KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya...

63
KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL FRAKSINASI ASAP CAIR DARI TONGKOL JAGUNG SKRIPSI RAISA MEENAZIR F 34063431 FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 2010

Transcript of KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya...

Page 1: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

i

KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL

FRAKSINASI ASAP CAIR DARI TONGKOL JAGUNG

SKRIPSI

RAISA MEENAZIR

F 34063431

FAKULTAS TEKNOLOGI PERTANIAN

INSTITUT PERTANIAN BOGOR

BOGOR

2010

Page 2: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

ii

IDENTIFICATION STUDY OF FOOD ADDITIVES AS LIQUID SMOKE

FRACTIONATION RESULT FROM CORN COBS

Sapta Raharja and Raisa Meenazir

Department of Agroindustrial Technology, Faculty of Agricultural Technology,

Bogor Agricultural University, IPB Darmaga Campus, PO Box 220, Bogor, West Java,

Indonesia.

Phone 62 857 17128495, e-mail : [email protected]

ABSTRACT

Corn cob is one type of agricultural waste that can be processed into useful products such as

food additives through pyrolysis and fractionation. In pyrolisis, degradation of components contained

in the corn cob as cellulose, hemicelluloses, and lignin into various organic compound was occurred.

Range of temperature and pressure treatment based on the boiling point of every individual chemical

compounds contained in the liquid smoke 550oC with the addition of 1.5 % atapulgite catalyst.

Fractionation of liquid smoke was done by using vacuum distillation method that make compound

which has high boiling point will more quickly evaporated. Furthermore, components of chemical

compounds in the liquid smoke fractions identified by GC-MS ((Gas Mass Chromatography

Spectrometry). Fraction of liquid smoke can be produced at a pressure of 100 mbar at all points of

temperature, but at a pressure of 90 mbar with a temperature of 70oC and pressure of 80 mbar with a

temperature of 67.5oC and 70oC, the liquid can’t be fractionationed again, because temperature and

pressure was too high. The result of GC-MS showed that some component contained in the liquid

smoke were phenol, ketons, furans, aldehydes, hydrocarbons, and acids. The largest component is

phenol, which produced at all temperatures in all pressure points.These compound can be used in the

manufactured of food additives such as preservatives, antioxidant, and flavor.

Keywords : corn cob, pyrolysis, fractionation, liquid smoke, food additives

Page 3: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

iii

RAISA MEENAZIR. F34063431. Kajian Identifikasi Bahan Tambahan Pangan Hasil Fraksinasi

Asap Cair dari Tongkol Jagung. Di bawah bimbingan Sapta Raharja. 2010.

RINGKASAN Tongkol jagung merupakan salah satu jenis limbah yang dapat diolah menjadi produk yang

bermanfaat seperti bahan tambahan pangan melalui proses pirolisis dan fraksinasi. Pada proses

pirolisis terjadi degradasi komponen-komponen yang terkandung dalam tongkol jagung seperti

selulosa, hemiselulosa, dan lignin menjadi berbagai macam senyawa organik. Senyawa organik

tersebut akan mengalami pemisahan (fraksinasi) melalui proses distilasi vakum berdasarkan adanya

perbedaan titik didih. Tujuan penelitian ini adalah untuk mengetahui kandungan senyawa kimia

organik pada asap cair tongkol jagung dan mengetahui kombinasi suhu dan tekanan yang

menghasilkan senyawa organik terbanyak untuk membuat bahan tambahan pangan.

Penentuan perlakuan suhu dan tekanan yang digunakan, dilakukan dengan mengetahui

terlebih dahulu titik didih dari maasing-masing senyawa kimia yang terkandung dalam asap cair

550oC dengan penambahan konsentrasi katalis atapulgit 1.5 %. Penentuan suhu fraksinasi asap cair

dilakukan berdasarkan penelitian terdahulu yang dilakukan Purwaningtyas (2010). Suhu yang

digunakan adalah 60oC, 62.5oC, 65oC, 67.5oC, dan 70oC pada tiga perlakuan tekanan yaitu 80 mbar,

90 mbar, dan 100 mbar.

Proses fraksinasi asap cair dilakukan dengan menggunakan metode distilasi vakum

menggunakan Rotary Vacuum Evaporator yang bertujuan agar komponen senyawa yang memiliki

titik didih tinggi dapat lebih cepat menguap. Selanjutnya dilakukan identifikasi komponen senyawa

kimia pada hasil fraksinasi asap cair dengan GC-MS (Gas Chomatogaphy Mass Spectrometry)

Hasil fraksinasi menunjukkan bahwa fraksi asap cair dapat dihasilkan pada tekanan 100 mbar

di semua titik suhu, namun pada tekanan 90 mbar dengan suhu 70oC, dan tekanan 80 mbar dengan

suhu 67.5oC dan 70oC, cairan dapat terfraksinasi lagi, karena suhu dan tekanan yang terlalu tinggi.

Cairan yang dihasilkan berwarna putih bening dan berbau sangit akibat pembakaran. Selain itu,

tingkat keasaman (pH) berkisar antara 3-4. Hal ini menunjukkan bahwa banyak terdapat kandungan

asam pada cairan tersebut.

Analisa GC-MS menunjukkan bahwa beberapa komponen senyawa yang terdapat dalam asap

cair yakni berupa fenol, keton, furan, aldehid, hidrokarbon, dan asam. Senyawa-senyawa tersebut

dapat digunakan dalam pembuatan bahan tambahan makanan seperti, pengawet, antioksidan, dan

flavour. Analisa GC-MS hasil fraksinasi asap cair pada tekanan 100 mbar menunjukkan bahwa,

komponen-komponen senyawa yang terkandung di dalamnya mengalami peningkatan jumlah seiring

dengan peningkatan suhu. Selanjutnya terjadi penurunan jumlah komponen karena sudah terdapat

komponen-komponen senyawa yang terevaporasi akibat proses yang berlangsung satu kali running.

Komponen terbanyak yang dihasilkan adalah fenol. Komponen ini berada pada semua titik

suhu di semua tekanan. Pada sisa fraksinasi, komponen yang paling banyak tersisa adalah komponen

asam. Hal ini karena titik didih senyawa asam yang terlalu tinggi sehingga membutuhkan suhu dan

tekanan tinggi, dan waktu yang lebih lama untuk menguap.

Page 4: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

iv

KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL

FRAKSINASI ASAP CAIR DARI TONGKOL JAGUNG

SKRIPSI Sebagai salah satu syarat untuk memperoleh gelar

SARJANA TEKNOLOGI PERTANIAN pada Departemen Teknologi Industri Pertanian,

Fakultas Teknologi Pertanian,

Institut Pertanian Bogor

Oleh :

RAISA MEENAZIR

F 34063431

FAKULTAS TEKNOLOGI PERTANIAN

INSTITUT PERTANIAN BOGOR

BOGOR

2010

Page 5: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

v

PERNYATAAN MENGENAI SKRIPSI DAN SUMBER

INFORMASI

Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul “Kajian Identifikasi

Bahan Tambahan Pangan Hasil Fraksinasi Asap Cair dari Tongkol Jagung” adalah hasil karya

saya sendiri dengan arahan Dosen Pembimbing Akademik, dan belum diajukan dalam bentuk apapun

pada perguruan tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya yang

diterbitkan maupn tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan

dalam Daftar Pustaka di bagian akhir skripsi ini.

Bogor, Desember 2010

Yang membuat pernyataan,

Raisa Meenazir

F 34063431

Page 6: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

vi

Judul Skripsi : Kajian Idenfikasi Bahan Tambahan Pangan Hasil Fraksinasi Asap Cair dari

Tongkol Jagung

Nama : Raisa Meenazir

NRP : F34063431

Menyetujui,

Dosen Pembimbing,

(Dr. Ir. Sapta Raharja, DEA)

NIP : 19631026 199002 1 001

Mengetahui :

Ketua Departemen,

(Prof. Dr. Ir. Nastiti Siswi Indrasti)

NIP : 19621009 198903 2 001

Tanggal Lulus : 21 Desember 2010

Page 7: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

vii

BIODATA PENULIS

Penulis dilahirkan di Tanjung Pura pada tanggal 29 Mei 1988. Penulis

merupakan anak pertama dari empat bersaudara, putri pasangan M. Rafi Ali

dan T. Amriana. Penulis menempuh pendidikan dasar di SD 2 Taman Siswa

Lhokseumawe dan lulus pada tahun 2000. Penulis melanjutkan ke SLTP

Swasta Yayasan Pendidikan Arun Lhokseumawe dan lulus tahun 2003.

Penulis melanjutkan ke SMA Swasta Yayasan Pendidikan Arun

Lhokseumawe dan lulus tahun 2006. Pada tahun yang sama penulis diterima

di Institut Pertanian Bogor melalui jalur USMI (Undangan Seleksi Masuk

IPB). Pada tahun 2007, penulis diterima di Departemen Teknologi Industri

Pertanian melalui sistem Mayor-Minor. Selama kuliah, penulis mengikuti berbagai organisasi dan

kepanitiaan. Pada tahun 2006 hingga 2008 penulis aktif di Organisasi Mahasiswa Daerah IMTR

(Ikatan Mahasiswa Tanah Rencong). Tahun 2007 hingga 2008 penulis tergabung dalam HIMALOGIN

(Himpunan Mahasiswa Teknologi Industri) IPB. Pada tahun 2008, penulis mengikuti kepanitiaan

HAGATRI (Hari Warga Industri) sebagai komite disiplin dan juga kepanitiaan pada Agroindustry

Days 2008. Penulis mengikuti beberapa seminar dan pelatihan seperti ESQ (Emotional Spiritual

Quotient) Teens Angkatan ke-1 Aceh pada tahun 2006 dan pelatihan Fire Fighting oleh PT Arun,

NGL. Co. Penulis mengikuti Seminar Nasional Dialog Peduli Pendidikan Nasional Pada tahun 2007

dan Seminar Nasional Soil and Mining IPB pada tahun 2009. Selama kuliah penulis juga pernah

menjadi asisten praktikum mata kuliah Pengawasan Mutu pada tahun 2010. Pada tahun 2009, penulis

melaksanakan Praktek Lapangan di PT SMART, Tbk di bagian Refinery dengan judul “Mempelajari

Proses Pengolahan CPO Menjadi Minyak Goreng di PT SMART, Tbk Refinery, Surabaya”. Pada

tahun 2010, penulis melakukan penelitian yang berjudul “Kajian Identifikasi Bahan Tambahan Pangan

Hasil Fraksinasi Asap Cair dari Tongkol Jagung” untuk menyelesaikan pendidikan tingkat sarjana.

