Kaonic Nuclei : Formation

22
Kaonic Nuclei : Formation Takahisa Koike RIKEN, Nishina Center Toru Harada Osaka Electro-Communication Uni v. NFQCD10, Mini-Symposium (Hadrons in Nuclei), YITP, Kyoto, Feb. 23, 2010 --- 3 He(in-flight K - , n) spectrum

description

NFQCD10, Mini-Symposium (Hadrons in Nuclei), YITP, Kyoto, Feb. 23, 2010. Kaonic Nuclei : Formation. --- 3 He(in-flight K - , n) spectrum. Takahisa Koike RIKEN, Nishina Center Toru Harada - PowerPoint PPT Presentation

Transcript of Kaonic Nuclei : Formation

Page 1: Kaonic Nuclei : Formation

Kaonic Nuclei : Formation

Takahisa Koike

RIKEN, Nishina Center 

Toru Harada

Osaka Electro-Communication Univ.

 

NFQCD10, Mini-Symposium (Hadrons in Nuclei), YITP, Kyoto, Feb. 23, 2010

--- 3He(in-flight K-, n) spectrum

Page 2: Kaonic Nuclei : Formation

Theory・ YA: Yamazaki, Akaishi・ SGM: Shevchenko, Gal, Mares・ IS: Ikeda, Sato・ DHW: Dote, Hyodo, Weise・ IKMW: Ivanov, Kienle et al.・ NK: Nishikawa & Kondo・ YArai, Yasui, Oka ・ YJNH: Yamagata, Jido et al.・ WG: Wycech, Green,

Experiment・ FINUDA・ OBELIX ・ DISTO

“K-pp” is suggested to be the lightest and most fundamental kaonic nuclei, but the theoretically-calculated and experimentally- measured B.E. and are not converged!

Page 3: Kaonic Nuclei : Formation

     3He(in-flight K-, n) “K-pp” missing-mass  

at pK- = 1 GeV/c and n=0o    spectroscopy

            +     

“K-pp” →p →-pp invariant-mass detecting all charged particles spectroscopy from the decay of “K-pp”     

M. Iwasaki, T. Nagae et al. , J-PARC E15 experiment

Simultaneous mesurement

◆ New measurement for searching “K-pp”

Theoretical calculation of 3He(In-flight K-, n) inclusive/semi-exclusive spectra within the DWIA framework using Green’s function method.

Our purpose:

Page 4: Kaonic Nuclei : Formation

◆ Theoretical calculations of 3He(In-flight K-, n) reaction spectrum for J-PARC E15 experiment

・ Our approach:

Introducing K- -nucleus phenomenological potential → Explore possible senarios for various cases.  

Refs. T. Koike & T. Harada, Phys. Lett. B652 (2007) 262-268. T. Koike & T. Harada, Nucl. Phys. A804 (2008) 231-273.      T. Koike & T. Harada, Phys, Rev. C80 (2009) 055208-1~14.

・ Other approach within a similar framework: Optical potential model based on chiral unitary approach

Ref. J. Yamagata-Sekihara et al., Phys, Rev. C80 (2009) 045204.

Page 5: Kaonic Nuclei : Formation

◆Distorted-Wave Impulse Approximation (DWIA)

Kinematical factor Fermi-averaged ementary cross-section K- + n → N + Kbar in lab. system

Strength function

forw

ard

back

war

d

n

pp

K-

q

pn

K-

p

n

p

pK = 1 GeV/c

q = pK - pn < 0

=0o )  

Page 6: Kaonic Nuclei : Formation

◆Distorted-Wave Impulse Approximation (DWIA)

Kinematical factor Fermi-averaged ementary cross-section K- + n → N + Kbar in lab. system

Strength function

n

n

3He pp

K-

K-

K- p p

p3He n

p

K-K0K0 n p

n

--

In charge basis, K-+n → n+K-

K-+p → n+Kbar0

Page 7: Kaonic Nuclei : Formation

◆Distorted-Wave Impulse Approximation (DWIA)

Kinematical factor Fermi-averaged ementary cross-section K- + n → N + Kbar in lab. system

Strength function

N

N

NN

K

K

-

K- p p

K0 n p

[ K× {NN} I=1 ] I=1/2

-

-

-

-

NNN

In isospin basis,

I = 0= 16.4 mb/sr

now used

Page 8: Kaonic Nuclei : Formation

◆Distorted-Wave Impulse Approximation (DWIA)

Kinematical factor Fermi-averaged ementary cross-section K- + n → N + Kbar in lab. system

Strength function

Morimatsu & Yazaki’s Green function method 

neutron wave function→ (0s)3 harmonic oscillator model

Distorted wave for incoming(+)/outgoing(-) particles→ Eikonal approximation

Green’s function K-pp system

→ employing K--“pp” effective potentialrecoil effect

Prog.Part.Nucl.Phys.33(1994)679. 

