

Oštećenja izazvana

toksikantima mogu uključivati lom

lanca ili promjene na razini

nukleotida. Potonje je najčešće

posljedica stvaranja adukata DNA,

kod koje se elektrofilna molekula ili

slobodni radikal kovalentno povezuju

s nukleofilnim atomima nukleotida (npr. NH2 skupine baza). Adukti mogu rezultirati točkastim mutacijama

kod replikacije DNA ili brisanjem ili dodatkom parova baza (frameshift mutacije). Promjene mogu nastati i

interkalacijom meĎu zavojnice DNA ili interferencijom za vrijeme umnoţavanja ili popravka DNA.

O

OH

HO

N

NN

NH

R

HN

O

OH

HO

HO

benzo[a]piren 9,10-diol epoksid

9

10

9

10

Page 54: Klapec Tox Hrane 2008 Oksidacije

53

Prema opsegu oštećenja, genotoksični učinak moţemo podijeliti na oštećenja kromosoma i oštećenja gena.

Oštećenja gena

Oštećenja gena podrazumijevaju manje promjene slijeda baza u DNA, tj. jednog (tzv. točkasta mutacija) ili

nekoliko parova baza. Ovakve mutacije obično nisu letalne za stanicu, nego dovode do bolesti uslijed

nedostatka ili promjene odreĎenog proteina (nasljedna bolest fenilketonurija je posljedica defektnog enzima

fenilalanin hidroksilaze (koja prevodi Phe u Tyr) zbog mutacije odgovarajućeg gena; identificirano je više od 400 različitih

mutacija ovog gena) ili do transformacije stanica u stanice raka. Tako npr. mutacijom protoonkogena (geni

koji nadziru rast stanice) moţe doći do njihove aktivacije u onkogene i ekspresije proteina koji dovode do

nekontroliranog rasta stanice i konačno transformacije u stanicu raka (neoplastična transformacija).

TakoĎer, mutacije gena tzv. tumorskih supresora (nadziru rast stanice, npr. p53 protein koji spriječava

diobu stanice ili izaziva programiranu smrt stanice (apoptoza) ukoliko je DNA oštećena) inaktiviraju ove

gene i njihove proteinske produkte, te se stanica nekontrolirano dijeli što moţe rezultirati nastankom

stanica raka.

Oštećenja kromosoma

Kromosomske aberacije nastaju brisanjem nekoliko susjednih gena, inverzijom gena na kromosomu ili

izmjenom većih dijelova izmeĎu različitih kromosoma. Oštećenja kromosoma somatskih stanica obično

dovode do smrti stanice tijekom diobe, dok oštećenja kromosoma spolnih stanica spriječavaju oplodnju ili

uzrokuju ranu smrt ploda. Očito je stoga da i kod somatskih i kod spolnih stanica veća oštećenja

kromosoma obično spriječavaju prijenos mutacija. Kromosomske aberacije su takoĎer uzrok nasljednih

bolesti (Downov sindrom), a mogu dovesti i do raka (npr. aktivacijom onkogena).

Sustavi popravka DNA imaju vaţnu ulogu u odrţanju integriteta

nasljednog materijala i podcrtavaju njegov značaj za preţivljavanje stanice.

Uočeno je, npr., da znatan dio promjena DNA nastaje kao posljedica kemijskih

reakcija s endogenim produktima staničnog metabolizma (poput oksidacijskih

produkata uz reaktivne vrste kisika nastale tijekom redukcije O2 kod respiracijskih reakcija

ili reakcija citokroma P450). Kapacitet ovih enzimskih sustava je više nego dovoljan

za kompenzaciju većine uobičajenih oštećenja DNA endogenog i egzogenog

podrijetla (ipak, postoje razlike u sposobnosti detekcije različitih DNA adukata,

ovisno o njihovom utjecaju na konformaciju DNA). Masivna ili česta izloţenost

genotoksičnim agensima moţe zasititi kapacitete popravka DNA i uzrokovati

oštećenja. TakoĎer, sami sustavi popravka mogu biti odgovorni za nastanak

mutacija. Naime, postoje nepogrešivi i greškama skloni (ubacuju baze nasumice

pa nastaju krivi parovi baza: G:T ili A:C) enzimi popravka. Potonji se aktiviraju

ako DNA ima više

oštećenja nego što nepogrešivi sustavi popravka

mogu popraviti (npr. ionizirajuće zračenje: utvrĎeno je

da mutacije nastaju popravkom DNA, a ne samim

zračenjem; kod loma dvostruke zavojnice ponekad nema preklapanja kao kod loma jedne zavojnice gdje preostala zavojnica

diktira slijed baza druge zavojnice, te kod dvostrukog loma može doći do spajanja dijelova različitih kromosoma;

Deionococcus radiodurans je bakterija izuzetno otporna na dvostruki lom DNA lanca induciran radioaktivnošću, upravo zbog

povećane učinkovitosti sustava popravka).

Page 55: Klapec Tox Hrane 2008 Oksidacije

54

Vaţnost sustava za popravak DNA u mutagenezi (i karcinogenezi) je očita kod nasljednog genetskog

nedostatka tih enzima, poremećaja koji se naziva xeroderma pigmentosum, kod kojeg pacijenti obolijevaju

od raka koţe nakon izlaganja suncu (UV zračenje izaziva stvaranje timinskih dimera meĎusobnim povezivanjem dva

susjedna timinska ostatka) i hipersenzitivni su na odreĎene ksenobiotike uslijed nemogućnosti popravka UV-

oštećenja ili uklanjanja kemijskih supstituenata na bazama (takoĎer, BRCA1 i BRCA2 geni, odgovorni za povećan

rizik obolijevanja od raka dojke, su uključeni u sustave popravka DNA).

K a r c i n o g e n o s t

Karcinogenost neke tvari podrazumijeva sposobnost ksenobiotika da izazove nastanak raka odnosno

transformira normalnu u tzv. neoplastičnu stanicu (postoje i nekemijski karcinogeni poput UV ili

ionizirajućeg zračenja). Kemijski karcinogeni, naročito oni iz hrane, ipak nisu meĎu najvaţnijim

procijenjenim uzročnicima raka (duhan uzrokuje 30% smrti od raka, 30% prehrana, 5% nasljedni faktori, 5% fizička

neaktivnost, 5% virusi, 3% alkohol, 2% zagaĎenje okoliša, 2% ionizirajuće i UV zračenje, <1% aditivi i kontaminanti, itd.).

Koraci u nastanku raka su inicijacija, promocija i progresija. Inicijacija uključuje ireverzibilnu

promjenu DNA. Neće svaka modifikacija DNA (adukt koji daje mutaciju) dovesti do inicijacije tumora.

Inicijacijskim se mogu smatrati mutacije koje

aktiviraju protoonkogene ili one koje

inaktiviraju tumorsko supresorske gene (vidi

‘Genotoksičnost’). Promocija je selektivna

stimulacija rasta tj. diobe iniciranih stanica pri

čemu se povećava broj stanica koje mogu biti

izloţene daljnjim genetskim promjenama. Neke

tvari, tzv. kompletni karcinogeni, su istovremeni

inicijatori i promotori (benzo[a]piren). Progresija

podrazumijeva daljnja genetska oštećenja i

proliferaciju stanica uz ekspresiju svojstava koja

potiču formiranje daljnjih mutacija sve do

nastanka maligne stanice.

Prema mehanizmu djelovanja, kemijske karcinogene se moţe podijeliti na genotoksične i

epigenetske ili negenotoksične.

Genotoksični kemijski karcinogeni

Promjena DNA je osnovni dogaĎaj u karcinogenezi. Genotoksični karcinogeni mogu biti ovisni o aktivaciji ili

neovisni o aktivaciji, pri čemu su ovi posljednji u stanju izazvati štetu u izvornom obliku, dok karcinogeni

ovisni o aktivaciji postaju genotoksični tek nakon metabolizma u organizmu vidi

‘Bioaktivacija toksikanata’).

Karcinogeni neovisni o aktivaciji su reaktivne elektrofilne molekule koje

traţe i reagiraju s negativno nabijenim atomima drugih molekula (npr. alkilirajući

spojevi poput alkil imina, epoksidi, laktoni, sulfat esteri, aktivni halogeni spojevi poput

benzil klorida ili CH3I, i dr.).

Ovisni o aktivaciji su spojevi koji se prvo prevode u elektrofile u procesu biotransformacije

(halogenirani ugljikovodici poput vinil klorida, policiklički aromatski ugljikovodici kao benzo[a]piren, aromatski i

R C

Cl

O

NH

SH

OH

δ+

δ-

δ-

δ-

δ-

Page 56: Klapec Tox Hrane 2008 Oksidacije

55

heterociklički amini, te nitroaromatski spojevi spojevi, azo spojevi, N-nitrozo spojevi poput nitrozamina, karbamati,

aflatoksini, sterigmatocistin, biljni toksini poput safrola, itd.).

Npr., bioaktivacija nitrozamina (nastaje elektrofilni metil diazonij ion):

vinil klorid (nastaje elektrofilni epoksid):

aflatoksin B1 (nastaje elektrofilni epoksid):

Bioaktivacija ili konverzija početnog spoja u genotoksin ili detoksifikacija i izlučivanje, ovise o nizu

faktora: vrsta, spol, organ, vrsta stanica, genetski polimorfizmi, itd. (utvrĎen je dvostruko veći rizik obolijevanja

od raka mokraćnog mjehura kod pušača koji nemaju funkcionalnu glutation S-transferazu M1 (GSTM1 0/0 genotip), za

razliku od pušača s GSTM1 +/+ ili +/0 genotipom).

Elektrofili reagiraju s različitim molekulama, ali samo reakcija s DNA dovodi do raka. Kemijski

karcinogeni mijenjaju DNA stvaranjem adukata (veliki adukti poput aromatskih spojeva ili mali nastali

alkilacijom), deaminacijom ili oksidacijom baza, stvaranjem dimera unutar jednog lanca ili izmeĎu

komplementarnih lanaca, itd. Sve ove promjene DNA mogu dovesti do grešaka pri replikaciji (zamjene para

baza, npr.). Postoje dokazi da oštećenja DNA mogu nastati i tijekom samog umnoţavanja ili pokušaja

popravka DNA pri čemu karcinogeni utječu na točnost sustava koji to provode (vidi ‘Genotoksičnost’).

Primjerice, neki metalni ioni mogu utjecati na točnost DNA polimeraza.

Epigenetski (negenotoksični) karcinogeni

Pojedine tvari su u stanju dovesti do razvoja raka bez promjene genetskog koda, stimuliranjem

mehanizama uključenih u rast stanice, poput promjena tzv. epigenetskog koda (za razliku od genetskog koda tj.

redoslijeda baza u lancu DNA, epigenetski kod uključuje modifikacije kromatina (kompleks DNA & histona; histoni se

acetiliraju, metiliraju, itd.) i metilaciju DNA koji utječu na transkripciju gena i nasljedni su; ovakve modifikacije omogućuju

prilagodbu stanice na uvjete okoliša).

Pojačana replikacija stanica djeluje promotorski povećavajući vjerojatnost spontanih i induciranih

mutacija iniciranih stanica (skraćivanjem vremena u kojem moţe doći do popravka DNA) te, konačno,

maligne transformacije. Najvaţniji mehanizmi negenotoksične karcinogeneze su citotoksičnost,

imunosupresija, endokrina disrupcija, aktivacija receptora, i dr.

Citotoksini izazivaju kronično oštećenje i smrt stanica što dovodi do kompenzacijske proliferacije

(nitriltrioctena kiselina je kelatacijski agens koji unosi Zn u tubularni filtrat gdje se reapsorbira u epitel stanica tubula; Zn

je toksičan za te stanice, te dolazi do staničnog oštećenja i smrti te ubrzane diobe okolnih stanica, grešaka pri replikaciji

OO

O

O

OO

OO

O

O

OO

O

CHClH2C CHClH2C

O

NON

H3C

H3C

NON

H3C

H2C

[CH3 N+

HO

N]

Page 57: Klapec Tox Hrane 2008 Oksidacije

56

DNA i nastajanja neoplazmi; natrij saharin izaziva rak mokraćnog mjehura štakora u dozama preko 3000 mg/kg zbog

mikrokristaličnog taloga u mjehuru, reakcije na strano tijelo i trajne citotoksičnosti). Sličan učinak ima kronična

iritacija ili prisustvo stranih tijela u tkivu (npr. potkoţni plastični implantati izazivaju rak kod pokusnih

ţivotinja).

Remećenje normalne endokrine ravnoteţe moţe imati tumorigeni učinak pojačanom stimulacijom

hormonima ili tvarima sličnim hormonima (npr. sintetski estrogeni pojačavaju lučenje prolaktina iz hipofize koji

stimulira proliferaciju stanica mliječnih žlijezda i može izazvati rak dojke) ili smanjenjem cirkulirajućih razina

hormona djelovanjem toksikanata (sniženje razine cirkulirajućeg tiroksina (T4) (npr. indukcijom enzima koji tiroksin

razgraĎuju) pojačava lučenje TSH (tireostimulirajući hormon) iz hipofize koji stimulira proliferaciju stanica štitnjače i

kronično može izazvati rak kod štakora; ljudi su otporniji zbog nižeg turnovera tiroksina). Najčešće je, dakle, riječ o

djelovanju tropnih hormona koji uslijed petlji povratne sprege nastoje uspostaviti hormonalnu homeostazu

poremećenu djelovanjem toksikanata i time izazivaju proliferaciju ciljnih stanica.

Uočeno je karcinogeno djelovanje imunosupresivnih tvari koje se tumači slabljenjem imunog

sustava i nadzora nad neoplastičnim stanicama i nekim onkogenim virusima čime se povećava vjerojatnost

nastanka i razvoja malignih stanica (npr. analog purina azatioprin, lijek protiv odbacivanja transplantiranih organa,

može izazvati rak kod pacijenata).

Aktivacija receptora na staničnoj membrani ili unutar stanice (na staničnim organelama,

kromosomima ili u citosolu) dovodi do kaskade biokemijskih dogaĎaja u stanici tj. prijenosa signala koji

završava staničnim odgovorom. Ukoliko odgovor uključuje pojačanu ekspresiju odreĎenih gena ili

proliferaciju stanice, moţe uslijediti maligna transformacija stanice (npr. dioksin aktivira Ah receptor koji potiče

transkripciju gena citokroma P450 (indukcija enzima!) koji mogu uzrokovati pojačanu pretvorbu stranih tvari u genotoksične

produkte; peroksisomni proliferatori (lijekovi za hiperlipidemiju) takoĎer induciraju enzime koji oksidiraju masne kiseline

(vezanjem za regulator transkripcije poznatiji kao PPARα (peroxisome proliferator-activated receptor alpha) koji aktivira

enzime uključene u metabolizam lipida) i dovode do povećanja broja peroksisoma (stanične organele) u stanicama jetre,

stimulirajući time diobu stanica, izazivajući oksidativni stres, itd.; forbol esteri (iz eteričnog ulja sjemenki krotona koje se

koristilo kao purgativ) aktiviraju protein kinazu C koja izaziva promjene u stanici uključujući modifikaciju proliferacije i

inhibiciju meĎustanične komunikacije koja može biti važna u kontroli rasta nenormalnih stanica od strane susjednih

normalnih stanica).

Neki autori karcinogene dodatno dijele na neklasificirane tj. one o kojima se ne zna dovoljno da bi

bili svrstani u genotoksične ili epigenetske, i anorganske. Anorganski karcinogeni, za koje su utvrĎeni i

genotoksični i negenotoksični mehanizmi, uključuju Si, Ni, Cr, Co, Pb, Mn, Be, i neke njihove derivate, te

azbest.

Treba spomenuti i mogućnost sinergističkog djelovanja onkogenih virusa i kemijskih karcinogena u

tumorigenom procesu. OdreĎeni virusi se mogu inkorporirati u genom i aktivirati onkogene i/ili inaktivirati

gene tumorskih supresora domaćina ili nakon inkorporacije dolazi do ekspresije virusnog onkogena.

Kemijski karcinogeni mogu djelovati promotorski na rak induciran virusom i obratno. UtvrĎena je

povezanost etiologije odreĎenih vrsta raka jetre s istovremenom izloţenosti specifičnim virusima (npr. rak

jetre: virus hepatitisa B i alkoholna pića ili aflatoksin B1; nazofaringealni rak: Epstein-Barr virus i N-nitrozamini; rak grlića

maternice, usne šupljine i grla: HPV (human papilloma virus) i tvari iz duhana).

Page 58: Klapec Tox Hrane 2008 Oksidacije

57

R e p r o d u k t i v n a i r a z v o j n a t o k s i č n o s t

Štetni učinci koji nastaju u opsegu ciljeva reproduktivnog ciklusa, od spolnih stanica, zametka, ploda, do

postporoĎajnih jedinki u procesu sazrijevanja, nazivaju se reproduktivnom i razvojnom toksičnošću.

Reproduktivna toksičnost

Reproduktivni toksini remete funkciju sustava za razmnoţavanje i prema ciljnom mjestu ih se moţe

podijeliti na muške i ţenske reproduktivne toksine. Reproduktivna toksičnost je nerazdvojiva od razvojne

toksičnosti jer se reproduktivni poremećaji roditeljskih jedinki odraţavaju na potomstvo. Mnogi od ovih

učinaka su posredovani endokrinim disruptorima.

MeĎu najvaţnije štetne učinke za muški reproduktivni sustav ulaze smanjenje plodnosti (olovo,

dibromokloropropan), te spermom prenosive promjene (npr. oštećenje DNA) koje mogu imati toksični učinak

na potomstvo (dietilstilbestrol).

Toksičnost za ţenski reproduktivni sustav uključuje oštećenja jajne stanice, poremećaje

menstrualnog ciklusa i ovulacije (alkohol), parturicije, laktacije (nikotin, sredstva za smirenje), toksičnost za

jajnike, promjene spolnog ponašanja, i dr.

Razvojna toksičnost

Razvojni toksini štetno djeluju na oploĎenim jajnim stanicama (zigotama), embrijima, fetusima i

postporoĎajnim jedinkama sve do spolnog sazrijevanja. Ponekad se kao sinonim razvojne toksičnosti koristi

i pojam teratogenost, iako on zapravo označava samo sposobnost izazivanja kongenitalnih malformacija

ploda. Posljedice razvojnih toksina, pak, mogu biti smrt ploda, usporavanje rasta, promjene morfoloških

značajki (malformacije) i promjene u funkcionalnom razvoju (npr. deficiti imunog sustava ili promjene

ponašanja). Karakteristika znatnog broja razvojnih toksina je očitovanje toksičnog učinka i kod relativno

niskih koncentracija, te vrijeme do uočavanja prvih simptoma (promjene reproduktivnog sustava često

postaju očite tek kod spolnog sazrijevanja). TakoĎer je prilično vaţno vrijeme izloţenosti. Primjerice,

toksični učinak prije implantacije će najčešće rezultirati smrću embrija ili učinka uopće neće biti.

Izloţenost toksikantima tijekom prvog trimestra (embriogeneza) vrlo često rezultira velikim morfološkim

promjenama, dok će izloţenost tijekom kasnijih faza trudnoće (fetogeneza) ili postpartum uglavnom

izazivati usporeni rast i funkcionalne nedostatke. Osim toksina koji djeluju isključivo na plod, štetno

djelovanje toksikanta (nereproduktivna toksičnost!) na majku često ima i posredni razvojno toksični učinak

na plod.

spolna zrelost

tvorba gameta

oplodnja

transport zigote

implantacija embrija

embrij / organogeneza

fetalni razvoj porođaj

dojenje

rast i razvoj

(adolescencija, pubertet)

REPRODUKTIVNI

CIKLUS

Page 59: Klapec Tox Hrane 2008 Oksidacije

58

Smatra se da je uočeno povećanje učestalosti poremećaja i bolesti reproduktivnog sustava (rak

testisa, strukturni defekti, neplodnost (broj spermija po jedinici volumena sperme), i dr.) u novije vrijeme

moţe biti posljedica izloţenosti endokrinim disruptorima za vrijeme razvoja reproduktivnog sustava in

utero (dioksin, bisfenol A).

Razvojni toksini se mogu podijeliti u nekoliko skupina na temelju mehanizma djelovanja:

Citotoksičnost podrazumijeva remećenje replikacije, transkripcije, translacije ili diobe stanica.

Tako djeluju karcinogene i mutagene tvari, radioaktivni elementi tj. ionizirajuće zračenje, inhibitori

enzima ključnih za rast (npr. 5-fluorouracil), i sl. Embrij/fetus je osjetljiv na njihovo djelovanje zbog velike

brzine diobe stanica. Niske doze citotoksičnog agensa uzrokuju pojačanu nekrozu tj. smrt stanica u ciljnim

organima, što rezultira njihovom malformacijom dok visoke doze mogu imati za posljedicu smrt

embrija/fetusa.

Pojedini razvojni toksini remete specifične dogaĎaje u diferencijaciji tkiva (embriogeneza ili

organogeneza i fetogeneza) te najčešće ne uključuju nekrozu ili smrt embrija/fetusa. Svaka formirajuća

struktura ili organ ima period maksimalne osjetljivosti na oštećenja koji koincidira s ključnim razvojnim

dogaĎajima u tim strukturama (npr. mozak je najosjetljiviji oko 10. dana, dok je urogenitalni sustav najosjetljiviji oko

16. dana embrionalnog razvitka štakora). Toksini ove skupine su mahom teratogeni (npr. dietilstilbestrol (trudnice ga

uzimale za spriječavanje spontanog pobačaja) čiji mehanizam karcinogenog djelovanja se pripisuje nastanku nenormalnog

tkiva genitalnog trakta tijekom organogeneze i nepravilnoj diferencijaciji endokrinog aparata fetusa, što se očituje tek pri

spolnom sazrijevanju te je uzrokovao rak genitalnog trakta kod ženske djece tek u pubertetu; jedan od predloženih

mehanizama teratogenosti talidomida (koristio se kao lijek protiv mučnine za vrijeme trudnoće, oko 8000 djece roĎeno s

teškim malformacijama, uglavnom udova) je blokiranje stvaranja krvnih žila; kronični unos alkohola za vrijeme trudnoće

može dovesti do tzv. fetalnog alkoholnog sindroma; očituje se intrauterinim zaostajanjem u rastu, mentalnim

poremećajima i malformacijama lubanje).

Nespecifična razvojna toksičnost uključuje blokiranje mehanizama uslijed kojih su svi organi i tkiva

jednako pogoĎeni. Izazivaju zaostajanje u rastu i/ili smrt embrija/fetusa, ali bez teratogenog učinka tj.

malformacija (npr. kloramfenikol, koji inhibira sintezu proteina u mitohondrijima; posljedica je zaostajanje u rastu, a

preko kritične razine i smrt).

Razvojna toksičnost moţe biti i posljedica remećenja homeostaze majke i zametka/ploda.

Toksičnost je posljedica neizravnog učinka na zametak/plod uslijed promjena u sustavu majke poput

nedostatka odreĎene tvari u majčinoj prehrani (retinol, riboflavin, folna kiselina, Fe) koji moţe dovesti do

malformacija, zaostajanja u rastu i smrti embrija/fetusa. Slično djeluju agensi koji smanjuju transport

hranjivih tvari od majke plodu (npr. diamin plavilo (trypan blue) inhibira pinocitoznu i fagocitoznu prehranu embrija;

hipertenzivne tvari poput serotonina, adrenalina ili ergotamina smanjuju dotok krvi zametku/plodu).

N e u r o t o k s i č n o s t

Neurotoksičnost podrazumijeva remećenje normalne funkcije ţivčanog sustava. Ţivčani sustav čovjeka se

po anatomskoj graĎi moţe podijeliti na periferni ţivčani sustav (PNS) koji uključuje neurone koji prenose

informaciju od mišića, ţlijezda i senzorskih organa do leĎne moţdine i mozga, te središnji ţivčani sustav

(CNS) koji se sastoji od leĎne moţdine i mozga koji upravlja svim tjelesnim funkcijama. Funkcionalna

podjela: autonomni ţivčani sustav, neovisan o volji, upravlja unutarnjim organima, ţlijezdama, glatkim

mišićima, i sl., te somatski ţivčani sustav koji upravlja skeletnim mišićima koji se mogu pokretati voljom.

Autonomni sustav se još moţe podijeliti na simpatički (priprema tijelo na bijeg ili borbu = fight or flight;

primjeri neurotransmitera: adrenalin, noradrenalin, dopamin; signal i receptori: adrenergički,

Page 60: Klapec Tox Hrane 2008 Oksidacije

59

dopaminergički, itd.) i parasimpatički ţivčani sustav (dovodi do opuštanja = rest and digest;

neurotransmiteri: acetilkolin; signal i receptori: kolinergički). Ova dva sustava djeluju antagonistički na

istom organu. Sloţenost i vaţnost ţivčanog sustava pojašnjavaju brojnost potencijalnih ciljnih mjesta

toksičnog djelovanja. Ipak, moţe se izdvojiti nekoliko najčešćih načina neurotoksikogenosti:

Remećenje sinteze i oštećenje važnih makromolekula

Oštećenje ili nedostatak ključnih makromolekula poput DNA, RNA, proteina, lipida, glikolipida,

glikoproteina, i sl., moţe uzrokovati odumiranje neurona (npr. olovo oštećuje mijelinsku ovojnicu neurona

toksičnim djelovanjem na oligodendrocite (potporno tkivo oko neurona u CNS) koji proizvode mijelin; ecstasy dovodi do

oksidativnog stresa i lipidne peroksidacije prekomjernim stvaranjem slobodnih radikala).

Utjecaj na prijenos živčanih impulsa

Ţivčani impuls podrazumijeva električni signal tj. potencijal (koncentracija iona s jedne i druge strane

membrane) koji se širi uzduţ membrane neurona. U odrţavanje odreĎenog potencijala vaţnu ulogu imaju

ionske crpke i kanali (Na+, K

+, Ca

2+, Cl

-) u membrani neurona (npr. Na-K crpka izbacuje ione Na, a ubacuje ione K u

stanicu održavajući nešto pozitivniji naboj s vanjske strane membrane). Tijekom prijenosa ţivčanog impulsa otvaraju

se ionski kanali u membrani uslijed čega se mijenja potencijal membrane (npr. otvaranjem Na kanala, Na+ ioni

ulaze u stanicu mijenjajući potencijal membrane koji postaje nešto pozitivniji s unutarnje strane). Kaskadnim

otvaranjem susjednih ionskih kanala se električni signal širi uzduţ membrane presinaptičkog neurona do

njegovog završetka u tzv. sinapsi. Sinapsa je pukotina ili meĎuprostor izmeĎu neurona u kojem se ţivčani

impuls prenosi kemijskim glasnicima ili neurotransmiterima. Neurotransmiteri su pohranjeni u specijalnim

tvorbama, tzv. vezikulama, koje se nalaze na kraju presinaptičke ţivčane stanice. Ţivčani signal dovodi do

oslabaĎanja neurotransmitera iz vezikula u sinapsu. Postsinaptički neuron na svom sinaptičkom kraju ima

receptore za neurotransmitere koji su povezani s ionskim kanalima. Vezanje neurotransmitera izaziva

promjenu konformacije receptora i ionskog kanala, čime dolazi do otvaranja ionskog kanala (npr. uz ulazak

Na+ u neuron i izlazak K+ iona iz neurona) i promjene potencijala membrane postsinaptičkog neurona.

Neki ksenobiotici (olovo, metilživa, tetrodotoksin, klorirani ciklodieni) vezanjem za ionske kanale (blokiraju

protok kroz njih ili ih drţe stalno otvorenim) prekidaju prijenos ţivčanih impulsa.

Mnogi neurotoksini remete prijenos ţivčanih impulsa u sinapsi, gdje se signal prenosi

neurotransmiterima. Npr., toksikanti mogu inhibirati sintezu neurotransmitera (organoživini spojevi inhibiraju

kolin acetiltransferazu (CAT) koja sintetizira acetilkolin), spriječiti (botulin) ili uzrokovati oslobaĎanje (tiramin)

neurotransmitera, zaposjesti postsinaptičke receptore neurotransmitera uz agonistički ili antagonistički

vezikule s neurotransmiterom ionski kanali

sinapsa postsinaptički

neuron

presinaptički

neuron

Page 61: Klapec Tox Hrane 2008 Oksidacije

60

učinak (nikotin = agonist acetilkolinskih receptora, atropin = antagonist acetilkolinskih receptora). U sinapsi se nalaze i

enzimi koji razgraĎuju neurotransmitere nakon vezanja za receptor i disocijacije s receptora

(spriječavajući produţenu stimulaciju postsinaptičkog neurona nakon prijenosa signala). Pojedini toksikanti

mogu inhibirati enzime koji vrše razgradnju (npr. acetilkolinesteraza je meta organofosfatnih spojeva čime se

pojačava prijenos signala acetilkolinom; inhibitori monoaminoksidaze (npr. antidepresivi poput deprenyla) spriječavaju

razgradnju dopamina i noradrenalina).

Na membrani presinaptičkog neurona

takoĎer postoje i transportni proteini koji

osloboĎene neurotransmitere vraćaju iz

sinapse u neuron (tzv. reuptake). Neki

toksikanti mogu blokirati ove transportne

proteine (kokain, prozac). Općenito,

posljedice poremećaja u prijenosu

ţivčanih impulsa moţe biti jačanje ili

slabljenje djelovanja simpatičkog

(ubrzava rad srca, ritam disanja,

peristaltiku, širi zjenice, i dr.) ili

parasimpatičkog (usporava rad srca,

pluća, peristaltiku, suţuje zjenice, i dr.) ţivčanog sustava.

Remećenje energijskog metabolizma neurona

Ţivčani sustav troši puno energije za prijenos ţivčanih signala (ionske pumpe koriste energiju za održavanje

membranskog potencijala), te je osjetljiv na toksikante koji inhibiraju stvaranje energije (npr. toksikanti koji

umanju opskrbu neurona kisikom poput CO (jer se veţe za hemoglobin), cijanida (blokira citokrom oksidaze

respiracijskog ciklusa), i dr.

T o k s i č n o s t z a o s t a l e o r g a n e i t k i v a o r g a n i z m a

Ovisno o načinu ulaska u organizam i afinitetu za mjesta vezanja, toksični učinak se moţe očitovati i na

drugim organima i sustavima organizma:

Dermatotoksičnost

Toksični učinci na koţu se javljaju uslijed kontakta koţe s toksikantom koji: nagriza ili iritira (kiseline),

uzrokuje alergijske reakcije (tip I: žitarice, tip IV: Ni), rak (UV zračenje), neimunološku urtikariju (benzojeva

kiselina), i dr.

Toksičnost za dišni sustav

Respiratorna toksikologija je povezana s inhalacijskom toksikologijom koja se bavi svim toksikantima koji u

organizam ulaze dišnim putem (plinovi, pare, aerosoli), a koji, ovisno o kemijskoj reaktivnosti (reakcije s

tkivnim molekulama), topljivosti, i sl., mogu izazvati lokalne (zadrţavanje u respiratornom traktu) ili

sistemske učinke. MeĎu najtoksičnijim tvarima za dišni sustav su aerosoli krutih čestica (npr. azbest) koji se

zadrţavaju u plućima izazivajući kroničnu upalu koja moţe uzrokovati plućnu fibrozu ili rak.

Page 62: Klapec Tox Hrane 2008 Oksidacije

61

Hepatotoksičnost

Jetra je izloţenija toksičnom djelovanju kemikalija zbog toga što krv nakon probavnog trakta odmah ide u

jetru, zbog velike prokrvljenosti i aktivnog izvlačenja toksikanata iz krvi, kao i zbog svoje

biotransformacijske uloge i lučenja toksikanata i metabolita u ţuč. MeĎu češćim mehanizmima toksičnog

djelovanja su: inhibicija enzima (posljedica čega može biti blokada izlučivanja triglicerida u krv i/ili nakupljanje masti

u hepatocitima = steatoza; npr., valproična kiselina (antiepileptični lijek) se oksidira citokromom P450 u toksični

elektrofilni produkt koji inhibira mitohondrijske enzime na putu beta oksidacije (razgradnja masnih kiselina) i iscrpljuje

zalihe GSH; alkoholizam takoĎer može rezultirati masnom infiltracijom jetre zbog proizvodnje velikih količina NADH

oksidacijom etanola koji služi kao signal koji dovodi do inhibicije razgradnje masnih kiselina uz istovremeno poticanje

njihove sinteze; oksidacija etanola i

acetaldehida i povećanje NADH/NAD+

omjera takoĎer smanjuje aktivnost

ključnih enzima u proizvodnji ATP-a, i

time uzrokuje smanjenu sintezu

proteina), stvaranje reaktivnih

elektrofilnih metabolita

biotransformacijom toksikanata koji

se veţu za vaţne stanične

makromolekule uz učinke poput

oksidativnog stresa, lipidne

peroksidacije ili stvaranje adukata

na DNA (paracetamol (panadol), CCl4,

aflatoksini, vinil klorid, i sl.; oksidacija

etanola katalazom i citokromom P450

stvara reaktivne vrste kisika),

iscrpljivanje vaţnih molekula (npr. mnogi reaktivni spojevi iscrpljuju zalihe GSH; galaktozamin se povezuje s UDP u

pokušaju metabolizma poput galaktoze (pretvorba u glukoza 6-fosfat i daljnji metabolizam glikolizom ili putem pentoza

fosfata), ali dolazi do nakupljanja neiskoristivih UDP aminošećera i iscrpljivanja staničnog UTP koji je supstrat za RNA

polimerazu što rezultira inhibicijom sinteze RNA i proteina), akumulacija kolagena u izvanstaničnom prostoru tj.

hepatička fibroza (kronično dovodi do ciroze; npr., acetaldehid nastao oksidacijom etanola povećava transkripciju alfa-1

kolagen gena), i dr.

Nefrotoksičnost

Toksičnost za bubrege uključuje toksičnost za glomerul (SiO2), glomerulonefritis imunološkog podrijetla

(penicilamin), toksičnost za tubul (paracetamol, Hg, Pb, Cd, ohratoksin A), inhibiciju regulacije bubreţne

funkcije (kalij dikromat), i dr.

Toksičnost za kardiovaskularni sustav

Podrazumijeva toksičnost za makrocirkulaciju, koja se sastoji od srca (adriamicin) i velikih krvnih ţila (vene

i arterije) (vinil klorid), mikrocirkulaciju (arteriole i kapilare) (As), i krv (plazma i stanice specijaliziranih

funkcija) (CO, Pb).

NHCOCH3

OH

paracetamol

konjugacija sa sulfatom konjugacija s glukuronskom kiselinom

NCOCH3

O

N-acetil-p-benzokinon imin

CYP P450

Page 63: Klapec Tox Hrane 2008 Oksidacije

62

Gastrointestinalna toksičnost

Riječ je o kontaktu s nagrizajućim tvarima pri prolasku kroz probavni trakt (kiseline, luţine) ili

toksikantima koji izazivaju štetu interakcijom sa stanicama GIT-a (npr. voltaren smanjuje lučenje ţelučane

sluzi; bakterijski enterotoksini uzrokuju lučenje kloridnih iona i vode iz stanica te dovode do proljeva).

Većina toksikanata izaziva višestruke posljedice u organizmu, ovisno o dozi, trajanju i tempiranju

izloţenosti, osjetljivosti ciljnog organizma, itd., te tako postoje endokrini disruptori karcinogenog ili

imunotoksičnog djelovanja, mutageni koji su karcinogeni i teratogeni, i dr.

