Kalman filter Recursions – Main Equations the Prediction and Updating

download Kalman filter Recursions – Main Equations the Prediction and Updating

of 20

Transcript of Kalman filter Recursions – Main Equations the Prediction and Updating

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    1/20

    Kalman filter recursions main equations

    The prediction and updating equations leading us to calculate the prediciton errors and the

    resulting variance are as follows:

    Given at1 the MMSE oft1 at time t 1, with

    at1 t1 WS(0, Pt1),

    the prediction equations are:

    at/t1 = Tat1,

    and

    at/t1 t

    0,

    2

    Pt/t1

    where

    Pt/t1 = TPt1T + RQR

    Given that at/t1 is MMSE oft at time t 1, the MMSE of zt at time time t 1 clearly is,

    zt/t1 = ytat/t1.

    The associated prediction error is

    zt zt/t1

    = t = y

    t

    t at/t1

    + Nt

    the expectation of which is zero. Hence,

    var t = E(2

    t ) = E

    ytt at/t1

    t at/t1

    y

    + E(N2t )

    [since cross product terms have zero expectations]

    = 2ytPt|t1yt + 2h = 2ft

    The updating equations are given by:

    at = at|t1 + Pt|t1yt

    zt ytat|t1

    /ft,

    and

    Pt = Pt|t1 Pt|t1ytytPt|t1/ft where ft = y

    tPt|t1yt + h.

    1

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    2/20

    We have to highlight here the role played by,

    1. the prediction error given by

    t = zt ytat|t1,

    and the variance associated with it, 2ft and

    2. the Kalman gain given by

    Pt|t1yt.

    If prior information is available, that is,

    0 WS(a0, P0),

    where a0 and P0 are known, the Kalman filter recursions can be used to get the prediction errors

    and the variance associated with them.

    2

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    3/20

    Series A -- Chemical process concentration readings

    15

    15.5

    16

    16.5

    17

    17.5

    18

    18.5

    1 26 51 76 101 126 151 176

    Series D -- Chemical process viscocity readings

    0

    2

    4

    6

    8

    10

    12

    1 51 101 151 201 251 301

    Series E -- Wolfer sun spot numbers

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    1 21 41 61 81

    Series F -- Yields from a batch chemical process

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    1 11 21 31 41 51 61

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    4/20

    Series A -- ACF

    0

    0.1

    0.20.3

    0.4

    0.5

    0.6

    1 6 11 16

    Series A -- PACF

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1 6 11 16

    Series D -- ACF

    0

    0.20.4

    0.6

    0.8

    1

    1 6 11 16

    Series D -- PACF

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 6 11 16

    Series E -- ACF

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1 6 11 16

    Series E -- PACF

    -1

    -0.5

    0

    0.5

    1

    1 6 11 16

    Series F -- ACF

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    1 6 11 16

    Series F -- PACF

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    1 6 11 16

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    5/20

    Table1:S

    ummaryofModelsFitted

    Series

    NOBS

    FittedMode

    ls

    ResidualVariance

    A

    197

    z

    t

    0.9

    2

    (0.0

    4)z

    t1

    =

    1.3

    8

    (0.7

    0)

    +

    et

    +0.5

    8

    (0.0

    8)

    et1

    0.0

    98

    D

    310

    zt

    0.8

    7

    (0.0

    3)z

    t1

    =

    1.2

    2

    (

    0.2

    5)

    +

    et

    0.0

    9

    E

    100

    zt

    1.5

    6

    (0.1

    0)z

    t1

    +

    1.0

    1

    (0.1

    6)z

    t2

    0.2

    1

    (

    0.1

    0)z

    t3

    =

    11.4

    6

    (2.8

    7)

    +

    et

    230.4

    3

    z

    t

    1.4

    1

    (0.0

    7)z

    t1

    +

    0.7

    2

    (0.0

    7)zt2

    =

    14.5

    3

    (2.5

    2)

    +

    et

    230.4

    3

    F

    70

    zt

    +

    0.3

    4

    (0.1

    3)z

    t1

    0.2

    0

    (0.1

    3)zt2

    =

    58.7

    6

    (11.0

    0)

    +

    et

    117.5

    6

    Note:Valuesin()under

    eachestimatedenotestandar

    derrors.