Page 9: Kaonic Nuclei : Formation

◆ K--”pp” effective potential

P-space: K-ppQ-space: N, N, YN

Phase space factor

single-channel effective potential

Phenomenological parametrization

E-dependence

Page 10: Kaonic Nuclei : Formation

◆ K--”pp” effective potential

・ 2-nucleon K- absorption K-pp → K- + “pp” → Y : f2 (E)

・ 1-nucleon K- absorption

K-pp → “K-p” + p → f1

(E) K-pp → “K-p” + p → f1

(E)

・ Total phase space factor

f (E) = B1( f1

(E) + B1

( f1

(E) + B2(YN) f2 (E)

= 0.7 = 0.1 = 0.2

D. Gazda, E. Friedman, A. Gal and J. Mares, PRC76 (2007) 055204.Refs. J. Mares, E. Friedman, A. Gal, PLB606 (2005) 295.

   J. Yamagata, H. Nagahiro, S. Hirenzaki, PRC74 (2006) 014604.

Page 11: Kaonic Nuclei : Formation

Ikeda&Sato, Phys. Rev. C79 (2009) 035201.

V0 is made deeperin our potential.

KbarN attraction isartificially enhanced in coupled-channelFaddeev calculation.

◆ Validity of E-dependence of our potential

decay only decay only

decay

Ydecay

Page 12: Kaonic Nuclei : Formation

◆ Single-channel Green’s function

The Klein-Gordon equation is solved self-consistentlyin complex E-plane;

Real

Complex

B.E. and are determined from these relations.

◆ Determing pole position

Page 13: Kaonic Nuclei : Formation

C: Faddeev cal. with phenomenological KbarN int. by Shevchenko-Gal-Mares (SGM)

B: variational cal. with phenomenological KbarN int. by Yamazaki-Akaishi (YA)

D: fitting to experimental data

A: variational cal. with Chiral SU(3) based KbarN int.

We consider the following 4 cases of the calculations/experiment;

by Dote-Hyodo-Weise (DHW)

Page 14: Kaonic Nuclei : Formation

V0  

eV

W0 eV B.E. e

VeV

B.E. eV

eV

Ref.

A -237 -128 21 70 15 92 DHW

B -292 -107 48 61 45 82 YA

C -344 -203 70 110 59 164 SGM

D1 -399 -372 114 34 105 118 DISTO

D2 -404 -213 118 19 115 67 FINUDA

D3 -458 -82 162 5 161 24 OBELIX

◆ Parameters of our optical potentials

* b = 1.09 fm for all potentials; the range effect is small.

B2(YN) = 0.0 B2

(YN) = 0.2

Fitted values

Page 15: Kaonic Nuclei : Formation

C: SGM

B: YAA: DHW

D2: FINUDA

◆ Employed K--”pp” optical potentials

Page 16: Kaonic Nuclei : Formation

decay threshold

C: SGM

B: YAA: DHW

D: FINUDA

( )

Energy-dependent potential

L = 0 compoment

Energy-independent potential omitting phase space factor

◆ Calculated results of inclusive spectrum

Page 17: Kaonic Nuclei : Formation

Decomposition of strength function into K- escape / K- conversion part

; K- conversion

; K- escape

K- conversion spectrum is actually measured in J-PARC experiment.

where ,

,

; Free Green’s function

complex potential

Page 18: Kaonic Nuclei : Formation

decayvia 1-nucleon K- abs.

decayvia 1-nucleon K- abs.

Y decay via 2-nucleon K- abs.

K- escape

◆ Decomposition into semi-exclusive spectra

C: SGM

B: YAA: DHW

D2: FINUDA

Page 19: Kaonic Nuclei : Formation

◆ Definition of D (E)

E-dependent complex eigenvalue

Moving-polein complex E-plane

Page 20: Kaonic Nuclei : Formation

◆ Examples of the relation between D (E) and (E)

C: SGMB: YA

Page 21: Kaonic Nuclei : Formation

◆ Pole trajectory (E) in complex E-plane

×= (-B.E. , -/2 )

Page 22: Kaonic Nuclei : Formation

◆ Summary

・ Within the KbarNN single channel picture, the spectrum shape can be understood by relating to the trajectory of the moving pole in the complex E-plane, rather than the static values of B.E. and .

・ The E-dependence of the effective potential determines the trajectory of the moving pole.

・ Interpretaion of the spectrum shape in coupled-channel scheme.

・ Construct the more quantitative effective potential in single-channel calculation.

◆ Next works