Page 64: Klapec Tox Hrane 2008 Oksidacije

63

T O K S I K A N T I U H R A N I

Povećava se rizik kontaminacije hrane i vode stranim tvarima zbog povećanog opsega proizvodnje hrane,

što podrazumijeva uporabu zaštitnih sredstava u zemljoradnji te biostimulatora u stočarstvu. Na zagaĎenje

hrane velik utjecaj ima i opće zagaĎenje okoliša, neodgovarajuće rukovanje sirovinama i namirnicama

(rezultirajući toksiko-infekcijama i alimentarnim intoksikacijama biološkog podrijetla) kao i dodatak aditiva

u industrijske proizvode. Općenito se toksikanti koji uzrokuju zagaĎenje hrane i vode mogu podijeliti u

sljedeće skupine:

1. Toksikanti iz industrijskog otpada i prirodnog okoliša

2. Pesticidi i ostaci od tretiranja ţivotinja i biljaka

3. Prirodni toksikanti iz biljnih i ţivotinjskih namirnica

4. Toksini mikrobnog podrijetla

5. Aditivi hrani i tvari u dodiru s hranom i vodom

6. Toksikanti koji nastaju obradom hrane i vode

Pojedini toksikanti su prisutni u više kategorija te su pojedinosti njihova toksičnog djelovanja i ponašanja u

organizmu (ADME = apsorpcija, distribucija, metabolizam, ekskrecija) navedene kod prvog spomena

toksikanta. Opis toksičnosti uključuje uglavnom posljedice kronične izloţenosti kakva se najčešće moţe

očekivati unosom vode i hrane.

TTToookkksssiiikkkaaannntttiii iiizzz iiinnnddduuussstttrrriiijjjssskkkoooggg oootttpppaaadddaaa iii ppprrriiirrrooodddnnnoooggg oookkkooollliiišššaaa

Mnoge opasne tvari su dospjele u okoliš djelovanjem industrije uslijed neznanja, neodgovornosti ili

nezgodnim slučajem. Većina toksikanata ove skupine nastaje i prirodnim procesima odakle mogu dospijeti

u hranu i vodu. Najčešći ksenobiotici ove skupine su: klorirani ugljikovodici, policiklički aromatski

ugljikovodici, teški metali, radioaktivni elementi i ostali elementi.

K l o r i r a n i u g l j i k o v o d i c i

Najvaţnije skupine ovih spojeva su poliklorirani bifenili, te poliklorirani dibenzofurani i poliklorirani

dibenzodioksini.

Poliklorirani dibenzofurani uključuju oko 75 kongenera tj.

spojeva s dibenzofuranskom jezgrom i različitim brojem i

poloţajem atoma klora.

Poliklorirani dibenzodioksini imaju 135 kongenera. Ovi spojevi, kao

i planarni poliklorirani bifenili, se ponašaju slično u organizmu te

se obično izloţenost istima izraţava u ekvivalentima najtoksičnijeg

predstavnika: 2,3,7,8-tetraklorodibenzo-p-dioksina (TCDD): TEQ =

TEF x koncentracija, gdje je TEF toxic equivalency factor tj. mjera toksičnosti pojedinog kongenera u

odnosu na TCDD (npr. 1,2,3,7,8,-pentaklorodibenzodioksin ima TEF 1 jer mu je toksičnost jednaka TCDDu, dok je TEF

oktaklorodibenzofurana 0,0003). Ovi spojevi nastaju kao nusprodukti izgaranja na visokim temperaturama

(šumski poţari, industrija, spalionice smeća, i dr.). TCDD je takoĎer nastajao kao nusprodukt kod

proizvodnje herbicida 2,4,5-T (2,4,5-triklorfenoksioctena kiselina) (izmeĎu ostalog se primjenjivao u smjesi

herbicida naziva Agent Orange u Vijetnamskom ratu kao defolijant od strane američkih snaga) i znatne količine TCDDa

O

O Cl

ClCl

Cl

O

Cl

ClCl

Cl

Page 65: Klapec Tox Hrane 2008 Oksidacije

64

su osloboĎene u okoliš prilikom eksplozije tvornice ovog herbicida u Sevesu (Italija) 1976 g. Klorirani

ugljikovodici ove skupine se uglavnom mogu naći u hrani ţivotinjskog podrijetla budući da su topljivi u

mastima pa se nakupljaju u masnom tkivu ţivotinja u koje dospijevaju uglavnom preko ispaše, kao i u ribi i

drugim vodenim ţivotinjama. Biljne namirnice sadrţe male količine dospjele taloţenjem iz zraka ili

adhezijom čestica tla. ADME: Apsorbiraju se pasivnim transportom preko membrana stanica probavnog

trakta. Raspodjeljuju se uglavnom u masno tkivo, a razgraĎuju se uobičajenim reakcijama citokroma P-450

i enzima druge faze koje rezultiraju detoksikacijom i izlučivanjem. Zbog snaţne lipofilnosti se dugo

zadrţavaju u organizmu: vrijeme poluţivota TCDDa je 7-12 godina. Toksičnost spojeva ove skupine,

utvrĎena na pokusnim ţivotinjama, uključuje reproduktivnu i razvojnu toksičnost (antiestrogeno

djelovanje), imunotoksičnost, neurotoksičnost i karcinogenost. Kod ljudi je zabiljeţena pojava

dermatotoksičnog učinka (tzv. klorakne) kod izloţenosti većim dozama (na osnovi industrijskih nezgoda može se

zaključiti da su ljudi otporniji na akutno trovanje TCDDom od životinja za koje je dioksin snažan akutni otrov uz LD50 <1

mg/kg za zamorce), dok pojedine epidemiološke studije povezuju povećanu učestalost raka (stanovništvo Sevesa

i američki vojnici izloženi Agent Orangeu), dijabetesa i razvojno toksične učinke (djeca američkih vojnika), upravo

izloţenosti dioksinima. Mehanizam toksičnosti dioksina, furana i planarnih polikloriranih bifenila uključuje

vezanje za AhR receptor, ali i druge transkripcijske faktore, uz posljedičnu pojačanu ekspresiju gena

metaboličkih enzima, ali i proteina koji upravljaju staničnim rastom i diferencijacijom i sl., i izazivanje

poremećaja u prijenosu staničnog signala. Antiestrogensko djelovanje bi moglo biti posljedica ubrzane

razgradnje steroidnih hormona ili smanjene sinteze estradiola citokromima P450. Ipak, cirkulirajuće razine

estrogena ostaju nepromijenjene te je vjerojatniji utjecaj na samo tkivo spolnih ţlijezda izazivanjem

estrogenske rezistencije uslijed smanjenja broja estrogenskih receptora. Izloženost: Najosjetljivije

podskupine populacije su fetusi, dojenčad te populacije s povećanim udjelom ribe u prehrani. Uočen je

trend smanjenja koncentracije u ljudskom tkivu u posljednih dvadesetak godina (npr. u SADu je utvrĎena 75%

niža koncentracija 1996. u odnosu na 1986. godinu). Procijenjeni TDI tj. tolerirani dnevni unos (takav unos tijekom

čitavog ţivotnog vijeka neće rezultirati štetnim posljedicama) je 1-4 pg TEQ/kg tjelesne teţine, dok se

dnevni unos hranom (SAD & EU) kreće u opsegu 0,4 – 3,0 pg TEQ/kg tj. t.

Poliklorirani bifenili (PCB) uključuju oko 100 različitih kloriranih derivata bifenila čija je uporaba u

industriji bila prilično raširena do 1977. g., kad je prekinuta nakon otkrića njihove toksičnosti. Otpornost

na razgradnju i topljivost u mastima dovodi do njihovog nakupljanja u odreĎenim prehrambenim uljima, te

ţivotinjskom masnom tkivu (naročito ribe). Dogodilo se i

nekoliko industrijskih nezgoda kod kojih su PCB završili u hrani

ili krmivima (Yusho (Japan) i Yu-Cheng (Tajvan) incidenti kontaminacije

rižinog ulja). ADME: Apsorbiraju se pasivnom difuzijom i najveći

dio unešene tvari će se apsorbirati, pri čemu na apsorpciju

utječe broj atoma klora. Uglavnom se skladište u masno tkivo i

mlijeko. Brzina metabolizma se smanjuje s brojem atoma klora i uključuje nastanak reaktivnih elektrofila

(aren oksidi i drugi metaboliti). Vremena poluţivota su duga, od nekoliko mjeseci do više od 20 godina,

ovisno o kongeneru. Toksičnost uključuje neurotoksične i reproduktivno toksične učinke, endokrinu

disrupciju i karcinogenost. Mehanizmi toksičnosti: Remećenje homeostaze hormona štitnjače (veţu se za

transtiretin), inhibicija sinteze i/ili transporta dopamina u mozgu, blokada kalcijevih kanala (koji sudjeluju u

prijenosu staničnog signala), indukcija citokroma P450 koji dovode do ubrzane razgradnje testosterona i

inhibicija enzima koji razgraĎuju estrogene. TakoĎer, pojedini kongeneri se bioaktiviraju u reaktivne

elektrofile, dok neki djeluju promotorski na rast stanica tumora. Izloženost: Najosjetljivije podskupine

Cl Cl

Cl

ClCl

Page 66: Klapec Tox Hrane 2008 Oksidacije

65

populacije su fetusi, dojenčad te populacije s povećanim udjelom ribe u prehrani. Slično dioksinima,

postoji trend smanjenja izloţenosti nakon zabrane proizvodnje i korištenja. Razina minimalnog rizika ili

MRL (Agency for Toxic Substances and Disease Registry, ATSDR) je 0,02 g/kg tj. t. dok je procijenjeni

dnevni unos hranom u SADu (1991 g.) < 0,001 g/kg tj. t. Polibromirani bifenili su vrlo sličnih toksičnih

svojstava.

Postoje i druge skupine sintetskih polihalogeniranih ugljikovodika, od polibromiranih difenil etera,

benzeni, naftaleni, itd., koji se mogu detektirati u namirnicama.

P o l i c i k l i č k i a r o m a t s k i u g l j i k o v o d i c i

Riječ je o stotinama spojeva s više aromatskih prstenova u molekuli, poput benzo[a]pirena (na slici) kao

najproučavanijeg policikličkog aromatskog ugljikovodika (PAH). Još 30ak

drugih PAH su najčešći i najtoksičniji. Uglavnom nastaju nepotpunim

izgaranjem organske tvari kako prirodnim procesima (vulkani, šumski

poţari), tako i djelovanjem čovjeka (industrija, izgaranje goriva, i dr.).

Slabo su topljivi i razgradivi djelovanjem sunčevog svjetla i

mikroorganizama. Nakupljaju ih neke morske ţivotinje poput dagnji,

kamenica ili jastoga. PAH dospijevaju u biljne namirnice najvećim dijelom taloţenjem iz zraka, a tek manji

udio predstavlja apsorpcija iz tla. ADME: Apsorbiraju se difuzijom na koju utječe lipofilnost konkretnog

spoja i prisustvo masnih tvari u hrani koje poboljšavaju stopu apsorpcije. Nakon apsorpcije je utvrĎena

raspodjela PAH u cijelom organizmu. Metabolizmom mogu nastati epoksidi koji, ukoliko se razgrade epoksid

hidrolazama, daju diole koji zatim mogu ponovno biti supstrati citokroma P450 uz nastanak epoksidne

veze, te je konačni spoj diol epoksid koji je izuzetno reaktivni elektrofil. PAH poput benzo[a]pirena,

krizena ili fenantrena, koji imaju tzv. zaljevsko područje (bay region) molekule su naročito skloni

formiranju diol epoksida. Brzi metabolizam uz nastanak konjugata pogoduje brzom izlučivanju te se već

nakon par dana izluči najveći dio apsorbiranog spoja. Toksičnost: Izazivaju reproduktivne i razvojne

poremećaje, te hematološke i poremećaje imunog sustava. Svakako najpoznatiji i najznačajniji toksični

učinak je oštećenje DNA i karcinogenost (osim na pokusnim životinjama, epidemiološkim studijama je primjećena

veća incidencija odreĎenih vrsta raka kod dimnjačara i osoba drugih zanimanja koje su pojačano izložene ovim spojevima).

Predloţena je etiološka uloga izloţenosti PAHovima u vodi i tzv. (balkanske) endemske nefropatije (bolest

koja se javlja uz pritoke Dunava; npr. u Hrvatskoj i Bosanskoj Posavini) koja često završi i s karcinogenim

promjenama urinarnog trakta. Autori su utvrdili prisutnost naslaga pliocenskog lignita bogatog PAHovima

koji, u kontaktu s podzemnim vodama, mogu završiti u bunarskoj vodi. Nedostatak hipoteze je

nepostojanje naslaga u svim područjima u kojima se bolest javlja.

Mehanizmi toksičnosti: Indukcija enzima preko AhR receptora povećava osjetljivost na bioaktivaciju i

nastanak reaktivnih elektrofila. Izloženost: Budući da hrana najčešće sadrţi sloţene smjese ovih spojeva

koji se znatno razlikuju po djelovanju na organizam te stupaju u sinergističke i antagonističke interakcije,

neprikladno je izraţavanje toksičnosti sloţenih smjesa preko TEFa. Prisustvo benzo[a]pirena eventualno

moţe posluţiti kao indikator prisustva ostalih PAH u hrani. UtvrĎen je trend smanjenja koncentracije PAH u

hrani u zadnjih 20ak godina. Prosječni dnevni unos benzo[a]pirena hranom u EU je 0,7 – 4,1 ng/kg tj. t.,

dok je unos svih PAH otprilike 10 puta viši. Procijenjena sigurna doza unosa benzo[a]pirena se kreće u

opsegu 0,06 – 0,5 ng/kg tj. t.

Page 67: Klapec Tox Hrane 2008 Oksidacije

66

T e š k i m e t a l i

Olovo u okoliš dospijeva uslijed njegove upotrebe u baterijama, pigmentima, kao antidetonatora u

gorivima, a prije su se koristili i pesticidi s Pb. U kontaminiranim područjima se iz tla apsorbira u biljke i

nakuplja u ţivotinjama (hrana je najzagaĎenija u industrijskim područjima i blizu autoputeva gdje ga u biljkama ima bar

10 puta više nego u ruralnom području). Najviše razine se nalaze u iznutricama i školjkašima, dok najveći

doprinos dnevnom unosu ipak daju ţitarice te voće i povrće. ADME: Olovo se natječe za sustave transporta

elemenata esencijalnih ljudskom organizmu poput Ca, Fe, Mg, Zn, i dr. (npr. DMT ili divalent metal

transporter, Ca2+

kanal, Ca2+

-Na+ antiport). Odrasli apsorbiraju znatno manje od djece (6 vs 50%) zbog

povećanih potreba za Ca i drugim elementima tijekom rasta. Gladovanje takoĎer moţe pojačati apsorpciju

Pb (i do 60%). Organski oblici (npr. tetraetil olovo = antidetonator) se znatno bolje apsorbiraju od

anorganskih zbog bolje topljivosti u mastima. Anorgansko Pb se prvo raspodjeljuje u dobro prokrvljene

organe, odakle se tijekom vremena raspodijeljuje u kost gdje Pb zamijenjuje Ca u kristalnoj rešetci (94%

ukupnog Pb u organizmu se nalazi u kostima). Ovako ‘uskladišteno’ Pb nije toksično, ali se moţe osloboditi iz

kosti tijekom lomova, demineralizacije kod starijih osoba ili povećanih potreba za kalcijem tijekom

trudnoće ili dojenja. Metabolizam uključuje samo alkilirane oblike koji se dealkiliraju (iz tetralkila mogu

nastati trialkili koji su naročito toksični za ţivčani sustav). Olovo se izlučuje u ţuč i 90% Pb se iz organizma

odstrani fecesom. Toksičnost uključuje neurotoksičnost, anemiju, hipertenziju i kardiovaskularne bolesti,

nefrotoksičnost, imunosupresiju, reproduktivnu i razvojnu (neuro)toksičnost (izloženost olovu fetusa i djece se

povezuje s promjenama ponašanja i nižim kvocijentom inteligencije) te karcinogene učinke. Mehanizmi toksičnosti:

Oponašanjem kalcija. Primjerice, vezanjem za kalmodulin, protein bitan u prijenosu staničnog signala

vezanjem i aktivacijom protein kinaza i drugih proteina. TakoĎer, Pb se moţe vezati za mjesta vezanja Zn

u proteinima poput transkripcijskih faktora s tzv. zinc finger domenama (dio molekule kojim transkripcijski

faktori obavijaju DNA) ili enzima na putu sinteze hema: dehidrataza δ-aminolevulinske kiseline (ALAD) ili

ferokelataza. Nedostatak hema dovodi do smanjene sinteze hemoglobina i posljedične anemije, ali i

poremećaja drugih procesa uslijed nedostatka ostalih citokroma s hemom, uključujući proizvodnju

energije, detoksikaciju, sintezu hormona, neurotransmitera, vitamina D, i dr. Izloženost: Osjetljive

populacijske skupine uključuju fetuse i malu djecu zbog razvoja mozga, pojačane apsorpcije, ‘ruka-usta’

ponašanja, potencijalnog nakupljanja u mlijeku, i dr. TakoĎer, trudnice, dojilje i starije osobe, te osobe s

deficitarnim unosom pojedinih elemenata, naročito Ca, Fe i Zn. Nasljedne bolesti poput talasemije (defektni

proteinski lanac hemoglobina i anemija; defektni lanac je zapravo selekcijska prednost kod zaraze malarijom jer čini

eritrocite podložnim infekciji uzročnikom Plasmodium vivaxom i time manje podložnim patogenijoj vrsti Plasmodium

falciparum), nedostatak glukoza-6-fosfat dehidrogenaze (enzim na putu pentoza fosfata kojim stanice (prvenstveno

eritrociti) proizvode pentoze, ali i NADPH koji održava glutation u reduciranom stanju i time štiti stanicu od oksidativnog

stresa; nedostatak često dovodi do hemolitičke anemije nakon izloženosti prooksidantnim tvarima; smanjena aktivnost ovog

enzima je prednost kod infekcije uzročnikom malarije koji treba pentoze i reducirani GSH za optimalni rast), porfirije

(zbog nedostatka enzima na putu sinteze hema) i sl., podrazumijevaju nedostatak hema i/ili anemiju te su

nositelji naročito osjetljivi na djelovanje Pb. Polimorfizmi ALAD (ALAD1 i ALAD2; kombinaciju alela 1:1 ima 80%

Europljana, 1:2 19% i 2:2 1%) mogu utjecati na osjetljivost na ovaj teški metal jer ALAD2 ima veći afinitet za Pb

i uzrokuje njegovo duţe zadrţavanje na mjestima toksičnog djelovanja (postoje indicije da bi ALAD2 mogla bit

povezana s većim rizikom obolijevanja od amiotrofne lateralne skleroze). Posljednjih godina postoji trend smanjenja

izloţenosti olovu nakon zabrane korištenja antidetonatora, zabrane pesticida, i dr. Preporuke za odrasle se

izraţavaju tzv. privremenim toleriranim tjednim unosom (provisional tolerable weekly intake, PTWI) i

iznose 25 g/kg tj. t. Prosječni dnevni unos u zemljama EU je otprilike 14% te vrijednosti.

Page 68: Klapec Tox Hrane 2008 Oksidacije

67

Ţiva dospijeva u okoliš iz niza antropogenih izvora: kemijska i metalna industrija, medicina (npr.

timerosal kao antiseptik u cjepivima i amalgamske zubne ispune), primjenom u baterijama, termometrima,

barometrima, sagorijevanjem fosilnih goriva i smeća, religijske prakse (santeria), a prije su se koristili i

organoţivini fungicidi. Anorgansku ţivu

mikroorganizmi u okolišu prevode u metilţivu

koja se nakuplja u vodenim organizmima

poput školjkaša i ribe (npr. ribe koncentriraju Hg

iz okoliša i 1000 puta, a školjkaši i do 3000 puta većoj

razini od koncentracije u njihovu okolišu). Gljive

takoĎer nakupljaju spojeve Hg. Namirnice

ţivotinjskog podrijetla sadrţavaju najviše metilţive, dok je u biljkama Hg uglavnom u anorganskom obliku.

Ovisno o prehrani, riba i školjkaši predstavljaju najvećio dio (30-100%) Hg unesene hranom, zatim ţitarice

te voće i povrće. ADME: Anorganski oblici (Hg2+

) se apsorbiraju u udjelu 10-40% iz hrane, dok se 95% CH3Hg+

apsorbira (difuzijom preko fosfolipidnog dvosloja). Elementarna Hg se apsorbira u beznačajnim količinama.

Anorganski oblici se uglavnom raspodjeljuju u jetru i bubrege, dok se metilţiva moţe svugdje pronaći,

uključujući mozak. Lako prelazi krvno - moţdanu barijeru, ne samo zbog lipofilnosti, nego i

kompleksiranjem s cisteinom pri čemu nastaje kompleks sličan metioninu koji moţe koristiti sustave

aktivnog transporta za velike aminokiseline. Elementarna Hg se oksidira katalazom do Hg2+

, nakon čega

moţe doći do stvaranja kompleksa s glutationom i izlučivanja urinom ili fecesom. Metilţiva se sporo

metabolizira dealkilacijom do Hg2+

ili se u kompleksu s GSH i drugim spojevima s tiolnim skupinama izlučuje

u ţuč. Ovi kompleksi se reapsorbiraju aktivnim transportom u krv u ţučnoj vrećici (tzv. bilijarno-hepatski

ciklus) što usporava izlučivanje metilţive iz organizma. U dahu se moţe detektirati Hg0 jer je isparljiva.

Toksičnost uključuje neurotoksične učinke, nefrotoksičnost, gastrointestinalnu toksičnost, reproduktivnu i

razvojnu (neuro)toksičnost (djeca majki izloženih metilživi tijekom trudnoće (uslijed ispuštanja Hg otpadnim vodama

kemijske tvornice u more pored Minamate u Japanu, 1956. godine) su imala teške neurološke deficite), karcinogenost te

izazivanje alergijskih i autoimunih reakcija. Uočeno je da spojevi selenija (u prvom redu selenit) mogu

štititi od toksičnog djelovanja Hg. Metabolizmom Se nastaje selenid (Se2-) koji se sa ţivom povezuje u

anorganski, inertni kompleks. Mehanizmi toksičnosti: MeĎu najvaţnije načine kojima Hg izaziva štetne

učinke su vezanje za SH skupine (stvara koordinativne veze i s NH2 i COOH skupinama, ali s manjim

afinitetom) vaţnih molekula poput enzima, strukturnih bjelančevina (Hg vezanjem za tubulin remeti sastavljanje

mikrotubula (polimeri lanaca tubulina) koji su važan dio citoskeleta; smatra se da razvojni neurotoksični učinak Hg može

biti posljedica upravo ovakvog remećenja diobe neurona), transportnih proteina (uz posljedičnu disrupciju funkcije

membrane), glutationa, itd. Iscrpljivanje GSH takoĎer moţe dovesti do oksidativnog stresa. Ţivini spojevi

dovode i do narušavanja homeostaze kalcija, uz povećanje njegove unutarstanične koncentracije što

uzrokuje promjene u prijenosu staničnog signala (pretjeranu aktivaciju različitih proteina i enzima, i sl.).

Izloženost: Osjetljive populacijske skupine su prvenstveno fetusi (primjerice, trudnicama u ribarskim krajevima

se ne preporuča konzumacija pojedinih vrsta morskih riba (poznatih po gomilanju Hg u mesu) više od jednom tjedno), mala

djeca, populacije s visokim unosom ribe te osobe s bolestima jetre, bubrega, ţivčanog sustava ili genetskim

polimorfizmima poput onih koji uzrokuju nedostatnu aktivnost glutation S-transferaze koja vrši povezivanje

Hg s glutationom. Smatra se da neki ljudi imaju genetsku predispoziciju za razvoj autoimunog

glomerulonefritisa nakon izlaganja ţivi (izloženost Hg, ali i drugim teškim metalima, se povezuje i s razvojem

autoimunog sistematskog lupusa eritematozusa). Neškodljivi oralni unos izraţen putem PTWI je 5 g/kg tj. t. za

anorgansku Hg, te 1,6 g/kg tj. t. za metilţivu. Prosječni unos u EU se kreće oko 11% tih vrijednosti.

HOOC

SH

NH2

cistein

H3C Hg+Cl

_

HOOC

S

NH2

Hg

Page 69: Klapec Tox Hrane 2008 Oksidacije

68

Kadmij u okoliš dospijeva djelovanjem vulkana, šumskim poţarima i razlaganjem stijena, ali i

ljudskom aktivnostima poput metalopreraĎivačke industrije, pri izradi baterija, spaljivanjem smeća i

goriva, i dr. Iz kontaminiranog tla ili vode se nakuplja u prehrambenom lancu. Najviše koncentracije se

mogu naći u školjkašima, iznutricama (bubrezi i jetra), voću i povrću (gljivama), ţitaricama, itd. Voće i

povrće u prosjeku najviše doprinose unosu, zatim ţitarice, riba i meso. ADME: Odrasli apsorbiraju oko 5%

Cd iz hrane, a djeca više. Nedostatak Ca, Zn, Cu, Fe (niska razina feritina u krvi) ili bjelančevina pojačava

apsorpciju. Kadmij se uglavnom raspodjeljuje u jetru i bubrege i to vezanjem za metalotionein (Cd inducira

i njegovu sintezu). Ovaj protein, bogat cisteinskim ostacima, je odgovoran i za dugo zadrţavanje Cd u

organizmu, uz vrijeme poluţivota do 20 g u jetri i 40 g u bubrezima. Smatra se da je metalotionein zapravo

zaštitni mehanizam kojim se spriječava vezanje Cd za osjetljiva mjesta u stanicama (ipak, kod visokih doza Cd,

metalotionein transportom Cd u stanice tubula, gdje se razgraĎuje i oslobaĎa Cd, zapravo posreduje u nefrotoksičnom

učinku). Nije utvrĎena nikakva metabolička promjena Cd u organizmu. Toksičnost: Nefrotoksičnost,

hepatotoksičnost i gastrointestinalna toksičnost. Kod jako visokih doza (ili kroničnim unosom uz nedostatak

Ca) se ugraĎuje i u kost umjesto kalcijevih iona izazivajući tzv. itai-itai ili bolest bolnih kostiju (bolest je

zabilježena nakon masovnog otrovanja uslijed rudarskih aktivnosti i zagaĎenja rijeke u Toyama Prefekturi (Japan) 1950.

godine, koje su uzrokovale visoke koncentracije Cd u riži navodnjavanoj kontaminiranom vodom). Na laboratorijskim

ţivotinjama je (uz visoke doze) utvrĎeno i hipertenzivno, teratogeno i karcinogeno djelovanje. UtvrĎeno je

da Zn, Cu, Se, Fe i askorbinska kiselina umanjuju ili spriječavaju neke od toksičnih učinaka Cd. Mehanizmi

toksičnosti: Natjecanje za mjesta vezanja Zn, Fe, Cu, Se, itd. Posljedice mogu biti iscrpljivanje

antioksidantnih enzima poput glutation peroksidaze (Se) ili superoksid dismutaze (SOD1 i SOD3 sadrţe Cu i

Zn u aktivnom centru, SOD2 Mn) i oksidativni stres ili remećenje transkripcije vezanjem za zinc finger

domene transkripcijskih faktora. Izloženost: Posebnu osjetljivost na toksične učinke Cd pokazuju fetusi i

mala djeca, starije osobe, bubreţni bolesnici, populacije s visokim unosom školjkaša te osobe s

deficitarnim unosom Fe ili Ca. PTWI je 7 g/kg tj. t. Prosječni unos u EU iznosi petinu te vrijednosti.

R a d i o a k t i v n i e l e m e n t i

MeĎu najvaţnijim radionuklidima koji se mogu naći u hrani i vodi su 3H,

131I,

134Cs,

137Cs,

89Sr,

90Sr,

222Rn,

226Ra,

235U,

239Pu, itd. Osim uobičajenog prisustva u okolišnom tlu, zraku i vodi, pojačana izloţenost moţe

biti uzrokovana antropogenim izvorima poput rudnika (uranija), znanstvenih i medicinskih ustanova,

nuklearnih centrala, havarija nuklearnih centrala i eksplozija nuklearnog oruţja (ovisno o meteorološkim

uvjetima radioaktivne čestice mogu dospjeti vrlo daleko od mjesta eksplozije; to je tzv. fallout ili radioaktivna prašina).

Biljna hrana moţe sadrţavati radioaktivne izotope koji se na biljke taloţe iz zraka ili adsorbiraju na korijen

i podzemne dijelove biljke poput uranija. TakoĎer se mogu apsorbirati iz tla, pri čemu opseg apsorpcije

ovisi o prisustvu srodnih elemenata esencijalnih biljci i samoj vrsti biljke (npr. Ra se može apsorbirati umjesto

Ca zbog sličnosti). Prijelazom radioaktivnih elementa iz tla u biljke se koncentracija smanjuje stotinjak puta.

Druga zaštitna barijera je prijelaz iz biljaka u ţivotinjska tkiva, pri čemu takoĎer dolazi do redukcije razine

za 10 do 1000 puta. Ipak, ribe i školjkaši koncentriraju radionuklide od 10 do 10000 puta u odnosu na

okoliš. Mlijeko, u situacijama povećane prisutnosti radionuklida u okolišu, npr. poslije nuklearne nezgode

(Černobilj), sadrţi više koncentracije 131

I (stoga se preporuča smanjiti unos stabilnog joda mlijekonosnih životinja jer će

se više radiojoda zadržati u štitnjači i do 60% manje izlučiti u mlijeko). Radionuklidi u vodu za piće uglavnom

dospijevaju erozijom prirodnih depozita s kojima su, npr., podzemne vode u dodiru. ADME: Osim vremena

poluraspada (t1/2), kod karakterizacije ponašanja radionuklida u organizmu treba uzeti u obzir i tzv.

biološko vrijeme poluţivota (tB1/2) tj. vrijeme za koje organizam izluči polovicu prisutnog radionuklida.

Page 70: Klapec Tox Hrane 2008 Oksidacije

69

Tako 131

I ima vrijeme poluraspada od 8 dana i tB1/2 od 138 dana. Apsorbira se gotovo u potpunosti i

nakuplja u štitnjači. Cezij-134 i cezij-137 se takoĎer vrlo dobro apsorbiraju (80%) zbog sličnosti kaliju, te se

slično i ponašaju u organizmu (137

Cs: t1/2=27 godina, tB1/2=70 dana). Otprilike 20% Sr-89 i Sr-90 se apsorbira

u probavnom traktu, ali se jako dugo zadrţavaju u organizmu jer se ugraĎuju u kost umjesto Ca (90

Sr:

t1/2=28 godina, tB1/2=36 godina). Radon-222 je u plinovitom stanju i, vezano uz toksičnost hrane i vode

(značajniji su potencijalni štetni učinci udisanjem ovog plina koji isparava iz pukotina u tlu te se može izmjeriti u značajnoj

koncentraciji u zraku podruma i prizemnih prostorija kuća i zgrada), moţe se nalaziti u povišenim koncentracijama u

bunarskoj vodi te se poslije unosa nakupljati na mjestu izlučivanja – u plućima. Inače, vrijeme poluraspada

mu je samo 3,8 dana i, prema procjenama, zajedno s produktima vlastitog raspada, čini oko 60% izloţenosti

ionizirajućem zračenju iz prirodnih izvora. Radij-226 i radij-228 se relativno slabo apsorbiraju (20%), a zbog

sličnosti kalciju se ugraĎuju u kosti (226

Ra: t1/2=1600 godina, tB1/2=30-50 godina). Tricij ima poluvrijeme

raspada od 12 godina, ali mu je tB1/2 samo 10 dana. UgraĎuje se u vodu i organske molekule. Uranij-235

ima vrijeme poluraspada od 700 milijuna godina, ali se polovica unešene doze izluči iz organizma već za 20

dana. Svi radioizotopi U se slabo apsorbiraju (< 5%). Raspodjeljuju se u kost, ali ne ugraĎuju u kristalnu

rešetku. Toksičnost radionuklida prvenstveno uključuje karcinogene učinke. Radioaktivni izotopi radija i

stroncija zbog ugradnje u kristalnu rešetku hidroksilapatita i dugog zadrţavanja mogu izazvati rak kosti.

Jod-131 moţe izazvati rak štitnjače, a radon-222 rak pluća. Izotopi uranija nisu jak izvor radioaktivnosti te

su štetni poput teških metala, izazivajući nefrotoksične učinke kod visokih doza. U posljednje vrijeme je

aktualan problem tzv. osiromašenog uranija (promijenjen odnos izotopa (više 238U, manje radioaktivnijeg 235U), što

znači da se ne može upotrijebiti kao gorivo u nuklearnim reaktorima; zbog velike gustoće koristi se za izradu streljiva, a

prije se koristio i kao uteg u avionima) iako nema dokaza o karcinogenosti osiromašenog uranija. Epidemiološke

studije koje su se bavile izloţenošću osiromašenom uraniju su utvrdile veću vjerojatnost pojave

malformacija kod potomstva. Mehanizmi toksičnosti: Ionizacija vode i stvaranje slobodnih radikala

djelovanjem radioaktivnog zračenja. Uranij prvenstveno ima kemijsko djelovanje: stvara komplekse s

proteinima. Izloženost: Organizacija Ujedinjenih Naroda za hranu i poljoprivredu (Food and Agriculture

Organization, FAO) i Svjetska zdravstvena organizacija (World Health Organizacija, WHO) su objavile

preporuke za najviše razine radionuklida koji se mogu nalaziti u hrani, i to za alfa emitere (239

Pu) od 10

Bq/kg, beta emitere (90

Sr) od 100 Bq/kg i gama emitera (131

I, 134

Cs, 137

Cs) od 1000 Bq/kg. Američka

Agencija za zaštitu okoliša (Environmental Protection Agency, EPA) takoĎer predviĎa najviše razine alfa,

beta i gama emitera u vodi za piće, kao i najviše dozvoljene količine pojedinih izotopa poput radija-226,

radija-228 i uranija. Prema procjenama dnevnog unosa, uobičajena izloţenost radionuklidima je znatno

manja od neškodljivog kroničnog unosa. Primjerice, unos uranija u SADu je maksimalno 1,5 g iz vode i isto

toliko iz hrane. Ukupno, to je više od 80 puta manje od razine minimalnog rizika (ATSDR).

O s t a l i e l e m e n t i

Selenij se moţe pronaći u visokim koncentracijama u nekim juţnoameričkim selenoakumulatornim

biljnim vrstama (brazilski orah) koje rastu na tlu bogatom selenijem, te u namirnicama biljnog podrijetla

uzgojenim u nekim dijelovima svijeta (Juţna Dakota (SAD), Kina, i dr.) s vrlo visokom koncentracijom Se u

tlu (tzv. seleniferna tla). ADME: Kao esencijalni element, Se se vrlo dobro apsorbira u probavnom traktu

(od 90-97%, ovisno o fizikalnom stanju spoja (krutina ili otopljen), dozi i kemijskom obliku). Selenometionin

je analog metionina (Se umjesto S) te se vrlo dobro apsorbira koristeći transportere za ovu aminokiselinu.

TakoĎer, selenometionin se nespecifično ugraĎuje u bjelančevine umjesto metionina, pa su uočene više

koncentracije Se u tkivima poslije unosa ovog u odnosu na druge, naročito anorganske (SeO32

, selenit, ili

Page 71: Klapec Tox Hrane 2008 Oksidacije

70

SeO42

, selenat), oblike Se. Anorganski oblici Se se uglavnom prevode u vodikov selenid (H2Se) koji moţe

sudjelovati u sintezi selenocisteina koji se ugraĎuje u bjelančevine. Selenid se takoĎer moţe metilirati uz

nastanak dimetilselenida koji se izlučuje dahom (miris po češnjaku je indikator trovanja selenijem) i/ili

trimetilselenonij iona koji se izlučuje urinom. Toksičnost Se iz hrane, neovisno je li riječ o akutnoj ili

kroničnoj izloţenosti, najčešće uključuje karakteristične simptome poput opadanja kose i deformacija

noktiju. Mehanizmi toksičnosti: Navedeni, najčešći simptomi su najvjerojatnije posljedica nespecifične

ugradnje selenometionina u bjelančevine i remećenje tercijarne strukture bjelančevina koja se postiţe

stvaranjem disulfidnih mostova (npr. kreatin). Jako visoke doze mogu izazvati oksidativni stres (npr. selenit

se oksidira uz GSH u superoksid radikal) i inhibirati (antioksidantne) enzime s tiolnim skupinama u aktivnom

centru, stvaranjem –S-Se-S- (selenotrisulfidnih), -Se-S- (selenosulfidnih) mostova, i sl. Izloženost:

Preporučeni dnevni unos (Recommended Dietary Allowance, RDA) Se je izmeĎu 55 i 70 g, dok se toksične

posljedice mogu očekivati kod kroničnog dnevnog unosa višeg od 400 g. Prosječan dnevni unos i do 100

puta viši od RDA je utvrĎen u nekim dijelovima Kine.