Page 8: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

viii

KATA PENGANTAR

Puji dan syukur dipanjatkan ke hadapan Allah SWT atas karunia-Nya sehingga skripsi ini

berhasil diselesaikan. Penelitian dengan judul Kajian Identifikasi Bahan Tambahan Pangan Hasil

Fraksinasi Asap Cair dari Tongkol Jagung dilaksanakan di Kampus IPB, Darmaga sejak bulan April

hingga Oktober 2010.

Dengan telah selesainya penelitian hingga tersusunnya skripsi ini, penulis ingin

menyampaikan penghargaan dan terima kasih yang sebesar-besarnya kepada :

1. Bapak Dr. Ir. Sapta Raharja, DEA selaku dosen pembimbing akademik yang telah memberikan

bimbingan kepada penulis sehingga dapat menyelesaikan skripsi ini.

2. Ibu Dr. Ir. Hj. Liesbetini Haditjaroko, MS selaku dosen penguji yang telah memberikan saran,

kritik, dan masukan yang membangun.

3. Bapak Ir. Muslich, Msi selaku dosen penguji yang telah memberikan saran, kritik, dan masukan

yang membangun.

4. Bapak H..M. Rafi Ali, SE (Ayah) dan Ibu Hj. T. Amriana, BA (Mama) atas segala kasih sayang,

doa, dukungan, dan sabar yang tak ada habisnya diberikan kepada penulis, sehingga penulis bisa

seperti sekarang ini.

5. Rafika Akhtariana (Fika), Rozaana Raziin (Oji), dan Muhammad Rais Taqiuddin (Rais), adik-adik

atas dukungan yang tak pernah ada habisnya dan selalu membuat hari-hari penulis penuh dengan

semangat..

6. Dumianto Prihastian Wijaya, dengan sabar dan pengertian yang selalu memberi ketenangan kepada

penulis.

7. Indah, Aci, Syelly, Nita, Eka, Wiwid, Uul, Nidia, Yos, dan seluruh teman-teman TIN 43 atas

persahabatan dan dukungannya selama ini.

8. Mba Ritna, Bu Ega, Pak Sugi, Pak Gun dan seluruh laboran Departemen Teknologi Industri

Pertanian.

9. Seluruh dosen Departemen Teknologi Industri Pertanian yang telah banyak memberikan

pengetahuan kepada penulis.

10. Seluruh staf tata usaha Departemen Teknologi Industri Pertanian dan petugas perpustakaan yang

telah banyak membantu penulis.

12. Sabti, Hayya, Nia, Lia, Melly, Pipid, Idja, Bintang, Chika, Asti, Alya, dan seluruh teman-teman

Pondok Nuansa Sakinah atas persahabatan dan kasih sayangnya selama ini.

13. Seluruh keluarga di Lhokseumawe, Tanjung Pura, Medan, dan Jakarta atas doa dan semangat yang

diberikan.

14. Semua pihak yang telah membantu penulis dalam menyelesaikan penyusunan skripsi ini.

Akhirnya penulis berharap semoga tulisan ini bermanfaat dan memberikan kontribusi yang

nyata terhadap perkembangan ilmu pengetahuan di bidang agroindustri.

Bogor, Desember 2010

Raisa Meenazir

Page 9: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

ix

DAFTAR ISI

Halaman

KATA PENGANTAR .................................................................................................... vii

DAFTAR ISI .................................................................................................................. viii

DAFTAR TABEL .......................................................................................................... x

DAFTAR GAMBAR ...................................................................................................... xi

DAFTAR LAMPIRAN ................................................................................................... xii

I. PENDAHULUAN ....................................................................................................... 1

A. LATAR BELAKANG ............................................................................................ 1

B. TUJUAN ................................................................................................................ 1

II. TINJAUAN PUSTAKA ............................................................................................. 2

A. TONGKOL JAGUNG ........................................................................................... 2

B. KANDUNGAN BIOMASSA JAGUNG ................................................................ 3

1. Selulosa ............................................................................................................ 3

2. Hemiselulosa .................................................................................................... 3

3. Lignin ............................................................................................................... 3

C. PIROLISIS ............................................................................................................ 4

D. DISTILASI FRAKSINASI .................................................................................... 4

1. Teori dan Prisip Dasar Distilasi ......................................................................... 4

2. Distilasi Bertingkat (Fraksionasi) ...................................................................... 5

3. Distilasi Vakum ................................................................................................ 5

E. ASAP CAIR .......................................................................................................... 6

1. Pemurnian Asap Cair dengan Distilasi ............................................................... 8

2. Perkembangan Produksi dan Aplikasi Asap Cair ............................................... 8

F. GC-MS (GAS CHROMATOGRAPHY-MASS SPECTROMETRY) ........................... 8

G. BAHAN TAMBAHAN PANGAN ........................................................................ 9

1. Pengawet .......................................................................................................... 10

2. Antioksidan ...................................................................................................... 10

3. Flavour ............................................................................................................ 10

III. METODOLOGI ........................................................................................................ 11

A. ALAT DAN BAHAN .......................................................................................... 11

B. METODE PENELITIAN ..................................................................................... 11

1. Tahapan Penelitian .......................................................................................... 11

a. Pretreatment Sampel Tongkol Jagung .......................................................... 12

b. Karakterisasi Bahan Baku ............................................................................ 12

c. Penentuan Perlakuan Suhu dan Konsentrasi Katalis ...................................... 12

d. Penentuan Suhu dan Tekanan Fraksinasi ...................................................... 12

2. Prosedur Penelitian ......................................................................................... 12

a. Pirolisis Tongkol Jagung .............................................................................. 12

b. Fraksinasi Asap Cair .................................................................................... 13

c. Analisis Warna, Bau, dan pH ....................................................................... 14

d. Analisis GC-MS

(GAS CHROMATOGRAPHY-MASS SPECTROMETRY) ............................... 14

Page 10: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

x

C. WAKTU DAN TEMPAT PENELITIAN ............................................................. 14

IV. PEMBAHASAN ........................................................................................................ 15

A. KARAKTERISTIK BAHAN BAKU ..................................................................... 15

B. PRODUKSI ASAP CAIR ...................................................................................... 16

C. FRAKSINASI ASAP CAIR DENGAN DISTILASI VAKUM ............................... 17

D. ANALISIS WARNA, BAU, DAN pH ................................................................... 21

E. ANALISIS GC-MS

(GAS CHROMATOGRAPHY-MASS SPECTROMETRY) ......................................... 22

F. KOMPONEN MAYOR DAN MINOR PADA HASIL FRAKSINASI

ASAP CAIR .......................................................................................................... 26

G. SISA FRAKSINASI .............................................................................................. 27

H. APLIKASI ASAP CAIR SEBAGAI BAHAN TAMBAHAN PANGAN ................ 28

V. KESIMPULAN DAN SARAN

A. KESIMPULAN ..................................................................................................... 29

B. SARAN ................................................................................................................ 29

VI. DAFTAR PUSTAKA ............................................................................................... 30

VII. LAMPIRAN ............................................................................................................ 34

Page 11: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

xi

DAFTAR TABEL

Halaman

Tabel 1. Komposisi Kimia Togkol Jagung ....................................................................... 2

Tabel 2. Komposisi Kimia Asap Cair ............................................................................. 7

Tabel 3. Perlakuan Suhu dan Tekanan Fraksinasi Asap Cair ............................................ 14

Tabel 4. Perlakuan Suhu dan Tekanan yang Mengalami Analisa GC-MS .......................... 14

Tabel 5. Komposisi Kimia Tongkol Jagung Awal ............................................................ 15

Tabel 6. Cairan Hasil Pirolisis Tongkol Jagung ............................................................... 17

Tabel 7. Hasil Fraksinasi Asap Cair ................................................................................. 18

Tabel 8. Komponen Hasil Fraksinasi dan % Total Luas Area ........................................... 26

Page 12: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

xii

DAFTAR GAMBAR

Halaman

Gambar 1. Bagan alir tahapan penelitian ........................................................... ............. 11

Gambar 2. Bagan alir prosedur fraksinasi dan analisis asap cair ......................... ............. 13

Gambar 3. Grafik hasil fraksinasi pada tekanan 100 mbar .................................. ............. 19

Gambar 4. Grafik hasil fraksinasi pada tekanan 90 mbar .................................... ............. 20

Gambar 5. Grafik hasil fraksinasi pada tekanan 80 mbar .................................... ............. 21

Gambar 6. Grafik hasil analisis pH ..................................................................... ............. 22