    Table2:SummaryofDiag

    nosticTestsonResiduals

    ofFittedModels

    Series

    NOBS

    FittedModels

    Q

    DF

    A

    197

    zt

    0.9

    2zt1

    =

    1.3

    8

    +

    et

    +0

    .58et1

    25.5

    6

    18

    D

    310

    zt

    0.8

    7zt1

    =

    1.2

    2

    +

    et

    8.8

    2

    19

    E

    100

    zt

    1.5

    6zt1

    +

    1.0

    1zt2

    0.2

    1zt3

    =

    11.4

    6+

    et

    18.0

    1

    17

    100

    zt

    1.4

    1zt1

    +

    0.7

    2zt2

    =

    14.

    53+

    et

    23.7

    2

    18

    F

    70

    zt

    +

    0.3

    4zt1

    0.2

    0zt2

    =

    58.

    76+

    et

    11.8

    8

    18

    1

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    6/20

    Forecasts from stationary and DS models

    100

    120

    140

    160

    180

    1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

    Lead time

    Forecasts

    Forecast standard error

    0

    20

    40

    60

    1 6 11 16 21 26 31 36 41 46 51 56

    Lead time

    Std.error

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    7/20

    CPI -- 1955:1 2002:12

    35

    235

    435

    635

    835

    1035

    1235

    1 51 101 151 201 251 301 351 401 451 501 551

    Logarithm of CPI

    3.5

    3.7

    3.9

    4.1

    4.3

    4.5

    4.7

    4.9

    5.1

    5.3

    5.5

    5.7

    5.9

    6.1

    6.3

    6.5

    6.7

    6.9

    1 51 101 151 201 251 301 351 401 451 50

    WPI -- 1970:1 2000:12

    30

    80

    130

    180

    230

    280

    330

    1 51 101 151 201 251 301 351

    Logarithm of WPI

    3.4

    3.6

    3.8

    4

    4.2

    4.4

    4.6

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    1 51 101 151 201 251 301

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    8/20

    M1: 1955:1 2002:12

    0

    50000

    100000

    150000

    200000

    250000

    300000

    350000

    400000

    450000

    1 51 101 151 201 251 301 351 401 451 501 551

    Logarithm of M1

    7.5

    8.5

    9.5

    10.5

    11.5

    12.5

    13.5

    1 51 101 151 201 251 301 351 4

    M3: 1955:1 2002:12

    0

    200000

    400000

    600000

    800000

    1000000

    1200000

    1400000

    1600000

    1800000

    1 51 101 151 201 251 301 351 401 451 501 551

    Logarithm of M3

    7.5

    8.5

    9.5

    10.5

    11.5

    12.5

    13.5

    14.5

    1 51 101 151 201 251 301 351 4

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    9/20

    Export: 1970:1 2000:12

    1

    30

    59

    88

    117

    146

    175

    1 51 101 151 201 251 301 351

    Logarithm of Ex

    -0.06

    0.44

    0.94

    1.44

    1.94

    2.44

    2.94

    3.44

    3.94

    4.44

    4.94

    1 51 101 151 20

    Imports: 1970:1 2000:12

    1

    41

    81

    121

    161

    201

    1 51 101 151 201 251 301 351

    Logarithm of im

    -0.05

    0.45

    0.95

    1.45

    1.95

    2.45

    2.95

    3.45

    3.95

    4.45

    4.95

    5.45

    1 51 101 151 20

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    10/20

    Food credit: 1970:4 2003:3

    0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    1 51 101 151 201 251 301 351

    Logarithm of food credit

    4.5

    5.5

    6.5

    7.5

    8.5

    9.5

    10.5

    11.5

    1 51 101 151 201 251

    Nonfood credit: 1970:3 2003:3

    0

    100000

    200000

    300000

    400000

    500000

    600000

    700000

    800000

    1 51 101 151 201 251 301 351

    Logarithm of nonfood cred

    8

    9

    10

    11

    12

    13

    14

    1 51 101 151 201 251

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    11/20

    Fig1: White Noise

    -4

    -2

    0

    2

    4

    1 18 35 52 69 86 103 120 137 154 171 188

    Time

    Z_

    {t}

    Fig 2: MA(1) model. Theta=-0.8

    -4

    -2

    0

    2

    4

    1 18 35 52 69 86 103 120 137 154 171 188

    Time

    z_

    {t}

    Fig3: MA(1) model; Theta=0.8

    -4

    -2

    0

    2

    4

    1 18 35 52 69 86 103 120 137 154 171 188

    Time

    z_

    {t}

    Fig 4: AR(1) model; Phi = 0.65

    -4

    -2

    0

    2

    4

    6

    1 18 35 52 69 86 103 120 137 154 171 188

    Time

    z_

    {t}

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    12/20

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    13/20

    M1: 1955:1 2002:12

    0

    50000

    100000

    150000

    200000

    250000

    300000

    350000

    400000

    450000

    1 51 101 151 201 251 301 351 401 451 501 551

    Logarithm of M1

    7.5

    8.5

    9.5

    10.5

    11.5

    12.5

    13.5

    1 51 101 151 201 251 301 351 401 451 501 551

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    14/20

    Empirical applications

    We shall apply the unit root test procedures discussed above on some major Indian macro series.Since many Indian studies have confirmed the existence of unit roots in many Indian time series,we shall consider our attempts in this section as a confirmatory exercise, besides being a pedagogicdemonstration of unit root test procedures. Hence we shall employ these test procedures on narrow