Arsen u vodi za piće uglavnom potječe iz prirodnih izvora, odnosno nalazi se u povećanoj

koncentraciji u depozitima s kojima podzemne vode dolaze u dodir. Zabiljeţeni su i slučajevi industrijskog

zagaĎenja vode i tla. Spojevi As (olovo arsenat) su korišteni kao pesticidi. Namirnice s visokim sadrţajem As

su najčešće biljnog podrijetla, uzgojene na kontaminiranom tlu ili uslijed industrijskih nezgoda (zagaĎene

sirovine). Voda uglavnom sadrţi anorganske oblike As za razliku od hrane (prvenstveno riba i školjkaši) gdje

prevladavaju organski spojevi. Visoka koncentracija As u vodi za piće je zabiljeţena u nizu zemalja u

svijetu (Čile, Bangladeš, Indija, Kina, Tajvan, SAD, Hrvatska, i dr.). ADME: Do 95% unešene doze

anorganskih oblika As se (arsenit, As2O3 i arsenat, AsO43

) apsorbira pasivnom difuzijom. Postoje naznake

da bi se arsenat (zbog sličnosti fosfatu) mogao apsorbirati aktivno, proteinskim nosačem. Metabolizam

uključuje oksidaciju ili redukciju As3+

u As5+

i obratno i metilaciju (specifičnom As-metiltransferazom).

Najvaţniji metaboliti su MMA i DMA (monometil i dimetilarsen) koji se brzo izlučuju urinom. Izlučivanje je

učinkovito (do 85% u urinu tri dana nakon unosa) i linearno dozi kod unosa malih količina. Kod višeg unosa

se usporava izlučivanje zbog zasićenja metaboličkih i ekskretornih kapaciteta organizma i pri tome nastaju

problemi s toksičnim djelovanjem As. Toksičnost anorganskog As uključuje promjene na koţi (hiperkeratoze,

pa i rak kože), neurotoksičnost, kardiovaskularnu toksičnost (izloženost arsenu se povezuje s hipertenzijom i tzv.

bolešću crnih stopala (‘blackfoot disease’, uglavnom na Tajvanu te se smatra da dodatni, lokalni faktori sudjeluju u

etiologiji) zbog poremećaja periferne cirkulacije, te s aterosklerozom, srčanim, moždanim udarom, i dr.), i

karcinogenost, a postoje indicije da bi mogao djelovati i kao reproduktivni i razvojni toksin, te izazivati

dijabetes. Organski spojevi As su slabo toksični ili netoksični. Mehanizmi toksičnosti: UtvrĎeno je da

spojevi As izazivaju oksidativni stres (uočeno je, takoĎer, da As inducira sintezu metalotioneina iako sam element ima

mali afinitet vezanja za ovaj protein te se smatra da pojačana sinteza metalotioneina ima antioksidantnu ulogu). Arsen

(As3+

) se moţe vezati za SH skupine enzima i inhibirati ih, a u visokim koncentracijama remeti normalno

odvijanje reakcija metilacije u stanici. Primjerice, metilacija DNA utječe na transkripciju gena, pri čemu

je u stanicama izloţenim As utvrĎena hipermetilacija gena tumorskih supresora (rezultirajući inaktivacijom

gena) i opća hipometilacija DNA koja podrazumijeva pojačanu ekspresiju gena uključenih u rast stanice, što

u konačnici dovodi do karcinogenog procesa. Arsenat, sličan fosfatu, moţe blokirati oksidativnu

fosforilaciju i nastanak ATPa. Izloženost: Razina minimalnog rizika (ATSDR) je 350 g/d. U Hrvatskoj,

Andrijaševcima kod Vinkovaca je utvrĎena visoka koncentracija As u vodi za piće lokalnog vodovoda (oko

600 g/L), dok je u Kini zabiljeţena koncentracija i do 4000 g/L. Pojedinci s genetskim polimorfizmima

koji uzrokuju smanjene metilacijske kapacitete organizma bi mogli biti osjetljiviji na toksične učinke

Page 72: Klapec Tox Hrane 2008 Oksidacije

71

kronične izloţenosti As (utvrĎeno je da je subpopulacija Tajvana kronično izložena As s manjim DMA/MMA omjerom u

urinu (i.e. manjim kapacitetom detoksikacije As metilacijom) imala veći rizik obolijevanja od raka).

Ţeljezo se nakuplja u organizmu kroničnim unosom višim od potreba (naročito hemsko ţeljezo i/ili

uz istovremeni unos poboljšivača apsorpcije poput alkohola i voćnih sokova s limunskom kiselinom,

vitaminom C, i sl.). Potiče proizvodnju slobodnih radikala prema Fentonovoj reakciji (drugi korak u Haber-

Weissovom ciklusu): Fe2+

+ H2O2 OH∙ + OH + Fe3+

, te izaziva lipidnu peroksidaciju i oštećenje tkiva u

kojima se nakuplja (jetra, srce, gušterača, hipofiza). Prema rezultatima nekoliko epidemioloških studija,

kronična izloţenost Fe, viša od potreba (RDA: muškarci 8 mg, ţene 18 mg), povećava rizik razvoja

kardiovaskularnih bolesti. Zabiljeţeno je i više slučajeva akutnog trovanja djece suplementima ţeljeza.

Fluor se moţe naći u višoj koncentraciji u pitkoj vodi te iscrpku od tzv. brick čaja koji se sastoji od

starog lišća i stabljiki čaja koje nakupljaju F. UgraĎuje se u kosti i zube u kristalnu rešetku hidroksilapatita

umjesto OH iona te, budući da fluoroapatit mijenja fizikalno-kemijska svojstva kosti, moţe izazvati

koštanu fluorozu (bol i ukočenost zglobova) i lomljivost kostiju (starije osobe). Fluoroza se obično javlja u

zemljama u razvoju s visokim razinama F u vodi za piće i unosom (10 – 20 mg) nekoliko puta višim od MRL.

Aluminij se ponegdje moţe pronaći u prirodno višoj koncentraciji u vodi za piće. Biljke ga mogu

apsorbirati iz kontaminiranog ili tla s prirodnim višim sadrţajem Al, pri čemu kisele kiše povećavaju

topljivost i apsorpciju Al. ADME: Probavni trakt apsorbira najviše 1% Al iz hrane, a apsorpcija se poboljšava

u prisustvu organskih kiselina. Brzo se izlučuje preko bubrega. Toksičnost: Nakupljanje Al u organizmu

(npr. uslijed bubreţne insuficijencije ili malog unosa Ca ili Fe) uzrokuje poremećaje vezane za koštano

tkivo (zamijenjuje kalcij), krv (anemija zbog konkuriranja apsorpciji i pohrani ţeljeza) i ţivčani sustav

(izmeĎu ostalog, antagonističkim djelovanjem na mjesta vezanja kalcija). Niz istraţivanja i anegdotnih

trovanja ga povezuje s Alzheimerovom bolešću. Mehanizmi toksičnosti: Konkurira Ca i Mg za mjesta

vezanja te stvara komplekse s makromolekulama. Izloženost: Kronične posljedice se najčešće mogu

očekivati tek uslijed kombinacije visokog unosa i nedostatnog izlučivanja. MRL je 140 mg.

Mangan akumuliraju neke morske ţivotinje te je zabiljeţeno trovanje nakon konzumacije. Mn u

prehrambeni lanac dospijeva i industrijskim zagaĎenjem, te korištenjem nekih pesticida (maneb).

Apsorpcija iz hrane (do 5%) se poboljšava kod nedostatnog unosa Ca i Fe. Nakuplja se u mozgu te kroničnim

unosom uzrokuje neurološke probleme (simptomi poput Parkinsonove bolesti: slabost, promjene ponašanja, slabljenje

mentalnog kapaciteta). Natječe se za mjesta vezanja Ca i Fe i izaziva oksidativni stres u višim

koncentracijama. Posljedice izloţenosti Mn se javljaju kod kombinacije visokog unosa i dodatnih faktora,

poput smanjenog unosa Ca, Fe (pojačana apsorpcija), antioksidanasa, te genetskih faktora koji pojačavaju

osjetljivost na ovaj element. Procijenjeni sigurni i odgovarajući dnevni unos hranom (Estimated Safe and

Adequate Daily Dietary Intake, ESADDI) je 2-5 mg.

Nikl se unosi hranom (školjkaši, riba, grašak, šparoge, luk, i dr.) ili vodom za piće u koje dospijeva

iz tla s prirodno visokim koncentracijama ili uslijed industrijske kontaminacije. Oralno unešeni Ni moţe

izazvati alergijske reakcije (uglavnom alergijski dermatitis, rjeĎe astma) kod osoba koje su postale

alergične na ovaj element nakon izloţenosti putem nakita ili prostetskih pomagala (otprilike 10-20%

stanovništva je preosjetljivo na Ni). Uočeno je karcinogeno djelovanje kod radnika izloţenih visokim

dozama spojeva Ni preko pluća, ali nema dokaza da su mogući slični učinci uobičajenom izloţenošću putem

hrane i vode. MeĎu najvjerojatnije mehanizme djelovanja ulazi natjecanje za mjesta vezanja Ca, Mg, Fe,

Mn, te oksidativni stres. Uobičajeni dnevni unos je oko 100 g, dok se alergijske reakcije (tip IV

preosjetljivosti) mogu javiti već kod unosa oko 400 g.

Page 73: Klapec Tox Hrane 2008 Oksidacije

72

Kromij se moţe naći u hrani (voće, povrće, ţitarice, meso) i vodi uslijed industrijskog zagaĎenja i to

uglavnom kao Cr (VI). Trovalentni oblik je prirodni oblik ovog elementa esencijalnog za ljude dok je Cr6+

dokazani karcinogen za ljude. ADME: Šesterovalentni Cr se bolje apsorbira u GITu od trovalentnog (10% vs

2%), a najveći dio Cr (VI) se reducira u Cr (III) u ţelučanom soku. Prisustvo hrane smanjuje apsorpciju Cr.

Kromat (CrO42

) kao oblik Cr (VI) lakše prelazi preko stanične membrane zbog sličnosti anionima (SO42

) čije

kanale i nosače koristi. Kromij (VI) se reducira i nakon apsorpcije, primjerice askorbatom, glutationom ili

citokromima P450. Toksičnost: Izloţenost visokim dozama Cr6+

aerosola izaziva rak pokusnih ţivotinja i

ljudi (potvrĎeno kod radnika koji su kroničnom inhalacijom oboljeli od raka respiratornog trakta). Nema

dokaza da izloţenost putem hrane i vode dovodi do raka. Mehanizmi toksičnosti: Oba oblika mogu poticati

oksidativne reakcije katalitičkim djelovanjem (npr. Haber-Weissova reakcija), dok Cr (III) moţe stvarati i

stabilne komplekse s makromolekulama poput DNA. Izloženost: Prosječni dnevni unos je oko 60 g iz hrane

i 2 g iz vode za piće, dok je ESADDI do 200 g.

PPPeeessstttiiiccciiidddiii iii ooossstttaaaccciii oooddd tttrrreeetttiiirrraaannnjjjaaa žžž iiivvvoootttiiinnnjjjaaa iii bbbiiillljjjaaakkkaaa

P e s t i c i d i

Skupina tvari koje sluţe za kontrolu neţeljenih učinaka ciljnih organizama se naziva pesticidima, i mogu se

podijeliti u insekticide, herbicide, fungicide, rodenticide, moluskicide, nematicide, i dr. 'Zelena revolucija'

tj. enorman porast poljoprivredne proizvodnje posljednjih desetljeća posljedica je, dobrim dijelom, i

korištenja pesticida radi kontrole korova i kukaca koji bi ograničavali urod. Insekticidi i fungicidi se takoĎer

koriste za smanjenje gubitaka nakon ţetve ili berbe i odrţanje hranjive vrijednosti i svjeţine do

konzumacije. Sve do 1962. god. (kad je Rachel Carson objavila knjigu Tiho proljeće o štetnim posljedicama

ostataka DDTa na razmnoţavanje ptica) malo se pozornosti poklanjalo toksičnim učincima pesticida na

ljude i druge ne-ciljne organizme.

Pesticidi se šire u okolišu uglavnom vodenim putem. Ispiranjem s poljoprivrednih površina

dospijevaju u površinske, ali i u podzemne vode (takoĎer kućna uporaba pesticida, odrţavanje šuma, golf

terena, i sl.). Najveći problem predstavljaju pesticidi koji se ne razgraĎuju brzo u okolišu, isparljivi su ili

topljivi u masti, posljedica čega je njihova biološka koncentracija i translokacija (npr. DDT primijenjen u

kontroli komaraca u tropskom području moţe imati štetne posljedice na ţivotinjske vrste u arktičkom

području) (male količine DDT-a prisutne u blatu ili površinskim vodama upija plankton i drugi izvor hrane za biljojedne

ribe; ove ribe pojedu plankton koji sadrži insekticid i njegove metabolite u količini koja je nedovoljna da ih otruje, ali

dovoljnoj za nakupljanje DDT-a u njihovom masnom tkivu; biljojedne ribe će biti pojedene od strane mesojednih riba, pri

čemu ponovno razina DDT-a ne uzrokuje toksični učinak odmah, nego dovodi do nakupljanja u masnom tkivu u visokoj

koncentraciji; ove ribe mogu migrirati te biti hrana pticama na arktičkom području; sada pak koncentracija DDT-a i

metabolita može biti dovoljno visoka da može dovesti do smetnji u razmnožavanju ptica). Translokacija je takoĎer

moguća isparavanjem i nošenjem zračnim putem daleko od mjesta primjene (oborinama završava zračni

put u zemlji ili vodama). Kod adsorpcije na čestice zemlje moguće je i premještanje u obliku prašine, i sl.

Zadrţavanje nekog pesticida u vodi ili zemlji ovisi o vrsti tla, količini vlage, temperaturi, pH, prisutnoj

mikroflori, razgradivosti pesticida, i dr.

UtvrĎeno je da se koncentracija mnogih pesticida smanjuje nakon toplinske i drugih načina obrade

hrane (npr. voće i povrće: većina ostataka je na površini, pa su se ljuštenje i guljenje pokazali vrlo

učinkovitim, za razliku od pranja; kod masti i ulja rafinacija vodenom parom smanjuje udio ostataka; kod

mesa i ribe kuhanje i prţenje uz istovremeno uklanjanje masnog tkiva moţe znatno smanjiti udio pesticida

Page 74: Klapec Tox Hrane 2008 Oksidacije

73

ovisno o vrsti, razini, i temperaturi). Trgovački preparati pesticida su smjese aktivne tvari i tzv. inertnih

sastojaka, koji su inertni samo po tome što nemaju pesticidnog djelovanja. Riječ je o otapalima, površinski

aktivnim tvarima, nosačima, antioksidansima, itd., koji takoĎer mogu imati toksično djelovanje. Neke od

najvaţnijih skupina pesticida, podijeljene po kemijskoj graĎi su navedene u nastavku.

Organoklorni insekticidi uključuju opseg različitih kloriranih organskih spojeva poput

diklorodifeniltrikloretana (DDT, na slici) i diklordifenildikloretana (DDD), tzv. ‘drin’ pesticida (dieldrin,

aldrin, endrin), klordana, lindana (gama izomer heksaklorcikloheksana), endosulfana, metoksiklora, i dr.

Zabranjena je uporaba mnogih spojeva ove skupine (DDT,

dieldrin, klordan, heptaklor, toksafen, itd.) nakon što je

ustanovljen o da su izuzetno stabilni i lipofilni te se nakupljaju u

ţivotinjskom masnom tkivu (npr. DDT je korišten otprilike 40

godina, u prvom redu za iskorijenjivanje malarije (Kuba: 1962. god.

3500 slučajeva, 1969. god. tri slučaja), što je rezultiralo općom raširenošću DDTa i ostataka u okolišu).

Organoklorni spojevi koji se još često koriste su oni koji su razgradljiviji u okolišu, te znatno manje toksični

(npr. lindan i endosulfan). ADME: Toksikanti ove skupine se uglavnom apsorbiraju pasivnom difuzijom preko

staničnih membrana enterocita. Apsorpciju poboljšava prisustvo masti. TakoĎer, lipofilnost spojeva

rezultira njihovim nakupljanjem u masnom tkivu. DDT se, primjerice, metabolizira u DDD i

diklordifenildikloreten (DDE), uglavnom promjenama alifatskog dijela molekule uz reduktivnu

deklorinaciju, hidroksilaciju i oksidaciju. Najvaţniji krajnji metabolit je diklordifeniloctena kiselina (DDA).

Reakcijama nastaju i elektrofilni meĎuprodukti (epoksidi). DDA se najvećim dijelom izlučuje urinom.

Toksičnost i mehanizmi: Uočeno je neurotoksično djelovanje organoklornih insekticida (remete funkciju

natrijevih i kloridnih kanala i Na-K ATPaze i time prijenos ţivčanih impulsa). Djeluju i kao endokrini

disruptori (DDT i DDD: estrogensko djelovanje; DDE je snaţan antagonist androgenskih receptora, a inducira

i aromatazu (CYP19A1) koja pretvara testosteron u estrogen) koji izazivaju reproduktivne i razvojno

toksične učinke (npr. ustanovljen je smanjen broj spermija kod pilota poljoprivredne avijacije koji su raspršivali DDT; kod

životinja izaziva feminizaciju mužjaka ako je prisutan za vrijeme sazrijevanja). DDT se veţe i za receptore i

transportne proteine tiroidnih hormona. UtvrĎeno je i karcinogeno djelovanje nekih organoklornih

insekticida (DDT, dieldrin, klordan) što se moţe povezati s nastajanjem elektrofila metabolizmom. ‘Drin’

pesticidi su takoĎer neurotoksični te hepatotoksični i karcinogeni za pokusne ţivotinje. Neurotoksičnost

uključuje blokiranje tzv. GABA (γ-aminomaslačna kiselina) receptora koji upravljaju otvaranjem kloridnih

ionskih kanala (ulaskom Cl iona u stanicu neurona se mijenja membranski potencijal tj. postaje negativniji s unutarnje

strane membrane čime se inhibira stvaranje akcijskog potencijala tj. prijenos električnog impulsa uzduž membrane živčanih

stanica; to je tzv. hiperpolarizacija membrane za razliku od procesa prijenosa signala koji uključuje depolarizaciju tj.

smanjivanje razlike u pozitivnom naboju s unutarnje i vanjske strane membrane). Postoji razlika u toksičnosti -, - i

-heksaklorcikloheksana (lindan) (vidi ‘Toksično djelovanje posredovano receptorima’), čiji najvaţniji

mehanizmi djelovanja uključuju vezanje za GABA-receptore i izazivanje oksidativnog stresa. Izloženost:

Postoji trend smanjenja unosa ovih spojeva hranom nakon zabrane i/ili nadzora njihovog korištenja.

Nedavno procijenjen dnevni unos organoklornih pesticida u SADu je bio znatno niţi od MRL (DDT: 40 puta,

aldrin: 7 puta, dieldrin: 30 puta i HCH: 10 puta). Treba ipak razmotriti izloţenost osjetljivih populacija

poput eskima (zbog visokog unosa ribe i morskih sisavaca koji u svom masnom tkivu imaju akumulirane

visoke razine ovih spojeva) te fetusa i male djece zbog razvojno-toksičnog djelovanja.

Organoklorni pesticidi spadaju u skupinu tzv. perzistentnih organskih polutanata (eng. POPs) kojima

je zajednička otpornost na fotolitičku, biološku i kemijsku razgradnju. Većinom je riječ o halogeniranim

HC

CCl

ClCl

ClCl

Page 75: Klapec Tox Hrane 2008 Oksidacije

74

spojevima, slabo topljivim u vodi i lipofilnim,

uslijed čega se biokoncentriraju u masnom tkivu

ţivotinja. Mnogi su i poluhlapljivi pa mogu prijeći

velike udaljenosti od mjesta primjene. Neki od

spojeva koji se specifično spominju u okviru

Stockholmske konvencije o POP (vidi popis linkova na

kraju skripte) Organizacije Ujedinjenih naroda za

zaštitu okoliša (UNEP, United Nations Environment

Programme) su aldrin, dieldrin, endrin, DDT,

toksafen, mireks, klordan, heksaklorobenzen,

heptaklor, PCB, PCDD, PCDF, PBDE. Konvencijom

se nastoji reducirati ili eliminirati proizvodnja, korištenje i nenamjerno ispuštanje ovih kemikalija u okoliš.

Organofosfatni insekticidi su trenutno najraširenija skupina spojeva (malation (zaprašivanje komaraca),

paration, klorpirifos, diazinon, diklorvos, itd.) za nadzor štetnog učinka kukaca, upravo zbog činjenice da

se brzo razgraĎuju u okolišu. Osim tretiranih biljaka, mogu se ponekad pronaći u ribi u nešto višim

koncentracijama. ADME: Brzo se metaboliziraju i izlučuju iz organizma, bez nakupljanja. Npr., malation se

brzo razgraĎuje esterazama, te je slabo toksičan za sisavce. S druge strane, paration ima aromatsku

fosfoestersku vezu koja je otpornija na enzimatsku hidrolizu. Biotransformacijom tj. desulfuracijom P=S

skupina parationa se prevodi u P=O skupinu paraoksona što daje spoj znatno toksičniji za sisavce.

Toksičnost: Organofosfati su neurotoksični za sisavce zbog inhibicije acetilkolinesteraze (AChE) koja

sudjeluje u prijenosu ţivčanih impulsa. Inhibicijom AChE spriječavaju razgradnju neurotransmitera

acetilkolina (na acetat i kolin) uslijed čijeg nakupljanja u sinapsi dolazi do produţene stimulacije

parasimpatičkog ţivčanog sustava uz simptome poput usporavanja pulsa i ritma disanja, paralize mišića,

probavne smetnje, i dr. (prenatalna izloženost klorpirifosu uslijed uništavanja štetnih kukaca u domaćinstvima se

povezuje s razvojnom neurotoksičnosšću tj. kognitivnim i psihomotornim deficitima kod djece). Izloženost ovim

spojevima putem hrane je problematična samo ukoliko se ne poštuje karenca tj. period koji mora proteći

prije stavljanja tretiranog proizvoda na trţište (a u kojem se razina ostataka smanjuje ispod tzv. MDK

odnosno maksimalno dopuštene količine ili tolerance koja se definira za pojedine namirnice), uslijed čega

proizvod sadrţi visoku razinu ovih spojeva. Srednja izmjerena razina organofosfata u namirnicama u SADu

je bila 0,01 ppm (tj. 1 kg hrane sadrţi 10 g) što znači da nema rizika od ostataka jer je MRL 1400 g/d.

Triazinski pesticidi uključuju atrazin (herbicid) i slične spojeve.

Ispiranjem s poljoprivrednih površina dospijevaju u podzemne vode

odakle mogu završiti u vodi za piće. ADME: Metaboliziraju se

dealkilacijom amino skupina koje se zatim povezuju s GSH u konjugate i

nastanak merkapturnih kiselina koje se izlučuju najvećim dijelom urinom.

Toksičnost triazina u prvom redu podrazumijeva endokrinu disrupciju uz reproduktivne i razvojne toksične

posljedice, dok je karcinogeni učinak uočen na pokusnim ţivotinjama najvjerojatnije vezan isključivo za

visoku kroničnu izloţenost. Mehanizmi toksičnosti: Endokrina disrupcija triazinima (koja za posljedicu ima

previsoke razine estrogena) moţe biti posredovana njihovim djelovanjem na ţivčani sustav, pri čemu

atrazin i slični spojevi mijenjaju sposobnost vezanja neurotransmitera za inhibitorne, GABA receptore.

TakoĎer, atrazin i neki metaboliti mogu inducirati aromatazu (prevodi androgene u estrogene, vidi

‘Remećenje endokrine ravnoteţe’) i druge citokrome P450 koji sudjeluju u metabolizmu estrogena uslijed

čega nastaje više estradiola hidroksiliranog na C-16α nego na C-2, pri čemu je prvi jačeg estrogenskog

N

O

O

O

O

PS

O_

+ N

O

O

O

O

PO

O_

+

paration paraokson

N

N

N

Cl

NNHH

Page 76: Klapec Tox Hrane 2008 Oksidacije

75

djelovanja te ima genotoksična svojstva. Izloženost: Srednja razina atrazina u vodi za piće u SADu je 19

g/L dok je MRL 210 g/d za osobu od 70 kg. Koncentracije atrazina u vodi za piće u RH ponegdje (naročito

u jesen) znaju višestruko premašiti dozvoljene vrijednosti.

Karbamatni pesticidi su fungicidi, insekticidi i herbicidi, analozi

biljnog toksičnog alkaloida fizostigmina (nazivi komercijalnih pripravaka:

karbaril, aldikarb, karbofuran, profam, benomil, itd.). Neurotoksični su

jer, poput organofosfata, inhibiraju AChE. Kod ispravne primjene se male

količine ostataka unešene hranom uglavnom brzo razgraĎuju i izlučuju iz

organizma.

Organokositreni spojevi poput tributil (TBT) ili trifenilkositra se koriste kao insekticidi, fungicidi te

moluskicidi (tvari koje sluţe za nadzor puţeva, tj. konkretnije, školjkaša koji obrastaju površinu brodova

mijenjajući im hidrodinamička svojstva), što je vjerojatno njihova toksikološki najvaţnija primjena.

Uglavnom se mogu pronaći u školjkašima i ribi. ADME: Apsorpcija se smanjuje povećanjem doze.

Metaboliziraju se dealkilacijom ili dearilacijom kositra. Toksičnost uključuje imunotoksične i neurotoksične

učinke, iako su za izloţenost ljudi potencijalno najrelevantniji endokrina disrupcija i s tim vezane razvojno-

toksične posljedice. Mehanizmi toksičnosti: TBT inhibira aromatazu (pretvorba testosterona u estradiol)

što kod školjkaša dovodi do maskulinizacije (primjerice, kod zvrka (Buccinum

undatum) dolazi do razvoja muških spolnih organa kod ženki tj. tzv. imposeksa). TakoĎer

blokiraju kalcijeve kanale (što remeti prijenos staničnog signala u kojima kalcij

ima vaţnu ulogu) te izazivaju oksidativni stres. Postoji i hipoteza tzv.

obesogenog djelovanja (sposobnost izazivanja debljine) ovih spojeva pri čemu

dolazi do aktivacije transkripcijskih faktora RXR (retinoid X receptor) i PPARγ (peroxisome proliferator-

activated receptor gamma) koji pojačavaju nakupljanje masnih kiselina u adipocitima, sintezu triglicerida,

proliferaciju masnih stanica (adipogenezu) i predispoziciju pretilosti. Koncentracije dovoljne za aktivaciju

ovih receptora se mogu naći u serumu konzumenata morske ribe i školjkaša. Izloženost: Dnevni MRL je od

0,3 - 0,5 g/kg tj. t. i u Norveškoj je utvrĎen unos ovih spojeva koji je otprilike na toj razini.

Ostali relevantni pesticidi uključuju piretrine (prirodni insekticidi iz biljaka

roda Chrysanthemum) i sintetske piretroide. Riječ je o insekticidima koji se vrlo brzo

razgraĎuju u okolišu (UV svjetlo), ali i organizmu, te su vrlo niske toksičnosti za

sisavce. Neurotoksični su samo u jako visokim dozama, zbog remećenja funkcije

natrijevih kanala. Nikotin je još jedna tvar biljnog podrijetla (porodica Solanaceae)

koja je snaţan insekticid, neurotoksičan za sisavce (veţe se kao agonist za tzv. nikotinske receptore

acetilkolina i pojačava djelovanje parasimpatičkog ţivčanog sustava). Skupa s triazinima i karbamatima,

čini skupinu tzv. organodušičnih pesticida.

Toksikološki značajni herbicidi su: ariloksifenoksipropionati (neki su peroksisomni proliferatori, npr.

haloksifop), triazini (osim atrazina, treba spomenuti karcinogeni i teratogeni cijanazin), supstituirane uree

(npr. karcinogeni diuron i linuron), difenil eteri (npr. karcinogeni laktofen), tiadiazoli (npr. karcinogeni

flutiacet metil), triazoli (npr. karcinogeni amitrol (strah od karcinogenosti amitrola se povezuje s prvom primjenom

tzv. Delaneyeve klauzule kao dodatka Zakonu o hrani, lijekovima i kozmetici (SAD) po kojoj se karcinogene tvari ne smiju

rabiti u i tijekom tretmana namirnica; naime, tijekom 1959. godine je otkriven amitrol u brusnicama jednog uzgajivača što

je dovelo do panike meĎu stanovništvom upravo prije Dana zahvalnosti uoči kojeg se prodaje najviše brusnice kao dijela

tradicionalnog blagdanskog ručka), izoksazoli (npr. karcinogeni, neurotoksični i razvojno toksični izoksaflutol),

itd.

O

O NH

karbaril

N

N

nikotin

Sn H

Page 77: Klapec Tox Hrane 2008 Oksidacije

76

Najznačajniji fungicidi, s obzirom na opseg korištenja i toksičnost, su: dikarboksimidi (endokrini

disruptori, npr. antiandrogen vinklozolin), ditiokarbamati (endokrini disruptori, npr. ziram),

etilenbisditiokarbamati (npr. karcinogeni maneb i zineb), ftalimidi (npr. karcinogeni kaptan), supstituirani

benzeni (npr. karcinogeni klorotalonil), itd.

O s t a c i o d t r e t i r a n j a ţ i v o t i n j a

Radi boljeg prinosa mesa, povećane proizvodnje mlijeka ili jaja, spriječavanja i liječenja infekcija, brţeg

rasta, nadzora reprodukcije i drugih ciljeva, stoci se često daju različiti pripravci koji uključuju antibiotike,

hormonske pripravke, sredstva za umirenje, i dr.

Antibiotici tj. lijekovi antibakterijskog, antifungalnog djelovanja i antiparazitici, se koriste za

spriječavanje i liječenje različitih bolesti uz posljedični bolji rast ţivotinja. Najčešće se koriste

antibakterijski antibiotici širokog spektra (penicilini, tetraciklini, sulfonamidi, fluorokinolini, i sl.), ali i

neki antibiotici koji se ne koriste u humanoj medicini (npr. zabranjeni nitrofurani). Najkorišteniji

antiparazitici su oni koji inhibiraju razvoj kokcidija (kokcidiostatici ili antikokcidijski lijekovi),

jednostaničnih protozoa u GITu peradi. Zabiljeţena je i uporaba nedozvoljenog malahitnog zelenila u

liječenju fungalnih i parazitskih infekcija riba.

Potencijalne toksične posljedice uključuju alergijske reakcije, genotoksično i karcinogeno

djelovanje i kardiovaskularnu toksičnost. Alergija na antibiotike (u prvom redu peniciline) je dosta rijetka,

ali kod senzibiliziranih osoba izloţenost ostacima u namirnicama ţivotinjskog podrijetla moţe dovesti i do

anafilaktičkog šoka. Obzirom na kemijsku strukturu mnogih antibiotika (sekundarni i tercijarni amini),

zamislivo je njihovo sudjelovanje u reakcijama s nitritom (salamurenje mesa) pri čemu nastaju karcinogeni

nitrozamini. TakoĎer je utvrĎeno karcinogeno djelovanje pojedinih veterinarskih antibiotika (flumekin,

nitrofurani, kloramfenikol (nitrofurani i kloramfenikol su zabranjeni dok je flumekin karcinogen tek u jako visokim

dozama). Malahitno zelenilo (ili anilinsko zelenilo i metabolit leukomalahitno zelenilo) je genotoksično i

karcinogeno i, unatoč zabrani, često se moţe utvrditi u tragovima, ali i visokim koncentracijama u morskim

plodovima te riječnoj i morskoj ribi. Kardiovaskularna toksičnost se pripisuje visokim dozama tzv. ionofora

(antikokcidijski lijekovi poput lazalocida, monensina, salinomicina; prvenstveno u višim koncentracijama u

jajima (najviša izmjerena koncentracija lazalocida u jajima u Velikoj Britaniji 2003. godine je bila 3500 ppb, dok je 12%

jaja sadržavalo više od 50 ppb; ADI = 1 – 5 g/kg. tj. t.; EU: od 2004. g. je zabranjena uporaba ionofora u tretmanu

nesilica)) koji remete transport kalcija u i iz sarkoplazmatskog retikuluma nuţnog za mišićnu kontrakciju.

Najosjetljivije skupine na viši unos ionofora su srčani bolesnici, fetusi i mala djeca, sportaši, ljudi koji se

pridrţavaju dijeta temeljenih na visokom unosu bjelančevina (Atkinsova dijeta), itd.

Hormonski pripravci podrazumijevaju prirodne i sintetske estrogene (estradiol, zeranol,

dietilstilbestrol), androgene (testosteron, trenbolon), progestagene (progesteron, melengestrol), -2

adrenergičke agoniste (klenbuterol), glukokortikoide (deksametazon), hormon rasta (somatotropin), i sl.,

koji stimuliraju anabolički metabolizam (estrogeni, androgeni, adrenergički agonisti, hormon rasta,

glukokortikoidi), prije svega sintezu proteina i razgradnju masnog tkiva, učinak čega je bolji prirast i

proizvodnja 'posnog' mesa, tj. mesa s malo masti. Pojedini hormoni (progestageni, estrogeni) se koriste i za

regulaciju reproduktivnih procesa u svrhe poput ubrzavanja spolne zrelosti ili odgode parenja (npr.

remećenje estrusa tj. ovulacije progestagenima i estrogenom koji imaju visoke cirkulirajuće razine tijekom gestacije te

povratnom spregom inhibiraju izlučivanje hormona hipotalamusa (GnRH, gonadoliberin) i hipofize (FSH,

folikulostimulirajući hormon, i LH, luteinizirajući hormon) koji dovode do stvaranja jajne stanice u procesu ovulacije).

Page 78: Klapec Tox Hrane 2008 Oksidacije

77

Korištenje svih oblika hormonskih promotora rasta (oralnih ili u obliku potkoţnih implantata) je zabranjeno

u EU od 2006. godine iako su i dalje dostupni na crnom trţištu.

Toksični učinci hormona mogu uključivati karcinogenost, reproduktivnu i razvojnu toksičnost,

kardiovaskularnu toksičnost, imunotoksičnost, i dr. Primjerice, unos crvenog mesa se povezuje s većom

incidencijom hormonski-ovisnih vrsta raka (rak dojke, rak genitalnog trakta). TakoĎer, utvrĎena je

genotoksičnost metabolita 17-β estradiola, dok je dietilstilbestrol dokazani razvojni toksin i karcinogen

(vidi ‘Reproduktivna i razvojna toksičnost’). Ostaci dietilstilbestrola u mesu su 1980. godine u Italiji doveli

do feminizacije dječaka i preuranjenog puberteta djevojčica. Uočen je i veći rizik raka dojke kod ţenki

pokusnih ţivotinja izloţenih ostacima estrogena za vrijeme embrionalnog/fetalnog razvoja.

