KINEMATICS OF MECHANISMStmm.pwr.edu.pl/fcp/qGBUKOQtTKlQhbx08SlkTVQJQX2o8... · 2020. 3. 12. ·...

50
KINEMATICS OF MECHANISMS position velocity acceleration; driving forces are neglected 2 2 v v dt s d dt d s a dt ds s K K K K K K K For a point K we have linear displacement s K (t), velocity v K and acceleration a K 2 2 dt d dt d dt d k k k k k k k For a link k we have angular displacement k (t), angular velocity k and angular acceleration k

Transcript of KINEMATICS OF MECHANISMStmm.pwr.edu.pl/fcp/qGBUKOQtTKlQhbx08SlkTVQJQX2o8... · 2020. 3. 12. ·...

  • KINEMATICS OF MECHANISMS

    position – velocity – acceleration; driving forces are neglected

    2

    2vv

    dt

    sd

    dt

    dsa

    dt

    dss KKKK

    KKK

    For a point K we have linear displacement sK(t), velocity

    vK and acceleration aK

    2

    2

    dt

    d

    dt

    d

    dt

    d kkkk

    kkk

    For a link k we have angular displacement k(t),

    angular velocity k and angular acceleration k

  • METHODS OF KINEMATIC ANALYSIS

    graphical (use only: pencil, ruler, compass,

    calculator)

    analytical

    numerical

  • A

    BC

    D

    M

    BC

    CD

    vM

    DOF = 1 1 driver, this case: crank AB – known (t)

  • LENGTH SCALE

    A

    B

    C

    D

    Length scale:

    mm

    m

    BC

    BCl

    100

    1

    )(

    SCALE DEFINITION (for graphical methods)

  • Scale (general)

    )(i

    ii

    real value

    graphical value

    mm

    ms

    )v(

    v -1

    vVelocity scale

    mm

    ms

    )a(

    a -2

    aAcceleration scale

  • FORCE SCALE

    Force scale:

    mm

    N

    F

    FF 1

    100

    100

    )(

  • 4 BAR LINKAGE

    a lot of applications

    4 bar linkage has a few inversions

  • Harbor crane

  • R

    R

    R

    T

    hand press

  • pipe spanner,

    pipe wrench

  • Four-bar linkage: crank rocker

  • A

    D

    C1 C2

    B2

    B1

    0-l0

    3-l3

    2-l2

    1-l1

    For the crank-rocker we have:

    1. Grashof inequalities fulfilled,

    2. shortest link (l1) is a crank (rotates around frame)

    4 BAR LINKAGE (4R)

    0231

    0321

    3201

    llll

    llll

    llll

    312101 llllll

    Grashof inequalities

  • A D

    C

    B

    Grashof inequalities fulfilled,

    shortest link (l1) is a frame

    A D

    C

    B

    Grashof inequalities fulfilled,

    shortest link (l1) is a coupler

    DOUBLE CRANK

    DOUBLE ROCKER

  • Transforming a fourbar crank-rocker to crank-slider

  • R T

    Slider block

    translates

    R R

    Slider

    block has

    complex

    motion

    R R

    Slider

    block

    rotates

    R T

    Slider

    block is

    stationary

    4 BAR - crank-slider - INVERSIONS

  • B

    A

    CC

    B

    rBC

    D

    GRAPHICAL POSITION ANALYSIS

  • B

    A

    CC’

    B’

    rBC

    (t)

    Data: (t)

    Find: xc’, yc’

    xB’ = AB cos

    yB’ = AB sin

    (xC’ – xB’)2 + (yC’ – yB

    ’) 2 =

    BC2

    yC’ = 0

    From the system of

    equations:

    xC’ , yC’

    y

    x

    GRAPHICAL POSITION ANALYSIS

  • B

    A D

    C

    C

    B

    rBC

    D

    GRAPHICAL POSITION ANALYSIS

  • B

    AD

    C

    C’

    B’

    y

    x

    (t)

    Data: (t)

    Find: xc’, yc’

    xB’ = AB cos

    yB’ = AB sin

    (xC’ – xB’)2 + (yC’ – yB

    ’) 2 =

    BC2

    (xC’ – xD)2 + (yC’ – yD)

    2 =

    CD2

    rBC

    From the system of

    equations : xC’ , yC’

    GRAPHICAL POSITION ANALYSIS

  • A

    BC

    D

    M

    GRAPHICAL POSITION ANALYSIS

    Draw a mechanism for a given

    Link dimensions are known: AB, BC, CD, AD and BM, CM

  • A

    BC

    D

    M

    GRAPHICAL POSITION ANALYSIS

  • A

    BC

    D

    M

    GRAPHICAL POSITION ANALYSIS

  • A

    BC

    D

    C*

    M

    Two positions for given

    GRAPHICAL POSITION ANALYSIS

  • A D

    B

    B1

    C

    E

    F

    1 driver: AB AB1

    GRAPHICAL POSITION ANALYSIS

  • A D

    B

    B1

    C

    E

    F

    C1

    F1

    E1

    GRAPHICAL POSITION ANALYSIS

  • A D

    B C

    E

    F F1

    R=EF

    1 driver: slider F F1

    GRAPHICAL POSITION ANALYSIS

  • DG

    C

    C

    B

    A

    B

    ’rBC

    D

    E

    F

    D

    yE

    F

    1

    2

    GRAPHICAL POSITION ANALYSIS - III class mechanism

  • Kinematics – graphical methods

    INSTANT CENTERS OF VELOCITY

    VELOCITY AND ACCELARATION

  • From planar complex motion to rotation

    (2 links: frame 0 and moving body k)

  • A

    Bv

    B

    AAv

    k

    {0}

    0

    B

    tangent to trajectory

  • instant center of rotation

  • k0

    B

    k0

    A

    BS

    v

    AS

    vk

    ( )ktg

    )(BS

    )(v

    )(AS

    v

    k0

    B

    k0

    A

    angular velocity:

  • B

    a

    A

    b

    VA VB VAB = VBA = 0

    SAB

    {0}

    2 bodies in motion

    number of IC:( )

    2

    1

    2

    nnni

    An instant center of velocity is a point, common to two bodies in

    plane motion, which has the same instantaneous velocity in each

    body

  • 23

    1312

    030201

    S

    SS

    SSS( )6

    2

    144

    i

  • 13

    02

    S

    S

    23

    12

    0301

    S

    S

    SS

    ?

  • VB

    VC

  • VB

    VC

    S20

  • 1, 2, 0 S12 & S10 S20

    3, 2, 0 S32 & S30 S20

  • 1, 3, 0 S10 & S30 S31

  • INFINITY

  • Find vM direction

    0

    13

    2

    M

    1st method: trajectory of point M and tangent ???

    2 method: instant center of velocity S20

  • 23

    1312

    030201

    S

    SS

    SSS

    0

    13

    30

    M

    10

    21

    2

  • 0

    13

    2

    30

    32

    M

    10

    23

    1312

    030201

    S

    SS

    SSS

    21

  • 0

    13

    2

    30

    21

    32

    20

    31

    M

    VM10

  • Cam mechanism

    1

    2

    0

    S12 S01 S02cam

    follower

  • 12

    1

    2

    0

    1020

    V12

    S10 – S12 – S20

    common tangent (axis of slip)

  • Cam with roller

    1

    2

    1020

    V13 = 0 S13 at contact point

    3