Gambar 7. Grafik hasil analisis GC-MS, tekanan 100 mbar

suhu 60.0, 62.5, 65.0, 67.5, dan 70oC ................................................ ............. 24

Gambar 8. Grafik hasil analisis GC-MS, tekanan 100, 90, dan

80 mbar suhu 60oC ........................................................................... ............. 25

Gambar 9. Grafik kandungan senyawa kimia sisa fraksinasi .............................. ............. 27

Page 13: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

xiii

DAFTAR LAMPIRAN

Halaman

Lampiran 1. Prosedur analisis kimia bahan dan kadar serat hasil

pirolisis serte metode preparasi GC-MS ........................................ ............. 35

Lampiran 2. Komponen senyawa hasil analisis GC-MS ...................................... ............. 37

Lampiran 3. Hasil Analisis GC-MS beserta titik didih dan struktur

molekul ........................................................................................ ............. 42

Lampiran 4. Grafik komponen senyawa hasil analisa GC-MS

beserta % luas area ....................................................................... ............. 43

Lampiran 5. Kromatogram GC-MS tekanan 80 mbar dan

suhu 60oC ..................................................................................... ............. 44

Lampiran 6. Kromatogram GC-MS tekanan 90 mbar dan

suhu 60oC ..................................................................................... ............. 45

Lampiran 7. Kromatogram GC-MS tekanan 100 mbar dan

suhu 60oC .................................................................................... ............. 46

Lampiran 8. Kromatogram GC-MS tekanan 100 mbar dan

suhu 65oC ..................................................................................... ............. 47

Lampiran 9. Kromatogram GC-MS tekanan 100 mbar dan

suhu 67.5oC .................................................................................. ............. 48

Lampiran 10. Kromatogram GC-MS tekanan 100 mbar dan

suhu 70oC ................................................................................... ............. 49

Lampiran 11. Kromatogram GC-MS sisa fraksinasi .......................................... ............. 50

Page 14: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

1

I. PENDAHULUAN

A. LATAR BELAKANG

Tongkol jagung merupakan salah satu limbah jagung yang banyak dihasilkan karena

produktivitas jagung yang terus meningkat. Produktivitas jagung mengalami peningkatan pada tahun

2009 baik luas panen yang mencapai 4.096.838 ha, maupun produksi yang mencapai 17.041.215 ton.

Pada tahun 2008 produktivitas meningkat cukup signifikan yakni luas panen yang mencapai 4.001.724

ha dan produksi sebesar 16.317.252 ton (BPS, 2009).

Tongkol jagung merupakan salah satu jenis limbah yang dapat diolah menjadi produk yang

bermanfaat seperti bahan tambahan pangan melalui proses pirolisis dan fraksinasi. Pada proses

pirolisis terjadi degradasi komponen-komponen yang terkandung dalam tongkol jagung seperti

selulosa, hemiselulosa, dan lignin menjadi berbagai macam senyawa organik. Senyawa organik

tersebut akan mengalami pemisahan (fraksinasi) melalui proses distilasi vakum berdasarkan adanya

perbedaan titik didih.

Berdasarkan penelitian Purwaningtyas (2010) yang melakukan kajian optimasi pada proses

pirolisis tongkol jagung menggunakan metode respon permukaan dengan dua variabel yakni suhu dan

konsentrasi katalis diperoleh hasil bahwa asap cair yang memiliki hasil terbanyak adalah cairan yang

bersuhu pirolisis 550oC dan dengan penambahan katalis atapulgit sebanyak 1.5%.

Untuk mengetahui berbagai senyawa kimia yang terkandung dalam asap cair, perlu dilakukan

proses pemisahan (fraksinasi) pada berbagai variasi suhu dan tekanan. Variasi suhu dan tekanan

digunakan untuk mengetahui senyawa-senyawa yang menguap dan terkondensasi pada suhu dan

tekanan yang telah ditetapkan. Salah satu metode fraksinasi yang digunakan adalah distilasi vakum.

Distilasi vakum merupakan proses pemisahan berbagai senyawa kimia yang dilakukan berdasarkan

perbedaan titik didih dengan menggunakan prinsip vakum.

Penggunaan fraksinasi sangat penting untuk mengetahui komponen-komponen apa saja pada

asap cair yang dapat diperoleh. Proses fraksinasi akan menghasilkan senyawa-senyawa yang lebih

seragam, karena secara bersamaan menguap pada suhu dan tekanan tertentu. Apabila tidak dilakukan

fraksinasi maka komponen senyawa di dalamnya menjadi sulit untuk diidentifikasi golongan dan

manfaatnya. Senyawa-senyawa kimia organik dapat diolah menjadi bahan tambahan pangan yang

berupa pengawet, antioksidan, dan flavour.

B. TUJUAN

Mengetahui kandungan senyawa kimia organik pada asap cair tongkol jagung dan

mengetahui variasi suhu dan tekanan distilasi vakum yang memiliki kandungan senyawa organik

terbanyak yang berpotensi sebagai bahan tambahan pangan.

Page 15: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

2

II. TINJAUAN PUSTAKA

A. TONGKOL JAGUNG

Tongkol jagung merupakan bagian tanaman jagung yang tidak dapat dimanfaatkan sebagai

makanan pokok. Tongkol ini termasuk dalam biomassa jagung. Tongkol jagung merupakan simpanan

makanan untuk pertumbuhan biji jagung selama melekat pada tongkol. Panjang tongkol bervariasi

antara 8-12 cm (Effendi dan Sulistiati, 1991).

Tanaman jagung mempunyai satu atau dua tongkol, tergantung varietas. Tongkol jagung

diselimuti oleh daun kelobot. Tongkol jagung yang terletak pada bagian atas umumnya lebih dahulu

terbentuk dan lebih besar dibanding yang terletak di bagian bawah. Setiap tongkol terdiri atas 10-16

baris biji yang jumlahnya selalu genap (Subekti, et al., 2009).

Tongkol jagung mengandung 40% selulosa, 36% hemiselulosa, dan 16% lignin (Anonim,

2003). Dengan komposisi kimia seperti ini maka tongkol jagung dapat digunakan sebagai sumber

energi, bahan pakan ternak, dan sebagai sumber karbon bagi pertumbuhan mikroorganisme.

Komposisi kimia tongkol jagung disajikan dalam Tabel 1.

Tabel 1. Komposisi Kimia Tongkol Jagung

Komponen a b c d

Glukan (%) 39.42 - - -

Xilan (%) 28.4 12.4 - -

Arabinan (%) 3.6 - - -

Galaktan (%) 1.1 - - -

Mannan 7.0 - - -

Lignin (%) 1.7 9.1 15 15.0

Abu (%) 1.7 - - -

Protein (%) 3.2 - - -

Lemak Kasar (%) 0.7 - - -

Air (%) - 7.68 - -

Serat Kasar (%) - 38.99 - -

Selulosa (%) - 19.49 45 50.5

Hemiselulosa (%) - - 35 31.0

Panas Pembakaran Kotor (kj/kg) 18 770 - - -

Panas Pembakaran Bersih (kj/kg) 17 580 - - -

Sumber : a. Wyman (1987) di dalam White dan Lawrence (2003)

b. Richana et al. (2004)

c. Sun et al. (2002)

d. Worasuwannarak et al. (2007)

Page 16: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

3

B. KANDUNGAN BIOMASSA JAGUNG

1. Selulosa

Selulosa merupakan homopolisakarida yang tersusun atas unit-unit -D-glukopiranosa yang

terikat satu sama lain dengan ikatan -1,4-glukosida. Molekul-molekul selulosa seluruhnya berbentuk

linier dan mempunyai kecenderungan kuat membentuk ikatan-ikatan hidrogen intra- dan intermolekul

(Sjostrom, 1993).

Selulosa memiliki rantai panjang glukosa yang terikat secara kovalen, sehingga menjadi

suatu struktur kristal. Serat selulosa dapat diolah menjadi kertas, kayu, dan lain-lain karena

kekuatannya (Wyman, 1987 di dalam White dan Lawrence, 2003).

Selulosa terbagi menjadi tiga jenis, yaitu -selulosa, -selulosa, dan -selulosa. -selulosa

adalah bagian selulosa yang tidak larut dalam alkali kuat (NaOH). -selulosa adalah bagian selulosa

yang larut dalam media alkali dan mengendap jika larutan dinetralkan, sedangkan -selulosa adalah

bagian selulosa yang larut dalam alkali dan tetap larut jika larutan dinetralkan (Fengel dan Wegener,

1995).

2. Hemiselulosa

Hemiselulosa merupakan polimer linier xilosa dengan struktur furanosa. Hemiselulosa

merupakan komponen yang kurang stabil dalam biomassa dan terdekomposisi menghasilkan gas dan

arang (Frassoldati et al., 2005).

Hemiselulosa memiliki sifat-sifat yang tidak tahan terhadap perlakuan panas, strukturnya

amorf dan mudah dimasuki pelarut, dapat diekstraksi menggunakan alkali dan ikatannya lemah

sehingga mudah dihidrolisis. Berbeda dengan selulosa yang merupakan homopolisakarida,

hemiselulosa merupakan heteropolisakarida. Setiap jenis hemiselulosa terdiri dari D-xilosa sebagai

rantai utama dan L-arabinosa pada rantai lainnya (Fengel dan Wegener, 1995).

Hemiselulosa terdiri atas berbagai macam sakarida (xylosa, manosa, glukosa, galaktosa, dan

sebagainya), yang tampak cacat, struktur amorf (tak berbentuk), banyak cabang sehingga sangat

mudah untuk dipisahkan dari inti dan mudah terdegradasi menjadi bahan yang mudah menguap ke

luar (CO, CO2, dan beberapa hidrokarbon) pada suhu rendah (Yang et al., 2007).