Kardiotoksičnost se pripisuje klenbuterolu čija visoka razina ostataka (uslijed nepoštivanja preporuka o

doziranju i/ili perioda koji mora proteći od tretiranja ţivotinje do stavljanja proizvoda na trţište) je, u

nekoliko zabiljeţenih incidenata, izazvala ubrzano bilo, bolove u mišićima, nervozu i druge simptome kod

konzumenata. Hormoni imaju utjecaj na metabolizam stranih tvari (vidi ‘Faktori koji utječu na

biotransformaciju’) i ustanovljena je sporija eliminacija odreĎenih antibiotika uslijed djelovanja

anaboličkih pripravaka koji induciraju metaboličke enzime, time povećavajući vjerojatnost rezidua

antibiotika u mesu. Osjetljive populacije su fetusi, djeca do puberteta i ţene poslije menopauze.

Remećenje hormonalne homeostaze reziduama iz hrane moţe izazvati nagli porast ili pad razina endogenih

hormona. Nastale epigenetske promjene nasljednog materijala in utero i podloţnost djelovanju hormona

tijekom prepubertetskog razvoja moţe promijeniti graĎu i funkciju različitih organa i sustava, izazivajući

npr. malformacije spolnih organa i reproduktivnu disfunkciju. Ţene u menopauzi su osjetljive na djelovanje

egzogenih hormona zbog slabljenja homeostatskih mehanizama, uslijed čega moţe doći do njihova

pojačanog djelovanja (rezultirajući, npr., proliferacijom ciljnih stanica koja na duţi rok povećava rizik

maligne transformacije stanice).

UtvrĎene razine estrogena i metabolita u tkivima (mišići, masno tkivo, jetra, bubrezi) nakon

primjene su od sedam do nekoliko stotina puta više od razina u tkivima netretiranih ţivotinja. Regulatorne

agencije (npr. FDA) smatraju da je siguran dnevni unos hormona iz hrane ukoliko ne premašuje 1% dnevne

endogene proizvodnje. Ipak, zbog nesigurnosti u analizi i izračunu endogene sinteze hormona, smatra se da

je dozvoljeni dnevni unos višestruko veći (najmanje 85 x viši od endogene proizvodnje u slučaju estrogena).

O s t a c i o d t r e t i r a n j a b i l j a k a

Nitrati se mogu naći u visokim koncentracijama u biljakama uslijed korištenja dušičnih umjetnih

gnojiva (naročito špinat, mrkva, zelena salata, cvjetača). TakoĎer, podrijetlom iz kanalizacijskih i drugih

otpadnih voda ili ispiranjem s poljoprivrednih površina mogu dospijeti u podzemne vode odakle mogu

završiti u vodi za piće. ADME: Dobro se apsorbiraju i raspodijeljuju svugdje po tijelu. Toksikološki je

relevantna redukcija nitrata u nitrite enzimima crijevne

mikroflore. Iz krvi se nitrati aktivno izlučuju u slinu (oko

četvrtine ukupne količine, gdje se djelomično reduciraju u

nitrite mikroflorom usne šupljine) i urin. Kisela sredina

ţelučanog sadrţaja podrţava nitrozaciju sekundarnih i

tercijarnih amina uz nastanak karcinogenih nitrozamina (najprije

nastaje nitritna kiselina iz nitrita i jače kiseline; pregradnjom nastaje

nitrozo ion koji može reagirati s aminima):

NO2H+

HNO2

HNO2H+

NO+ + H2O

NH

R

R

+ NO+ N

R

R

NO

Page 79: Klapec Tox Hrane 2008 Oksidacije

78

Toksičnost i mehanizmi: Svodi se na stvaranje nitrita i nitrozamina. Nitriti mogu oksidirati fero ţeljezo

hemoglobina i citokroma. Takav hemoglobin ne moţe vršiti prijenos kisika te moţe doći do

methemoglobinemije tj. smanjene opskrbe tkiva kisikom (ubrzano disanje, cijanoza ili plavičasto obojenje kože,

glavobolja, slabost, i dr.). Nitrati se povezuju i s većom učestalošću raka (prvenstveno probavnog trakta), ali

uglavnom zbog nitrata i nitrita koji se koriste u salamurenju mesa (vidi ‘Aditivi’), koji, prema gornjem

mehanizmu, mogu pridonijeti nastanku karcinogenih nitrozamina koji se bioaktiviraju u elektrofile (vidi

‘Karcinogenost’ i ‘Toksikanti koji nastaju obradom hrane’). Izloženost: NovoroĎenčad do četiri mjeseca

starosti je posebno osjetljiva na nitrate u hrani zbog višeg pH crijeva uslijed čega je razvijenija E. coli koja

nitrate reducira u nitrite. TakoĎer, fetalni hemoglobin je podloţniji oksidaciji, a takva djeca imaju i niţu

aktivnost methemoglobin reduktaze. Unos visokih razina nitrata moţe rezultirati tzv. sindromom plavog

djeteta. Trudnice u visokom stadiju trudnoće su takoĎer osjetljivije na nitrate zbog prirodno više razine

methemoglobina u krvi. Po nedavnoj procjeni, oko 15% bunara u SADu ima više nitrata u vodi od dozvoljene

gornje granice od 10 mg/L (regulirana i od strane WHO i RH pravilnikom).

PPPrrriiirrrooodddnnniii tttoookkksssiiikkkaaannntttiii iiizzz bbbiiillljjjnnniiihhh iii žžž iiivvvoootttiiinnnjjjssskkkiiihhh nnnaaammmiiirrrnnniiicccaaa

A n i m a l n i t o k s i n i

Histamin je biogeni amin koji se moţe pronaći u nepravilno uskladištenoj ribi i morskim plodovima

gdje nastaje bakterijskom razgradnjom tj. dekarboksilacijom histidina. Obzirom na raširenu

konzumaciju riba iz roda Scombroidea (tuna, skuša, i dr.), trovanje je dobilo ime po ovaj

vrsti: skombroidno trovanje (histamin = skombrotoksin), mada do trovanja moţe doći kod bilo

koje vrste (sardine, inćun, haringa, i dr.). ADME: Apsorbira se otprilike 40% histamina

prisutnog u hrani. Najveći dio se razgraĎuje već u stanicama GITa metilacijom (N-metil

transferaza) ili oksidacijom (MAO i DAO, mono- i diamin oksidaza) (vidi ‘Metabolizam

toksikanata’), te izlučuje urinom. Ostali biogeni amini (saurin, putrescin, kadaverin, spermin, i dr.)

pojačavaju toksično djelovanje histamina, najvjerojatnije olakšavanjem njegove apsorpcije i/ili

inhibicijom metaboličkih enzima. Toksičnost i mehanizmi: Zbog uloge endogeno proizvedenog histamina u

nizu fizioloških procesa (prijenos ţivčanih signala u CNSu, izlučivanje ţelučane kiseline, alergijske

reakcije), unos većih količina egzogenog histamina moţe, remećenjem tih procesa, izazvati simptome

trovanja (promjene na koţi, probavni i neurološki poremećaji). Histamin ostvaruje svoje učinke u

organizmu vezanjem za histaminske receptore (H1 – H4). H1 receptori su odgovorni za simptome alergije:

vazodilatacija (receptori su na glatkim mišićima krvnih žila i izazivaju njihovo opuštanje tj. dilataciju) i pad krvnog

tlaka, kontrakcija glatkih mišića probavnog trakta, srca (tahikardija) i bronhija (bronhokonstrikcija i posljedično

smanjen ulaz zraka u pluća što je glavni simptom alergijske astme), edem zbog povećane propusnosti endotela

kapilara i izlaska vode, i dr. Histamin u CNSu djeluje kao ekscitacijski neurotransmiter (povećava budnost),

dok visoke doze koje prijeĎu krvno-moţdanu barijeru izazivaju vrtoglavicu i glavobolju. Izloženost

histaminu i rizik trovanja su povećani kod osoba s visokom zastupljenošću ribe u prehrani. Unos više od

jednog grama histamina će kod većine izloţenih osoba uzrokovati teške simptome. Prehrana moţe znatno

utjecati na osjetljivost histaminu. Moguće je pojačanje toksičnosti histamina ukoliko se s ribom

istovremeno konzumiraju druge fermentirane namirnice bogate biogenim aminima (kiseli kupus, vino,

pivo). Alkohol, te kiseline poput octene i limunske poboljšavaju apsorpciju histamina. Prehrana bogata

proteinima potiče brojnost populacije proteolitičkih bakterija u crijevnoj mikroflori, koje razgradnjom

bjelančevina iz hrane povećavaju njegovu sintezu u crijevnom sadrţaju. Pojedine osobe su osjetljivije na

N

NH

NH2

Page 80: Klapec Tox Hrane 2008 Oksidacije

79

štetno djelovanje histamina, zbog genetskih faktora (nedostatka enzima koji ga razgraĎuju, i sl.). TakoĎer,

korištenje lijekova poput izoniazida, antihistaminika i MAO inhibitora moţe povećati osjetljivost na ovaj

toksin.

Prioni su promijenjene amiloidne bjelančevine. Amiloidi su normalni

dio neuroloških tkiva ţivotinja i imaju ulogu u meĎustaničnoj komunikaciji.

Pogrešnim nabiranjem proteina nastaju abnormalni amiloidi tj. prioni (na slici

je lijevo prikazan normalni amiloid, a desno prionski). Oni su infektivni tj. u dodiru s

normalnim amiloidom mogu ga prevesti u abnormalnu prionsku konfiguraciju.

Nakupljanjem ovih proteina u stanici (tzv. amiloidoza) dolazi do simptoma

bolesti (npr. BSE (bovine spongiform encephalopathy) tj. tzv. ‘kravlje ludilo’, ili tzv. nova varijanta

Creutzfeldt-Jakobove bolesti kod ljudi koji su jeli zaraţeno meso stoke. Širenje bolesti meĎu stokom je

posljedica korištenja tkiva zaraţenih ţivotinja u proizvodnji krmiva. Prionski amiloidi se ne razgraĎuju u

probavnom traktu nego se apsorbiraju vezanjem za feritin (kojeg ima u obilju u mesu), te se putem krvi

raspodijeljuju u moţdano tkivo.

Ţučne kiseline tj. kolna kiselina i derivati se nalaze u visokim koncentracijama u jetri različitih

ţivotinja poput goveda, ovaca, koza, kunića, itd. Imaju akutni toksični učinak na CNS, ali se hranom ne

unose u dovoljnoj količini za takvo djelovanje. Studijama na ţivotinjama je takoĎer utvrĎeno da djeluju

kao promotori karcinogeneze (vidi ‘Karcinogenost’).

Retinol je esencijalna hranjiva tvar koja je toksična u previsokim koncentracijama. Zabiljeţeni su

slučajevi trovanja konzumacijom jetre morskih sisavaca i polarnog medvjeda, pri čemu je već 30ak g jetre

(što odgovara unosu od oko milijun IU) bilo dovoljno za izazivanje smrtnog ishoda.

Avidin je bjelančevina iz bjelanjka koja ireverzibilno veţe biotin. Denaturira se na višim

temperaturama te je toksični učinak moguće očekivati tek kod kroničnog unosa sirovih bjelančevina jaja.

Laktoza je štetna za ljude s genetskom uputom koja ograničava proizvodnju β-galaktozidaze

(laktaze) u odrasloj dobi. Riječ je zapravo o izvornoj inačici gena dok se mutacija koja osigurava

produkciju ovog enzima i kod odraslih raširila meĎu populacijama koje su se bavile stočarstvom jer je bilo

riječ o selektivnoj prednosti (manje utroška vremena i energije za pronalazak hrane bogate bjelančevinama više

potomstva). TakoĎer, populacije čiji preci su koristili fermentirane mliječne proizvode (Rimljani & današnji

Talijani) imaju veće udjele osoba koje su osjetljive na laktozu (oko 50%) u odnosu na one koje su

konzumirale svjeţe mlijeko (Skandinavija, 10%). Uslijed nedostatne ekspresije laktaze je znatno ograničena

njena razgradnja na glukozu i galaktozu i apsorpcija u probavnom traktu. Neapsorbiranu laktozu razgraĎuje

crijevna mikroflora fermentirajući ju do metana, CO2 i octene kiseline, itd., koji izazivaju probavne

probleme (nadutost, bolove). Neapsorbirani šećer ujedno povisuje i osmotski tlak crijevnog sadrţaja,

oteţavajući apsorpciju vode što dovodi do proljeva.

Alergeni iz namirnica ţivotinjskog podrijetla koji najčešće izazivaju reakcije preosjetljivosti su

bjelančevine lososa, račića, mlijeka i jaja, dok su rjeĎe bjelančevine iz mesa poput piletine ili svinjetine.

Daleko najčešće su reakcije preosjetljivosti tipa I koje mogu izazvati anafilaktički šok (vidi

‘Imunotoksičnost’).

B i l j n i t o k s i n i

Biljke koje se koriste u prehrani sadrţe velik broj različitih kemijskih tvari (alkaloidi, glukozinolati,

cijanogeni glikozidi, aminokiseline, peptidi, terpenoidi, fenoli, i sl.) tzv. biljnih pesticida koje biljke

proizvode kao zaštitu od patogena i herbivora. Stres (primjena pesticida, oštećenje tkiva, hladnoća, itd.)

Page 81: Klapec Tox Hrane 2008 Oksidacije

80

mogu dodatno potaknuti sintezu ovih spojeva koji ponekad mogu činiti i 10% suhe tvari biljnog tkiva

(zabilježena su uginuća stoke hranjene slatkim krumpirom s visokim razinama prirodnih pesticida). Uobičajenom

prehranom se unosi od 5000 – 10000 različitih biljnih spojeva i ukupan unos biljnih pesticida je otprilike

deset tisuća puta viši od unosa sintetskih. Za mnoge prirodne biljne pesticide je dokazano karcinogeno

djelovanje ako se podvrgnu istim testovima kojima se podvrgavaju sintetski pesticidi prije autorizacije (npr.

od otprilike 1000 spojeva u kavi, samo 30 je testirano na karcinogeni učinak, a od tih je 21 bio pozitivan). Mnogi od ovih

spojeva su u stanju potaknuti tjelesne mehanizme zaštite i popravka (vidi podpoglavlje ‘Hormeza’ u

poglavlju ‘Činioci koji djeluju na toksičnost’) te, pri umjerenoj izloţenosti, unos ima ukupan pozitivni

učinak na ljudski organizam. Ova hipoteza bi mogla objasniti nesklad izmeĎu činjenice da voće i povrće

sadrţi veliki broj i količine prirodnih pesticida, i rezultata brojnih epidemioloških studija koje su utvrdile da

povećana konzumacija voća i povrća smanjuje rizik raka i drugih kroničnih bolesti.

Toksičnost neke biljne namirnice je najčešće posljedica njene dugotrajne i/ili pretjerane

konzumacije, jake toksičnosti odreĎenog sastojka ili kratkog perioda konzumacije namirnice s

neuobičajeno visokom razinom toksične tvari.

Goitrogene tvari (tvari koje uzrokuju gušavost) često djeluju skupa s nedostatkom joda; smatra se

da unos neuobičajeno velikih količina krucifernog povrća (kupus,

cvjetača, kelj, šparoge, itd.) moţe uzrokovati poremećaje

štitnjače. Goitrogeno djelovanje se pripisuje produktima

enzimske razgradnje glukozinolata koji inhibiraju nakupljanje

joda u štitnjači (tiocijanati, nitrili), ili inhibiraju sintezu

tiroksina (oksazolidini). Posebno osjetljive na goitrogene su

osobe s genetskom predispozicijom koja rezultira smanjenim

nakupljanjem joda u štitnjači.

Cijanogeni glikozidi enzimskom hidrolizom (u samoj namirnici ili djelovanjem crijevne mikroflore)

oslobaĎaju cijanovodik. Primjeri biljnih namirnica izvora cijanogenih glikozida su neke vrste graha (lima),

gorki bademi, sijerak, korijen kasave, i dr.

Simptomi akutnog i kroničnog trovanja (u nekim

krajevima Afrike gdje je kasava primarna namirnica)

uključuju poremećaje ţivčanog sustava, paralizu

mišića, sljepilo, a moţe završiti i smrću. HCN se

veţe za Fe ion citokrom oksidaze u mitohondrijima

blokirajući stanično disanje. RazgraĎuje se

rodanazom (tiosulfat S-transferaza) koja atom sumpora s tiosulfata povezuje s cijanidom (HCN + S2O32

SCN + SO32

) i nastaje tiocijanat koji se izlučuje urinom. Moguća je i detoksikacija HCN uz cistein (nastaje

tiazolin). Osjetljive su osobe s nedostatkom joda ili aminokiselina sa sumporom u prehrani. Velike količine

tiocijanata mogu izazvati gušavost inhibitornim djelovanjem na nakupljanje joda u štitnjači.

Pirimidini iz boba divicin i izouramil (aglikoni vicina i konvicina) mogu izazvati tzv. favizam (bob =

Vicia faba). Štetne posljedice konzumacije, tj. akutna hemolitička anemija, se javljaju kod ljudi s

genetskom predispozicijom tj. nedostatkom

glukoza 6-fosfat (G6PD) dehidrogenaze (vidi

‘Olovo’) u eritrocitima. Divicin i izouramil su

prooksidantne tvari koje lako oksidiraju GSH

u GSSG. Zbog deficita G6PD je nedostatna

HC CN

Oglukoza

CHO

HCN+

amigdalin

N

NOšećer

NH2

OH

H2N N

NOšećer

OH

OH

H2N

vicin konvicin

R S C N

O

HN

S

R C N

R C

S

glukoza

N S

O

O

O_

O

Page 82: Klapec Tox Hrane 2008 Oksidacije

81

sinteza NADPH, a ovaj je kofaktor u redukciji GSSG u GSH uz glutation reduktazu. Manjkava antioksidantna

zaštita reduciranim glutationom dovodi do oksidacije lipida stanične membrane, razaranja iste i smrti

stanice (tj. eritrocita u ovom slučaju).

Toksične aminokiseline poput BAPN ( -aminopropionitril), GAPN (N- -glutamil-aminopropionitril),

ODAP ( -N-oksalil-L- , -diaminopropionska kiselina), DABA (L- , -diaminomaslačna kiselina), i sl., djeluju

štetno zbog sličnosti vaţnim aminokiselinama. Gore

navedene aminokiseline su uzročnici sindroma

poznatog kao latirizam, koji se javlja nakon

konzumacije sjemenki grahorica roda Lathyrus. Uzgoj i

prodaja ove biljke (skoro isključivo u Indiji) su zabranjeni,

ali je i dalje traţena u siromašnim krajevima zbog

otpornosti na sušu. Latirizam ima dvije manifestacije: osteolatirizam i neurolatirizam. BAPN i GAPN (slične

lizinu) uzrokuju osteolatirizam karakteriziran deformacijama kostiju i slabošću vezivnog tkiva uslijed

inhibicije unakrsnog povezivanja kolagena i elastina lizil oksidazom (oksidacija NH2 skupine lizinskih ostataka u

aldehidne skupine koje reagiraju meĎusobno ili s nemodificiranim amino skupinama lizina, povezujući proteinske lance).

ODAP i DABA pojačavaju prijenos ţivčanih impulsa glutamatom te uzrokuju neurolatirizam uz spastičnu

paralizu nogu kao glavni simptom. Slični neurološki simptomi nastaju konzumacijom sjemenki i stabljike

cikada (uglavnom na otocima u Tihom oceanu) koji, pored cikasina (glikozid iz kojeg crijevna mikroflora

oslobaĎa karcinogeni metilazoksimetanol), sadrţi i BMAA ( -N-metilamino–L-alanin) (mehanizam djelovanja

isti kao kod ODAPa i DABAe).

Lektini su skupina proteina, lipoproteina i glikoproteina iz mahunarki (grah, grašak, soja, leća,

itd.). Imaju sposobnost vezanja odreĎenih ugljikohidrata. Ukoliko su ti ugljikohidrati dio stanične stijenke,

lektini će uzrokovati aglutinaciju (sljepljivanje u nakupine) takvih stanica (nazivaju se još i fitohemaglutinini jer

se koriste za aglutinaciju eritrocita kod odreĎivanja krvnih grupa). Toksični za probavni trakt (mučnina, povraćanje,

proljev) jer se veţu za stanice epitela crijeva uzrokujući nekrozu tih stanica. Uočeno je zaostajanje u rastu

kod ţivotinja hranjenih nekuhanim mahunarkama. Kuhanjem (denaturacija proteina) se toksični učinci

lektina poništavaju.

Eručna kiselina (cis-13-dokosaenska kiselina) je glavni sastojak sjemenki repice i gorušice, te ulja

koje se iz njih dobija. Hranjenjem visokim dozama su uočene štetne posljedice na pokusnim ţivotinjama,

uključujući oštećenje srca. Zasad nema dokaza da konzumacija ulja koje sadrţe eručnu kiselinu rezultira

štetnim posljedicama za zdravlje ljudi (štoviše, eručna kiselina se u obliku tzv. Lorenzovog ulja (1/3 trigliceridi

eručne kiseline, 2/3 oleinske kiseline) koristi u usporavanju simptoma adrenoleukodistrofije, nasljedne neurodegenerativne

bolesti (nedostatak djelatnog ABC transportnog proteina koji zasićene masne kiseline jako dugačkog lanca (C24 – C30)

transportira preko membrane peroksisoma gdje se razgraĎuju; uslijed toga dolazi do nakupljanja ovih masnih kiselina u

tkivima i, očito su toksične za mijelinsku ovojnicu živaca koja propada; eručna kiselina zapošljava biosintetski enzim koji

sintetizira masne kiseline jako dugačkog lanca elongacijom kraćih masnih kiselina; kako isti enzim može elongirati i zasićene

i mononezasićene masne kiseline, kompeticijskom inhibicijom nastaju netoksične mononezasićene masne kiseline jako

dugačkog lanca).

Ksantinski alkaloidi su kofein, teobromin i teofilin i nalaze se u kavi,

zelenom čaju, coli i kakau. Veće količine rezultiraju iritabilnošću i srčanim

aritmijama. Ksantini su antagonisti adenozinskih receptora, preko kojih adenozin

djeluje kao inhibitorni neurotransmiter u CNSu (adenozin nastaje razgradnjom ATPa i

signal je nedostatka energije kojim postsinaptički neuron ‘informira’ presinaptički da mu treba

HOOC CO NH CH2 CH

NH2

COOH

H2N CH2 CH2 C N

H2N CH2 CH2 CH

NH2

COOH

ODAP

BAPN

DABA

N

N

N

N

O

O

Page 83: Klapec Tox Hrane 2008 Oksidacije

82

vremena za oporavak prije daljnje stimulacije neurotransmiterima). Uslijed inhibicije adenozinskih receptora dolazi

do pojačanog oslobaĎanja dopamina, adrenalina i serotonina u mozgu koji rezultiraju budnošću (povećan

kapacitet mentalnog i fizičkog rada), tahikardijom i poboljšanjem raspoloţenja. Kofein je i kompetitivni

inhibitor cAMP fosfodiesteraze uslijed čega dolazi do povišenja koncentracije cAMP u stanicama. cAMP je

signalna molekula koja aktivira protein kinazu A koja fosforilacijom prevodi različite enzime u aktivni ili

inaktivni oblik (npr., u mišićnim stanicama izaziva pojačanu glikogenolizu). Pokusima je utvrĎeno mutageno

i teratogeno djelovanje kofeina te potenciranje ili reduciranje karcinogenosti drugih spojeva (što se

objašnjava sposobnošću ksantina da induciraju biotransformacijske enzime). Prema rezultatima

epidemioloških studija, trudnicama se preporuča da dnevni unos kofeina ne bude viši od 300 mg (oko četiri

šalice kave). Kofein se potpuno apsorbira i najvećim dijelom (84%) razgraĎuje uz citokrome P450 do

paraksantina (pojačava lipolizu u masnom tkivu), te teobromina i teofilina.

Pirolizidinski alkaloidi uključuju više od 250 različitih spojeva iz trava koje stoka pase pa se mogu

naći u ljudskoj prehrani putem mesa i mlijeka. TakoĎer rastu u ţitu i mogu kontaminirati brašno, te se

mogu naći i u nekim čajevima i drugim namirnicama biljnog podrijetla poput meda. Neki od spojeva su

dokazani hepatotoksini, mutageni, karcinogeni i teratogeni. Zabiljeţeni su i slučajevi trovanja s visokom

smrtnošću (Afganistan, Indija, TaĎikistan: sjeme trava u žitu) te EU razmatrata donošenje zakona kojim bi se

regulirao unos ovih spojeva putem biljnih čajeva (gavez, boraţina) i pripravaka. Njemačka je odredila 1 g

kao najvišu dnevnu dozu u vidu ljekovitih pripravaka, meĎutim postavlja se pitanje unosa putem hrane jer

je, primjerice, u nekim uzorcima meda utvrĎeno 4 g/g.

Aristolohična kiselina je aktivni sastojak naročito koncentriran u sjemenkama Aristolochia vrsta

(npr., u našim krajevima je raširena A. clematitits ili vučja stopa). Ove biljke mogu rasti u polju ţita i

njihove sjemenke završiti u brašnu. TakoĎer se koriste u ljekovitim pripravcima tradicionalne kineske

medicine. Aristolohična kiselina je nefrotoksična i karcinogena. Uzrokovala je nefropatije i otkazivanje

bubrega kod osoba koji su koristili odreĎene biljne pripravke. Povezuje se s (balkanskom) endemskom

nefropatijom (vidi ‘Policiklički aromatski ugljikovodici’). Bioaktivira se citokromima P450 u epoksid koji

moţe stvarati adukte s DNA i drugim vaţnim staničnim molekulama (ti adukti su utvrĎeni u bubreţnom tkivu

pacijenata s endemskom nefropatijom i nefropatijama uzrokovanim konzumacijom kineskih ljekovitih

biljaka).

Inhibitori enzima relevantni u toksikološkom smislu su inhibitori proteaza, amilaze i

acetilkolinesteraze koji s ovim enzimima stvaraju inaktivne komplekse. Inhibitori proteaza su

najzastupljeniji u mahunarkama poput soje i ţitaricama (npr., inhibitori tripsina i kimotripsina koji mogu

dovesti do stimulacije sinteze ovih enzima u stanicama

gušterače, posljedičnog povećanja obujma tj. hipertrofije

stanica i samog pankreasa (što na duţi rok povećava rizik

razvoja raka gušterače kod štakora (s druge strane, umjerena

izloženost unosom hrane se povezuje s manjim rizikom pojedinih vrsta

raka kod ljudi)). Inhibitori AChE (vidi ‘Organofosfatni

insekticidi’) su fizostigmin iz jedne vrste afričkog graha, te

Solanum alkaloidi (solanin) iz krumpira, rajčice i patlidţana.

Zabiljeţena su trovanja ljudi nakon konzumacije

krumpirovih klica, isklijalih ili zelenih krumpira. Inhibitori

amilaza takoĎer mogu izazvati hipertrofiju pankreasa u jako

visokim dozama. Termičkom obradom se najveći dio HO

O OH

OHO

HO

OH

estradiol

genistein

Page 84: Klapec Tox Hrane 2008 Oksidacije

83

inhibitora enzima uništi (sirova soja: 52 TI (tripsinoinhibitorna aktivnost) po gramu uzorka, brašno od pržene soje: 3-8

TI/g).

Fitoestrogeni su spojevi biljnog podrijetla s estrogenskom aktivnošću: izoflavoni i/ili njihovi

glikozidi (crijevna mikroflora poboljšava apsorpciju izoflavona oslobaĎajući aglikon), kumestani (klice,

neke vrste graha) i lignani (sjeme lana). Dokazano je da mogu uzrokovati neplodnost i feminizaciju mladih

muţjaka kod stoke hranjene gotovo isključivo krmivom koje ih sadrţi, ali nema dokaza da mogu uzrokovati

slične posljedice kod ljudi. Iako se unos fitoestrogena, tj. prvenstveno izoflavona soje (genistein), povezuje

s manjim rizikom raka i kardiovaskularnih bolesti, upitna je njihova sigurnost za fetuse i malu djecu zbog

osjetljivosti na estrogensko djelovanje ovih spojeva. Većina fitoestrogena ima mali afinitet za receptore

estrogena, ali su učinci mogući izlaganjem visokim dozama dovoljnim za izazivanje bioloških učinaka

(primjerice, konzumacija dječjih kašica na bazi sojinih proizvoda uzrokuje 13000 - 22000 puta višu koncentraciju izoflavona

u krvi od koncentracije estradiola).

Vazoaktivni amini, dopamin, tiramin, adrenalin, serotonin, itd., su prirodni sastojci (nastaju u

procesu razgradnje aminokiselina) nekih biljnih namirnica poput banane, avokada, ananasa, i dr. Problem

nastaje kod istovremenog uzimanja takvih

namirnica i antidepresiva na bazi

neselektivnih inhibitora monoaminoksidaze

(MAOI). MAO je biotransformacijski enzim

koji, najvećim dijelom već u stanicama

crijevne sluznice, prevodi biološki aktivne

amine (neurotransmitere poput adrenalina,

noradrenalina, dopamina, i dr., kao i njihove

analoge poput tiramina) u inaktivne produkte.

Unos tiramina hranom kod pojedinaca koji su

uzeli MAO inhibitor rezultirao je teškom hipertenzivnom reakcijom. Tiramin uzrokuje oslobaĎanje

neurotransmitera (noradrenalina, adrenalina, dopamina) iz vezikula presinaptičkog neurona, neizravno

stimulirajući simpatički ţivčani sustav preko adrenergičkih receptora (agonisti α-adrenergičkih receptora dovode

do kontrakcije glatkih mišića krvnih žila) (vidi ‘Neurotoksičnost’). Postoje dokazi da moţe i izravno stimulirati

adrenergičke receptore. Vazoaktivni amini su se povezivali i s migrenama, iako novije studije nisu utvrdile

vezu izmeĎu unosa tiramina i migrenoznih glavobolja.

Alergeni biljnog podrijetla su najčešće proteini, glikoproteini ili peptidi kikirikija, soje, pšenice,

citrusa, jagode, krumpira, kakaa, i dr. Novi dokazi upućuju na vezu alergija na hranu i autoimunih bolesti

poput celijakije (preosjetljivost na glijadin (sastavni dio glutena) kod koje imuni sustav napada bjelančevine u sastavu

enterocita, uslijed čega dolazi do propadanja crijevnih resica i nastupa probavnih simptoma), inzulin-ovisne šećerne

bolesti, artritisa, i sl. Kod celijakije bi ulogu u razvoju preosjetljivosti mogla imati genetska sklonost

pojačanoj ekspresiji zonulina u stanicama crijevne sluznice i izlučivanju ovog proteina koji povećava

propusnost crijeva za makromolekule (naime, vezanjem za enterocite, zonulin otvara prostor izmeĎu

stanica). Pojedini sastojci hrane (npr. glijadin) stimuliraju izlučivanje zonulina, pa bi ovo, u kombinaciji s

kronično višom ekspresijom kod pojedinaca, moglo rezultirati nakupljanjem makromolekula i drugih

molekula u crijevnoj sluznici, povećavajući rizik razvoja reakcija preosjetljivosti.

Oksalati iz špinata i blitve u velikim količinama mogu izazvati taloţenje kalcij oksalata

(CaOOC COOCa) u krvnim ţilama i bubrezima, pospješujući aterosklerozu i nastanak bubreţnih kamenaca.

HO

dopamin

NH2

HO

HONH2

tiramin

HOadrenalin

NH2

HO

OH

Page 85: Klapec Tox Hrane 2008 Oksidacije

84

Fitati ili soli fitinske kiseline (heksafosfoinozitol) se

mogu pronaći u ţitaricama, mahunarkama, itd. Ne

apsorbiraju se u probavnom traktu, a kako veţu ione

metala, mogu uzrokovati deficite minerala ako se

prehrana osniva na ţitaricama kao glavnom izvoru

bjelančevina (kelatiranje metala u probavnom traktu se ujedno

smatra zaštitnim učinkom protiv rasta stanica raka koje trebaju

minerale za svoj ubrzani rast).

Tanini su heterogena skupina polimernih flavonoida

iz vina, čaja, kave, nezrelog voća, itd. Kompleksiraju metalne ione i proteine i smanjuju im probavljivost i

apsorpciju (domaće životinje imaju niže stope rasta, oštećenja probavnog trakta kod razine tanina do 5% u krmivu, dok

razine iznad 5% mogu djelovati letalno) Konzumacija velikih količina (npr. prilikom ţvakanja listova betel oraha

(Daleki istok) koje sadrţi 11-26% tanina) povećava rizik razvoja raka usta i ţdrijela (s druge strane, umjerene

količine tanina u prehrani ljudi (npr. putem čaja) se povezuju s nizom pozitivnih učinaka na zdravlje, uključujući manji rizik

raka).

Toksini iz gljiva većinom uzrokuju tek blage probavne smetnje. Samo nekoliko vrsta gljiva se smatra

jako toksičnim ili čak smrtonosnim, meĎu kojima su najozloglašenije gljive roda Amanita. Zelena pupavka

(Amanita phalloides) čini gotovo 90-95% svih smrtonosnih trovanja gljivama u Europi jer se često zamijeni s

jestivim vrstama. Toksične tvari su peptidi (falotoksini, amatoksini i virotoksini) od kojih su najznačajniji

amanitini koji inhibiraju RNA polimerazu, time koče sintezu proteina, zaustavljaju stanični metabolizam

uzrokujući smrt stanice. Toksični su u prvom redu za jetru i bubrege.