    money series (M1) only as a demonstration. This is monthly data, ranging from 1955:1 to 2002:12 a sample of 576 observations and this data was collected from the various issues of the RBI bulletin.A plot of the series is attached at the end.

    Which of the three models that we have discussed, should one choose to employ? An inspectionof the plots reveals that since all the series are upward trending, Case 3 would be better model.But we have to check if this upward movement is better characterized as a drift or as stationaryfluctuations around a time trend. We shall be using the ADF test procedure as well as demonstratethe application of the PP test. But, as an extended exercise, we also shall estimate the other twocases as well and check for the null if these series can be labelled as pure random walk or randomwalk with drift. We select the correct number of lags using Halls general to specific methodology.

    All results are discussed at the 5% level.

    The following model was estimated for M1 data by OLS, with the number of lags decided byHalls methodology. (standard errors in parentheses)

    m1t = 0.086722(0.030965)

    + 0.000126(0.000045)

    t + 0.988506(0.004377)

    m1t1 0.018542(0.042389)

    m1t1 + 0.024024(0.039460)

    m1t2

    0.008666(0.039064)

    m1t3 0.123152(0.039061)

    m1t4 0.099201(0.039087)

    m1t5 + 0.085646(0.039208)

    m1t6

    0.104373(0.039127)

    m1t7 0.085999(0.039212)

    m1t8 0.127945(0.039152)

    m1t9 0.025808(0.039217)

    m1t10

    + 0.126156(0.039181)m1t11 + 0.361437(0.039554)m1

    t12 + 0.083216(0.042464)m1t13

    RSS = 0.158604.

    Since the available sample size in this case will be 562, the ADF normalized bias test can be calculatedas:

    T( 1)

    1 1

    2

    12

    13

    =562(0.988506 1)

    1 + 0.18542 0.024024 0.361437 0.083216= 6.46.

    Refering to Table B.5, Case 4 critical values tabulated in Hamilton, the calculated value of6.46 is

    much greater than the asymptotic critical value of21.8. Hence, the unit root of null is accepted.The equivalent t statistic for the same null is calculated as,

    (0.988506 1)/(0.004377) = 2.63.

    Since the calculated t statistic is greater than the asymptotic critical value of3.41, (refer to TableB.6,Case 4) we again conclude that the null of unit root is accepted. Thus, the test conducted sofar accepts that M1 may be modelled as an ARIMA(13, 1, 0) process. Finally, since the distributionof has been derived maintaining that = 0, we need to conduct an F test to test the joint nullof = 1, = 0. But the calculated F test value of 8.07 is greater than the 5% asymptotic criticalvalue of 6.25 but is less than the 1% value of 8.25. Hence the null of unit root with a possible drift,is rejected at the 5% level, but accpeted at the 1% level.

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    15/20

    Next we shall check if the first two cases fit any better. We shall assume the test regression asabove. The results of the regression exercises are given below:

    m1t = 0.000276(0.005121)

    + 1.00093(0.000506)

    m1t1, RSS = 0.234373

    m1t = 1.00096(0.000083)

    m1t1, RSS = 0.234374

    Here the F statistic for the joint null = = 0, = 1 against the general alternative that isgiven by the test regression is calculated as

    F = (0.234374 0.158604)/15(0.158604/562) = 17.9,

    which is much greater than the 5% asymptotic critical value of 4.68 and this means, we can reject thenull of unit root without a drift. Next we compute the F statistic to test the joint null = 0, = 1a follows:

    F = (0.234373 0.158604)/14(0.158604/562) = 19.18

    which is again much greater than the 5% asymptotic critical value of 6 .25. So once again the null isrejected.