3. Lignin

Lignin merupakan komponen kimia kayu yang terdapat pada lamella tengah (antar sel) dan

di dalam dinding sel sebagai pengikat polisakarida. Lignin merupakan hasil polimerisasi dari koniferil,

sinapil, dan para-kumaril alkohol dengan enzim sebagai katalisnya (Rahman et al., 2000).

Lignin merupakan polimer alam ketiga terbesar setelah selulosa dan hemiselulosa. Lignin

memainkan peran penting sebagai bahan baku bio-product dan bio-fuel dunia. Lignin terbagi menjadi

3 kelompok, yaitu lignin kayu lunak (gymnosperma), lignin kayu keras (angiosperma), dan lignin

rerumputan (nonkayu atau tanaman herbal) (Buranov dan G. Mazza, 2004).

Sekitar 10-20% bagian biomassa adalah lignin, material fenilpropana komplek yang dapat

dikonversi menjadi komponen aromatik atau dibakar untuk mendapat keuntungan karena mengandung

energi (Wyman, 1987 di dalam White dan Lawrence, 2003).

Page 17: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

4

C. PIROLISIS

Pirolisis merupakan proses pemanasan dengan meminimalkan penggunaan oksigen. Pirolisis

merupakan tahapan awal proses pembakaran dan gasifikasi yang diikuti dengan oksidasi sebagian atau

total dari produk utamanya. Pemilihan suhu yang rendah dan waktu yang lama selama proses pirolisis

akan menghasilkan banyak arang, sedangkan pemilihan suhu tinggi dan waktu pirolisis yang lama

akan meningkatkan konversi biomassa menjadi gas. Sedangkan pemilihan suhu yang sedang dan

waktu pirolisis yang singkat akan mengoptimumkan cairan yang dihasilkan (Bridgwater, 2004).

Pirolisis biomassa merupakan salah satu teknologi alternatif yang dikembangkan dengan

pada beberapa bidang dalam kimia. Salah satunya adalah untuk mengisolasi senyawa kimia yang

kemudian dapat dikonversi menjadi bahan tambahan makanan alternatif. Pada proses pirolisis

terhadap tongkol jagung, terjadi degradasi lignin sebagai akibat dari kenaikan suhu sehingga

dihasilkan senyawa-senyawa karakteristik sesuai dengan suhu yang digunakan (Czernik, 2002).

Penggunaan teknologi pirolisis untuk menghasilkan sumber energi hidrokarbon alternatif

telah dikembangkan. Dari hasil pirolisis ini kemudian dapat dilakukan konversi produk salah satunya

untuk kepentingan sintesis bahan pengganti minyak bumi atau bahan obat-obatan. Secara bertahap,

pirolisis kayu akan mengalami peruraian : (i) hemiselulosa terdegradasi pada 200-260oC, (ii) selulosa

pada 240oC-350oC, dan lignin pada 280oC sampai 500oC (Sjostrom, 1993).

Pirolisis menghasilkan cairan sebagai rendemen, arang sebagai sisa reaksi dan gas yang tidak

terkondensasi. Proporsi ketiganya sangat tergantung dari parameter reaksi dan teknik pirolisis yang

digunakan (Amin et al., 2009). Menurut Raveendran et al. (1996), produk pirolisis tongkol jagung

mengandung 79.9% gas terkondensasi, 20.1% padatan, 37.4% cairan, dan 42.5% gas.

Menurut Raveendran et al. (1996), peristiwa dekomposisi pada proses pirolisis dapat dibagi

menjadi lima zona. Zona I pada suhu kurang dari 100oC, peristiwa evolusi kadar air secara umum;

zona II pada suhu 200-250oC, bahan baku mulai terdekomposisi; zona III pada suhu 250-350oC,

dekomposisi hemiselulosa secara dominan; zona IV pada suhu 350-500oC, secara umum terjadi

dekomposisi selulosa dan lignin; dan zona V pada suhu di atas 500oC, terjadi dekomposisi lignin.

D. DISTILASI FRAKSINASI

1. Teori dan Prisip Dasar Distilasi

Distilasi merupakan suatu unit operasi yang bertujuan untuk mengubah suatu cairan menjadi

uap dan uap tersebut didinginkan kembali menjadi cairan (Purwanto, 1985). Unit operasi ini

merupakan suatu metode yang digunakan untuk memisahkan komponen-komponen yang terdapat

dalam larutan dan campuran yang tergantung pada distribusi titik didih dari komponen-komponen

tersebut (Geankopolis, 1983).

Syarat utama dalam operasi pemisahan komponen dengan cara distilasi adalah komposisi uap

harus berbeda dari komposisi cairan dengan terjadi keseimbangan larutan-larutan, dengan

komponennya cukup untuk dapat menguap. Suhu cairan yang mendidih merupakan titik didih cairan

tersebut pada tekanan atmosfer yang digunakan (Geankopolis, 1983).

Titik didih dapat didefinisikan sebagai nilai suhu pada tekanan atmosfer atau pada tekanan

tertentu lainnya, dimana cairan akan berubah menjadi uap atau suhu pada tekanan uap dari cairan

tersebut sama dengan tekanan gas atau uap yang berada di sekitarnya. Jika dilakukan proses

penyulingan pada tekanan atmosfer maka tekanan uap tersebut akan sama dengan tekanan air raksa

dalam kolom setinggi 760 cmHg. Berkurangnya tekanan pada ruangan di atas cairan akan

Page 18: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

5

menurunkan titik didih, sebaliknya peningkatan tekanan di atas permukaan cairan akan menaikkan

titik didih cairan tersebut (Guenther, 1947).

2. Distilasi Bertingkat (Fraksionasi) Distilasi fraksionasi merupakan penguapan dan pengembunan campuran komponen, yang

dalam campuran uap akan terdapat lebih banyak komponen dengan titik didih lebih rendah, sedangkan

pada sisa cairan lebih banyak mengandung komponen dengan titik didih lebih tinggi (Slabaugh dan

Persons, 1976).

Distilasi bertingkat adalah pemisahan dua komponen atau lebih cairan dengan menggunakan

prinsip perbedaan titik didih. Perlakuan teoritis untuk distilasi bertingkat memerlukan hubungan

antara titik didih komponen-komponen cairan atau tekanan uap campuran atau komposisi komponen

campuran (Guenther, 1947).

Operasi fraksinasi yang ideal akan menghasilkan fraksi tertentu dengan kemurnian tinggi,

pada setiap suhu distilasi tertentu. Setelah fraksi tertentu didistilasi, suhu akan meningkat dengan

cepat dan tidak terdapat cairan yang disuling sebagai fraksi antara.

Yoder et al. (1980) di dalam Purwanto (1995) menyatakan bahwa laju penguapan cairan

tergantung pada beberapa faktor, yaitu :

1. Sifat cairan

Pada kondisi yang sama, cairan yang berbeda tidak akan menguap pada laju yang sama. Perbedaan

tersebut dikarenakan perbedaan pada kekuatan intermolekuler yang dipengaruhi oleh bobot

molekul, struktur, dan derajat polarisasi molekul.

2. Suhu

Untuk setiap cairan, laju penguapan bervariasi sesuai dengan suhu yang diberikan. Peningkatan

energi kinetik akibat kenaikan suhu akan mengakibatkan kekuatan intermolekul akan lebih mudah

putus pada suhu yang lebih tinggi dan meningkatkan laju penguapan.

3. Luas area permukaan

Penguapan adalah fenomena permukaan, semakin besar luas bidang permukaan maka laju

penguapan akan meningkat.

3. Distilasi Vakum

Distilasi vakum dilakukan pada tekanan rendah (vakum sebagian), dan biasanya dilakukan

dengan cara pemisahan minyak tanpa pengisian air dalam ketel pemisah atau pemasukan uap aktif

(Fauzi, 2004).

Menurut Yoder et al. (1980) yang disitasi oleh Purwanto (1995), jika cairan yang disuling

tidak stabil pada kisaran suhu tertentu, atau jika titik didihnya pada kondisi normal terlalu tinggi,

maka distilasi dapat dilakukan pada suhu yang diturunkan dengan menggunakan tekanan atmosfer

distilasi. Teknik distilasi ini disebut distilasi vakum.

Bahan-bahan dengan bobot molekul yang tinggi (misalnya yang khususnya peka terhadap

suhu/oksidasi) hanya dapat didistilasi dalam keadaan vakum sedang atau vakum tinggi, tetapi tekanan

mutlak yang serendah itu hanya dapat dicapai apabila tidak terdapat kerugian tekanan pada

transportasi uap ke kondensor (Handojo, 1995).

Tekanan uap dari beberapa senyawa merupakan fungsi dari suhu. Tekanan rendah akan

menurunkan titik didih komponen-komponen dari bahan-bahan yang disuling. Tekanan pada saat

Page 19: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

6

penyulingan vakum berlangsung harus konstan. Keadaan ini dapat dicapai dengan mengatur aliran

udara melalui pipa kapiler ke dalam cairan yang disuling. Untuk mendapatkan pemisahan yang baik,

proses fraksinasi harus dilakukan dengan kolom yang layak dan berhasil guna (Vogel, 1958).

PV=nRT

Keterangan :

P = Tekanan uap campuran

V = Volume total campuran gas

n = Jumlah mol total campuran gas

R = Konstanta umum gas

T = Suhu campuran uap (Handojo, 1995)

Fraksionasi vakum terutama digunakan untuk memisahkan campuran yang peka terhadap

suhu. Dalam hal ini, tekanan rendah (tekanan absolut) yang dipilih tergantung pada titik didih yang

diinginkan (Handojo, 1995).