S u p l e m e n t i p r e h r a n i

Vitamini, minerali, antioksidanti, fitokemikalije i druge tvari ulaze u skupinu dodataka prehrani čija

uporaba je postala popularna posljednjih godina. MeĎutim, visok unos hranjivih tvari moţe djelovati štetno

kako je prikazano na grafu. Crvena krivulja prikazuje uobičajen odnos doze i odgovora za toksikante, dok je

plavo prikazana tipična interakcija organizma i hranjive tvari. Kod niskih doza ili potpunog nedostatka su

moguće teške štetne posljedice, uključujući smrt. Zatim postoji odreĎen opseg doza koji podrazumijeva

optimalno funkcioniranje organizma, dok daljnje povišenje unosa hranjive tvari povećava rizik nastanka

toksičnih posljedica u organizmu (klasični primjer je vitamin A koji u jako visokim dozama može biti smrtonosan; vidi

‘Retinol’).

odgovor smrt deficit

toksični učinak suvišak optimalni unos

nema učinka

log doza

Postoji više primjera koji govore u prilog tezi da visok unos suplemenata šteti zdravlju. Nedavna meta

studija (studija koja statistički obraĎuje rezultate više različitih istraživanja) je objedinila rezultate 19

suplementacijskih studija s više od 130 000 ispitanika, pri čemu je zaključeno da ne samo da nema koristi

od velikih doza vitamina E, nego da visoke doze i štete zdravlju. Dnevni unos više od 150 IU je povezan s

OH

PO

O

O-

P

O

O

O-

OH

PO

O

O-

P

OO

O-

P

O O-

O

P

O

O-

O

-O

-O

-O

O-

Page 86: Klapec Tox Hrane 2008 Oksidacije

85

većom smrtnosti ispitanika. UtvrĎeno je i prooksidantno djelovanje viših doza (500 mg) vitamina C, uz

povišenje količine oksidiranih DNA baza kao posljedice. Primjer β-karotena je model koji ilustrira zablude

oko vjerovanja u učinkovitost megadoza vitamina. Naime, sve epidemiološke (tj. opservacijske) studije

koje su ispitivale povezanost unosa ovog provitamina hranom s rizikom raka su ustanovile obrnuto

proporcionalnu vezu. Nasuprot tomu, intervencijske (suplementacijske) studije, koje su ispitanicima davale

pripravke čistog β-karotena su utvrdile povećani rizik raka (naročito rak pluća kod pušača),

kardiovaskularnih bolesti i ukupnu smrtnost kod ispitanika. Ovo bi se moglo objasniti činjenicom da se β-

karoten, kao i drugi nutrijenti, u hrani nalazi ‘zarobljen’ u tkivu, prvenstveno biljnog podrijetla, iz kojeg se

lagano oslobaĎa procesom probave. S druge strane, suplementi su koncentrati koji se brzo apsorbiraju i

izazivaju nagli porast koncentracije u krvi i mjestima djelovanja što bi moglo povećati vjerojatnost štetnog

djelovanja. Konkretnije, β-karoten moţe inducirati citokrome P450 koji sudjeluju u bioaktivaciji

prokarcinogena te djeluje prooksidantno pri višim dozama (prema jednoj hipotezi, β-karotenovo naročito štetno

djelovanje u kombinaciji s pušenjem bi se moglo pripisati reakciji reaktivnih vrsta kisika nastalih pušenjem (u stanicama

pluća) i β-karotena pri čemu nastaju metaboliti koji, osim izazivanja oštećenja DNA, pojačano induciraju citokrome P450;

indukcija ovih enzima, osim bioaktivacije prokarcinogena (poput PAHova iz duhanskog dima), dovodi do ubrzane razgradnje

retinoične kiseline; retinoična kiselina sudjeluje u nadzoru stanične proliferacije aktivacijom tzv. RAR (retinoic acid

receptor) receptora koji se povezuje sa RXR receptorom u kompleks i vežu transkripcijski faktor AP1 (activating protein),

inhibirajući njegovo djelovanje; u nedostatku retinoične kiseline AP1 se veže za DNA i potiče transkripciju niza gena čiji

proteinski produkti uzrokuju ubrzanu diobu stanice; kronično pojačana proliferacija, naročito u kontekstu veće izloženosti

mutagenima (pušenje), može povećati rizik nastanka tumorske stanice). Meta studija koja je obradila rezultate 68

suplementacijskih studija s više od 230 000 ispitanika, ustanovila je da nema nekakve naročite koristi od

korištenja pripravaka antioksidanasa (β-karoten, vitamini A, C, E i Se) te da je unos β-karotena, vitamina A

i E bio povezan s višom stopom ukupne smrtnosti. Visoke doze antioksidanasa bi mogle remetiti normalno

odvijanje biokemijskih i fizioloških procesa zbog remećenja funkcije slobodnih radikala. Primjerice,

leukociti proizvode slobodne radikale uništavajući njima fagocitirane mikroorganizme i tumorske stanice.

Dušik oksid (NO∙) je signalna molekula (tzv. endothelium-derived relaxing factor, EDRF) koja izaziva

vazodilataciju glatkih mišića krvnih ţila, sudjelujući u regulaciji krvnog tlaka. Prenaglašena nazočnost

antioksidanasa bi mogla remetiti i odvijanje procesa prijenosa elektrona uz citokrome na molekularni kisik

tijekom reakcija respiracije i monooksigenaza ovisnih o citokromu P450 (vidi ‘Enzimske reakcije I faze’) pri

kojima takoĎer nastaju slobodni radikali. Apoptoza ili programirana stanična smrt je vaţan mehanizam u

nadzoru proliferacije oštećenih i mutiranih stanica, pri čemu dolazi do kaskade reakcija (uključujući

nastanak slobodnih radikala) koje rezultiraju samouništenjem takvih stanica. Interferencija ovog

mehanizma antioksidansima bi mogla povećati vjerojatnost preţivljavanja oštećenih stanica (npr.

prekancerozne stanice s mutacijama) i njihove progresije u stanice raka.

TTToookkksssiiinnniii mmmiiikkkrrrooobbbnnnoooggg pppooodddrrriiijjjeeetttlllaaa

Ovisno o podrijetlu se mogu podijeliti u algalne toksine, bakterijske toksine i mikotoksine.

A l g a l n i t o k s i n i

Saksitoksini koje sintetiziraju dinoflagelati (jednostanične alge). Nakupljaju se u školjkašima

(dagnje, ostrige) i rakovima, naročito tijekom ‘cvjetanja mora’ tj. masovnog razmnoţavanja dinoflagelata.

Page 87: Klapec Tox Hrane 2008 Oksidacije

86

Izazivaju tzv. paralitičko trovanje školjkašima (paralytic shellfish poisoning, PSP) uslijed blokade Na+ kanala

neurona i remećenja prijenosa ţivčanog impulsa.

Osim PSP-a postoji još dijaretičko (diarrheic shellfish poisoning, DSP), neurotoksično (neurotoxic shellfish

poisoning, NSP) te amnezijsko trovanje školjkašima (amnesic shellfish poisoning, ASP). DSP je uzrokovan

polieterima poput okadaične kiseline, dinofizistoksina koji inhibiraju protein fosfataze koje

defosforilacijom sudjeluju u prijenosu signala u stanici, uglavnom izazivajući probavne smetnje. NSP

izazivaju polieteri, tzv. brevetoksini koji se veţu za Na+ kanale, što uzrokuje probavne i neurološke

poremećaje. Uzročnik ASP je aminokiselina, tzv. domoična kiselina, koja djeluje kao antagonist receptora

glutamata u CNSu. Izaziva ozbiljnije neurološke simptome uključujući gubitak pamćenja (Hitchcockov film

‘Ptice’ je inspiriran neobičnim ponašanjem ptica u Kaliforniji 1961. godine (zalijetanje u prozore, automobile, i sl.)

izazvanim domoičnom kiselinom; sličan incident je zabilježen 2006. godine).

Ciguatoksini i maitotoksini su uzročnici tzv. ciguatera

trovanja. Sintetiziraju ih dinoflagelati i prehrambenim lancem se,

zbog lipofilnosti, nakupljaju u masnom tkivu riba. Ciguatera se

povezuje s više od 400 vrsta riba uključujući lubin, barakudu, i sl.

Uzrokuju poremećaje u probavnom i ţivčanom (ciguatoksini

vezanjem za Na+, a maitotoksini za Ca

2+ kanale) sustavu koji

ovisno o unesenoj količini, mogu dovesti do nesposobnosti hoda i

konačno smrti uslijed zastoja srca ili disanja. Akumuliraju se u organizmu, pa ponovljena izloţenost malim

dozama moţe rezultirati trovanjem.

Pfiesteria toksin proizvodi dinoflagelat Pfiesteria piscicida koja izazvala pomor ribe diljem istočne

obale SADa 90ih godina prošlog stoljeća. Prekomjernim razmnaţanjem alge zbog zagaĎenja mora i rijeka

moţe doći do nakupljanja toksina u mesu riba. Ne zna se puno o ovom toksinu, osim da je hlapljiv,

nestabilan i najvjerojatnije izaziva produkciju slobodnih radikala u organizmu, prvenstveno ţivčanom

sustavu, uz simptome poput problema s koncentracijom.

Palitoksin takoĎer proizvode dinoflagelati i ponekad se moţe pronaći u visokoj koncentraciji u mesu

riba i rakova. Veţe se za Na-K pumpu i Ca2+

kanale i izaziva mišićnu slabost, parestezije (trnjenje) i srčane

aritmije.

B a k t e r i j s k i t o k s i n i

Mogu se podijeliti na endotoksine i egzotoksine. Ovdje će se navesti samo najvaţniji egzotoksini, dakle

tvari koje bakterije luče u svoj okoliš i koji se mogu pronaći i u sterilnoj hrani i vodi.

Tetrodotoksin luče morske bakterije rodova Vibrio i Pseudomonas i moţe se pronaći u unutarnjim

organima i koţi ribe poznatije kao ‘fugu’, koja je popularno jelo u Japanu (trovanja tetrodotoksinom čine

60-70% svih trovanja hranom u Japanu). Iako cijenjeno upravo zbog osjećaja trnjenja

usana, jezika i, kasnije, prstiju, nepravilno pripremljena jela od fugua mogu

sadrţavati visoke razine tetrodotoksina (u Tajlandu su bezobzirni ribari prodajom mesa fugua

kao lososa, uzrokovali trovanje i smrt 15ak ljudi). Toksin blokira Na+ kanale neurona i izaziva

progresivnu ukočenost i konačno paralizu mišića, neurološke simptome, i smrt uslijed

paralize disanja.

Cijanotoksini su toksini cijanobakterija (stari naziv: plavo-zelene alge). Riječ je o skupini spojeva

koji uključuju hepatotoksične mikrocistine, nodularine i cilindrospermopsine te neurotoksične anatoksine i

saksitoksin. Mogu se pronaći u vodi za piće ukoliko doĎe do ‘cvjetanja’ eutrofičnih voda (podzemne vode ->

Page 88: Klapec Tox Hrane 2008 Oksidacije

87

bunari) i rezervoara te je WHO nedavno odredila maksimalnu dozvoljenu razinu u vodi za piće (1 g/L).

UtvrĎeni su i u tkivu vodenih ţivotinja (riba, ţaba) u relativno visokim razinama (5 g/g) te prehrambenim

dodacima na bazi plavo-zelenih algi (spirulina je bila kontaminirana toksičnim cijanobakterijama uz razine

cijanotoksina do 16 g/g).

Botulin proizvodi Clostridium botulinum. Najčešće se moţe pronaći u neodgovarajuće toplinski

obraĎenim konzervama, vakumiranoj hrani i dimljenoj ribi gdje se bakterija razvija u anaerobnim

uvjetima. Botulin uzrokuje najprije probavne smetnje, a zatim paralizu ţivaca uz simptome poput teškog

ţvakanja, gutanja i govora. Zbog paralize disanja moţe nastupiti i smrt (utvrĎena je 65%tna smrtnost

ukoliko se ne liječi (antitoksinima na bazi antitijela i primjenom respiratora)). Botulin spriječava oslobaĎanje

acetilkolina na krajevima neurona, inhibirajući učinke parasimpatičkog ţivčanog sustava.

Enterotoksin Bacillus cereusa izaziva probavne smetnje (gastroenteritis uz povraćanje ili proljev)

zbog citotoksičnosti za stanice crijevne sluznice (stvara pore u membrani stanica zbog kojih dolazi do ‘curenja’

staničnog sadržaja). Ovaj enterotoksin se moţe pronaći u različitim vrstama salata, jelima s mesom,

sloţencima, juhama, umacima, i sl.

Enterotoksin Staphylococcus aureusa takoĎer izaziva gastroenteritis uz povraćenje, proljev, grčeve

i isti mehanizam djelovanja poput gore spomenutog enterotoksina. Najčešće se nalazi u sladoledu,

salatama (naročito od jaja), siru, šunki, salamama, itd.

M i k o t o k s i n i

Mikotoksini su toksini gljivica i plijesni koji uzrokuju tzv. mikotoksikoze. Većina namirnica (kao i krmiva) je

osjetljiva na kontaminaciju mikotoksinima s obzirom na sposobnost plijesni producenata mikotoksina da

rastu na najrazličitijim supstratima, pri različitim uvjetima. Prisustvo, pak, plijesni u namirnici ne znači

nuţno prisutnost mikotoksina (ako plijesan nije dovoljno porasla), ali s druge strane, odsutnost plijesni ne

znači da nema mikotoksina jer se mogu zadrţati u supstratu dugo nakon nestanka plijesni.

Ergot alkaloidi su derivati lizergične kiseline: ergotamin, ergonovin, ergotoksin, i dr., koje proizvodi

gljivica Claviceps purpurea (ergot, raţena glavnica) koja raste na ljuski ţita. Postoje dva tipa trovanja;

gangrenozni i konvulzivni. Gangrenozni ergotizam uzrokuje trombozu i gangrenu

udova zbog suţavanja krvnih ţila (stezanje glatkih mišića) uslijed agonističkog

djelovanja ergotamina i ergotoksina na receptorima neurotransmitera simpatičkog

ţivčanog sustava (adrenalin, noradrenalin). Konvulzivni ergotizam je druga

manifestacija trovanja ergotom uz neurološke simptome (paraliza, konvulzije,

halucinacije, sljepilo), najvjerojatnije posljedica agonističkog i/ili antagonističkog

djelovanja na receptore neurotransmitera (serotonina, dopamina, noradrenalina) u

mozgu (suĎenje ‘vješticama’ u Salemu neki autori povezuju s pojavom ražene glavnice na žitu).

Danas je trovanje ergot alkaloidima rijetko zbog učinkovitih metoda odvajanja nečistoća tijekom prerade

ţitarica.

Trihoteceni su skupina mikotoksina koje najvećim dijelom proizvode plijesni roda Fusarium koje

rastu na ţitu te se mogu pronaći u različitim ţitaricama i proizvodima (kruh, tjestenina, dječja hrana, slad,

pivo, itd.). Najznačajniji trihoteceni su T-2 toksin, deoksinivalenol (DON), diacetoksiscirpenol (DAS),

nivalenol, i dr. ADME: UtvrĎena je 25-55%tna apsorpcija DONa. Trihoteceni su vodotopljivi te postiţu

najviše koncentracije u krvi i brzo se izlučuju preko urina ili ţuči. Najveći dio (95%) se izlučuje

nepromijenjen. Toksičnost i mehanizmi: Akutni visoki unos T-2 toksina izaziva oštećenja GITa te moţe

dovesti do smrti uslijed unutarnjeg krvarenja. Teratogen je, a uzrokuje i tzv. alimentarnu toksičnu aleukiju

Page 89: Klapec Tox Hrane 2008 Oksidacije

88

(ekstremno smanjenje broja leukocita, sepsa, i dr.) zbog imunosupresivnog učinka inhibicijom sinteze

proteina, RNA i DNA. DON se povezuje s epidemijama bolesti probavnog trakta kod ljudi (naziva se još i

vomitoksin zbog glavnog simptoma: povraćanja), a djeluje i imunotoksično mijenjajući ekspresiju citokina

(signalne proteinske molekule koje upravljaju imunim odgovorom). Izloženost: Prema ispitivanju provedenom u EU

(2002 g.), 20% ţitarica je bilo pozitivno na T-2 toksin, a 57% na DON. TakoĎer, srednji dnevni unos odrasle

populacije je iznosio 46% TDI za DON i čak 250% za T-2 toksin. Naročito osjetljiva subpopulacija su

dojenčad i mala djeca zbog povećanog unosa ţitarica putem dječje hrane, kašica, ţitnih pahuljica i sličnih

proizvoda (70ih godina prošlog stoljeća su SAD optuživale Sovjetski Savez da je koristio bojne otrove u Laosu i Vijetnamu,

pri čemu je utvrĎen žuti talog po lišću drveća nazvan ‘žutom kišom’; naknadnim istraživanjima su američki biolozi utvrdili

da je zapravo riječ o fekalnoj tvari lokalne vrste pčela, sastavljenom uglavnom od peludi; svejedno, SSSR doista jest radio

na razvoju kemijskog oružja baziranog na T-2 toksinu).

Aflatoksini su sekundarni metaboliti Aspergillusa flavusa i Aspergillusa parasiticusa koje rastu na

uskladištenom ţitu (kukuruz), mahunarkama (kikiriki), orasima, brašnu, itd., ako je niska vlaţnost što

eliminira rast konkurentnih vrsta (Penicillium i Fusarium). Mogu se pronaći i u namirnicama poput mlijeka i

jaja ukoliko su ţivotinje hranjene kontaminiranim krmivom. Riječ je o lipofilnim, termostabilnim

spojevima, osjetljivim na UV-svjetlo i upravo obzirom na karakterističnu plavu ili zelenu fluorescenciju pod

UV-zračenjem, četiri najznačajnija aflatoksina imenovani su kao B1, B2, G1 i G2, te hidroksilirani derivati

M1 i M2 (od ‘milk’ gdje se najčešće mogu detektirati). ADME: Brzo se apsorbiraju, raspodijeljuju, metaboliziraju i

izlučuju uglavnom putem ţuči

(malo hidroksiliranih derivata i

putem mlijeka). Metaboliziraju

se oksidacijom citokromima

P450 uz uvoĎenje atoma kisika

na dvostruku vezu uz nastanak

elektrofilnih epoksida.

Toksičnost i mehanizmi: Bioaktivacijom nastali epoksidi se veţu za DNA, RNA, i proteine, što objašnjava

pokusima na ţivotinjama utvrĎenu hepatotoksičnost, imunotoksičnost i karcinogenost (meĎu najjačim

poznatim hepatokarcinogenima). Nejasno je da li su aflatoksini hepatokarcinogeni za ljude sami po sebi,

mada epidemiološke studije povezuju povećan unos aflatoksina u kombinaciji s hepatitisom s većom

učestalošću raka jetre kod ljudi (naime, hepatitis mijenja ekspresiju citokroma P450 što bi moglo imati za

posljedicu više razine enzima koji bioaktiviraju izvorni oblik aflatoksina u karcinogeni). Neodgovarajući

prehrambeni status (unos energije, bjelančevina, vitamina, minerala) takoĎer znatno povisuje rizik od

karcinogenih posljedica izloţenosti ovim mikotoksinima. Izloženost: Zbog karcinogenosti aflatoksinima nije

odreĎena sigurna doza dnevnog unosa te se preporuča smanjiti koncentraciju u namirnicama na najniţu

tehnološki ostvarivu razinu. Zabiljeţeno je nekoliko slučajeva aflatoksikoza (akutni visoki unos) u

nerazvijenim zemljama poput Indije i Kenije s unosom koji je dosezao i 50ak g/kg tj. t., što je imalo za

posljedicu 30-60%tnu smrtnost. Prosječni dnevni unos najtoksičnijeg aflatoksina B1 u EU se, ovisno o

zemlji, kreće od 2 - 77 ng, dok se unos M1 kreće u granicama od 0,6 – 4 ng.

Ohratoksini su metaboliti Aspergillus i Penicillium vrsta koje rastu na ţitu, sušenom voću, kavi,

kikirikiju, itd., te se mogu pronaći i u mesu, pivu i vinu. Ţitarice najviše doprinose unosu (oko 50%), zatim

vino (13%), kava (10%), začini (8%), pivo (5%), sušeno voće (3%), itd. Najrelevantniji je ohratoksin A (OTA).

OO

O

O

OO

OO

O

O

OO

O

Page 90: Klapec Tox Hrane 2008 Oksidacije

89

ADME: Apsorbira se više od 50% ohratoksina u

probavnom traktu i najviše se raspodijeljuju i

zadrţavaju u bubrezima. Najvaţnija reakcija

razgradnje je hidroliza peptidne veze

(karboksipeptidazom A) čime se oslobaĎaju

tzv. α-ohratoksin i fenilalanin. Alternativno,

često je uvoĎenje OH skupine citokromima

P450 i nastajanje hidroksiliranih derivata. Metaboličke reakcije provodi i crijevna mikroflora i svi nastali

metaboliti su znatno niţe toksičnosti i izlučuju se u urinu i ţuči. Toksičnost ustanovljena na pokusnim i

domaćim ţivotinjama uključuje hepatotoksičnost, nefrotoksičnost, razvojnu toksičnost (na peradi se često

može uočiti neujednačen rast kao indikator izloženosti ohratoksinima), imunotoksičnost, te karcinogenost. Nema

dokaza da izloţenost putem hrane djeluje karcinogeno na ljude, iako se povezuje s tzv. endemskom

nefropatijom i s njom vezanim tumorima mokraćnog trakta (vidi ‘Policiklički aromatski ugljikovodici’).

Primjerice, ustanovljen je znatno viši unos OTA i citrinina (nefrotoksični mikotoksin) u selima pogoĎenim

endemskom nefropatijom za razliku od susjednih sela u kojima nema slučajeva bolesti. Mehanizmi

toksičnosti uključuju nastajanje adukata na DNA i koji su dokazani u bubreţnom tkivu osoba oboljelih od

endemske nefropatije. TakoĎer, ohratoksini mogu potaknuti oksidativni stres. Izloženost: Otprilike 55%

svih testiranih uzoraka ţitarica s područja EU je bilo kontaminirano s OTA. Srednji dnevni unos je činio tek

13% TDI, iako ponovno treba naglasiti mogućnost znatno veće izloţenosti pojedinih populacija s višim

unosom namirnica koje su češće kontaminirane ohratoksinima.

Zearalenon sintetizira nekoliko Fusarium vrsta

koje uglavnom kontaminiraju ţito (najčešće kukuruz),

rjeĎe soju. Osim brašna, moţe se naći i u sladu, pivu i

mlijeku. ADME: Apsorbira se oko 80% zearalenona iz

hrane. Najveći dio se izluči putem ţuči, nepromijenjen

ili u obliku glukuronidnih derivata. Toksičnost i mehanizmi: Zearalenon je endokrini disruptor zbog

sličnosti graĎe estrogenu (na slici je crveno označen dio molekule koji je najvažniji u vezanju za estrogenski receptor;

za usporedbu s graĎom estrogena vidi ‘Inhibitori enzima’ u poglavlju ‘Biljni toksini’). Dokazano je da unos hranom

moţe poremetiti normalnu reproduktivnu funkciju kod ţivotinja. Kod viših doza je i karcinogen za pokusne

ţivotinje (ţenke). Nekoliko epidemioloških studija je utvrdilo povezanost unosa hrane kontaminirane ovim

mikotoksinom i simptoma koji bi se mogli pripisati estrogenskom djelovanju, poput uranjenog puberteta

djevojčica (zabilježeno u Portoriku i MaĎarskoj). Izloženost: Tijekom 2002. godine u EU je 80% svih testiranih

uzoraka kukuruza je sadrţavalo mjerljive razine zearalenona, za razliku od 30% uzoraka pšenice ili 3%

uzoraka mlijeka. Razlog za zabrinutost bi mogla predstavljati činjenica da je petina svih uzoraka dječje

hrane bilo pozitivno na ovaj mikotoksin. Srednji dnevni unos odraslih je bio otprilike

upola niţi od TDI.

Fumonizini su metaboliti nekih Fusarium vrsta koje su česti kontaminanti

ţitarica, naročito kukuruza i pšenice. Fumonizin B1 (FB1) je znatno toksičniji od

fumonizina B2 i B3. ADME: Najviše 6% fumonizina iz hrane se apsorbira u probavnom

traktu. Najviše koncentracije se mogu pronaći u jetri gdje se metaboliziraju

(hidrolizom), te bubrezima preko kojih se fumonizini i metaboliti relativno brzo

eliminiraju iz organizma. Toksičnost i mehanizmi: Toksičnost se najvećim dijelom

vjerojatno osniva na strukturnoj sličnosti sfingolipidima (tj. sfingozinu,

NH O

O OCOOH

Cl

OH

peptidna veza

hidroksilirani derivati

O

O

OHO

OH

Page 91: Klapec Tox Hrane 2008 Oksidacije

90

aminoalkoholu koji čini

osnovu graĎe sfingolipida)

i inhibiciji odgovarajućih

biosintetskih enzima.

Sfingolipidi imaju vaţnu

ulogu u staničnoj

signalizaciji što prisustvo

fumonizina moţe

poremetiti. Akutno

trovanje kod domaćih ţivotinja izaziva tzv. 'konjsko ludilo' (leukoencefalomalacija, fatalna bolest mozga) i

svinjski pulmonarni edem. Kod ljudi se kronični unos malih količina povezuje s rakom jednjaka. Izloženost:

Otprilike 46% uzoraka ţitarica je bilo pozitivno na FB1, i 42% na FB2 u EU, 2002. g. Očekivano je viša bila

kontaminiranost kukuruza (FB1: 66%, FB2: 51%). Prosječni dnevni unos je 23% TDI, uz znatne varijacije

izmeĎu subpopulacija (npr. unos kod male djece zbog povećane konzumacije kukuruznih pahuljica).

Ostali manje vaţni mikotoksini su navedeni u nastavku, pri čemu treba napomenuti da se u hrani

često moţe naići na smjesu mikotoksina koji ponekad imaju sinergističko djelovanje u izazivanju štetnih

posljedica (npr. moniliformin & fumonizini, sterigmatocistin, rubratoksini & aflatoksini, itd.). Moniliformin

je čest kontaminant kukuruza i drugih ţitarica. Uglavnom ga sintetizira Fusarium proliferatum. Točan način

toksičnog djelovanja nije razjašnjen, iako su za perad djelovali toksičnije nego fumonizini. Patulin

(Aspergillus, Penicillium i Byssochylamys vrste) koje rastu na jabukama (smeĎa gnjilost jabuka) te se moţe

pronaći u soku jabuke, kašama i proizvodima koji sadrţe koncentrate soka. Zbog utvrĎene in vitro

genotoksičnosti se sumnja na karcinogeno djelovanje, iako nema studija na ţivotinjama koje su to

nedvosmisleno utvrdile. Sterigmatocistin (Aspergillus vrste) se uglavnom moţe pronaći u ţitu. GraĎom je

sličan aflatoksinima te djeluje hepatotoksično, iako je znatno slabiji toksin. Ţitarice mogu biti

kontaminirane hepatotoksičnim rubratoksinima, rugulozinom i luteoskirinom (Penicillium vrste) ili

nefrotoksičnim citrininom (Aspergillus i Penicillium vrste).

AAAdddiiitttiiivvviii hhhrrraaannniii iii tttvvvaaarrriii uuu dddooodddiiirrruuu sss hhhrrraaannnooommm iii vvvooodddooommm

A d i t i v i

Hrani se dodaju aditivi radi produţenja odrţivosti, očuvanja ili poboljšanja hranjivih i zdravstvenih

svojstava hrane, kao i boje, okusa, teksture, i dr. MeĎu aditive ulaze: konzervansi (nadzor mikrobiološkog

kvarenja), antioksidansi (spriječavanje autooksidacije masti), sekvestranti (veţu metale u komplekse

(fosfati, EDTA) i time spriječavaju njihov katalitički učinak na oksidaciju masti i drugih sastojaka),

surfaktanti (površinski aktivne tvari), stabilizatori (spriječavaju taloţenje i raslojavanje; npr. škrob,

karaginan i druge gume), sredstva za izbijeljivanje, sredstva za dozrijevanje, puferi, kiseline, luţine, boje,

zaslaĎivači, hranjivi dodaci, prirodni i sintetski poboljšivači okusa, i dr. Zakonodavstvo EU je definiralo tri

temeljna preduvjeta prije autorizacije i puštanja na trţište prehrambenih aditiva. Dakle, aditivi bi trebali

biti tehnološki potrebni, ne smiju zavaravati potrošače i ne smiju biti opasni po zdravlje. Otprilike 1500 je

dozvoljenih aditiva u EU, kojima je dodijeljen tzv. E-broj, i oko 2800 aroma. Poslije aroma, najbrojniji

aditivi su hranjivi dodaci, surfaktanti, puferi, sekvestranti, boje, stabilizatori, konzervansi, antioksidansi,

itd. Bez aditiva, pekarski proizvodi bi prebrzo popljesnivili, u umacima bi dolazilo do odvajanja ulja,

konzervirano voće i povrće bi se obezbojilo i postalo bljutavo, kuhinjska sol bi se stvrdnula i zgrudala,

O

O

O

O

NH2

OH OH

OH

HOOC

HOOC

HOOC

HOOC

NH2

OH

OH

sfingozin

fumonizin B1

Page 92: Klapec Tox Hrane 2008 Oksidacije

91

napicima i desertima bi manjkalo okusa, slabio bi vitaminski sadrţaj namirnica, i dr. Očito je da bi bilo

doslovno nemoguće napustiti korištenje aditiva te je stoga potrebno provesti opseţna istraţivanja njihove

toksičnosti radi maksimalne zaštite potrošača.

Neregulirana uporaba aditiva u počecima masovne proizvodnje hrane i incidenti koji su uslijedili

(npr. aditivi koji su naknadno testirani i utvrĎena im je karcinogenost za pokusne životinje (konzervans AF-2 ili safrol,

prirodna aroma, itd.) ili soli kobalta koje su se koristile za stabilizaciju pjene piva, pa su kod velikih konzumenata izazvale

toksične posljedice na srčanom mišiću) rezultirali su raširenim uvjerenjem da su svi aditivi štetni, koje i danas

podgrijavaju pseudoznanstvenici i senzacionalizmu skloni mediji. Prije odobrenja uporabe u hrani, aditivi

se podvrgavaju rigoroznim ispitivanjima toksičnosti kojima se definira prihvatljivi dnevni unos (acceptable

daily intake, ADI = razina unosa koja svakodnevnim unosom tijekom ţivotnog vijeka neće imati nikakve

štetne posljedice) i maksimalno dozvoljene količine koje se dodaju u pojedine namirnice (postoji i odreĎen

broj aditiva za koje svi relevantni toksikološki podaci i/ili povijest uporabe upućuju na potpunu

bezopasnost te im se ne specificira ADI (adekvatan status takvih aditiva u SADu je GRAS (generally

recognized as safe) = općepoznati kao sigurni). Zamislivo je ipak, da ukupni unos nekog aditiva iz različitih

izvora moţe nadmašiti ADI mada je svaki proizvod unutar granica, pri čemu postoji strah od kronične

toksičnosti niskih razina aditiva. MeĎutim, čak i unos višestruko veći od ADI najvjerojatnije ne bi trebao biti

naročito toksičan obzirom da ADI najčešće predstavlja razinu koja je 100 puta niţa od najviše razine koja je

netoksična (NOAEL) za pokusne ţivotinje. EU je 2000. godine provela ispitivanje unosa prehrambenih

aditiva u tri koraka. U prvom koraku je teorijski unos namirnice (ukupna nacionalna potrošnja namirnice

podijeljena s brojem stanovnika) mnoţen s maksimalno dozvoljenom količinom aditiva za tu namirnicu.

Time je dobijena predimenzionirana procjena ukupnog unosa i aditivi koji i pored toga nisu premašili ADI su

isključeni iz daljnjih koraka. Tijekom drugog koraka procjene unosa je stvaran unos namirnica (odreĎen

dijetetičkim metodama poput upitnika učestalosti namirnica ili metoda biljeţenja) mnoţen s maksimalno

dozvoljenom količinom aditiva. Aditivi čiji unos je bio veći od ADIja ovakvim izračunom su predviĎeni za

provedbu trećeg koraka (u tijeku) gdje će se stvaran unos namirnica mnoţiti sa stvarno dodanom

(izmjerenom) količinom aditiva. Opći zaključak nakon provedbe drugog koraka je da, unatoč metodologiji

koja teţi precijeniti unos, on za većinu aditiva ipak ne prelazi ADI. MeĎu aditive koji su premašili ADI u

odrasloj populaciji su spojevi aluminija (do šest puta viši od ADIja), sulfiti i SO2, nitrita, te sorbitana

(emulgator). Djeca su unosila više sulfita i SO2 (do 12 puta više), aluminija, nitrita, sorbitana i saharoznih

estera masnih kiselina (olestre) (link na cijelo izvješće).

Konzerviranje hrane tj. očuvanje dovoljno hrane od jedne do druge sezone je omogućilo prijelaz

ljudske vrste od nomadskih lovaca–skupljača u poljoprivredne zajednice (sol i dim su korišteni već u

prethistorijskim vremenima, ocat, ulje, i med u starom Egiptu, dok se SO2 koristio kao fumigant u Asiriji, Grčkoj i Kini; u

srednjevjekovnoj Europi je donešen i prvi zakon o korištenju sumpora za konzerviranje vina te izumljeno mariniranje;

sintetske kemikalije su se počele koristiti tek početkom 20. stoljeća). Osim tvari koje potiskuju rast

mikroorganizama koji mogu uzrokovati neţeljene učinke na izgled, okus, prehrambenu vrijednost hrane ili

proizvoditi toksine, u konzervanse se danas ubrajaju i tvari koje spriječavaju kemijsko i biokemijsko

kvarenje, prvenstveno antioksidansi.

Benzojeva kiselina i soli (E210 - E213) se koriste u bezalkoholnim pićima, sirupima, voćnim

salatama, pekmezu, mljevenom mesu, mariniranom povrću, i dr., u koncentraciji od 0,05-0,1%. Relativno

brzo se apsorbira i metabolizira konjugacijom s glicinom. Najveći dio (90%) se izlučuje urinom kao hipurna

kiselina, dok je ostatak u obliku glukuronida. Male je akutne i kronične toksičnosti za pokusne ţivotinje,

osim kod jako visokih doza (NOAEL je 500 mg/kg tj. t.) kod kojih je izazvala povećanu stopu smrtnosti uz

Page 93: Klapec Tox Hrane 2008 Oksidacije

92

oštećenja jetre i bubrega. TakoĎer se nije pokazala genotoksičnom ni karcinogenom, niti je reproduktivni

ili razvojni toksin. Nedavno je utvrĎeno da benzoati u kombinaciji s askorbinskom kiselinom mogu dovesti

do stvaranja benzena,

prvenstveno u bezalkoholnim

pićima. Odvijanje ovog procesa

ovisi o sastavu namirnice, pH,

temperaturi, izloţenosti UV

zračenju, udjelu katalizirajućih metala (Fe, Cu). Zamisliv je i nastanak benzena u samom organizmu, kod

istovremene konzumacije namirnica koje sadrţe navedene aditive. Naknadne analize većeg broja uzoraka

pića su utvrdile jako niske razine benzena, koje su uglavnom ispod dozvoljenog limita za pitku vodu od 10

ppb (inače, benzen je karcinogen zbog pretvorbe u elektrofile i oštećuju mahom mitohondrijsku DNA).

Veliki proizvoĎači bezalkoholnih pića su na vijest odgovorili promjenom recepture da se spriječi dodatak

oba navedena aditiva. Benzojeva kiselina se povezuje s hiperaktivnošću djece (opširnije poslije odlomka o

bojama).

Sorbinska kiselina i soli (E200 – E203) najjače djeluju protiv kvasaca i

plijesni, slabije protiv bakterija, te se koristi se u konzerviranju margarina,

ribe, sireva, pekarskih proizvoda, voćnih sokova, mariniranog i svjeţeg povrća, nekih proizvoda od ribe ili

mesa, i vina. Praktično je netoksična i nekarcinogena do 5%tne razine u hrani štakora, dok kod još viših

doza, duţe vrijeme, dolazi do usporavanja rasta (najvjerojatnije zato što štakori nevoljko jedu hranu

promijenjenog okusa). Najveći dio se metabolizira slično masnim kiselinama do CO2. Vrlo slična po

djelovanju, ali i maloj toksičnosti je i propionska kiselina.

Vodik peroksid se koristio se u mliječnoj industriji kao zamjena za toplinsku pasterizaciju mlijeka,

te kao izravni konzervans u popravljanju odrţivosti različitih namirnica (npr., voće i povrće). Ima i učinak

sredstva za izbijeljivanje (riblja pašteta, sir, i sl.). Netoksičan je za pokusne ţivotinje koje su konzumirale

tretiranu hranu jer je nestabilan i brzo se razgraĎuje katalazom i peroksidazama. H2O2 je jedini baktericid

koji se smije koristiti zbog svoje male toksičnosti za ljude.

Nitrati i nitriti (E249 – E252) se koriste kao konzervansi u procesu salamurenja mesa. Osim

antimikrobnog djelovanja (naročito su vaţni u nadzoru Clostridium botulinuma), doprinose antioksidantnoj

stabilnosti (nitriti), boji (nitrozo-mioglobinski i –hemoglobinski pigmenti) i okusu suhomesnatih proizvoda.

Problem je mogućnost nastanka nitrozamina (vidi ‘Nitrati’ u poglavlju ‘Ostaci od tretiranja biljaka’) i velik

broj epidemioloških studija je utvrdio povezanost unosa mesnih preraĎevina i konzerviranog povrća i raka,

u prvom redu, probavnog trakta.

Sumpor dioksid i sulfiti (E220 – E228) se koriste za konzerviranje vina, piva, voćnih sokova, kašica, i

sl., oslobaĎanjem sulfitne kiseline u dodiru s vodom. Potpuno su netoksični za pokusne ţivotinje. Uočeno je

jedino da razaraju tiamin. Kod osjetljivih osoba izazivaju astmu nealergijskim mehanizmom.