    But ADF test is sensitive to the correct lag size. So these rejections have to be viewed in thatlight. Perhaps M1 has a significant time trend, a drift as well as a unit root. So is there a case for aquadratic time trend as against the null ofsecond unit root? Since the plot of the levels data clearlyshows a quadratic trend, I did a preliminary check calculating the autocorrelation values of residualsobtained from models with (1) a linear time trend only and (2) with a quadratic time trend added.But the lag 10 autocorrelation values remained as high as 0.893 and 0.689 for models (1) and (2)respectively even after these regressions. Hence, it looks like, our ADF test with the joint null, at

    the 1% significance level, is likely a better model! We shall discuss more about this series later.

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    16/20

    Unit roots versus breaking trends alternative

    The null and the alternatives have been parameterized as follows:

    Null Hypotheses:

    Model (A) zt = + dDT Bt

    + zt1 + et

    Model (B) zt = 1 + zt1 +

    2 1

    DUt + et

    Model (C) zt = 1 + zt1 + dD

    T Bt

    +

    2 1

    DUt + et where

    D

    T Bt

    = 1 if t = TB + 1, 0 otherwise;

    DUt = 1 if t > TB, 0 otherwise

    and et could be either an uncorrelated innovation sequence or a stationary process. Instead of

    considering the alternative hypothesis that zt is a stationary series around a deterministic linear

    trend with time invariant parameters, Perron considers the following alternative models:

    Model (A) zt = 1 + t +

    2 1

    DUt + et

    Model (B) zt = + 1t +

    2 1

    DTt

    + et

    Model (C) zt = 1 + 1t + +

    2 1

    DUt +

    2 1

    DTt + et

    where

    DT

    t = t TB, and DTt = t if t > TB and 0 otherwise.

    Here TB refers to the time of break, that is, the period at which the change in the parameters of the

    trend function occurs.

    Extension to more general processes: ets correlated

    Using the regression under Case 1 and the critical values sited above is valid only for uncorrelated

    es. When there is correlation among the error terms, Perron suggests the following model which is

    along the lines of ADF testing procedures and uses the literature on outlier specification. He nests

    the null and the alternative models in the following fashion:

    zt = A + ADUt +

    At + dAD

    T Bt

    + Azt1 +k

    i=1

    cizti + et,

    zt = B + BDUt +

    Bt + BDTt

    + Bzt1 +k

    i=1

    cizti + et,

    zt = C + CDUt +

    Ct + CDTt + dCD

    T Bt

    + Czt1 +k

    i=1

    cizti + et.

    1

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    17/20

    Figure -- 1 Logarithm of Nominal wages

    6

    6.2

    6.4

    6.6

    6.8

    7

    7.2

    7.4

    7.6

    7.8

    88.2

    8.4

    8.6

    8.8

    9

    9.2

    1 3 5 7 9 11 1 3 15 1 7 19 2 1 23 2 5 2 7 29 3 1 33 3 5 37 3 9 41 4 3 45 4 7 49 5 1 5 3 55 5 7 59 6 1 63 6 5 67 6 9 71

    Figure --3 Logarithm of common stock prices

    1

    1.5

    2

    2.5

    3

    3.5

    4

    4.5

    5

    1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

    Figure 2 -- Logarithm of quarterly real GNP

    6.9

    7.1

    7.3

    7.5

    7.7

    7.9

    8.1

    8.3

    1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    18/20

    Figure 4 -- CDF of alpha under the

    "crash" model

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

    Figure 5 -- CDF of alpha under the

    "breaking trend" model

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    19/20

    Table 1

    Results of ADF unit root test procedure

    Regression: zt = + t + zt1 +k

    i=1

    izt1 + et

    Series k t t t RSS S(e

    M11955:1-2002:12 13 0.087 2.80 0.1103 2.84 0.989 -2.63 0.159 0.3101955:1-1980:12 13 0.229 2.95 0.3103 2.84 0.969 -2.92 0.09 0.3101981:1-2002:12 14 0.363 1.72 0.4103 1.60 0.965 -1.66 0.045 0.210

    M3 7 0.2120 3.25 0.11103 3.21 0.974 -2.81 0.961 0.1710

    CPI1955:1-2002:12 12 0.046 3.46 0.8104 3.32 0.987 -3.22 0.041 0.74101955:1-1974:12 12 0.089 2.11 0.1103 2.26 0.975 -2.09 0.02 0.9101975:1-2002:12 12 0.123 2.48 0.1103 2.36 0.975 -2.41 0.00 0.510

    WPI1970:1-2000:12 12 0.151 5.09 0.3103 4.95 0.957 -5.01 0.09 0.8101970:1-1974:8 8 -0.135 -1.1 0.7103 2.20 1.03 1.06 0.004 0.1110