Untuk mendistilasi cairan dengan titik didih tinggi atau cairan yang mengalami dekomposisi

saat dipanaskan pada titik didihnya, maka ditetapkan metode khusus yaitu distilasi vakum. Prinsipnya

adalah tekanan dalam sistem diperkecil untuk menurunkan titik didih dari cairan yang didistilasi

(Cook dan Cullen, 1987).

E. ASAP CAIR

Asap cair pertama kali diproduksi pada tahun 1980 oleh sebuah pabrik farmasi di Kansas

City, dikembangkan dengan metode distilasi kayu asap (Pszczola, 1995). Produk yang berupa asap

cair digunakan untuk pengawetan daging babi dan babi asin untuk memberi cita rasa pada beberapa

bahan makanan.

Asap cair merupakan asam cuka (vinegar), diperoleh secara distilasi kering bahan baku asap

misalnya batok kelapa, sabut kelapa, atau kayu pada suhu 400oC selama 90 menit lalu diikuti dengan

kondensasi berpendingin air (Pszczola, 1995). Destilat yang diperoleh dimasukkan ke dalam corong

pemisah untuk dipisahkan dari senyawa-senyawa kimia yang tidak diinginkan misalnya senyawa tar

yang tidak larut dalam asam piroglinat. Asam piroglinat merupakan campuran dari asam-asam

organik, fenol, aldehid, dan lain-lain.

Menurut Maga (1988), asap cair mempunyai kelebihan antara lain : (a) Beberapa flavour

dapat dihasilkan secara seragam dengan konsentrasi yang lebih tinggi dibandingkan dengan

penguapan tradisional; (b) Lebih intensif dalam memberikan aroma; (c) Kontrol hilangnya flavour

lebih mudah; (d) Dapat diaplikasikan pada berbagai jenis bahan pangan; (e) Dapat digunakan oleh

konsumen pada level komersial; (f) Pemakaian kayu lebih hemat sebagai sumber asam; (g) Polusi

lingkungan dapat diperkecil; (h) Dapat diaplikasikan dengan cara penyemprotan, pecelupan, atau

dicampur langsung ke dalam makanan (Pearson dan Tauber, 1984).

Eklund (1982) mengemukakan bahwa dari hasil pengujian Hidrokarbon Aromatik Polisiklik

(HAP), asap cair tidak menunjukkan sifat karsinogenik atau sifat-sifat toksik lainnya. Hal ini

didukung oleh pernyataan Hollenbeak (1978), bahwa asap cair mempunyai sifat antibakterial, mudah

diaplikasikan, dan lebih asam dari asam konvensial serta fraksi tar yang mengandung hidrokarbon

aromatik dapat dipisahkan, sehingga produk asap cair bebas polutan dan karsinogenik.

Zaitsev et al. (1969) mengemukakan bahwa asap mengandung beberapa zat anti mikroba,

antara lain :

Page 20: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

7

(a) Asam dan turunannya : format, asetat, butirat, propionat, metil ester,

(b) Alhokol : metil, etil, propil, alkil, dan isobutil alkohol,

(c) Aldehid : formaldehid, asetaldehid, furfural, dan metil furfural,

(d) Hidrokarbon : silene, kumene, dan simene,

(e) Fenol,

(f) Piridin dan metil piridin.

Menurut Harris dan Karmas (1989), komponen asap dibagi menjadi 4 kelompok berdasarkan

pengaruhnya terhadap nilai gizi produk yang diasap, antara lain :

(a) Zat yang melindungi penyusutan nilai gizi produk yang diasap dengan menghambat perubahan

kimiawi dan biologis yang merugikan,

(b) Komponen yang tidak menunjukkan aktivitas dari segi nilai gizi,

(c) Senyawa yang berinteraksi dengan komponen bahan pangan dan menurunkan nilai gizi produk

yang diasap, dan

(d) Komponen beracun.

Komposisi kimia asap cair beserta persentasenya dapat dilihat pada Tabel 2.

Tabel 2. Komposisi Kimia Asap Cair

Komposisi Kimia Kandungan (%)

Air

Fenol

Asam

Senyawa Karbonil

Ter

11-92

0.2-2.9

2.8-4.5

2.6-4.6

1-17

Sumber : Maga (1988)

Senyawa yang sangat berperan sebagai antimikrobial adalah senyawa fenol dan asam asetat,

dan peranannya makin meningkat apabila kedua senyawa terdapat secara bersamaan (Darmadji,

1995). Selain fenol, senyawa aldehid, aseton, dan keton juga memiliki daya bakteriostatik dan

bakterisidal pada produk asap.

Girrard (1992) menyatakan bahwa kandungan asam yang mudah menguap dalam asap akan

menurunkan pH, sehingga dapat memperlambat pertumbuhan mikroorganisme (Buckle et al., 1985).

Fenol selain bersifat bakteriosidal juga sebagai antioksidan. Sifat ini terutama pada senyawa

fenol dengan titik didih tinggi, seperti 2,6-dimetil fenol, 2,6-dimetoksi-4-metil fenol, dan 2,6-

dimethoksi-4-ethylfenol (Pearson dan Tauber, 1973).

Senyawa-senyawa fenolat lainnya yang terdapat dalam asap dan memperlihatkan aktivitas

oksidatif adalah pirokathol, hidrokuinon, guaiakol, eugenol, isoeugenol, vanillin, salisilaldehid, asam

2-hidroksibenzoat, dan senyawa-senyawa tersebut hampir semuanya bersifat larut dalam eter (Maga,

1988 ; Fiddler et al., 1970).

Senyawa fenol dengan titik didih rendah memiliki sifat antioksidan yang agak rendah.

Aktivitas antioksidan dari komponen asam adalah sifat yang penting dalam melindungi penyusutan

nilai gizi produk yang diasap (Daun, 1979).

Asap dalam bentuk cair juga masih mempunyai berbagai sifat fungsional. Fungsi lainnya

adalah untuk memberikan flavour yang diinginkan pada produk asap karena adanya senyawa fenol

dan karbonil (Pszczola, 1995). Rasa dan aroma khas produk pengasapan terutama disebabkan oleh

senyawa guaiakol, 4-metil guaiakol, 2,6-dimetoksi fenol.

Page 21: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

8

Girrard (1992) mengatakan bahwa dari berbagai penelitian terdahulu, diketahui bahwa

senyawa-senyawa fenolat tertentu seperti guaiakol, 4-metil guaiakol, 2,6-dimetoksi fenol dan seringol

menentukan flavour dari bahan pangan yang diasap dimana guaiakol akan memberikan rasa asap dan

seringol memberikan aroma asap. Rasa dan aroma yang khas pada makanan yang diasap disebabkan

oleh senyawa fenol yang bereaksi dengan protein dan lemak yang terdapat pada makanan (Daun,

1979).

1. Pemurnian Asap Cair dengan Distilasi

Unit operasi distilasi merupakan metode yang digunakan untuk memisahkan komponen-

komponen yang ada di dalam suatu larutan atau cairan, yang tergantung pada distribusi komponen-

komponen tersebut antara fase uap dan fase cair. Semua komponen-komponen ini terdapat dalam

kedua fase tersebut. Fase uap terbentuk dari fase cair melalui penguapan pada titik didihnya

(Geankopolis, 1983).

Distilasi asap cair dilakukan untuk menghilangkan senyawa-senyawa yang tidak diinginkan

dan berbahaya, seperti poliaromatik hidrokarbon (PAH) dan tar, dengan cara pengaturan suhu didih

sehingga diharapkan didapat asap cair yang jernih, bebas tar dan benzopiren (Darmadji, 2002).

Senyawa utama yang terkandung di dalam tar yang merupakan hasil dari suatu proses distilasi adalah

senyawa fenol yang terdapat dalam jumlah yang sedikit terutama terdiri dari senyawa piridin dan

quinolin (Holleman, 1903).

2. Perkembangan Produksi dan Aplikasi Asap Cair

Asap cair adalah kondensasi komponen asam yang biasa digunakan untuk menciptakan

flavour asap pada produk (Whittle dan Howgate, 2002). Asap cair sudah dibuat pada akhir tahun

1800-an, tetapi baru 10-15 tahun belakangan digunakan secara komersial pada industri pengasapan

ikan (Moody dan Flick, 1990).

Saat ini asap cair yang beredar di pasaran adalah asap cair yang telah dipisahkan dari

komponen tar. Di dalam tar terkandung senyawa PAH yang karsinogenik terhadap manusia. Cara

pemisahan komponen tar dari asap cair dilakukan dengan mengekstrak kondensat hasil pirolisis

dengan menggunakan pelarut antara lain propana, metana, etilen, amonia, metanol, air, dan campuran

dari satu atau lebih komponen tersebut (Plaschke, 2002).

Penggunaan asap cair menurut Pearson dan Tauber (1973), pada pembuatan makanan yang

diasap adalah dengan cara :

(a) Mencampur secara langsung ke dalam emulsi daging,

(b) Pencelupan,

(c) Pemercikan cairan (spraying),

(d) Penyemprotan kabut asap cair ke dalam ruang pengasapan, dan

(e) Asap cair diuapkan dengan cara meletakkan asap cair tersebut di atas permukaan yang panas.

E. GC-MS (GAS CHROMATOGRAPHY-MASS SPECTROMETRY)

Kromatografi gas adalah suatu teknik analisis yang sangat unik dan baik. Dalam tahap-tahap

awal perkembangannya, kromatografi gas diterapkan pada analisis gas dan uap dari komponen-

komponen yang mudah menguap. Sebagai suatu alat analitik, kromatografi gas dapat digunakan untuk

analisis dan pemisahan langsung sampel-sampel gas, larutan-larutan, dan padatan yang bersifat mudah

menguap (Fardiaz, 1989).