Antioksidansi spriječavaju oksidativno kvarenje hrane koje podrazumijeva promjene boje ili okusa

namirnice djelovanjem kisika iz zraka, smanjenje hranjive vrijednosti hrane i potencijalni nastanak

toksičnih tvari. Dok kod mikrobiološkog kvarenja prvenstveno dolazi do gubitka ugljikohidrata i

bjelančevina, kod oksidativnog kvarenja dolazi do razgradnje masti (mahom esencijalnih masnih kiselina,

uz nastajanje aldehida i ketona koji takvoj namirnici daju neugodan miris i okus), te vitamina A, D, E, K, i

C. Najučinkovitije spriječavanje oksidativnog kvarenja je uz pomoć antioksidansa i sekvestranata. Često se

koriste sintetski spojevi jer su potentniji od prirodnih i učinkoviti u malim koncentracijama bez utjecaja na

okus, miris, ili boju proizvoda.

COOHNH2CH2COOH

CoA SH

C

O

NH CH2COOH

hipurna kiselinabenzojeva kiselina

COOH

Page 94: Klapec Tox Hrane 2008 Oksidacije

93

Askorbinska kiselina, soli i esteri masnih kiselina (E300 – E304).

Ova esencijalna tvar, široko rasprostranjena u biljkama, se koristi i kao

antioksidans u namirnicama. Askorbinska kiselina i askorbati su topljivi u

vodi, dok se esteri masnih kiselina (npr. askorbil palmitat) mogu

primjenjivati i u namirnicama poput margarina. Askorbinska kiselina se u

organizmu brzo oksidira u dehidroaskorbinsku kiselinu (DHAK), koju GSH

moţe reducirati nazad u izvorni oblik. Većina studija nije utvrdila nikakvo toksično djelovanje, osim pokusa

s DHAK, koja je ponavljanim intravenoznim ubrizgavanjem izazvala dijabetes kod štakora. Iako je

relevantnost dotičnog pokusa upitna, sličnim ispitivanjem s ljudima nije ustanovljen dijabetogeni učinak.

Unos askorbinske kiseline kao aditiva nije velik i teško se mogu očekivati ikakvi štetni učinci, uključujući

prooksidantni učinak viših doza i oksidaciju DNA baza tijekom primjene prehrambenih dodataka (vidi

‘Suplementi prehrani’). Primjer vitamina C dobro ilustrira dvostruka mjerila kojima su potrošači skloni pri

procjeni prirodnih i sintetskih aditiva. Naime, slično askorbinskoj kiselini, neki sintetski aditivi često

izazivaju štetu pokusnim ţivotinjama tek kod megadoza.

Tokoferoli (E306 – E309) su takoĎer prirodni antioksidansi iz biljaka, naročito koncentrirani u

sjemenkama. Zbog topljivosti u mastima se primjenjuju u uljima, umacima i sličnim proizvodima. Obzirom

na kroničnu izloţenost tokoferolima iz hrane, moţda najrelevantnije studije njegovog učinka na zdravlje su

suplementacijske studije spomenute u poglavlju ‘Suplementi prehrani’, iako je kod primjene kao aditiva

riječ o znatno niţim razinama.

Galati (E310 – E312) tj. propil, oktil i dodecil galat, se

koriste u biljnim uljima i maslacu. Brzo se razgraĎuju

esterazama i/ili dolazi do metilacije OH skupina i izlučivanja.

Većina studija nije utvrdila značajniju akutnu ni kroničnu

toksičnost. Tek koncentracije u hrani štakora više od 2%

uzrokuju zaostajanje u rastu i gubitak teţine, vjerojatno zbog

nevoljkosti štakora da jedu hranu gorku zbog galata.

Butilirani hidroksianisol (E320) se koristi u namirnicama s uljima i mastima. ADME: BHA se dobro

apsorbira u probavnom traktu i raspodijeljuje u masno tkivo. Metabolizira se demetilacijom hidroksilne

skupine, pri čemu nastaje terc-butil hidrokinon (TBHQ) koji se isto koristi kao

antioksidantni aditiv (E319). TakoĎer nastaju konjugati s glukuronskom

kiselinom ili sulfatom. Toksičnost i mehanizmi: Doziranjem štakora visokim

koncentracijama izaziva rak predţeluca. Budući da ljudi nemaju navedeni

organ, istraţivanja na drugim ţivotinjama bi trebala utvrditi moţe li

uzrokovati rak jednjaka ili ţeluca. Hipoteze koje nastoje objasniti ovakvo

djelovanje se temelje na sposobnosti BHA da aktivira AhR i preko njega inducira aktivnost P450

metaboličkih enzima. Citokromi P450 zatim, kod istovremene izloţenosti prokarcinogenima, ove mogu

pojačano bioaktivirati (vidi poglavlje ‘Interakcije pri istovremenoj izloţenosti različitim toksikantima’).

Naravno, moguća je i ubrzana razgradnja i detoksikacija prokarcinogena, što ovisi o molekuli i njenoj

interakciji s enzimimima koje BHA inducira. BHA inducira i enzime II faze poput glutation S-transferaze.

Izloženost ovom aditivu je procijenjena različitim metodam širom svijeta i uglavnom je srednji unos ispod

ADIja (ustanovljen je nešto viši unos u SADu zbog dozvoljenog dodatka u pića). Populacijske grupe s visokim unosom

specifičnih namirnica mogu imati unos koji je i 10 puta viši od prihvatljivog dnevnog unosa.

OO

HO OH

OH

HO

O

OH

HO

O

O

HO

OH

Page 95: Klapec Tox Hrane 2008 Oksidacije

94

Butilirani hidroksitoluen (E321) ili BHT je slične graĎe, iako nije

izazvao rak kod štakora. TakoĎer inducira metaboličke enzime (preko AhR)

te ima potencijalno sinergistički ili antagonistički učinak na djelovanje

karcinogena. BHA i BHT su najkorišteniji antioksidansi.

Boje popravljaju senzorska svojstva i prihvatljivost neke namirnice.

Prirodni pigmenti mnogih namirnica su nestabilni na toplinu ili oksidaciju,

pa skladištenje ili obrada namirnice mogu dovesti do promjene boje iako hranjiva vrijednost ostaje ista

(npr. bojaju se masline, neki umaci, sokovi, sirupi, i dr., uglavnom da se osigura jednolikost i prihvaćanje

potrošača jer promjena izgleda izaziva kod potrošača strah da je riječ o lošem ili patvorenom proizvodu).

Slatkiši, kolači, i sl., često imaju jarke boje radi privlačenja potrošača. Dodatni nedostatak prirodnih boja

je da nisu bistre i relativno je mali izbor. TakoĎer, prirodne boje nisu uvijek sigurnije od sintetskih (npr.,

karamel sadrži benz[a]piren u malim koncentracijama, dok je kurkumin (žuta boja curryja) 15 puta toksičniji od tartrazina).

Tartrazin (E102) je ţuta azo boja i jedno od najčešće korištenih bojila. Uglavnom se koristi u

proizvodnji tzv. junk fooda

(hrana niske hranjive vrijednosti

poput slatkiša i grickalica).

Potpuno je netoksičan za

pokusne ţivotinje, dok su kod

ljudi uočene blage alergijske

reakcije (uglavnom urtikarija,

vrlo rijetko astma ili anafilaktički šok). Unos tartrazina navodno doprinosi hiperaktivnosti djece (vidi dolje).

Amarant (E123) je crvena azo boja koja se često koristi u namirnicama crvene ili smeĎe boje.

Zabranjen je u SADu nakon testa kronične toksičnosti na štakorima kojim je utvrĎena karcinogenost.

Kasnija testiranja nisu potvrdila ove rezultate. Naknadna analiza izvorne studije (WHO/FAO Joint Expert

Commission on Food Additives, JECFA) je utvrdila niz manjkavosti, pri čemu je najvaţnija nečistoća

preparata kojim su ţivotinje tretirane, te je amarant ostao na listi dozvoljenih aditiva u većini zemalja

svijeta. Amarant se moţe reducirati glukozom ili fruktozom (vodena sredina, viša temperatura) u amine i

hidrazine koji bi mogli biti toksikološki značajni.

Feingold je 1970. godine postavio hipotezu po kojoj unos umjetnih boja i benzoata smatra uzročnicima

hiperaktivnosti kod djece. Originalna teza je višestruko testirana uz kontradiktorne nalaze. TakoĎer,

potpuno isključivanje sumnjivih aditiva iz prehrane (tzv. Feingoldova dijeta) većinom nije rezultiralo

izostankom simptoma. Engleska studija iz 2007. godine je utvrdila nešto povećanu hiperaktivnost kod dvije

skupine djece koja su konzumirala sokove s dvije različite smjese benzojeve kiseline i boja. Ovo je

nadleţnu agenciju za hranu u UK (Food Standards Agency) potaklo na preporuku smanjenja unosa sokova i

slatkiša hiperaktivne djece. S druge strane, kritičari zaključaka studije smatraju da razlika u

hiperaktivnosti nije velika i da će moţda više problema kod djece izazvati zabrane namirnica koju

konzumiraju vršnjaci. Europska agencija za sigurnost hrane (European Food Safety Agency, EFSA) takoĎer

smatra da rezultati dotične i sličnih studija ne dokazuju vezu aditiva i hiperaktivnosti.

Arome i pojačivači okusa uključuju oko 3000 različitih prirodnih i sintetskih kemikalija. Neki od

najpoznatijih i najozloglašenijih su navedeni u nastavku.

Saharin (E954) je sladilo koje se koristi kao samostalni pripravak ili u

namirnicama, najčešće u kombinaciji s ciklamatom i drugim zaslaĎivačima.

Organizam ga brzo izlučuje urinom bez metabolizma. Inače je riječ o nukleofilnoj

O

OH

NN

N

N

NaOOC

OH

SO3Na

NaO3S

SO2

NH

O

Page 96: Klapec Tox Hrane 2008 Oksidacije

95

molekuli te je malo vjerojatna reakcija s DNA. Kod štakora hranjenih vrlo visokim dozama, neusporedivim s

uobičajenom izloţenošću ljudi, je utvrĎen povećan rizik raka mokraćnog mjehura, što je u SADu izmeĎu

1981. i 2000. godine rezultiralo obvezom isticanja upozorenja o

potencijalnoj karcinogenosti na proizvodima. Naknadno je uzeta u

obzir činjenica da u mokraćnom mjehuru štakora postoje specifični

uvjeti koji potiču proliferaciju stanica u prisustvu velikih količina

stranih tvari, te je skinut s popisa karcinogenih tvari.

Ciklaminska kiselina i soli (E952) se relativno slabo apsorbira (37%) u GITu i

izlučuje urinom bez metabolizma. Crijevna mikroflora prevodi oko trećine ciklamata iz

hrane u cikloheksilamin koji se moţe apsorbirati. Pokusima na ţivotinjama je, slično

saharinu, utvrĎen veći rizik razvoja raka mokraćnog mjehura kod jako visokih doza.

Cikloheksilamin, moţda djelujući kao endokrini disruptor, sniţava cirkulirajuće razine

testosterona (izazivajući atrofiju testisa i inhibiciju spermatogeneze). Ispitivanjem na primatima (uz doze

od 500 mg/kg tj. t. što odgovara unosu oko 30 dijetnih pića ili 24 g ciklamata) nije utvrĎeno karcinogeno

djelovanje. Ipak, i dalje je zabranjen u zabranjen u SADu, za razliku od preporuka WHO/FAO.

Aspartam (E951) je aspartil-fenilalanin-metilester, sladilo čija je uporaba dozvoljena u većini

zemalja. Budući da je riječ o dipeptidu, već u probavnom traktu

se razgraĎuje na aspartat, fenilalanin i metanol. UtvrĎeno je da

se otprilike 70% unešenog aspartama izluči u obliku CO2, što znači

da se najvećim dijelom metabolizira putevima uobičajenim za

molekule od kojih se sastoji. Kao produkt razgradnje u

organizmu, ali i spontano u samom pripravku sladila, mogu

nastati male količine diketopiperazina koji ne djeluje štetno. Po

nekim autorima, problematično svojstvo aspartama je sposobnost

prelaska krvno-moţdane barijere i oslobaĎanje metanola u

stanicama mozga. Ovaj se moţe oksidirati do formaldehida koji djeluje mutageno što bi moglo povećavati

rizik nastanka raka. Kao izvor fenilalanina, fenilketonuričari (naročito homozigoti) (nefunkcionalan gen

fenilalanin hidroksilaze koja prevodi Phe u Tyr, uslijed čega nedostaje tirozina; visoke koncentracije Phe ujedno zasićuju

tzv. transporter velikih neutralnih aminokiselina (Leu, Ile, Val, Trp) koji prebacuje ove aminokiseline preko krvno-moždane

barijere, što dovodi do smanjenja njihove koncentracije u mozgu i mentalne retardacije djece ukoliko se bolest ne nadzire)

moraju izbjegavati unos ovog sladila. Temeljem nekih istraţivanja, po kojima je aspartam mutagen nakon

nitrozacije te izaziva rak mozga tretiranih štakora, skupina autora je postavila hipotezu po kojoj su

povećane stope raka mozga kod ljudi od 1980ih povezane s pojavom ovog sladila na trţištu. Ovo pitanje je

pouzdano razriješeno američkom studijom na 470 000 ispitanika kojom je praćena incidencija raka

hematopoetskog sustava (limfomi, leukemije) i mozga u ovisnosti o unosu aspartama, te je utvrĎeno da

nema većeg rizika raka konzumacijom aspartama.

Inače, provedena su brojna istraţivanja o vezi unosa kombinacije sladila i raka kod ljudi. Većina je

negativna, osim jedne studije (studija slučajeva i kontrola, kod kojih se kontrolnim ispitanicima i

pacijentima oboljelim od raka mokraćnog mjehura, odreĎenim dijetetičkim metodama procijeni unos

sladila (pacijentima se procijenjuje unos prije pojave bolesti) koja je kod podskupine s velikim unosom

sladila (1680 mg dnevno) utvrdila 30% veći rizik (ista studija je utvrdila 40% viši rizik i kod velikih konzumenata kave

s unosom većim od 50 šalica tjedno). Ispitanici s unosom do 1680 mg kombinacije sladila nisu imali veći rizik

obolijevanja od kontrola.

NHSO3Na

NH

O

O

OCH3H3N

+

COO_

Page 97: Klapec Tox Hrane 2008 Oksidacije

96

Sorbitol (E420) se koristi kao sladilo, emulgator i humektant, uglavnom u ţvakaćim gumama i

bombonima. Slabo se apsorbira u probavnom traktu i veţe dosta vode na sebe (povećava osmotski tlak).

Crijevna mikroflora ga fermentira uz oslobaĎanje plina. Kod velikih konzumenata moţe izazvati probavne

tegobe (jedan paketić guma za ţvakanje ga sadrţi 1 g, dok je za izazivanje probavnih smetnji potrebno oko

20 g) koje uključuju laksativni učinak i grčeve što kronično moţe izazvati i gubitak tjelesne teţine.

Glutaminska kiselina i soli (E620 – E625) su pojačivači okusa. Najpoznatiji je MSG (monosodium

glutamate) tj. mononatrij glutamat. Budući da je riječ o soli aminokiseline, slobodni i vezani glutamat se i

inače nalazi u hrani u prilično visokim koncentracijama. Čini oko 20% sastava bjelančevina, a najviše ga

sadrţavaju hidrolizirane biljne bjelančevine, kvaščev ekstrakt, sušena rajčica i gljive (15 g/kg), sir,

naročito parmezan (12 g/kg), itd. Unatoč tomu, rasprave o njegovoj moţebitnoj toksičnosti ne posustaju.

ADME: Slobodna L-Glu se slabo apsorbira u GITu jer nije topljiva. MSG se vrlo dobro apsorbira, ali ne

prelazi sav apsorbirani glutamat u cirkulaciju.

Već u stanicama crijevne sluznice dolazi do

metabolizma odnosno transaminacije

glutamata uz piruvat i nastanak α-

ketoglutarata (kojim se glutamat uključuje u

citratni ciklus) i alanina. Time se dobar dio Glu

razgraĎuje do energije već u enterocitima, a

ovaj udio je povećan unosom hrane bogate

ugljikohidratima što podrazumijeva više

piruvata potrebnog za provedbu reakcije

transaminacije. Toksičnost glutamata se najčešće veţe uz tzv. sindrom kineskog restorana (glavobolja,

ošamućenost, lupanje srca, znojenje i crvenilo lica) koji navodno nastaje zbog nagle apsorpcije velikih

količina slobodnog glutamata koji inače sudjeluje u prijenosu ţivčanih impulsa. UtvrĎeno je i da pojedini

astmatičari mogu imati pojačane teškoće s disanjem zbog bronhokonstrikcije izazvane MSGom. Glutamat,

kao i neki drugi sastojci hrane poput aspartata iz aspartama, cisteina i toksičnih aminokiselina koje

izazivaju latirizam (vidi ‘Biljni toksini’), su uvršteni u skupinu tzv. ekscitotoksina. Hipoteza kreće od

činjenice da ovi spojevi djeluju kao ekscitacijski neurotransmiteri u mozgu, pa bi ovi spojevi iz hrane mogli

remetiti uobičajenu signalizaciju u neuronima (npr. glutamat se veže za NMDA (N-metil-D-aspartat) receptore i

prejaka stimulacija može dovesti do povišenja koncentracije Ca2+ iona i smrti neurona). Preduvjet za to je prelazak

preko krvno-moţdane barijere što je ovim spojevima prilično oteţano. Koncentracije u krvi potrebne za

dovoljan prelazak glutamata preko krvno-moţdane barijere se teško mogu postići unosom hrane jer su

vršne koncentracije ograničene neugodnim okusom kod unosa velikih količina. Većina studija koja je

utvrdila štetni, ekscitotoksični učinak na mozgu (hipotalamusu) pokusnih ţivotinja (naročito novookoćenih

miševa), bazirana je na megadozama (500 mg/kg tj. t. što bi za čovjeka prosječne teţine značilo unos od

oko 30 g MSG) ili izravnom injiciranju tvari u mozak. Postoje dokazi da su miševi znatno osjetljiviji na

djelovanje glutamata od ostalih sisavaca, mada autori hipoteze smatraju da su dojenčad, mala djeca i

starije osobe osjetljiviji na glutamat i ekscitotoksine od odraslih zbog nedovoljno razvijene krvno-moţdane

barijere. Uočeni utjecaj glutamata na debljanje glodavaca (remeti nadzor apetita u hipotalamusu) potakao

je formuliranje hipoteze o njegovoj ulozi u svjetskoj epidemiji debljine, mada su epidemiološka

istraţivanja proturječna. Nedavno je utvrĎen utjecaj unosa glutamata (visokih razina!) hranom na

sniţavanje cirkulirajućih razina hormona rasta (koji ima lipolitičko djelovanje) i posljedično debljanje štakora.

Izloženost: Regulatorne agencije glutamat svrstavaju u skupinu najsigurnijih aditiva, pa tako po

H3N

+

COOH

COO

_

COOH

COO_

O

COOH

O

COOH

NH3

+

Glu ketoglutarat

piruvat Ala

Page 98: Klapec Tox Hrane 2008 Oksidacije

97

zakonodavstvu EU ulazi u skupinu aditiva kojima nije specificiran ADI, dok u SADu ima GRAS status. Ukupan

dnevni unos (EU) se kreće izmeĎu 5 i 12 g, pri čemu je 1 g slobodan, 10 g u sklopu bjelančevina i tek 0,4 g

u vidu dodataka.

Ostali aditivi koji bi potencijalno mogli imati nepovoljan utjecaj na zdravlje konzumenata su:

Simplesse koji se koristi kao zamjena za mast. Riječ je o mikročesticama bjelančevina (npr.

mliječni proteini) kojim se mogu unijeti novi alergeni u (dijetne) namirnice u kojima ih osjetljive osobe ne

očekuju.

Olestra (E473, E474) je smjesa okta i heptaestera saharoze i masnih kiselina. Osim kao zamjena za

mast, ima i emulgatorska svojstva. Neapsorbira se u probavnom traktu te, akutno visokim i/ili kroničnim

unosom, moţe dovesti do probavnih tegoba (blagi oblik fekalne inkontinencije), kao i slabije apsorpcije

korisnih fitokemikalija i vitamina topljivih u masti (ali i dioksina npr.).

Ugljik dioksid (E290) je tzv. propelant (jer ‘podiţe’ gazirane tekućine), ali daje i specifični, poţeljni

okus i pjenu pićima. Prema rezultatima jedne epidemiološke studije, kroničan unos gaziranih pića, naročito

u kombinaciji s jelom, moţe povećati rizik raka jednjaka. Pretpostavlja se da bi to moglo biti vezano uz

iritaciju stanica jednjaka kiselim sadrţajem ţeluca, uslijed dizanja ţelučanog sadrţaja oslobaĎanjem CO2.

Stanice jednjaka nisu navikle na ţelučanu kiselinu za razliku od stanica ţeluca, odumiru i dolazi do

kompenzacijske proliferacije stanica (ubrzanog dijeljenja stanica da bi se nadoknadile odumrle) i veće

vjerojatnosti mutacija i nastanka stanice raka.

Aluminij se nalazi u brojnim spojevima koji se koriste kao aditivi, npr.: natrij-aluminij fosfat (E541)

u prašku za pecivo kao sredstvo za dizanje, aluminij silikati (E554 – E556, E559) u nekim sirevima kao

sredstva protiv sljepljivanja, kalij-aluminij ili natrij-aluminij sulfat (E521, E522) u mariniranom povrću radi

odrţanja čvrstoće i kao regulatori kiselosti, aluminij-amonij sulfat (E523) kao stabilizator, aluminij sulfat

(E520) kao sredstvo za bistrenje, itd. Aditivi, očito, mogu znatno doprinijeti ukupnom unosu Al hranom i

vodom višem od ADIja i eventualnim štetnim posljedicama, izazvanim mahom kroničnim izlaganjem (vidi

poglavlje ‘Ostali elementi’).

Treba spomenuti i nedozvoljene aditive koji se ponekad mogu pronaći u patvorenim namirnicama.

Dobar primjer su tzv. sudan boje koje je nekoliko članica EU više puta detektiralo u hrani uvezenoj iz

zemalja u razvoju (Kina, Indija, Meksiko). Naime, ova nedozvoljena, industrijska bojila, na listi karcinogena

MeĎunarodne agencije za istraţivanje raka (International Agency for Research on Cancer, IARC), koriste se

za popravljanje boje proizvoda poput čilija, curryja, mljevene paprike,

umaka od rajčice, te palminog ulja i proizvoda. Kinu je 2008. godine

potresao skandal trovanja dojenčadi melaminom iz mlijeka u prahu.

Melamin je triazinski spoj (vidi ‘Triazinski pesticidi’), bogat atomima

dušika te se koristi za laţno povišenje sadrţaja ovog elementa, time i

bjelančevina, u razvodnjenom mlijeku (kineske vlasti su procjenile da

otprilike petina proizvoĎača i distributera mlijeka zlorabi melamin u svrhu

patvorenja). Trovanje je zabiljeţeno na više od 10000 djece uz nekoliko smrtnih slučajeva uslijed zatajenja

bubrega. Melamin dovodi do nakupljanja kamenaca u bubrezima i mokraćnom mjehuru. Neke studije su

utvrdile i karcinogeno djelovanje na pokusne ţivotinje (kroničnom izloţenošću visokim dozama).

T v a r i u d o d i r u s h r a n o m i v o d o m

Namirnice mogu sadrţavati i tzv. nenamjerne aditive tj. najrazličitije tvari koje migriraju iz opreme i

ambalaţe s kojima namirnica dolazi u dodir tijekom proizvodnje, skladištenja ili pakiranja. MeĎu

Page 99: Klapec Tox Hrane 2008 Oksidacije

98

najvaţnijim problemima je kontaminacija hrane metalima, te monomerima (većina monomera (vinil klorid,

stiren, akrilni esteri, epoksidi) su vrlo reaktivni nezasićeni spojevi, koji djeluju alergogeno, a neki i karcinogeno; monomeri

koji se koriste za proizvodnju poletilena, poliestera, i poliamida su manje reaktivni i vjerojatno manje opasni) ili

pomoćnim tvarima (plastifikatori, stabilizatori, otapala, boje) iz plastike.

Migracija metala iz posuĎa i ambalaţe ovisi o sastavu hrane, pH, prisustvu odreĎenih iona (npr.

citratni ioni poboljšavaju otapanje Al iz ambalaţe), i sl. Od metala zabiljeţeno je akutno trovanje cinkom i

kositrom (kisele namirnice u cinčanim posudama, ili cakline sa Sn), a moguće je i otapanje većih količina

olova, kromija, aluminija i bakra.

Olovo moţe posluţiti kao primjer potencijalnih izvora metala u dodiru s hranom. Veće količine se

mogu otopiti iz keramičkih ili lončanih posuda ukoliko su u dodiru s kiselim namirnicama. Olovo moţe

prijeći iz sačme u tkivu ustrijeljene divljači, otopiti se iz kotlova za destilaciju rakije izraĎenih

improvizacijom od dijelova automobila ili slično. Uočen je viši sadrţaj olova u vinu, pri čemu su kao uzrok

prepoznate ukrasne olovne folije kojima se omata grlo boca. Stajanjem se olovo nataloţi oko grla i ispire

tijekom izlijevanja vina. Prije zabrane su se koristile lemljene konzerve koje su značajno doprinosile

unosu, dok se olovne vodoinstalacijske cijevi zamijenjuju čeličnim ili polimernim. Kiselkasta ili mekana

pitka voda moţe otopiti više ovog metala iz cijevi, koje se još mogu pronaći u starim zgradama.

Vinil klorid je monomer iz kojeg se proizvodi PVC. Kod radnika izloţenih vinil kloridu pri

proizvodnji PVCa je uočena česća pojava raka jetre, a slično je uočeno i kod pokusnih

ţivotinja. Monomer se brzo i potpuno apsorbira u organizmu. Dva glavna karcinogena produkta mogu

stvarati adukte s DNA, a nastaju metaboličkom aktivacijom tj. oksidacijom citokromom P450 u epoksid, pa

alkohol dehidrogenazom u CHO CH2 Cl. Budući da se male količine monomera nalaze u plastičnim

proizvodima od PVCa, takav polimer se više ne koristi za pakiranje hrane. Ipak, poboljšanim načinom

proizvodnje i stvaranjem kopolimera s drugim tvarima, dobijaju se proizvodi u kojima ima znatno manje

ostataka monomera, koji se moţe koristiti za izradu ambalaţe namirnica i vodovodnih cijevi.

Bisfenol A je aditiv u plastici (polikarbonati, epoksi smole) koji moţe migrirati iz plastičnih boca i

premaza konzervi i druge ambalaţe. ADME: Potpuno se

apsorbira zbog lipofilnosti. Učinkovito se metabolizira u

glukuronid već prvim prolazom kroz stanice crijevne sluznice

i jetru i izlučuje urinom. Kod ljudi je vrlo malo slobodnog

oblika u krvi i mala je vjerojatnost prelaska placente i

nakupljanja u fetusu. Glodavci bi mogli biti osjetljiviji zbog izlučivanja glukuronida u ţuč i enterohepatskog

kruţenja koje usporava eliminaciju. TakoĎer, miševi jedan dio BPA oksidiraju citokromima P450 u

metabolite koji bi mogli biti jači estrogeni od početnog spoja. Toksičnost i mehanizmi: Bisfenol A je tzv.

ksenoestrogen tj. sintetska tvar (slabog) estrogenog djelovanja. UtvrĎeno je štetno djelovanje relativno

niskih doza na pokusnim ţivotinjama koje mogu djelovati razvojno-toksično na fetus izazivajući trajne

promjene reproduktivnih organa i ponašanja (povećanje prostate, smanjena plodnost mužjaka, promjena majčinskog

ponašanja, spolnog ponašanja, i dr.). Ţučna rasprava meĎu znanstvenicima se vodi o tome da li niske doze koje

ljudi unose putem hrane mogu izazvati slične estrogenske učinke i na ljudskim fetusima. Posljednja EFSAina

reevaluacija sigurnosti BPA je iznijela niz argumenata zašto rezultati pokusa s niskim dozama i nisu

najrelevatniji za ljude u konkretnom slučaju, uključujući poznatu osjetljivost miševa na estrogene, koja je

znatno veća od osjetljivosti ljudi. Izloženost: Procijenjen ukupni dnevni unos (konzervativnim odnosno

precijenjenim pristupom) u EU je 1,5 g/kg tj. t. za odrasle (procjena unosa uz BPA biomarkere u urinu se

kreće u opsegu 0,04 - 0,16 g/kg tj. t.), dok je TDI 50 g/kg tj. t. Tromjesečna dojenčad hranjena samo

Cl

HO OH

Page 100: Klapec Tox Hrane 2008 Oksidacije

99

majčinim mlijekom unose 0,2 g/kg, ona hranjena komercijalnom dječjom hranom (bez polikarbonatnih

bočica) 2,3 g/kg, dok djeca hranjena iz takvih bočica unose 11 g/kg tj. t.

Slično bisfenolu A se ponašaju drugi ksenoestrogenski fenolni spojevi poput oktil i nonilfenola.

Ftalati se koriste kao plastifikatori i postoji velik broj različitih spojeva.

Djeluju kao endokrini disruptori za pokusne ţivotinje tj. kao estrogeni i

antiandrogeni uz reproduktivne i razvojno-toksične posljedice. Posljednjih

godina je porastao broj indicija o štetnosti pojedinih predstavnika ovih spojeva i

uobičajenim unosom putem hrane. Najznačajnija je, ponovno, izloţenost ovim

tvarima za vrijeme fetalnog razvoja (jedna studija je utvrdila da je meĎu

muškom djecom koja su bila izloţena višim koncentracijama antiandrogenog

dietilheksil ftalata za vrijeme trudnoće bio veći udio jednog indikatora malformacija reproduktivnih organa

(tzv. anogenitalna udaljenost)). Ustanovljene su i više razine estrogenih ftalata u krvi djevojčica uranjenog

puberteta, iako studija nije isključila unos ostataka anabolnih hormona putem mesa ili fitoestrogena u

dječoj hrani. Unos ftalata je ispod TDIja za odrasle i djecu u zemljama EU. Najveći doprinos unosu kod

djece su ionako imale plastične igračke, pa je uporaba ftalata u njihovoj izradi zabranjena u EU od 1999.

godine.

Semikarbazid H2N-NH-CO-NH2 je produkt brtvila koje se koristi u poklopcima staklenki.Istraţivanja

ukazuju na slabo karcinogeno djelovanje što je potaklo na daljnja istraţivanja njegovih svojstava i razina u

namirnicama.

Perfluoroktanska kiselina (PFOA) C7F15COOH se koristi u proizvodnji teflona i drugih fluoropolimera

(npr. papira za omatanje hrane; daje otpornost na masnoću). Tragovi PFOA mogu preći u hranu, naročito

pri zagrijavanju (uočeno kod pakovanja kokica za mikrovalnu pećnicu). Postoje indicije da bi mogla biti

karcinogena i teratogena. Obzirom da se teško razgraĎuje u okolišu, EPA inzistira na eliminaciji njene

uporabe do 2015. godine. PFOA i ostali perfluorirani surfaktanti se nerijetko mogu naći u visokim

koncentracijama u vodi za piće.

Policiklički aromatski ugljikovodici mogu iz smola i boja rezervoara i cijevnog distribucijskog

sustava prelaziti u vodu za piće. Stoga je WHO preporučio da se u postrojenjima za pročišćavanje vode ne

koriste boje i smole na bazi katrana i asfalta. PAH u vodi za piće mogu doprinijeti ukupnom unosu ovih

spojeva iz drugih izvora (vidi poglavlje o ovim spojevima pod ‘Toksikanti iz industrijskog otpada i prirodnog

okoliša’).

Nastanak i migracija dioksina iz plastične ambalaţe podgrijavane u mikrovalnim pećnicama je

urbani mit. Dioksin je poliklorirani ugljikovodik i za njegovo nastajanje je potreban klor kojeg nema u

plastici predviĎenoj za uporabu u mikrovalnim pećnicama. TakoĎer, ova reakcija se odvija na

temperaturama (350 C) koje se u MW pećnicama ne postiţu. Vezana dezinformacija je i tvrdnja da je

polistirenska pjenasta ambalaţa povučena s trţišta upravo zbog prisustva dioksina. Prava istina je da se ova

ambalaţa sve manje koristi zbog korištenja freona u proizvodnji.

TTToookkksssiiikkkaaannntttiii kkkooojjjiii nnnaaassstttaaajjjuuu ooobbbrrraaadddooommm hhhrrraaannneee

Neki postupci obrade hrane poput kuhanja, dimljenja ili salamurenja poboljšavaju okus, izgled, teksturu

namirnice, takoĎer odrţivost i probavljivost (ubijaju ili zaustavljaju rast mikroorganizama i deaktiviraju

toksine poput inhibitora enzima). Istovremeno, na višoj temperaturi moţe doći do kemijskih promjena koje

smanjuju prehrambenu vrijednost, a nastaju i neke toksične tvari poput policikličkih aromatskih

O

O

O

O

R

R

Page 101: Klapec Tox Hrane 2008 Oksidacije

100

ugljikovodika, pirolizata aminokiselina ili proteina, produkata autooksidacije masti, i sl. Toksikanti nastaju

i postupcima obrade poput salamurenja, tretiranja ionizirajućim zračenjem, fermentacijom, i dr.

T o k s i k a n t i u g e n e t s k i m o d i f i c i r a n o j h r a n i

Hipotetski, genetskim inţenjeringom se mogu uvesti ili pojačati toksična svojstava hrane zbog:

1-Toksičnosti eksprimiranog proteina poput poznatog slučaja Pioneer Hi-Bred soje kojoj je dodan gen za

protein bogat aminokiselinama sa sumporom radi popravljanja proteinskog sastava soje. MeĎutim, nova

bjelančevina potječe iz brazilskog oraha i poznati je alergen.

2-Potencijalnih sekundarnih štetnih učinaka ekspresije transgena poput metabolita koji nastaju enzimskom

aktivnošću eksprimiranih proteina ili uvoĎenja gena za enzime (najčešće daju otpornost na herbicide, npr.

oksidaze ili transferaze) koji, ukoliko su male specifičnosti, mogu metabolizirati i druge agense kojima se

biljke tretiraju uz nastajanje nedovoljno poznatih produkata.

3-Umetanja transgena koje potencijalno izaziva insercijsku mutaciju ili genomsko preureĎenje što moţe

dovesti do amplifikacije gena ili reaktivacije relativno neaktivnog metaboličkog

puta ili obratno, do inaktivacije gena i supresije metaboličkog puta. Posljedice

mogu biti više razine prirodnih toksikanata ili strukturne promjene sastojaka.

MeĎutim, promjena ekspresije gena uz uvoĎenje ili amplifikaciju toksičnih

svojstava je dokazano moguća i kod metoda konvencionalnog kriţanja (koje često

pribjegavaju i namjernom izazivanju mutacija primjenom radioaktivnog zračenja ili

kemijskih agenasa s ciljem dobivanja novih, boljih svojstava). MeĎu poznatijim je

slučaj Magnum Bonum sorte krumpira koja je sklona nakupljanju visokih razina

solanina u gomolju za hladna vremena. Ovo, naravno, ne znači da su

konvencionalne metode inherentno loše i nepoţeljne, što je etiketa koja se olako dodijeljuje genetskom

inţenjeringu (na gornjoj slici je višestoljetni rezultat križanja sorti kukuruza, od početnog oblika do danas, koji dobro

ilustrira potencijalnu korist od genetskog inženjeringa).