    1974:9-2000:12 12 0.153 3.76 0.25103 3.64 0.962 -3.68 0.02 0.6810

    Exports1970:1-2000:12 13 0.036 2.70 0.6103 1.57 0.957 -1.52 3.54 0.0111970:1-1985:2 12 0.084 2.69 0.12102 1.31 0.896 -1.40 0.09 0.016

    1985:3-2000:12 12 0.147 1.41 0.305103 0.38 0.969 -0.65 0.009 0.5510

    Imports 12 0.069 3.96 0.1102 2.39 0.893 -2.43 0.0149 0.014

    Food credit1970:4-2003:3 12 0.227 3.92 0.4103 3.54 0.962 -3.89 0.09 0.0101970:4-1987:7 13 0.300 2.50 0.75103 1.90 0.950 -2.35 0.003 0.0121987:8-2003:3 13 0.871 4.79 0.21102 4.18 0.89 -4.66 0.09 0.8510

    Non-food credit 12 0.319 3.10 0.5103 3.00 0.962 -3.00 0.001 0.210

    Note: k for all models was fixed using Halls general-to-specific method. All data are in logs. S(e)refers to the residual variance.

    Table 2

    Sample autocorrelations of the detrended series

    Series T Variance r1 r2 r3 r4 r5 r6 r7 r8M1 576 0.031 0.99 0.97 0.96 0.95 0.93 0.92 0.91 0.91 CPI 576 0.009 0.99 0.97 0.95 0.93 0.91 0.89 0.87 0.86 WPI 372 0.004 0.98 0.95 0.91 0.86 0.82 0.78 0.74 0.70

    Exports 372 0.042 0.74 0.72 0.69 0.70 0.68 0.70 0.70 0.68 Food credit 396 0.164 0.93 0.83 0.76 0.71 0.68 0.64 0.59 0.54

    Note: All series were detrended using Model A under the alternative hypothesis.

    1

  • 8/14/2019 Kalman filter Recursions Main Equations the Prediction and Updating

    20/20

    Table3

    ResultsofPe

    rronunitroottestproced

    ure

    Regression,ModelA:zt=+DU

    t+t+dD(TB)t+zt1

    +

    k i=1

    izt1+et

    Series

    T

    TB

    t

    t

    t

    d

    td

    t

    S(e)

    M1

    576

    312

    0.54

    0.093

    3.05

    -0.006

    -1.88

    0.0001

    3.59

    -0.003

    -0.54

    0.988

    -2.77

    0.0003

    CPI

    576

    240

    0.42

    0.045

    3.51

    -0.001

    -0.83

    0.0001

    3.47

    0.004

    0.79

    0.986

    -3.39

    0.0001

    WPI

    372

    57

    0.15

    0.131

    4.73

    -0.006

    -2.81

    0.0002

    4.72

    0.001

    0.19

    0.962

    -4.67

    0.0001

    Exports

    372

    183

    0.49

    0.020

    1.05

    -0.021

    -0.76

    0.001

    1.81

    -0.015

    -0.35

    0.935

    -1.78

    0.012

    oodcredit

    396

    209

    0.53

    0.44

    5.51

    -0.12

    -3.82

    0.001

    4.97

    -0.05

    -0.43

    0.920

    -5.45

    0.0104

    Note:=T

    B/T

    andkfor

    allthemodelswasfixedat12asbefore.Alldataareinlog

    s.S(e)isvarianceoftheresid

    uals.

    Table4

    ResultsofZivot-Andrewsunitroottestprocedure

    Mo

    delA

    Mod

    elB

    Mode

    lC

    Series

    t-statistics

    Breakyear

    tstatistics

    Breakyear

    tstatistics

    Breakyear

    M1

    -3.75

    1989:2

    (410)

    -3.35

    1980:5

    (305)

    -3.57

    1980:4

    (304)

    CPI

    -4.64

    1958:10

    (58)

    -5.02

    1970:11

    (191)

    -5.12

    1968:1

    (157)

    WPI

    -5.68

    1972:5

    (29)

    -5.67

    1973:5

    (41)

    -5.94

    1977:2

    (86)

    Exports

    -2.81

    1979:5

    (113)

    -2.20

    1985:6

    (186)

    -3.12

    1977:4

    (88)

    Imports

    -3.83

    1984:2

    (170)

    -3.12

    1974:2

    (50)

    -3.89

    1972:11

    (35)

    Foodcredit

    -5.72

    1987:3

    (204)

    -4.38

    1975:10

    (67)

    -5.71

    1987:3

    (204)

    on-foodcredit

    -5.25

    1978:9

    (102)

    -5.14

    1983:8

    (161)

    -5.52

    1980:6

    (123)