Page 22: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

9

Pada dasarnya, suatu kromatografi gas terdiri dari enam komponen utama, yaitu (1) sistem

gas pengembang (carrier gas) termasuk tangki penyuplai gas serta pengatur dan alirannya, (2) sistem

penyuntikan sampel, (3) kolom pemisah, (4) sistem pendeteksian (recorder), (5) unit thermostat untuk

mengatur suhu oven (Fardiaz, 1989).

Umumnya identifikasi hasil pirolisis dilakukan menggunakan gas kromatografi-spektra

massa atau Gas Chromatography-Mass Spectrometry (GC-MS). Interpretasi data GC-MS dilakukan

dengan mengelompokkan puncak-puncak kromatogram yang berubah pada variasi proses. Senyawa

dikelompokkan berdasarkan banyaknya C dalam senyawa dan pola perubahan konsentrasi pada

perubahan suhu. Dalam hal ini senyawa mengalami pemecahan rantai karbon pada kenaikan suhu atau

senyawa mengalami kenaikan persentase pada kenaikan suhu. Dengan cara tersebut akan diperoleh

kelompok senyawa hasil perengkahan (C sedikit) dan senyawa dengan molekul besar, sehingga dapat

mengalami perengkahan (C banyak), akan tetapi sulit diamati kelompok senyawa yang mempunyai

respon fluktuatif terhadap perubahan laju pemanasan. Kesulitan ini akan dipesan pada data GC-MS

yang terdiri dari banyak puncak kromatogram. Akhirnya, teknik interpretasi data tersebut kurang

memberikan gambaran kelompok senyawa yang ada dalam hasil pirolisis yang justru kadang-kadang

penting dilakukan untuk identifikasi senyawa spesifik (Fatimah dan Nugraha, 2005).

Menurut Fardiaz (1989), suhu kolom mempunyai pengaruh yang sangat besar terhadap waktu

retensi dan penampilan kolom. Waktu retensi (retention time) merupakan waktu yang dibutuhkan

senyawa untuk bergerak melalui kolom menuju detector. Waktu retensi diukur berdasarkan waktu

dimana sampel diinjeksikan sampai sampel menunjukkan ketinggian puncak maksimum dari senyawa

itu (Anonim, 2008 di dalam Febrianto, 2009).

Menurut Reineccius (2006) di dalam Febrianto (2009), perkembangan teknologi

kromatografi gas merupakan kemajuan yang sangat berarti dalam karakterisasi komponen khususnya

komponen aroma. Kromatografi gas menjadi sangat popular karena mempunyai kemampuan

memisahkan yang sangat baik dan sensitivitas yang sangat tinggi. Saat ini, penggunaan kromatografi

gas semakin berkembang dengan adanya perangkat tambahan seperti spektrometri massa dan

olfactometry.

Penerapan kromatografi gas di berbagai bidang dapat diantaranya adalah di bidang : (1) obat-

obatan dan farmasi, (2) lingkungan hidup, (3) industri minyak, (4) kimia klinik, (5) pestisida dan

residunya, (6) pangan. Khusus di bidang pangan, kromatografi gas digunakan untuk menetapkan

kadar antioksidan dan bahan pengawet makanan. Di samping itu, juga untuk analisis sari buah, anggur

wine, bir, sirup, keju, minuman, aroma makanan, minyak, produk susu, produk-produk penguraian,

kontaminan, bahan pemalsu, dan seabagainya (Fardiaz, 1989).

G. BAHAN TAMBAHAN PANGAN

Bahan tambahan pangan adalah bahan atau campuran bahan yang secara alami bukan

merupakan bagian dari bahan baku pangan, tetapi ditambahkan ke dalam pangan untuk mempengaruhi

sifat atau bentuk bahan pangan. Bahan tambahan pangan ditambahkan untuk memperbaiki karakter

pangan agar memiliki kualitas yang meningkat. Bahan tambahan pangan pada umumnya merupakan

bahan kimia yang telah diteliti dan diuji lama sesuai dengan kaidah-kaidah ilmiah yang ada

(Himpunan Alumni Fateta, 2005).

Bahan tambahan pangan dapat berupa ekstrak bahan alami atau hasil sintesis kimia. Bahan

yang berasal dari alam umumnya tidak berbahaya, sementara bahan artifisial atau sintetik mempunyai

resiko terhadap kesehatan jika disalahgunakan penggunaannya (Himpunan Alumni Fateta, 2005).

Pada umunya bahan tambahan makanan dapat dibagi menjadi 2 golongan besar, yaitu :

Page 23: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

10

1. Bahan tambahan makanan yang ditambahkan dengan sengaja ke dalam makanan dengan

mengetahui komposisi bahan tersebut dan penambahan itu mempunyai maksud dan tujuan tertentu,

misalnya untuk memperbaiki nilai gizi, mempertahankan kesegaran, cita rasa, dan membantu

pengolahan. Contohnya adalah antioksidan, flavour, dan pengawet.

2. Bahan tambahan makanan yang tidak sengaja ditambahkan (unintentional additives), yaitu bahan

yang tidak mempunyai fungsi dalam makanan tersebut, terdapat secara tidak sengaja baik dalam

jumlah sedikit atau cukup banyak akibat perlakuan selama proses proses produksi, pengolahan,

pengemasan. Contohnya adalah residu pestisida, logam berat, migrasi komponen plastik ke dalam

makanan, dsb.

(Winarno dan Rahayu, 1994)

1. Pengawet

Bahan pengawet dapat dibagi menjadi beberapa golongan umum, yakni antimikroba yang

menghambat pertumbuhan bakteri, khamir, dan kapang; dan ada pula bahan pengawet yang

menghambat proses enzimatik dan pematangan yang biasanya terjadi pasca panen (Dalton, 2002).

Bahan pengawet yang merupakan bahan tambahan pangan sering ditambahkan dalam

makanan. Fungsi pengawet adalah untuk memperpanjang masa simpan suatu makanan. Sebagian

besar kerusakan bahan makanan khususnya hasil olahan, disebabkan oleh aktivitas mikroba yang

memanfaatkan bahan makanan untuk metabolismenya. Bahan pengawet bersifat menghambat atau

mematikan pertumbuhan mikroba penyebab kerusakan ini sehingga sering disebut senyawa

antimikroba (Saparinto, 2006).

.

2. Antioksidan

Antioksidan merupakan salah satu bahan tambahan pangan alami. Antioksidan berfungsi

untuk menghambat oksidasi lemak atau melindungi komponen-komponen makanan yang bersifat

tidak jenuh, terutama lemak dan minyak. Antioksidan sering digunakan dalam produk makanan

olahan komersial. Tujuan utamanya adalah untuk memperpanjang daya simpan dan meningkatkan

stabilitas makanan yang banyak mengandung lemak (Saparinto, 2006).

Berdasarkan jenisnya antioksidan dibagi menjadi dua tipe yaitu : Asam (beserta garam dan

esternya) seperti asam askorbat dan asam sitrat yang digunakan untuk mencegah pelunturan warna

pada daging, buah, dan makanan lain. Yang kedua adalah senyawa atau bahan campuran fenol seperti

Butylated Hydroxyanisole (BHA) dan tokoferol yang menghalangi terjadinya oksidasi pada makanan

terutama pada lemak dan minyak (Silalahi, 2006).

3. Flavour

Flavour adalah bahan tambahan makanan yang dapat memberikan, menambah, dan

mempertegas rasa dan aroma suatu makanan (Winarno dan Rahayu, 1994).

Salah satu penyedap rasa dan aroma yang dikenal luas di Indonesia adalah vetsin atau bumbu

masak dalam berbagai merek. Penyedap rasa tersebut mengandung senyawa yang disebut

monosodium glutamat (MSG). Peranan asam glutamat sangat penting, diantaranya untuk merangsang

dan mengantar sinyal-sinyal antar sel otak, dan dapat memberikan cita rasa pada makanan (Himpunan

Alumni Fateta, 2005).

Flavour merupakan bahan tambahan makanan yang paling unik karena belum memiliki

standar dalam peraturan dan dianggap tidak berbahaya (Taylor, 1980).

Page 24: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

11

III. METODOLOGI

A. ALAT DAN BAHAN

Alat-alat yang digunakan adalah reaktor untuk pirolisis, kondensor, rotary vacuum

evaporator, hammer mill, disc mill, labu erlenmeyer, bak air, pompa, sudip, cawan alumunium, oven,

timbangan, cawan porselen, plastik, tampah, gunting, botol cairan. Peralatan yang digunakan untuk

analisis adalah alat GC-MS merek Agilent Technology seri HP 6890.

Bahan baku utama yang digunakan pada penelitian ini adalah tongkol jagung. Bahan-bahan

kimia yang digunakan adalah atapulgit, dan bahan-bahan kimia untuk analisis.

B. METODE PENELITIAN

1. Tahapan Penelitian

Penelitian dilakukan dalam beberapa tahapan yang disajikan pada Gambar 1 berikut.

Gambar 1. Bagan Alir Tahapan Penelitian

Penentuan suhu dan

tekanan fraksinasi

Selesai

Pretreatment tongkol

jagung

Karakterisasi bahan

baku

Mulai

Penentuan suhu

pirolisis dan jumlah

katalis

Analisis GC-MS

Page 25: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

12

a. Pretreatment Tongkol Jagung

Tongkol jagung memerlukan pretreatment sebelum digunakan dalam proses pirolisis.