Postoji i zabrinutost oko primjene DNA biljnih virusa kao promotorske regije (osigurava ekspresiju

gena nakon uklapanja u DNA stanice domaćina) u transgenskim konstruktima. Smatra se da bi dio ovakve

virusne DNA mogao rekombinacijom sklopiti i reaktivirati ostatke virusne DNA uklopljene u humanu DNA

(npr., 1% humane DNA čine ostaci retrovirusa poput virusa gripe, koji ostaju trajno u sastavu DNA domaćina i prenose se

potomstvu). Posebno problematični bi trebali biti tzv. onkogeni virusi koji potiču transformaciju stanice u

stanicu raka (vidi ‘Karcinogenost’). MeĎutim, vjerojatnost takvog dogaĎaja je minimalna, jer je velik

postotak biljne hrane i inače inficiran biljnim virusima, ali, historijski gledano, nepovoljni učinci na ljudski

genom nisu uočeni. Neki autori smatraju da bi genetska modifikacija mogla potaknuti aktivaciju

transpozona (kratke sekvence DNA koje se kopiraju i premještaju unutar genoma i koje čine i do 40%

ukupne DNA eukariota; mogu izazivati mutacije i smatraju se parazitima na DNA, slično virusima), mada je

ona prilično česta i u nedirnutom genomu. Premještanje transpozona s jedne vrste na drugu se takoĎer

dogaĎalo tijekom evolucije, ali bez uočljivih negativnih posljedica.

Problem GM DNA u probavnom traktu se svodi na hipotetsku ugradnju u DNA stanica domaćina.

UtvrĎeno je da odreĎen udio DNA tj. gena moţe preţivjeti uvjete u GITu. Primjerice, detektirano je

prisustvo gena kloroplasta u stanicama krava, mada to ne znači da će do vrlo nevjerojatnog dogaĎaja, tj.

ugradnje i ekspresije tih gena u genom domaćina, doista i doći (GM biljkama se ne ugraĎuju geni otpornosti na

antibiotike jer je zamisliv prijenos DNA sekvenci crijevnoj mikroflori i nastanak rezistentnih sojeva bakterija). Krava

dnevno konzumira oko 600 mg DNA, kako iz biljne hrane, tako i iz kontaminirajućih mikroba i drugih

Page 102: Klapec Tox Hrane 2008 Oksidacije

101

organizama. Obzirom na vrlo dugu povijest unosa DNA, malo je vjerojatno da će slična konzumacija kod

ljudi, zajedno s malim doprinosom GM DNA, utjecati štetno na zdravlje ljudi.

Rasprave o štetnosti GM organizama su se naročito zahuktale nakon objave rada Pusztaija i

suradnika s GM krumpirom. Eksprimirani produkt je bio GNA (Galanthus nivalis (visibaba) aglutinin) lektin i

prehrana takvim krumpirom je izazvala oštećenja probavnog trakta kod štakora. Objašnjenje autora je bilo

da je štetni učinak posljedica same genetske modifikacije, a ne ekspresije lektina (inače poznatih kao

gastrointestinalnih toksina, vidi ‘Lektini’). Naknadni radovi su demantirali navedene rezultate, a i sama

metodologija je kritizirana s više ključnih aspekata. Pri testiranju GM organizama je predloţeno bolje

postaviti eksperiment da bi se razabralo da li su eventualni štetni učinci posljedica djelovanja genskog

produkta ili je riječ o sekundarnim učincima genske modifikacije. Npr., testiranjem izvorne biljke, GM

biljke, i GM biljke s dodanim genskim produktom. Ukoliko se dobije pozitivna veza doze genskog produkta i

toksičnog odgovora, šteta je uzrokovana genskim produktom. Ukoliko nema razlike izmeĎu GM biljke sa i

bez dodatka, toksičnost je posljedica genske modifikacije.

Svejedno, trenutno vaţeći zahtjevi za procjenu rizika GM biljaka prije autorizacije za područje EU

(EFSA, 2006 link na dokument), ostavljaju jako malo prostora za komercijalizaciju i uzgoj ‘opasnih’ kultura i

pripravu hrane od istih. Najvaţnije metode ispitivanja uključuju tzv. koncept značajne podudarnosti, kojim

se usporeĎuje sastav GM biljke u odnosu na izvorni, netransgenski oblik. Pouzdana je i primjena

metabolomike i proteomike za profiliranje svih nastalih metabolita i proteina, te svakako najpouzdanije i

neizostavno, testiranje na ţivotinjama, poradi utvrĎivanja eventualno propuštenih učinaka prethodnim

testovima.

P r o d u k t i M a i l l a r d o v e r e a k c i j e i t e r m i č k e o b r a d e

Produkti Maillardove reakcije nastaju reakcijama neenzimatskog posmeĎivanja, naročito tijekom

termičke obrade. Sastav namirnice, pH, aw i temperatura utječu na odvijanje ovih reakcija (npr., više

proteina, manje vode u namirnici, rezultirat će s većom mutagenosti produkata). Početna reakcija je

izmeĎu reducirajućih šećera (karbonila) i spojeva s amino skupinom (aminokiseline, alkilamini,

bjelančevine tj. najčešće Lys ostaci u lancu, i dr.), pri čemu nastaju N-glikozilamini, pa Amadori produkti i

nakon niza reakcija, uključujući polimerizaciju, melanoidini i heterocikličke molekule. Nastaje velik broj

različitih spojeva. Ukoliko ove reakcije uključuju meĎusobno povezivanje proteinskih lanaca, nukleinskih

kiselina i lipida, govori se o tzv. AGE (advanced glycation endproducts = konačni produkti uznapredovale

glikacije) spojevima. AGE

nastaju i endogeno i

povezuju se s dijabetesom

i starenjem. Neki od

najčešćih AGE (npr. N-

karboksimetillizin, CML) se

koriste kao pokazatelji

njihove prisutnosti u hrani.

Ispitivanjem udjela CML u hrani je utvrĎeno da najviše ovih spojeva sadrţe namirnice bogate mastima

(maslac, maslinovo ulje, majoneza, bademi) i bjelančevinama (sirevi, meso, tofu, jaja). Sintezi AGE pogoduje

prooksidantna okolina te slobodni radikali nastali reakcijama autooksidacije kataliziraju nastanak ovih

spojeva (ujedno nastaju i ALE (advanced lipoperoxidation endproducts = konačni produkti uznapredovale

lipoperoksidacije). Ustanovljena su, mutagena i antimutagena, karcinogena i antikarcinogena (npr., dok

Page 103: Klapec Tox Hrane 2008 Oksidacije

102

Maillardovom reakcijom i termičkom obradom nastaje karcinogeni akrilamid, istovremeno nastaje CML koji

inducira enzime II faze, poput GST i UGT, ubrzavajući detoksikaciju akrilamida), te prooksidantna i

antioksidantna svojstva različitih Maillardovih produkata. AGE spojeve iz hrane se dodatno nastoji povezati

s različitim bolestima (dijabetes, bolesti bubrega, kardiovaskularne bolesti, Alzheimerova bolest, i dr.),

mada odreĎeni krugovi istraţivača smatraju da su slabo toksični zbog ograničene apsorpcije i brzog

izlučivanja. Toksičnost se pripisuje samom procesu glikacije koji mijenja svojstva molekula (npr., kod

stvaranja mostova izmeĎu lanaca proteina ekstracelularnog matriksa poput kolagena i elastina, što

umanjuje elastičnost ovih proteina, a time i mišićnog tkiva (srce) u čijoj graĎi sudjeluju). Dio učinka se

pripisuje i reakciji s tzv. RAGE receptorom koji aktivira transkripcijski faktor NF-κB (nuclear factor-kappa

B) koji potiče ekspresiju gena (citokini, adhezijski faktori, protrombički faktori, itd.) uključenih u upalni proces.

Kronična inflamacija čini temelj ili ubrzava gore navedene bolesti.

Furan u prvom redu nastaje termičkom obradom namirnica u staklenkama i konzervama. Najviše

koncentracije su izmjerene u kavi, dječjoj hrani i dječjim formulama te konzerviranom povrću.

ADME: Brzo se apsorbira i zadrţava u jetri gdje se bioaktivira citokromima P450 u cis-2-buten-

1,4-dial. Toksičnost i mehanizmi: Pokusi na ţivotinjama upućuju na karcinogenost furana. Ona

bi se mogla pripisati djelovanju metabolita koji remeti oksidativnu fosforilaciju i proizvodnju ATPa.

Nedostatak istog dovodi do aktivacije endonukleaza (cijepaju DNA) i nastanka mutacija. Izloženost furanu

putem hrane je slična dozama koje izazivaju rak kod pokusnih ţivotinja.

Heterociklički aromatski amini su produkti Maillardove reakcije i termičke obrade (nastaju u

procesu pirolize na visokim temperaturama) hrane bogate bjelančevinama. TakoĎer, u mišićnom tkivu

mogu nastati reakcijom kreatina ili kreatinina i slobodnih aminokiselina i pri niţim temperaturama (150 C).

Faktori koji utječu na formiranje ovih

spojeva su vrsta namirnice (znatno više ih

nastaje obradom mesa (naročito govedine),

nego u biljnim proizvodima, mliječnim

proizvodima ili ribi), temperatura i vrijeme

zagrijavanja, vrsta termičke obrade (roštilj

i prţenje > kuhanje) te sadrţaj vode i

prekursora. Testovi genotoksičnosti su

utvrdili snaţan učinak pojedinih spojeva

(amino-metilimidazokinolin, IQ ili amino-

dimetilimidazokinoksalin, MeIQx), dok se nekolicina pokazala i karcinogenim za pokusne ţivotinje (PhIP).

Epidemiološke studije su utvrdile vezu izmeĎu unosa crvenog mesa i raka, te se bar dio razloga temelji na

unosu HAA.

Akrilamid je izmjeren u visokim razinama u prţenoj i pečenoj hrani 2002.

godine, što je potaklo procjenu sigurnosti hrane koja ga sadrţi. Nastaje termičkom

obradom hrane bogate ugljikohidratima poput kave, ţitarice i proizvoda ili

krumpira. Najviše razine su upravo u čipsu, zatim prţenim krumpirićima, keksima,

krekerima, ţitnim pahuljicama, kavi, pekarskim proizvodima, itd. Pri temperaturi od 120 C i niskom

sadrţaju vlage, sintetizira se iz asparagina koji reagira s reducirajućim šećerima (glukoza, fruktoza). Moguć

je i nastanak iz masti, gdje akrilna kiselina i akrolein (nastaju oksidacijom i pregradnjom glicerola) daju

akrilamid reakcijom s amonijakom. ADME: Pokusima na ţivotinjama je utvrĎena brza apsorpcija, raspodjela

i izlučivanje akrilamida. Smatra se, ipak, budući da se ţivotinjama obično daje vodena otopina ovog spoja,

O

COOH

NH2

N NH

HOOC

NH2

N N

N

NH2

PhIP (fenilimidazopiridin)

NH2

O

Page 104: Klapec Tox Hrane 2008 Oksidacije

103

da bi apsorpcija iz hrane mogla biti znatno slabija. Metabolizira se uz citokrome P450 do glicidamida (što je

zapravo epoksid na dvostrukoj vezi akrilamida) koji je, zajedno sa svojim daljnjim metabolitima, oblik koji

se moţe vezati za DNA. Alternativno, akrilamid i glicidamid se mogu detoksificirati konjugacijom s GSH.

Toksičnost bi, zbog potencijala stvaranja adukata na DNA i karcinogenosti za ţivotinje, mnogla

podrazumijevati i karcinogenost za ljude. S druge strane, nekoliko velikih epidemioloških studija nije

utvrdilo vezu unosa prţene hrane i učestalosti raka. Izloženost: WHO je na temelju podataka o unosu iz

Skandinavskih zemalja, procijenio da se unos kreće izmeĎu 0,3 i 0,8 g/kg tj. t. Preporuka je da se unos

smanji na minimum ili eliminira jer je riječ o genotoksičnom karcinogenu za koje se smatra da nemaju prag

djelovanja. U meĎuvremenu je promjenama u samom proizvodnom postupku ključnih namirnica znatno

reducirana prisutnost akrilamida. Najosjetljiviji dio populacije su djeca, mladi (čips, prţeni krumpirići, i

sl.) i osobe sklone unosu velikih količina prţene hrane.

Policiklički aromatski ugljikovodici mogu nastati tijekom termičke obrade hrane, na visokim

temperaturama: pečenjem (do 400 C na površini namirnice), sušenjem, dimljenjem (PAH su u dimu),

prţenjem (do 500 C), rošiljanjem (mast koja kapa na vruću površinu), itd. Prije su se namirnice i sirovine

puno češće sušile izravnim kontaktom s dimnim plinovima koje su nosile čestice čaĎi s PAHovima. Zato su

ulja, kod sušenja sjemenki prije ekstrakcije, imala visoke razine PAHova. Temperatura i sastav namirnice

su ključni faktori koji odreĎuju količinu nastalih spojeva. Najlakše nastaju iz ugljikohidrata, bez prisustva

kisika. Primjerice, benzo[a]pirena će grijanjem škroba nastati 0,7 ppb na 370-390 C i 17 ppb na 650 C.

Mogu nastati i iz aminokiselina i masnih kiselina, ali na znatno višim temperaturama (praktički nema

sinteze na 500 C). Toksičnost PAHova je već spomenuta ranije (vidi poglavlje o ovim spojevima pod

‘Toksikanti iz industrijskog otpada i prirodnog okoliša’). Najveći doprinos ukupnom unosu PAHova čine

upravo oni koji nastaju pripremom hrane.

P r o d u k t i a u t o o k s i d a c i j e i t o p l i n s k e o b r a d e l i p i d a

Produkti autooksidacije i termičke obrade se uglavnom mogu pronaći u uljima i prţenoj hrani.

Masne kiseline (u prvom redu polinezasićene) se lako oksidiraju u procesu autooksidacije (vidi ‘Toksično

djelovanje neovisno o receptorima’), pri čemu nastaju hidroperoksidi koji se dalje razgraĎuju na aldehide,

ketone, i alkohole. Toplina, lipooksigenaze, kisik, svjetlo, prisustvo metalnih iona i antioksidanasa utječe

na brzinu odvijanja autooksidacije. Katalitička uloga metalnih iona se moţe prikazati sljedećim

reakcijama: Cu+ + ROOH RO· + OH + Cu

2+

Cu2+

+ ROOH ROO· + H+ + Cu

+

Vrsta ulja, zbog masnokiselinskog i inog sastava takoĎer utječe na brzine reakcija. Npr., maslinovo i

repičino ulje su otpornija od suncokretovog ili sojinog. Osim višeg udjela polinezasićenih masnih kiselina,

maslinovo ulje, naročito djevičansko, sadrţi klorofil i druge antioksidanse koji usporavaju oksidaciju.

Osim spontanog odvijanja ovih procesa i u uskladištenom ulju, termička obrada moţe znatno ubrzati

autooksidaciju, pri čemu su najvaţniji faktori temperatura i vrijeme prţenja. Osim uobičajenih

autooksidacijskih produkata, zagrijavanjem moţe doći do stvaranja polimera, cikličnih masnih kiselina,

epoksida i aromatskih spojeva. Ovim spojevima se pripisuje iritacija GITa, karcinogenost, hepatotoksičnost

i aterogenost. Molekula koja se često spominje kao naročito toksični produkt je 4-hidroksinonenal koji

nastaje i endogenim procesima lipoperoksidacije i genotoksičan je tj. dokazano moţe stvarati adukte na

DNA. Više razine ovog spoja su uočene tijekom bolesti poput raka, kardiovaskularnih bolesti, Parkinsonove i

Alzheimerove bolesti, mada nije sasvim jasno da li imaju etiološku ulogu ili su posljedica bolesti.

Page 105: Klapec Tox Hrane 2008 Oksidacije

104

Produkti parcijalne hidrogenacije su trans masne kiseline koje se, osim u masti preţivača koja im

je prirodan izvor, nalaze u margarinu, ulju za prţenje, kolačima od listanog tijesta, grickalicama,

slatkišima, itd. Trans masne kiseline su potvrĎeno aterogenije od zasićenih masnih kiselina, a neke

epidemiološke studije su utvrdile vezu izmeĎu unosa istih i većeg rizika obolijevanja od raka. U EU je

utvrĎen unos koji čini izmeĎu 0,5 – 1% ukupnog unosa energije. Udio masti preţivača u unosu je, ovisno, o

populaciji, iznosio od 30 – 80%. WHO preporučuje unos manji od 1% unosa energije. TakoĎer, postoji trend

smanjenja unosa zbog promjene recepture margarina i modifikacija samog procesa hidrogenacije. Neke

zemlje su zabranile uporabu parcijalno hidrogeniranih masti za prţenje hrane.

P r o d u k t i t r e t i r a n j a k i s e l i n a m a i l u ţ i n a m a

Aminokiselinski derivati uključuju dehidro i unakrsno povezane

aminokiseline (lizinoalanin (ili LAL, na slici), ornitinoalanin, lantionin,

histidinoalanin, dehidroalanin, itd.) i D-aminokiseline. Produkti su

tretiranja bjelančevina luţinom na visokoj temperaturi što se koristi u

pripravi 'sojinog mesa', kazeinskih derivata (dječja hrana i enteralne

formule) te pri prozvodnji tortille. Lizinoalanin moţe nastati i samim

grijanjem bjelančevina. Sastav hrane moţe utjecati na nastanak ovih

derivata, pa tako biogeni amini, askorbinska kiselina, glukoza,

aminokiseline sa sumporom mogu umanjiti njihovu sintezu. Hranjenjem pokusnih ţivotinja s hranom koja

sadrţi ove produkte, utvrĎena je smanjena probavljivost hrane i nefrotoksičnost. Toksičnost za bubrege je

mahom bila vezana uz glodavce, dok su primati bili znatno manje osjetljivi. Provedena je i kratka studija

kojom je praćena funkcija bubrega dojenčadi hranjene dječjom hranom koja je sadrţavala aminokiselinske

derivate i LAL. Nakon 10 dana, dojenčad je počela pokazivati znakove mikroproteinurije (pojava bjelančevina

u mokraći) koja bi mogla biti indikator smanjene učinkovitosti bubreţne funkcije. Sugerirano je da LAL i

slični spojevi vrše kelataciju bakra u stanicama tubula i ubrzavaju njegovu eliminaciju urinom, što dovodi

do nedostatka ovog esencijalnog metala i posljedične štetnosti za stanice.

Kloropropanoli 3-monokloropropan-1,2-diol (3-MCPD) i 1,3-dikloro-2-propanol (1,3-DCP) su produkti

kiselinske hidrolize (uz zagrijavanje) pri čemu dolazi do reakcije glicerola i klorovodične kiseline. Ovakva

obrada hrane se koristi u proizvodnji sojinog umaka,

umaka od oštriga i hidroliziranih biljnih bjelančevina

(juhe, umaci, koncentrati). Sojin umak sadrţi najviše

koncentracije i najviše doprinosi unosu kloropropanola ,

nakon čega slijede kruh i tjestenina, meso, pivo, i dr. Ustanovljena je toksičnost 3-MCPD za bubrege, dok

je 1,3-DCP hepatotoksičan i karcinogen. Srednji dnevni unos 3-MCPDa je upola niţi od TDIja, ali doseţe i

više vrijednosti kod velikih konzumenata sojinog umaka, naročito djece. Zbog karcinogenosti, 1,3-DCPu nije

odreĎivan TDI i prisustvo u hrani bi mu trebalo smanjiti na najmanju moguću tehnološki ostvarivu razinu.

P r o d u k t i f e r m e n t a c i j e

Vazoaktivni amini su već spominjani kao biljni toksini (vidi odgovarajuće podpoglavlje za detalje o

potencijalnoj toksičnosti), ali mogu nastati i procesima fermentacije koji se koriste u proizvodnji hrane.

Najviše koncentracije su u sirevima (otuda i naziv 'sirni sindrom' za tiraminom izazvanu hipertenziju) i

fermentiranim pićima poput piva ili vina (naročito chianti).

OC

NH

CO

NH

NH

lizin

alanin

HO

OH

Cl

OH

ClCl

Page 106: Klapec Tox Hrane 2008 Oksidacije

105

Etanol, kao glavni sastojak alkoholnih pića, akutnim unosom u većim količinama izaziva depresiju

CNSa. Razvojni je toksin koji moţe izazvati tzv. fetalni alkoholni sindrom s malformacijama kostiju lubanje,

i mentalnom retardacijom zbog specifičnog djelovanja na diferencijaciju tkiva glave i mozga. Već više od 2

pića dnevno tijekom trudnoće dovodi do zaostajanja u rastu i manje poroĎajne teţine. Kronična izloţenost

(alkoholizam) moţe izazvati neurološke probleme i cirozu jetre konzumenata. Prema IARCu, alkoholna pića

su karcinogena za ljude jer dokazano povećavaju rizik raka gornjeg probavnog trakta (usta, ţdrijelo, grlo

jednjak) te jetre. Alkohol ima neizravnu ulogu u etiologiji raka jetre, djelujući sinergistički s hepatitisom.

Potiče i (hepato)toksičnost drugih tvari jer inducira citokrome P450 u jetri, utječući tako na metabolizam

stranih tvari. Najveći udio se metabolizira alkohol dehidrogenazom (oko 95%), a ostatak citokromom P450

(CYP2E1) i katalazom. Svi ga oksidiraju do acetaldehida koji se dalje oksidira acetaldehid dehidrogenazom

do acetata. CH3CH2OH CH3CHO CH3COOH

MeĎu najvaţnije mehanizme toksičnosti ulaze: oksidativni stres, aktivacija inhibitornih GABA

receptora u mozgu (vidi 'Organoklorni insekticidi'), fluidizacija staničnih membrana, inhibicija proizvodnje

antidiuretskog hormona (što rezultira dehidratacijom) i metabolička acidoza uslijed nakupljanja produkata

razgradnje. ROS nastaju samom razgradnjom alkohola citokromima, proizvodnjom NADH (nastaje oksidacijom

alkohola) koji ubrzava staničnu respiraciju, reakcijom acetaldehida s mastima i proteinima, a alkohol,

konzumiran tijekom jela, poboljšava i apsorpciju ţeljeza koje podupire nastanak ROS (vidi ‘Toksično

djelovanje neovisno o receptorima’). NADH ujedno inhibira sintezu proteina (što bi moglo objasniti mršavost

većine alkoholičara) te inhibira razgradnju i potiče sintezu masti. Acetaldehid potiče sintezu i akumulaciju

kolagena povećavanjem transkripcije odgovarajućih gena. Nakupljanje masti i kolagenskih vlakana moţe

objasniti masnu infiltraciju i hepatičku fibrozu koje su česti simptomi alkoholne bolesti jetre (vidi

'Hepatotoksičnost').

Metanol takoĎer nastaje fermentacijom i nalazi se u voći i povrću, voćnim sokovima (do 0,15 g/L),

alkoholnim pićima (do 5,6 g/L), dijetnim pićima, patvorenim pićima, itd. Akutna toksičnost metanola

uključuje metaboličku acidozu i sljepilo. Naime, razgradnjom metanola, analogno etanolu, nastaje

formaldehid koji se nadalje moţe oksidirati do mravlje kiseline. CH3OH HCHO HCOOH Velike količine

ovog produkta mogu izazvati metaboličku acidozu i kolaps fiziološkog sustava. Ujedno, formijat se moţe

vezati za Fe citokrom oksidaza respiratornog lanca, inhibirajući stanično disanje. Najtoksičnije posljedice

se mogu očekivati u retini i očnom ţivcu u kojima se metanol, iz nepoznatih razloga, nakuplja.

Alternativno, formijat se moţe uključiti u put tetrahidrofolata (THF) kojim se moţe razgraditi do CO2 ili

pretvoriti u C1 jedinicu koja se koristi u prijenosu metilne skupine u nizu reakcija (npr., sintezi timidina iz

uridina, metionina iz homocisteina, i dr.). Stoga deficit folata moţe povećati osjetljivost na metanol.

Etanol, pak, moţe spriječiti njegove štetne učinke u organizmu zbog kompetitivne inhibicije tj. činjenice

da ima veći afinitet za alkohol dehidrogenazu kojim se obje tvari metaboliziraju. Time se metanol 'ne

stigne' razgraditi do formijata, nego se najveći dio izluči urinom.

Etil karbamat dostiţe najviše koncentracije u ţestokim alkoholnim

pićima, ali se moţe naći i u vinu, kruhu, i drugim namirnicama. Sintetizira se iz

uree (podrijetlom iz arginina) ili HCN i etanola. Metabolizmom se bioaktivira u

vinil karbamat (epoksid) koji je genotoksičan. IARC smatra da postoji dovoljno dokaza zbog kojih se ova

tvar moţe smatrati karcinogenom za ljude, te regulatorne agencije preporučuju smanjiti razinu koja se

nalazi u alkoholnim pićima na najniţu moguću. Postoji niz postupaka tijekom proizvodnje alkoholnih pića,

od odabira vrste kvasca nadalje, kojima se moţe nadzirati razina etil karbamata (najviše su razine kod ilegalnih

proizvoĎača alkoholnih pića, što je dokazalo i nedavno ispitivanje kvalitete rakija s područja Slavonije i Baranje; polovica

H2N

O

O

Page 107: Klapec Tox Hrane 2008 Oksidacije

106

svih ispitanih uzoraka je imala više od gornje dozvoljene razine etil karbamata). Prema istraţivanju JECFAe, srednji

unos odrasle populacije se kreće izmeĎu 15 – 80 ng/kg tj. t. što je bar 3800 puta niţe od doze koja izaziva

rak kod pokusnih ţivotinja.

P r o d u k t i s a l a m u r e n j a

Nitrozamini obuhvaćaju 100ak spojeva. Kako je već objašnjeno prije (vidi ‘Nitrati’ u poglavlju

‘Ostaci od tretiranja biljaka’ i 'Nitrati i nitriti' u poglavlju 'Aditivi'), nastaju reakcijom nitrita sa

sekundarnim i tercijarnim aminima. Najviše ih se moţe pronaći u

suhomesnatim proizvodima, iako sličnom reakcijom nastaju i u

ţelučanom soku (amino spojevi iz mesa i ribe + nitriti iz povrća i/ili

sline) te prilikom dimljenja. Nitrozacija se takoĎer dešava pri

zagrijavanju na više temperature nekih namirnica koje sadrţe nitrit i odreĎene amine (npr. slanina). Prije

su bili česti u pićima od slada (pivo, whiskey) jer se ječmeni slad sušio izravnim dodirom s gorivim

plinovima koji su sadrţavali nitrozirajuće dušikove okside (poput N2O3). Nitrozamini se bioaktiviraju uz

CYP2E1 koji ih prevodi u elektrofil (vidi 'Karcinogenost'). Snaţni su karcinogeni za pokusne ţivotinje

(naročito dietil i dimetilnitrozamin). Epidemiološke studije su, kako je spomenuto u poglavlju 'Aditivi',

ustanovile vezu unosa salamurenog mesa i raka probavnog trakta. WHO preporučuje smanjiti dnevni unos

ispod 1 g (nekoliko puta više se unosi pušenjem) i jedini razlog zašto se i dalje provodi postupak salamurenja s

nitritima je činjenica da je to daleko najučinkovitiji način spriječavanja botulizma. Maksimalno je

smanjena doza nitrata i nitrita koju je potrebno dodati, te se u salamuru dodaju antioksidansi poput

eritrobata ili askorbata da se spriječi nastajanje nitrozamina.

P r o d u k t i o b r a d e i o n i z i r a j u ć i m z r a č e n j e m

Radioaktivno zračenje se koristi za sterilizaciju hrane i nadzor mikrobiološkog kvarenja (naročito tamo gdje

toplinska obrada nije moguća, npr. smrznuti pilići), uništavanje kukaca, i spriječavanje neţeljenog klijanja

Najčešće se koristi -zračenje iz radioaktivnih elemenata poput 60

Co ili 137

Cs, pri čemu energija korištenog

elektromagnetskog zračenja nije dovoljna da potakne radioaktivnost u tretiranom uzorku.

Problem kod zračenja hrane je nastajanje slobodnih radikala koji se mogu spajati meĎusobno ili s

drugim spojevima uz mogućnost nastanka toksičnih tvari. Negativnim nuspojavama su najpodloţnije

namirnice s visokim sadrţajem masti zbog poticanja autoksidacije lipida. Ovo se ipak moţe u znatnoj mjeri

smanjiti prethodnim dodatkom antioksidansa. Po nekim autorima, zračenje ipak proizvodi manje kemijskih

promjena nego uobičajeno toplinsko tretiranje namirnica.

P r o d u k t i o b r a d e v o d e

Aluminij se primjenjuje u procesu pročišćavanja vode kao sedimentacijsko sredstvo (aluminij sulfat)

što moţe povećati ukupnu količinu Al kojoj su ljudi izloţeni (uslijed prirodno više razine u vodi, te u

namirnicama gdje je završio nakon apsorpcije iz tla, korištenjem aditiva s aluminijem, ili uslijed prelaska iz

ambalaţe) (vidi odgovarajuće odlomke o Al u poglavljima ‘Toksikanti iz industrijskog otpada i prirodnog

okoliša’, 'Aditivi' i 'Tvari u dodiru s hranom'). Kao neizravna potvrda teorije o ulozi Al u nastanku

Alzheimerove bolesti, u Engleskoj se dogodila slučajna kontaminacija rezervoara s čistom vodom (prije

distribucije) aluminij sulfatom, koja je 15ak godina kasnije rezultirala pojavom rijetkog oblika ove bolesti.

UtvrĎena je i visoka razina Al u moţdanom tkivu.

N N

O

N N

O

Page 108: Klapec Tox Hrane 2008 Oksidacije

107

Nusprodukti dezinfekcije (disinfection byproducts, DBP) su proizvodi reakcije klora i drugih

halogena s organskim molekulama. MeĎu najčešćim su halometani, halooctene kiseline i halonitrometani.

Neki od spojeva su mutageni u nizu testova i karcinogeni za pokusne ţivotinje. Epidemiološke studije su

utvrdile razvojno toksične učinke (više stope pobačaja i defekta neuralne cijevi) na fetusima trudnica s

višim unosom ovih spojeva putem klorirane vode, mada WHO dokaze ne smatra dovoljno uvjerljivim.

Studije koje su unos ovih spojeva pokušale povezati s rakom su utvrdile oprečne rezultate, te su potrebna

daljnja istraţivanja i provedba kvalitetnih epidemioloških studija prije donošenja konačnog suda.

Karakterizacija rizika koju je proveo WHO je utvrdila da je vrlo mala vjerojatnost teţih zdravstvenih

posljedica unosom DBP u koncentracijama u kojima se nalaze u pitkoj vodi. Predlaţu se i neke alternative

kloru (kloramin, ozon, klor dioksid, i sl.), mada i one imaju nedostatka u toksikološkom smislu.

Page 109: Klapec Tox Hrane 2008 Oksidacije

108

O D R E Đ I V A N J E T O K S I K A N A T A U H R A N I

Kvalitativna analiza

Ukoliko se pretpostavlja postojanje nepoznatog toksikanta u nekoj namirnici, hrana se mora razdvojiti na

frakcije i svakoj se testira toksičnost dok se ne odredi aktivna frakcija. Iz aktivne frakcije se izolira čisti

toksikant. Zatim se kemijski identificira graĎa tog spoja modernim analitičkim metodama (UVS, IRS, MS,

NMR, itd.). Novootkriveni toksikant se potom i kvantitativno odreĎuje u namirnici posebno osmišljenom

kemijskom analizom.

Kvantitativna analiza

Kvantitativno odreĎivanje poznatih toksikanata (npr. ispitivanje kvalitete namirnica (količina aditiva,

ostataka pesticida, i sl.) prema vaţećim pravilnicima) uključuje odvajanje toksikanta od drugih sastojaka

hrane i zatim utvrĎivanje njegove količine. Analizi toksikanta u hrani prethode uzorkovanje, ekstrakcija ili

razarnje (kod odreĎivanja ukupne količine elemenata) i pročišćavanje.

Uzorkovanje mora biti u skladu s ciljem ispitivanja i mora dati reprezentativan uzorak. Obično se

koriste različite statističke metode (npr. slučajno uzimanje uzoraka ako se ţeli odrediti količina pesticida u

polju ţita, pri čemu se uzima odreĎen broj uzoraka sa pojedinačnih biljaka po dijagonalnom principu, u

obliku slova X ili S). Kod uzorkovanja je, naravno, bitno i agregatno stanje uzorka (lakše uzorkovanje

tekućina nego krutina, npr.). Potrebno je uzeti reprezentativan broj uzoraka kod procjene količine u

rasutom proizvodu ili pakiranim proizvodima, što, za potrebe sluţbene analize, propisuju odgovarajući

pravilnici i metodologije se prilagoĎavaju vrsti prehrambene sirovine ili proizvoda. Poseban slučaj je

uzorkovanje (krvi, urina, kose, noktiju, i sl.) za potrebe epidemioloških ispitivanja, pri čemu uzorak mora

odgovarati populaciji na koju bi se rezultati trebali odnositi. Količina uzorka takoĎer, mora biti dovoljna za

provedbu namjeravanih analiza te treba uzeti u obzir očekivanu koncentraciju toksikanta da bi ovaj bio

mjerljiv analitičkim ureĎajem ili metodom. Često se uzorci moraju tretirati odmah po prikupljanju (na

terenu) da se spriječi dezintegracija ispitivane kemikalije (npr. kiselinom za spriječavanje raspada u

luţnatoj sredini). Alternativno, uzorak se čuva na niskoj temperaturi ili zamrzava do analize.

Ekstrakcija podrazumijeva odvajanje ispitivane tvari iz matriksa uzorka. Kruti

uzorak se prethodno moţe usitniti i homogenizirati, nakon čega se otapa u

odgovarajućem otapalu i filtracijom se uklanjaju vlakna i netopljivi dio. Izbor

otapala je ključan u ekstrakciji. Vaţni čimbenici u izboru otapala su: dobra topljivost

za ciljne kemikalije, visoka čistoća (da ne unosi nečistoće), niska temperatura

vrelišta (lako se uklanja), niska cijena (često ga treba puno), i mala toksičnost.

Polarna otapala se koriste za ekstrakciju hidrofilnih, a nepolarna za liposolubilne

tvari. Često se koriste i smjese otapala različitih polarnosti (npr. metanol-voda-

metilenklorid). Ako ispitivana tvar ima skupinu koja moţe biti ionizirana pri jednom,

a neionizirana na drugom pH, onda se modifikacijama pH moţe potaknuti prijelaz iz

polarne u nepolarnu fazu. Osim klasične tekuće-tekuće ili čvrsto-tekuće ekstrakcije, koriste se i novije

metode. Npr., ekstrakcija tvari iz čvrstog uzorka moţe se provoditi uz primjenu visokog tlaka,

temperature, superkritičnih fluida, mikrovalova, ultrazvuka, itd. Osim dijalize, kod ekstrakcije iz tekućeg

uzorka su sve popularnije metode ekstrakcije na čvrstoj fazi (SPE, solid phase extraction) uz C8 ili C18

silikagel, polimerne smole, silikate, Al2O3, antitijela, polimere s molekularnim biljegom (molecularly

imprinted polymers, MIP (vidi sliku: 'predložak' je spoj koji se želi izdvojiti iz tekućeg medija i koji se miješa s

monomerom; nakon polimerizacije i uklanjanja predloška, zaostaje polimer koji ima šupljine s velikim afinitetom za

Page 110: Klapec Tox Hrane 2008 Oksidacije

109

odreĎivani spoj tj. propuštanjem tekućine u

kojoj se toksikant nalazi, on će zaostajati na

čvrstoj fazi), itd., kao čvrstom fazom na

kojoj se razdvaja ispitivana tvar od

nečistoća. TakoĎer se sve više koriste

mikroekstrakcijske metode, poput LPME,

SPME ili SDME (liquid phase, solid phase

ili single drop microextraction). Kod prve se na vrhu sonde nalazi sloj otapala koji se uranja u tekućinu

uzorka drukčije polarnosti i dolazi do uravnoteţenja koncentracija toksikanta

izmeĎu faza. Sonda se zatim uvodi u injektor analitičkog ureĎaja gdje

termalnom desorpcijom dolazi do oslobaĎanja ispitivane tvari. Analogan je

princip mikroekstrakcijskih sondi sa čvrstom fazom ili jednom kapi. Sve tri

inačice se mogu primjenjivati i u tzv. headspace analizi kod koje se sonda

uranja u sloj plina iznad hlapljive tekućine (tzv. headspace u bočici; vidi sliku)

gdje dolazi do uravnoteţenja koncentracije ispitivane tvari izmeĎu plinske

faze i čvrste ili tekuće faze sonde (istovremeno je parcijalni tlak tvari u

headspaceu, prema Henryjevom zakonu, u ravnoteţi s koncentracijom u

tekućini). Hlapljivi sastojci koji se nalaze u vrlo niskim koncentracijama u

uzorcima se mogu ekstrahirati i koncentrirati primjenom vodene pare

(uz tzv. Lickens-Nickersonov aparat). MSPD (matrix solid phase

dispersion) se temelji na disperziji uzorka i čvrste faze, transferu

smjese u kolonu i eluiranju (učinkovito, jeftinije i brzo). Moţe se

primjenjivati za ekstrakciju sa čvrstih, polutekućih i tekućih uzoraka.

Pročišćavanje (ili cleanup) uključuje svako daljnje izdvajanje ispitivane tvari iz matriksa prije

analitičkog ureĎaja. Potrebno je reducirati količinu suvišnih kemikalija koje se ubrizgavaju u osjetljivi

analitički ureĎaj, a radi očuvanja injektora i kolona što je duţe

moguće. Nečistoće takoĎer mogu smetati u kvalitativnom i

kvantitativnom odreĎivanju ispitivane tvari. Najčešće se koriste

preparativne kromatografske metode (kolonska kromatografija za

razdvajanje tvari prema naboju (ionsko-izmjenjivačka kromatografija s

nosačem na koji su pričvršćene skupine koje vrše ionsku izmjenu, npr.

karboksimetilceluloza (CM, kationski izmjenjivač) ili dietilaminoetil celuloza

(DEAE, anionski izmjenjivač); na slici: ionizirana molekula odreĎenog naboja se može vezati za ionski izmjenjivač i zaostaje

na koloni te se naknadno eluira s otopinom NaCl), veličini molekula (npr. gel filtracija gdje male molekule ulaze u pore

gela od polimera (dekstran, agaroza, akrilamid i duže se zadržavaju u koloni od većih molekula), topljivosti (reverzno

fazna kromatografija razdvaja uzorke prema topljivosti u hidrofobnoj stacionarnoj fazi, najčešće silikagelu na koji su vezani

dugački ugljikovodični lanci, npr. C18; hidrofobne molekule zbog

afiniteta za stacionarnu fazu sporije prolaze kroz kolonu),

imunoafinitetu (nosač čvrste faze na sebi ima pričvršćena

antitijela za tvar koja se ekstrahira; prolaskom otopine, tvar tj.

antigen ostaje vezan, dok se ostale nečistoće ispiru s kolone), i

dr. MeĎutim, mnoge od gore opisanih, suvremenih

metoda ekstrakcije, daju dovoljno čist uzorak. Metode

ekstrakcije i pročišćavanja su dobile i svoje

Page 111: Klapec Tox Hrane 2008 Oksidacije

110

automatizirane verzije ili tzv. on-line ureĎaje povezane s analitičkim instrumentom i koji mogu serijski

pripremati veći broj uzoraka.

Razaranje uzorka se primjenjuje u

pripremi za analizu elemenata, pri čemu se

uzorak 'spaljuje' ili razara s ciljem razgradnje

organske tvari. Ovo se moţe postići suhim

spaljivanjem na visokoj temperaturi ili

vlaţnim spaljivanjem, u smjesi kiselina i

vodikovog peroksida koji dovode do potpune

oksidacije organske tvari. Ovako pripremljen

uzorak omogućava atomizaciju elementa i

analizu optičkim (apsorpcijske, emisijske i

fluorescentne) spektroskopskim ili maseno

spektroskopskim metodama.

Analiza osjetljivim analitičkim metodama omogućuje

identifikaciju i količinsko mjerenje najrazličitijih tvari:

kromatografske metode poput plinske (GC) i tekućinske (LC &

HPLC) kromatografije, spektrometrijske metode poput UV/VIS, IR

spektrometrije, atomske apsorpcijske spektrometrije (AAS),

atomske emisijske spektrometrije uz induktivno povezanu plazmu

(ICP-AES), nuklearne magnetske rezonancije (NMR), masene

spektroskopije (MS, ICP-MS), te kombinacije poput LC-MS/MS (na

slici), GC-MS, itd., imunokemijske, enzimne metode, radiometrijske metode (odreĎuje se ili sam radioaktivni

izotop ili se neka molekula njime označi i mjeri spektrometrom -zraka, scintilacijskim tehnikama, i sl.), i dr. LC-MS i LC-

MS/MS su tehnike koje ima jako široku primjenu u svim vidovima toksikoloških istraţivanja zbog iznimne

osjetljivosti i specifičnosti. Nakon razdvajanja komponenti u tekućinskom kromatografu, molekule se

različitim tehnikama ioniziraju te se snop iona razdvaja u magnetnom polju (tzv. kvadrupolu koji se sastoji od

četiri šipke pod naponom). Magnetno polje se moţe podešavati i prilagoĎavati karakterističnom ionu molekule

koja se odreĎuje te samo taj ion prolazi prema detektoru koji mu biljeţi odziv tj. količinu. Izvedbe s

trostrukim kvadrupolom dodatno unaprijeĎuju specifičnost i osjetljivost ureĎaja jer se nakon izdvajanja

iona od interesa u prvom kvadrupolu, on ponovno fragmentira u drugom, da bi se 'filtrirao' specifični ion u

trećem kvadrupolu.

Kvalitetna i pouzdana provedba analize

i provjera metodologije se moţe

osigurati mjerama poput mjerenja

recoveryja (iskorištenja), ponovljivosti,

reproducibilnosti i analize referentnog

materijala. Pravilnici propisuju

izvedbene kriterije za metode koji se

moraju zadovoljiti u sluţbenoj analizi

količine različitih toksikanata.

Page 112: Klapec Tox Hrane 2008 Oksidacije

111

Z A K O N S K A R E G U L A T I V A

Posljednjih desetljeća je značajno povećan broj zakona kojima se reguliraju toksične kemikalije. MeĎu

najvaţnijim razlozima za ovo su: veća svjesnost o ogromnom broju toksikanata koje su ljudi raspršili u

okolišu, napredak analitičkih metoda koje su omogućile detekciju vrlo niskih koncentracija toksikanata u

okolišu, hrani, itd., te utvrĎivanje veze izmeĎu nekih bolesti i kronične izloţenosti kemikalijama (često je

riječ o vrlo niskim koncentracijama). Donošenju pravilnika prethodi procjena sigurnosti (rizika) toksikanta

koja se temelji na znanstvenoj procjeni potencijalnih štetnih učinaka toksikanta. U procjeni sigurnosti su

najbitniji: identifikacija rizika (na temelju dokaza da moţe djelovati štetno za ljude), odreĎivanje veze

doza-odgovor (kao kvantifikacija toksičnog učinka), te procjena izloţenosti ljudi. Time se zaokruţuje

kvalitetna karakterizacija rizika na temelju koje se zakonski regulira izloţenost toksikantu.

P r o c j e n a s i g u r n o s t i t o k s i k a n a t a

UvoĎenje novih kemikalija (pesticidi, lijekovi, aditivi, itd.) na trţište je zakonski regulirano u svim

industrijaliziranim zemljama uz upute i/ili zahtjeve za procjenu njihove sigurnosti. TakoĎer, moţe se

testirati toksičnost različitih drugih kemikalija (npr. postojećih ali netestiranih), kontaminanata, i sl.

U posljednje vrijeme jačaju napori meĎunarodnih organizacija (Organization for Economic Cooperation and

Development, OECD, International Conference on Harmonisation, ICH) prema definiranju uputa za

testiranje toksičnosti koje bi bile prihvatljive za sve zemlje. Tipični program procjene sigurnosti je

prikazan na slici:

Pripremni koraci

Najprije se provodi identifikacija ispitivane tvari, što utječe na sam program procjene sigurnosti (npr.

prema namijenjenoj primjeni se biraju studije koje će se provesti, putevi izlaganja, i sl.). Sljedeći korak je

kemijska karakterizacija tvari ili smjese koja se ispituje. Na temelju toga se pretraţuje literatura da bi se

utvrdilo koliko se zna, ako uopće, o biološkoj aktivnosti ispitivane tvari. Kod nedostatka informacija se

identifikacija ispitivanog materijala

kemijska karakterizacija

pregled literature

procjena aktivnosti prema graĎi

akutna toksičnost/kratkotrajne studije ponavljanog doziranja

genotoksičnost metabolizam/toksikokinetika

subkronična toksičnost

reproduktivna i razvojna toksičnost karcinogenost

kronična toksičnost

dodatne studije

Page 113: Klapec Tox Hrane 2008 Oksidacije

112

koriste podaci o spojevima slične kemijske graĎe. Uz podatke o graĎi i raspoloţivim toksikološkim podacima

moţe se napraviti statistička procjena toksičnosti prema graĎi. Postoje i kompjutorske, tzv. QSAR

(quantitative structure-activity relationship) baze, koje su specijalizirane za procjenu toksičnog ili inog

učinka.

Akutna toksičnost

Prema definiciji OECDa, akutna toksičnost (AT) se definira kao 'štetni učinci koji se javljaju ubrzo nakon

jedne ili višestrukih (oralnih) doza neke tvari primjenjenih tijekom 24 h'. Informacije dobijene testom AT

na pokusnim ţivotinjama (opservacijskim pregledom, autopsijom) se obično koriste kao osnova za

utvrĎivanje postavki za daljnje testove toksičnosti (ciljna mjesta, doze, mehanizmi). UtvrĎuje se veza doze

i odgovora na toksikant i odreĎuju NOAEL, LOAEL i LD50 (vidi 'Veza doze i odgovora'). LD50 je najvaţniji

rezultat ovih testova i mjera AT tvari. Usporedbom s istim parametrom za druge spojeve, moţe se

preliminarno ocijenit prikladnost korištenja pojedine tvari u hrani (zbog korištenja životinja u ovim i drugim

testovima, OECD, EU, EPA, i druga tijela preporučuju modificirane testove AT koji daju odgovarajuće informacije uz

smanjenje broja i patnje korištenih životinja).

Kratkotrajna, subkronična i kronična toksičnost

Riječ je o studijama ponavljanog doziranja koje se prema vremenu trajanja dijele na kratkotrajne (1-4

tjedna), subkronične (tri mjeseca), te kronične (6-12 mjeseci i duţe). Podaci dobiveni studijama

kratkotrajnog ponavljanog doziranja su potrebni za uspješni dizajn testova subkronične toksičnosti.

TakoĎer, podaci iz subkroničnih studija su neophodni za dizajn kroničnih studija, a koriste se i u dizajnu

testova reproduktivne toksičnosti i karcinogenosti. Općenito, testovi uključuju procjene stanja ţivotinja

tijekom tretiranja (fizički izgled i ponašanje, tjelesna težina, potrošnja hrane, pregledi očiju, biokemijski testovi krvi i

urina, itd.), te post-mortem ispitivanja (pregled tkiva i organa, težina organa i žlijezda, histopatološka ispitivanja

tkiva). Ponekad se u subkronične i kronične studije mogu uklopiti ispitivanja genotoksičnosti,

neurotoksičnosti, imunotoksičnosti, i sl.

MeĎu najvaţnijim rezultatima kratkotrajnih studija su identifikacija karakterističnih štetnih učinaka

i ciljnih organa, te odreĎivanje odnosa doza-odgovor i NOAELa na osnovi kojih se odabire opseg doza u

kasnijim testovima.

Testovima subkronične i kronične toksičnosti se mogu otkriti štetni učinci koji nisu uočeni testovima

kraćeg trajanja, potvrditi već utvrĎene i/ili identificirati nove ciljne organe i mjesta djelovanja, potvrditi

NOAEL (općenito je pouzdaniji NOAEL dobiven ovim, u odnosu na kratkotrajnije testove), ustanoviti potreba za

specijaliziranim testovima (npr. ispitivanje neurotoksičnosti), i dr. Duţi testovi uglavnom podrazumijevaju

primjenu niţih doza, što je realističnije za procjenu toksičnosti obzirom na očekivanu izloţenost ljudi, ali

to obično znači i korištenje većeg broja ţivotinja. Naime, kod niţih doza je manja vjerojatnost pojave

toksične posljedice, pa broj ţivotinja s odreĎenim odgovorom moţe biti premali za statističku obradu

rezultata. Tomu se moţe pribjeći primjenom viših doza, ali je upitno koliko su takvi rezultati relevantni za

ljude i njihovu uobičajenu izloţenost ispitivanoj tvari. Testiranjem subkronične toksičnosti se odreĎuje i

maksimalno tolerirana doza (MTD) koja se koristi u ispitivanju karcinogenosti. MTD je doza toksikanta koja

nije netoksična, nego uzrokuje odreĎenu razinu prihvatljive toksičnosti (koja ne skraćuje prirodni ţivotni

vijek ţivotinje).

Genotoksičnost

Mutagenost se ispituje uz više testova čiji odabir ovisi o značajkama tvari koja se ispituje te zahtjevima

regulatornih tijela. MeĎu najvaţnije ulaze: testovi mutacija gena, poput testova reverzne mutacije na

bakterijama (npr. Amesov test; koriste se sojevi Salmonelle typhimurium (noviji testovi i Escherichije coli) koji imaju

Page 114: Klapec Tox Hrane 2008 Oksidacije

113

mutaciju na genu važnom u biosintezi histidina, pa bakterije ne mogu rasti ako u hranjivoj podlozi nema ove aminokiseline;

test se provodi i uz dodatak tkivnog homogenata (najčešće jetre) da bi se oponašala biotransformacija ksenobiotika kod

sisavaca (prije pripreme tkivnog homogenata, donorska životinja se tretira s odreĎenim agensima (npr. fenobarbital) koji

induciraju biotransformacijske enzime, čime se povećava vjerojatnost aktivacije mutagena); kolonije bakterija će rasti samo

nakon pojave mutacije koja obnavlja put biosinteze histidina), ili testa mišjeg limfoma (koriste se stanice limfoma miša

koje preživljavaju samo ako ispitivana tvar izazove mutaciju druge kopije gena za enzim koji sudjeluje u ugradnji toksičnih

analoga timidina u DNA; provodi se takoĎer i uz aktivaciju tkivnim homogenatom sisavaca), in vitro testovi

kromosomskih aberacija (npr. test kromosomskih aberacija stanica jajnika kineskog hrčka; kulturi stanica se osim

ispitivane tvari dodaje i tkivni homogenat sisavaca u svrhu aktivacije, te se posebnim metodama mjere

kromosomske aberacije), i in vivo testovi kromosomskih aberacija (npr. test mikrojezgre

glodavaca; štakori ili miševi se tretiraju ispitivanom tvari, te se u stanicama pretečama eritrocita iz

koštane srži ispituju eventualni klastogeni učinci tj. lomovi kromosoma). Novije metode, koje imaju

niz prednosti u odnosu na prethodno navedene, uključuju korištenje transgenskih

glodavaca (genetskim inženjeringom im je inkorporiran gen koji se ispituje na mutacije nakon izlaganja

životinja ispitivanoj tvari), polimeraznu lančanu reakciju (polimerase chain reaction, PCR; nakon

izolacije DNA iz stanica tretiranih životinja, polimerazom se proizvode milijuni kopija odabranih dijelova DNA, osiguravajući

dovoljnu količinu za analizu mutacija), gel elektroforezu DNA (tzv. COMET test za identifikaciju loma zavojnice, pri

čemu se DNA fragmenti razdvajaju prema veličini), i dr. Ako studije genotoksičnosti otkriju da je tvar mutagena u

nekoliko testova, a (namjeravana) uporaba tvari podrazumijeva prilično veliku izloţenost ljudi, onda se bez

daljnjeg testiranja moţe zabraniti uporaba tvari. Ako se utvrdi mali genotoksični rizik tvari (npr. tvar je

mutagena u nekoliko testova, ali samo u vrlo visokim dozama, ili je mutagena aktivnost uočena u samo

jednom testu), onda se moraju provesti daljnje studije.

Metabolizam i toksikokinetika

Cilj ovih studija je razumijevanje apsorpcije, biotransformacije, raspodjele, i uklanjanja ispitivane tvari.

Danas se toksikokinetska ispitivanja apsorpcije, raspodjele i uklanjanja toksikanata uglavnom provode

mjerenjem koncentracije toksikanta i metabolita u različitim tjelesnim tkivima i tekućinama uz moderne

analitičke tehnike poput HPLCa, LC-MS/MSa, i sl. Metabolizam tj. biotransformacija toksikanata se obično

ispituje u kulturama substaničnih struktura (mikrosoma), stanica, tkiva, i sl. (ukoliko je riječ o ljudskim

stanicama moţe se dobiti uvid u metabolizam bez in vivo izlaganja toksikantu). Ako je fiziološka sudbina

ispitivane tvari poznata, procjena sigurnosti tvari se moţe donijeti na toj osnovi. Primjerice, ako se znaju

svi metaboliti i za sve se zna da su bezopasni, onda se ispitivana tvar smatra sigurnom. MeĎutim, ako su

neki metaboliti toksični ili se puno početne tvari zadrţava u odreĎenim tkivima, onda je potrebno provesti

daljnja istraţivanja. Za procjenu sigurnosti neke tvari za ljude potrebno je znati i da li je metabolizam u

testiranoj vrsti sličan humanom metabolizmu.

Karcinogenost

Kao najsigurniji, zakonski uvjetovan test se koristi studija raka kod glodavaca (rodent cancer bioassay,

RCB) tijekom koje ţivotinje su svakodnevno tijekom 24 mjeseca izloţene (oralno, parenteralno, dermalno, itd.)

ispitivanoj tvari (najviša doza je MTD). Po završetku studije se utvrĎuje da li je došlo do povećane

učestalosti neoplazmi kod tretiranih ţivotinja u odnosu na kontrolnu skupinu. Rezultate recenziraju

različite institucije i organizacije (EPA, IARC, i dr.) te ispitivanu tvar klasificiraju prema karcinogenom

potencijalu za ljude. Osim RCBa, u procjeni rizika izazivanja raka se mogu koristiti dodatne, jeftinije

metode kojima se moţe otkriti karcinogen, npr.: ispitivanje kemijske graĎe (elektrofili ili sličnost graĎi

poznatih karcinogena), ispitivanje genotoksičnosti, ispitivanje epigenetskih učinaka (npr. povećana

proliferacija stanica, indukcija citokroma P450, peroksisomna proliferacija, imunosupresija, remećenje

Page 115: Klapec Tox Hrane 2008 Oksidacije

114

hormonske ravnoteţe, i dr.), in vivo testovi sposobnosti inicijacije (genotoksični karcinogeni) ili promocije

(epigenetski karcinogeni) karcinogeneze (prati se pojava preneoplastičnih lezija ili neoplazmi kod

glodavaca i transgenskih miševa koji imaju nedostatak tumorsko supresorskih gena, gena za popravak DNA,

ili su im u genom inkorporirane kopije ljudskih onkogena, i dr.

Reproduktivna i razvojna toksičnost

Najčešći testovi za ispitivanje toksičnosti za muški reproduktivni sustav su: jedno- i višegeneracijski

reprodukcijski testovi (kontinuirana izloženost pokusnih životinja ispitivanoj tvari tijekom jedne ili više generacija, uz

procjenu reproduktivne sposobnosti), kratkotrajni reprodukcijski testovi (npr. test spermatotoksičnosti, ili

dominantno-letalni test kojim se detektiraju mutageni učinci na spermij koji dovode do smrti njime začetog

embrija/fetusa, itd.), te testovi za ispitivanje učinka endokrinih disruptora (antiandrogena ili androgena) (npr.

izlaganje muških štakora ispitivanoj tvari od odbijanja od sise te tijekom puberteta, nakon čega se važu reproduktivni

organi, odreĎuju razine hormona i vrši procjena značajki puberteta). Neki pokazatelji toksičnosti za muški

reproduktivni sustav (npr. težina spolnih organa, histopatološki nalazi testisa, i dr.) se dobivaju i standardnim

testovima subkronične toksičnosti.

Upute (prema ICH) za testiranje toksičnosti za ţenski reproduktivni sustav, te razvojne toksičnosti, se

temelje na podjeli reproduktivnog procesa na stadije od perioda prije parenja ţenki do potpune spolne

zrelosti okoćene ţivotinje. Najčešće je riječ o višegeneracijskoj studiji uz početak tretiranja ţivotinja prije

parenja pa sve do okota potomstva ţenki druge generacije. Na taj način se mogu utvrditi štetni učinci na

funkciju spolnih ţlijezda (vrši se pregled jajnika, maternice, menstrualnog ciklusa, razine hormona, i dr.), spolno

ponašanje ţenki, oplodnju (npr. broj oploĎenih ženki u skupini, i sl.), rane i kasne stadije gestacije (skotnost)

(pregled jajnika, sadržaj maternice (mrtvi ili živi embrij ili fetus), pregled fetusa na malformacije, itd.), parturiciju

(okot) (npr. promatranje okota uz bilježenje eventualnih komplikacija ili nenormalnog ponašanja majke, procjena

novookoćenih životinja, i dr.), laktaciju, i razvoj potomstva (npr. procjena spolnog dozrijevanja muških i ženskih

jedinki okota; naročito važno kod endokrinih disruptora). Ispitivanje razvojne toksičnosti (i teratogenosti) se moţe

provesti i odvojeno uz tretiranje ţenki od implantacije oploĎene jajne stanice do parturicije.

Dodatne studije

Ovisno o značajkama ispitivane tvari (npr. kemijska graĎa, mehanizam toksičnog djelovanja, namjena (za

nove kemikalije), i dr.), mogu se provesti i dodatne studije poput ispitivanja toksičnosti za probavni trakt,

bubrege, jetru, koţu, ţivčani sustav, kardiovaskularni sustav, imuni sustav, itd.

Ekstrapolacija rezultata

Podrazumijeva procjenu rizika za ljude na temelju ispitivanja toksičnosti provedenih na ţivotinjama.

Obično je potrebna ekstrapolacija izmeĎu vrsta, unutar vrste (zbog varijabilnosti unutar populacije),

izmeĎu doza, izmeĎu puteva izlaganja, i izmeĎu trajanja izlaganja. Za ekstrapolaciju je potrebno znati niz

parametara, poput metabolizma, toksikokinetike, mehanizma djelovanja toksikanta, itd., kako u

ispitivanoj vrsti, tako i kod ljudi. Zbog nedostatka odgovarajućih informacija, danas se još uvijek većina

ekstrapolacija provodi uz dijeljenje NOAELa ili LOAELa s tzv. 'faktorom sigurnosti' (uncertainty factor, UF),

koji se procjenjuje kao mjera nesigurnosti u ekstrapolaciji rezultata dobivenih sa ţivotinjama na ljude (vidi

dolje).

P r o c j e n a i z l o ţ e n o s t i

Izloţenost je apsorpcija toksikanta prilikom kontakta s okolišnim medijima poput zraka, zemlje, vode ili

hrane. Vaţni činioci u procjeni su trajanje izloţenosti, put izloţenosti (npr. preko probavnog trakta),

bioraspoloţivost toksikanta iz medija (dio doze koja dospijeva u krv; npr. toksikant se može dobro apsorbirati, ali već

Page 116: Klapec Tox Hrane 2008 Oksidacije

115

najveći dio razgraditi u enterocitima; npr. histamin), koncentracija u mediju, i dr. Osim poznavanja koncentracije

toksikanta u namirnicama, bioraspoloţivosti, mora se poznavati i količina unesene hrane (ili vode) i tu svrhu

se koriste metode poput upitnika učestalosti namirnica (food frequency questionnaire), metode biljeţenja (npr.

7-day weighed dietary record), metode prisjećanja (npr. ponavljani 24-hr recall), i sl., ili se prosječni unos neke

namirnice moţe izračunati dijeleći godišnju proizvodnju u zemlji, te uvezene količine, s brojem stanovnika.

U posljednje vrijeme je povećano korištenje tzv. biomarkera (biološki markeri) u procjeni

izloţenosti. Biomarkeri su promjene na molekularnoj i/ili staničnoj razini uslijed izloţenosti toksikantu (npr.

količina aromatskih amina vezanih za hemoglobin (tzv. adukti) kao mjera izloženosti). Korištenje ovih pouzdanih

indikatora izloţenosti je moguće nakon utvrĎivanja veze doza-odgovor izmeĎu toksikanta i korištenog

biološkog parametra (npr. koliko adukata aromatskih amina nastaje na hemoglobinu kod odreĎene oralno unešene

koncentracije).

K a r a k t e r i z a c i j a r i z i k a

Na temelju podataka dobivenih procjenom sigurnosti o vezi doze i odgovora i podataka o izloţenosti

toksikantu, moţe se izvršiti karakterizacija rizika tj. procijeniti vjerojatnost štetnog učinka tijekom

izloţenosti.

Za karcinogene se pretpostavlja da nemaju prag djelovanja (tj. tako niske koncentracije kod koje

neće uzrokovati štetu) (vidi 'Veza doze i odgovora'), te nema razine koja se smatra sigurnom. Obično se

nastoji zakonski spriječiti izloţenost ljudi takvim tvarima (npr. zabrana nekih pesticida) ili se, u slučaju

prirodnih kontaminanata ili sastojaka koji nastaju obradom hrane poput aflatoksina ili akrilamida,

preporuča prisutnost u hrani smanjiti na najniţu, tehnološki ostvarivu mjeru. Nulta tolerancija je ionako

nemoguća, a postoje i brojni dokazi da čak i genotoksični karcinogeni imaju prag djelovanja.

Ostalim toksikantima se odreĎuju vrijednosti unosa koje se povezuju s minimalnim ili nikakvim

rizikom štetnih učinaka, poput prihvatljivog dnevnog unosa (acceptable daily intake, ADI), koji se izraţava

u mg po kg tjelesne teţine, i predstavlja dnevni unos koji tijekom ţivotnog vijeka ne bi trebao imati

nikakve štetne posljedice. TDI je tolerirani dnevni unos (tolerable daily intake) koji se analogno odreĎuje i

izraţava, samo što se uglavnom odnosi na kontaminante, za razliku od ADIja koji se uglavnom koristi za

aditive. Neki od adekvatnih, često korištenih parametara su PMTDI (provisional maximum tolerable daily

intake kao privremeni TDI dok se ne prikupi dovoljno kvalitetnih znanstvenih dokaza), PTWI i PTMI

(provisional tolerable weekly/monthly intake za toksikante kumulativnih svojstava), RfD (reference dose),

MRL (minimal risk level), i dr. Svi se oni osnivaju na NOAELu ili LOAELu dobivenim testovima na

ţivotinjama, pri čemu se ovi dijele s faktorom sigurnosti (koji se procjenjuje kao mjera nesigurnosti u

ekstrapolaciji rezultata dobivenih sa ţivotinjama na ljude). Npr., ako je NOAEL za neki pesticid kod štakora

1 mg/kg tjelesne teţine, faktor sigurnosti 100, onda će ADI za čovjeka biti 0,01 mg/kg.

Na osnovi ADIja ili TDIja, unosa hrane i unosa dotičnog toksikanta iz drugih izvora, odreĎuju se i

dozvoljene količine toksikanata u namirnicama. Npr., za ostatke pesticida i veterinarskih lijekova se

definira tzv. MRL (maximum residue level ili maksimalna razina ostataka) te maksimalne količine ostataka

aditiva i kontaminanata koje se mogu nalaziti u pojedinim namirnicama. Teţi se harmonizaciji normativa za

ostatke pesticida, ili vrste i količine aditiva u hrani, izmeĎu ostalog zbog pojednostavljivanja meĎunarodne

trgovine prehrambenim proizvodima (OECD, WHO, UN Food and Agriculture Organization, FAO, i dr.). WHO

i FAO su osnovale zajedničko vijeće, tzv. Codex Alimentarius koji donosi odgovarajuće preporuke i

standarde na temelju preporuka savjetodavnih tijela: JECFA (Joint Expert Committee on Food Additives,

Zdruţeno stručno vijeće o prehrambenim aditivima) i JMPR (Joint Meeting on Pesticide Residues, Zdruţeno

Page 117: Klapec Tox Hrane 2008 Oksidacije

116

vijeće o ostacima pesticida). SAD ima nekoliko agencija koje se bave karakterizacijom rizika: EPA

(Environmental Protection Agency, Agencija za zaštitu okoliša), US FDA/CFSAN (Food and Drug

Administration / Center for Food Safety and Applied Nutrition, Agencija za hranu i lijekove / Centar za

sigurnost hrane i primjenjenu prehranu), US HHS ATSDR (Department of Health and Human Services,

Agency for Toxic Substances and Disease Registry, Ministarstvo zdravstva i socijalne skrbi, Agencija za

toksične tvari i registar bolesti), itd. U EU je slično tijelo EFSA (European Food Safety Agency, Europska

agencija za sigurnost hrane) koja savjetuje zakonodavnu Europsku komisiju. RH usklaĎuje svoje zakone i

pravilnike s vaţećim u EU (neki od najrelevantnijih su navedeni u popisu linkova).

R i z i k u p e r s p e k t i v i

Javna percepcija rizika je često znatno veća od stvarnog rizika procijenjenog znanstvenim istraţivanjima.

TakoĎer, zabrinutost javnosti je usredotočena na sintetske kemikalije, pesticide i aditive. Ames i suradnici

su pokušali ukazati na neutemeljenost zabrinutosti rangiranjem kemikalija prema karcinogenom riziku za

ljude, računanjem tzv. HERP indeksa (human exposure, rodent potency). Riječ je o postotku karcinogene

jakosti za glodavce (TD50 u mg/kg/dan ili doza koja izaziva rak kod 50% ţivotinja) koju čovjek primi

prosječnom dnevnom izloţenošću tijekom ţivotnog vijeka (mg/kg/dan) (dnevna izloženost ljudi se dijeli s dozom

koja izaziva rak kod pokusnih životinja i množi sa 100). Rezultati za neke kemikalije iz hrane su prikazani u tablici:

Tvar HERP (%)

Etilen dibromid, pesticid 0,0004

Poliklorirani bifenili, industrijski kontaminanti 0,0002

Kloroform, kloriranjem vodovodne vode 0,001

Aflatoksin iz maslaca od kikirikija 0,03

Safrol iz začina 0,03

Kava kiselina iz kave 0,1

Etanol iz piva 2,1

Etanol iz vina 4,7

Očito, najviše vrijednosti imaju prirodne tvari tj. rizik od sintetskih pesticida i kontaminanata u hrani je

znatno manji. Ove rezultate treba ispravno interpretirati. Nije izloţenost prirodnim toksikantima

pretjerana, nego je izloţenost sintetskim tvarima toliko niska da nema gotovo nikakav utjecaj na zdravlje.

Ames i suradnici su procijenili da 99,99% izloţenosti karcinogenim tvarima putem hrane otpada na tvari

prirodnog podrijetla (vidi uvod u poglavlje 'Biljni toksini'). TakoĎer, smatraju da je evolucija metaboličkih

sustava rezultirala dobrom prilagodbom ljudi na tvari koje se nalaze u hrani i da, obzirom na fleksibilnost

detoksikacije, rizik od sintetskih tvari nije veći u odnosu na tvari prirodnog podrijetla. Osim toga, sama

metodologija ispitivanja karcinogenosti RCB testom (vidi 'Procjena sigurnosti toksikanata') bi mogla

precijenjivati rizik od kemikalija jer se karcinogeno djelovanje često ustanovi upravo kod najviše

primjenjivane doze (MTD), koja nije netoksična za stanice i, kronično bi, zbog odumiranja stanica i

kompenzacijske proliferacije (tj. ubrzanog dijeljenja da se nadoknade odumrle stanice), mogla povećati

rizik nastanka stanice raka. Dakle, rizik je najvećim dijelom funkcija koncentracije i.e. doze, upravo u

skladu s Paracelsusovom pronicljivom tvrdnjom iz uvoda.

Page 118: Klapec Tox Hrane 2008 Oksidacije

117

LITERATURA nnaa rraassppoollaaggaannjjuu kkoodd pprreeddmmeettnnoogg nnaassttaavvnniikkaa

1. Shibamoto T., Bjeldanes L.F. (1993): Introduction to Food Toxicology, Academic Press.

2. Omaye S.T. (2004): Food and Nutritional Toxicology, CRC Press.

3. Wallace Hayes A. (Ed.) (2001): Principles and Methods of Toxicology, Taylor & Francis.

4. Boelsterli U.A. (2007): Mechanistic Toxicology: The Molecular Basis of How Chemicals Disrupt

Biological Targets, Informa Healthcare.

5. Klaassen C.D. (Ed.) (2007): Casarett and Doull’s Toxicology, A Basic Science of Poisons, McGraw Hill

Professional.

6. Katzung B.G. (Ed.) (2004): Basic & Clinical Pharmacology, McGraw Hill.

7. Hodgson E. (Ed.) (2004): A Textbook of Modern Toxicology, John Wiley and Sons.

8. Fennema O.R. (Ed.) (1996): Food Chemistry, Marcel Dekker.

9. Berg J.M., Tymoczko J.L., Stryer L. (2002): Biochemistry, W.H. Freeman & Co.

KORISNI LINKOVI

Pravilnik o maksimalnim razinama ostataka pesticida u hrani i hrani za ţivotinje N.N. 119/07

Pravilnik o prehrambenim aditivima N.N. 173/04

Pravilnik o toksinima, metalima, metaloidima, te drugim štetnim tvarima koje se mogu nalaziti u hrani N.N. 16/05

Pravilnik o najvećim dopuštenim količinama ostataka veterinarskih lijekova N.N. 29/05

Pravilnik o zdravstvenoj ispravnosti predmeta koji dolaze u neposredan dodir s hranom N.N. 46/04

Uredba o razini genetski modificiranih organizama u proizvodima ispod koje proizvodi koji se stavljaju na trţište ne moraju

biti označeni kao proizvodi koji sadrţe genetski modificirane organizme N.N. 34/04

Zakon o zdravstvenoj ispravnosti vode za piće N.N. 182/04

Zakon o hrani N.N. 46/07

Hrvatska Agencija za Hranu

US FDA Center for Food Safety and Applied Nutrition: Foodborne Pathogenic Microorganisms and Natural Toxins Handbook,

i.e. The 'Bad Bug Book'

European Commission, DG Health and Consumer Protection, Food and Feed Safety

European Food Safety Authority

US Environmental Protection Agency

US EPA Office of Prevention, Pesticides and Toxic Substances

Codex Alimentarius

Joint FAO/WHO Expert Committee on Food Additives

Joint FAO/WHO Meeting on Pesticide Residues

US HHS Agency for Toxic Substances and Disease Registry

The International Programme on Chemical Safety, Inchem

International Conference on Harmonisation

Organization for Economic Cooperation and Development

Society of Toxicology

Teratology Society

International Agency for Research on Cancer

Page 119: Klapec Tox Hrane 2008 Oksidacije

118

International Life Sciences Institute

International Food Information Council

Toxnet, Toxicology Data Network

Extoxnet, Extension Toxicology Network

Stockholm Convention on Persistent Organic Pollutants

American Council on Science and Health

Biological Effects of Low Level Exposures

New Scientist

The Why Files, Science Behind the News

Sense About Science