Tongkol jagung dikeringkan dengan sinar matahari dan atau oven (kabinet oven) sampai kadar air (6-

12%). Selanjutnya hasil tongkol jagung kering dipotong sampai berukuran lebih kecil kemudian

dihancurkan dengan hammer mill dengan ukuran 150-250 µm dilanjutkan dengan disc mill (ukuran ±

75 µm).

b. Karakterisasi Bahan Baku

Tongkol jagung yang digunakan pada pirolisis harus dikarakterisasi terlebih dahulu. Hal ini

bertujuan untuk mengetahui kondisi awal bahan baku yang akan digunakan. Karakteristik yang

diamati dari tongkol jagung adalah kadar air dan kadar serat. Analisis kadar serat dilakukan di Balai

Penelitian Ternak Ciawi. Prosedur analisis kadar air dan kadar serat disajikan pada Lampiran 1.

c. Penentuan Perlakuan Suhu dan Konsentrasi Katalis

Penentuan perlakuan suhu diperoleh dari hasil Thermogravimetric analyzer (TGA). Pada uji

ini terbaca suhu terdekomposisinya suatu bahan. Suhu dan konsentrasi didapatkan dari penelitian

terdahulu yang dilakukan oleh Purwaningtyas (2010).

d. Penentuan Suhu dan Tekanan Fraksinasi

2. Prosedur Penelitian

Prosedur penelitian berikut ini merupakan penjabaran setiap tahapan penelitian yang

dilakukan sesuai dengan urutan tahapan penelitian yang telah dijelaskan sebelumnya. Prosedur

penelitian yang dilakukan mencakup (a) pirolisis tongkol jagung, (b) fraksinasi asap cair (c) analisis

fisik dan GC-MS asap cair.

a. Pirolisis Tongkol Jagung

Tongkol jagung sekitar 50 g dimasukkan ke dalam reaktor pirolisis dengan penambahan

katalis atapulgit sebanyak 1,5% (Amin dan Asmadi, 2007) yakni 0.75 g dengan suhu pembakaran

550oC, serta dialiri gas nitrogen dengan laju 50 cm3/menit (Raveendran et al., 1996). Dari hasil

pirolisis dihasilkan padatan, cairan, dan gas.

Page 26: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

13

b. Fraksinasi Asap Cair

Asap cair sebanyak 500 ml didistilasi menggunakan rotary vacuum evaporator pada suhu

dan tekanan yang telah ditentukan. Metode yang digunakan adalah distilasi vakum yang bertujuan

menghasilkan perolehan atau distilat yang lebih murni, sedangkan vakum dalam proses ini digunakan

untuk menjaga agar suhu yang digunakan tidak terlalu tinggi, sehingga mencegah

kerusakan/dekomposisi bahan akibat panas yang terlalu tinggi dan lama. Distilasi asap cair dilakukan

di laboratorium Mikrobiologi dan Biokimia PAU IPB. Bagan alir prosedur fraksinasi dan analisis asap

cair dari tongkol jagung disajikan pada Gambar 2 berikut.

Gambar 2. Bagan Alir Prosedur Fraksinasi dan Analisis Asap Cair

Mulai

500 ml asap cair suhu

550oC dengan konsentrasi

katalis atapulgit 1,5%

Pengkondisian alat Rotary

Vacuum Evaporator

Distilasi vakum dengan

tekanan vakum 80 mbar, 90

mbar. dan 100 mbar

Selesai

60.0oC 62.5oC 65.0oC 67.5oC 70.0oC

residu destilat

Analisis warna, bau, pH

Analisis GC-MS

Page 27: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

14

c. Analisis Warna, Bau, dan pH

Asap cair yang telah difraksinasi dengan variasi suhu dan tekanan selanjutnya akan dianalisis

fisik meliputi, warna, bau, dan pH. Pengamatan terhadap warna dan bau dilakukan secara visualisasi,

sedangkan pengukuran pH dilakukan menggunakan pH meter. Perlakuan suhu dan tekanan fraksinasi

cairan asap cair yang mengalami analisis warna, bau, dan pH disajikan pada Tabel 3 berikut.

Tabel 3. Perlakuan Suhu dan Tekanan Fraksinasi Asap Cair

Tekanan

(mbar)

Suhu

(oC)

Tekanan

(mbar)

Suhu

(oC)

Tekanan

(mbar)

Suhu

(oC)

80 60.0 90 60.0 100 60.0

62.5 62.5 62.5

65.0 65.0 65.0

67.5 67.5 67.5

70.0 70.0 70.0

d. Analisis GC-MS (Gass Chromatography Mass Spectrometry)

Analisis GC-MS bertujuan untuk mengetahui kandungan senyawa dalam hasil fraksinasi asap

cair untuk mendapatkan produk yang diinginkan berupa pengawet, flavour, dan antioksidan. Analisis

asap cair dengan GC-MS dilakukan di Pusat Laboratorium Forensik Mabes Polri Jakarta. Beberapa

perlakuan yang diuji kandungan komponen kimianya disajikan pada Tabel 4 berikut.

Tabel 4. Perlakuan Suhu dan Tekanan yang Mengalami Analisa GC-MS

Tekanan

(mbar)

Suhu

(oC)

80 60.0

90 60.0

100 60.0

100 62.5

100 65.0

100 67.5

100 70.0

100 Sisa

C. WAKTU DAN TEMPAT PENELITIAN

Penelitian ini dilakukan selama kurang lebih 6 bulan dari bulan April sampai September

2010. Penelitian dilakukan di Laboratorium Pengawasan Mutu, Departemen Teknologi Industri

Pertanian, Laboratorium Mikrobiologi dan Biokimia, PAU Fakultas Teknologi Pertanian, Institut

Pertanian Bogor, dan Pusat Laboratorium Forensik, Mabes Polri, Jakarta.

Page 28: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

15

IV. PEMBAHASAN

A. KARAKTERISIK BAHAN BAKU

Bahan baku yang digunakan dalam penelitian ini adalah tongkol jagung yang merupakan

varietas jagung Hawaii dan memiliki umur tanam 90 hari. Varietas jagung ini biasa digunakan sebagai

pakan ternak dengan cara dikeringkan melalui proses penjemuran dengan bantuan sinar matahari.

Tongkol jagung yang menjadi bahan baku dalam pembuatan asap cair ini dikecilkan

ukurannya terlebih dahulu dengan pemotongan secara manual, kemudian dikeringkan melalui

penjemuran dengan bantuan sinar matahari serta pengeringan dengan oven pada suhu ± 80oC. Proses

pengeringan bertujuan untuk mengurangi kadar air bahan yang dapat menghambat saat proses

pembakaran dan mengakibatkan rendemen yang tidak maksimal. Pengeringan juga dilakukan untuk

memenuhi syarat bahan baku yang digunakan pada proses pirolisis yakni di bawah 10%.

Selanjutnya tongkol jagung dikecilkan ukurannya menggunakan hammer mill dan disc mill

hingga 40-60 mesh. Pengecilan ukuran dimaksudkan untuk memperbesar luas permukaan bahan yang

mengalami pemanasan sehingga proses pirolisis dapat berlangsung dengan cepat. Selain itu,

pengecilan ukuran bertujuan untuk memudahkan input bahan ke dalam reaktor pirolisis sehingga

proses dapat berlangsung dengan baik.

Tongkol jagung yang telah siap menjadi bahan baku kemudian diukur kadar air dan kadar

serat yang terkandung di dalamnya. Hasil analisis komposisi tongkol jagung disajikan pada Tabel 5

berikut.

Tabel 5. Komposisi Kimia Tongkol Jagung Awal.

Komponen Jumlah (%)

Air 6.90

Selulosa 38.34

Hemiselulosa 40.79

Lignin 6.22

Silika -

Dari hasil analisis komposisi kimia tongkol jagung diperoleh bahwa kadar air bahan sebesar

6.90%. Hal ini menunjukkan bahwa kadar air tongkol jagung telah memenuhi persyaratan kadar air

yang ditetapkan untuk proses pirolisis. Menurut Bridgwater (2004), kadar air bahan yang dipirolisis

adalah 10-15%. Kadar air yang diperoleh pada penelitian ini bertujuan untuk mengurangi aktivitas

mikroba yang muncul pada bahan apabila kadar air lebih besar dari 10% .

Kadar serat menunjukkan jumlah selulosa, hemiselulosa, dan lignin masing-masing sebesar

38. 34 %, 40.79 %, dan 6.22 %. Akan tetapi tidak terdapat kandungan silika pada bubuk tongkol

jagung. Kandungan serat pada tongkol jagung dipengaruhi varietas jagung, lama dan kondisi

penanaman. Menurut Ye dan Cheng (2002), tongkol jagung mengandung 45% selulosa, 35%

hemiselulosa, dan 15% lignin, sedangkan dari hasil analisis menunjukkan tidak terdapat kandungan

silika dalam tongkol jagung. Prosedur analisis kadar serat tongkol jagung tertera pada Lampiran 1.

Silika merupakan salah satu komponen serat pada tongkol jagung yang berfungsi menjaga

tanaman agar tidak mudah rusak oleh ancaman fisik, kimia, dan biologis. Silika merupakan bagian

yang paling sulit terdekomposisi diantara lignoselulosik lainnya karena terletak di bagian paling dalam

Page 29: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

16

pada dinding sel tanaman. Menurut Raveendran et al. (1996), silika pada padatan tidak mempengaruhi

kerja katalis tetapi berpengaruh pada struktur padatan yang dihasilkan serta reaktivitasnya.

B. PRODUKSI ASAP CAIR

Tongkol jagung yang telah mengalami pengeringan selanjutnya akan menjadi bahan baku

pada proses pirolisis. Sebanyak 50 gram tongkol jagung dan ditambahkan katalis atapulgit sebanyak

1.5% dimasukkan ke dalam reaktor pyrolyzer dengan suhu perlakuan 550oC.

Atapulgit merupakan salah satu katalis yang berfungsi sebagai bahan atau senyawaan kimia

yang dapat mempercepat laju reaksi (Van Santen dan Niemantsverdriet, 1995). Dalam bentuk koloid,

atapulgit dimanfaatkan sebagai peningkat viskositas, pembentuk gel, pengental, penstabil sistem

koloid, dan sebagai bahan pengikat. Sedangkan dalam bentuk non koloid, atapulgit dimanfaatkan

sebagai absorben, penyaring, dan sebagai katalis (Henin dan Caillere, 1975). Atapulgit termasuk

dalam katalis homogen, yaitu katalis yang memiliki fasa yang sama dengan reaktan. Katalis homogen

memiliki beberapa kelemahan seperti sulit pada proses pemisahannya dengan produk, menimbulkan

korosi pada tangki, dan menimbulkan masalah lingkungan (Ono, 1999).

Gas nitrogen dialirkan selama proses dengan laju 50 m3/menit untuk mengurangi kandungan

oksigen dalam reaktor (Raveendran et al., 1996). Pemberian gas nitrogen bertujuan untuk mengurangi

kadar oksigen yang terdapat pada pyrolyzer. Proses pembakaran dilakukan selama 1 jam 15 menit.

Hasil Pembakaran terdiri dari char (arang), gas yang terkondensasi menjadi asap cair, dan gas yang

terbuang ke udara. Gas yang telah terkondensasi menjadi asap cair akan difraksinasi dengan metode

distilasi vakum menggunakan alat rotary vacuum evaporator.

Pemilihan asap cair hasil proses pirolisis bersuhu 550oC dan dengan penambahan katalis

atapulgit sebanyak 1.5% untuk difraksinasi disebabkan karena pada kondisi tersebut diperoleh asap

cair dengan rendemen terbanyak. Menurut penelitian terdahulu yang dilakukan oleh Purwaningtyas

(2010), persentase jumlah terbanyak hasil pirolisis tongkol jagung terdapat pada suhu 550oC dengan

penambahan katalis sebesar 1.5%. Peningkatan suhu akan menyebabkan terjadinya penguraian

komponen biomassa tongkol jagung, mulai dari hemiselulosa, selulosa, dan lignin. Penguraian yang

semakin meningkat akan meningkatkan banyaknya gas yang dihasilkan. Gas tersebut akan mengalami

kondensasi sehingga menghasilkan cairan.

Hasil pirolisis menunjukkan peningkatan jumlah rendemen seiring dengan peningkatan suhu.

Jumlah cairan meningkat dari suhu 408.53oC hingga diperoleh rendemen terbanyak pada suhu 550oC.

Selanjutnya terjadi penurunan rendemen pada suhu di atas 550oC, hal ini terjadi karena peningkatan

suhu yang lebih tinggi menyebabkan terjadinya pemecahan kedua terhadap uap yang dominan

sehingga menurunkan rendemen cairan dan meningkatkan jumlah gas yang dihasilkan. Hal ini sesuai

dengan penelitian Zhang et al. (2009) yang menyatakan cairan yang dihasilkan meningkat dari 48.3 %

pada suhu 400oC sampai maksimum 56.8 % pada suhu 550oC, kemudian menurun menjadi 54.2 %

pada suhu 700oC. Cairan hasil pirolisis tongkol jagung disajikan pada Tabel 6 berikut.

Page 30: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

17

Tabel 6. Cairan Hasil Pirolisis Tongkol Jagung

Suhu (oC) Katalis

(%b/b)

Wo

(gram)

Cairan

(gram)

Cairan (%)

408.53 1.5 50.75 13.94 27.47

450 1 50.5 14.67 29.05

450 2 51 15.365 30.13

550 0.79 50.4 24.935 49.47

550 1.5 50.75 25.255 49.76

550 2.21 51.11 28.805 56.36

650 1 50.5 16.2 32.08

650 2 51 16.515 32.38

691.42 1.5 50.75 14.73 29.02

Sumber : Purwaningtyas (2010)

C. FRAKSINASI ASAP CAIR DENGAN DISTILASI VAKUM

Fraksinasi bertujuan untuk memisahkan suatu zat berdasarkan perbedaan titik didih, sehingga

menjadi beberapa bagian murni. Metode fraksinasi yang digunakan untuk memisahkan asap cair hasil

pirolisis adalah distilasi vakum menggunakan alat rotary vacuum evaporator. Distilasi atau

penyulingan adalah suatu metode pemisahan bahan kimia berdasarkan perbedaan kecepatan atau

kemudahan menguap (volatilitas) bahan atau didefinisikan juga teknik pemisahan kimia yang

berdasarkan perbedaan titik didih.

Rotary vacuum evaporator merupakan salah satu alat yang dapat digunakan untuk

memisahkan suatu larutan menjadi beberapa fasa. Sistem vakum digunakan untuk memudahkan

pemisahan zat yang memiliki titik didih tinggi agar dapat menguap pada suhu yang lebih rendah.

Senyawa-senyawa yang terkandung dalam asap cair yang bersuhu pirolisis 550oC dan

penambahan katalis atapulgit sebanyak 1.5 % diketahui memiliki titik didih yang tinggi (>100 oC),

sehingga digunakan vakum untuk menurunkan titik didih tersebut. Titik didih komponen senyawa

yang terkandung dalam cairan pirolisis 550oC tertera pada Lampiran 3.

Proses fraksinasi berlangsung dengan perlakuan suhu dan tekanan yang berbeda. Sebanyak

500 ml asap cair dimasukkan ke dalam labu rotary vacuum evaporator dan dilakukan proses evaporasi

dengan 3 perlakuan tekanan 80 mbar, 90 mbar, dan 100 mbar serta 5 perlakuan suhu 60oC, 62.5oC,

65oC, 67.5oC, dan 70oC. Penentuan perlakuan berdasarkan titik didih senyawa kimia yang terkandung

dalam asap cair.

Fraksinasi asap cair dilakukan pada kisaran waktu 8-10 menit dengan proses semi sinambung

yakni volume hasil fraksinasi pada perlakuan awal, menjadi volume awal pada perlakuan fraksinasi

berikutnya dan terjadi proses penggantian air pada kondensor pada tiap perlakuan tekanan yang

berbeda. Proses diawali dengan pengaturan suhu dan tekanan terlebih dahulu sesuai dengan kondisi

yang ditetapkan yakni suhu paling rendah 60oC dengan tekanan paling tinggi 100 mbar.

Proses distilasi vakum dimulai dengan penguapan (evaporasi) terlebih dahulu dan dilanjutkan

dengan pendinginan (kondensasi) sehingga pada labu destilat terdapat tetesan air yang merupakan

komponen-komponen yang telah mengalami fraksinasi. Setelah waktu yang ditentukan habis, proses

dihentikan dan hasil dimasukan ke dalam wadah yang tersedia. Selanjutnya dilakukan kembali proses

Page 31: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

18

serupa, namun dengan suhu dan tekanan yang berbeda. Pengaturan suhu menjadi lebih tinggi dan

tekanan menjadi lebih rendah.

Pada fraksinasi asap cair diketahui bahwa persentase volume hasil distilasi vakum meningkat

seiring dengan meningkatnya suhu dan menurunnya tekanan. Hal ini mempercepat terjadinya proses

penguapan dan dengan menurunnya tekanan maka titik didih komponen-komponen senyawa yang

berada di dalamnya juga turun sehingga lebih cepat terjadi penguapan.

Perbedaan titik didih pada komponen-komponen senyawa yang terkandung dalam asap cair

menyebabkan volume hasil fraksinasi yang dihasilkan pada tiap-tiap perlakuan suhu dan tekanan juga

berbeda-beda. Hal ini terjadi karena ada komponen senyawa yang menguap di suhu-suhu awal dan

ada juga yang menguap dengan memerlukan tekanan yang lebih rendah dan suhu yang lebih tinggi.

Selain itu, waktu yang diperlukan untuk meguapkan tiap-tiap komponen senyawa yang terkandung di

dalamnya juga berbeda-beda. Hal tersebut juga saling berpengaruh dengan suhu dan tekanan.

Terdapat perbedaan persentase volume pada suhu awal 60oC di tiap tekanan. Persen volume

menunjukkan jumlah yang lebih besar dari persen volume berikutnya yang memiliki suhu lebih tinggi.

Hal ini dapat terjadi karena suhu air pendingin yang masih cukup rendah pada perlakuan-perlakuan

awal karena pada tiap perlakuan tekanan dilakukan penggantian air pada kondensor, sehingga proses

pendinginan masih cukup baik.

Pada tekanan 90 mbar dan suhu 70oC, tidak terdapat cairan yang terfraksinasi akibat suhu

yang tinggi dan tekanan yang rendah. Akibatnya seluruh asap cair masuk ke dalam labu destilat. Sama

halnya yang terjadi pada perlakuan tekanan 80 mbar dan suhu 67.5oC, 70oC. Asap cair tidak dapat

difraksinasi lagi karena suhu yang terlalu tinggi dan tekanan yang terlalu rendah sehingga seluruhnya

masuk ke dalam tabung destilat. Hasil fraksinasi asap cair disajikan pada Tabel 7 berikut.

Tabel 7. Hasil Fraksinasi Asap Cair

Tekanan

(mbar)

Suhu (oC) Vo (ml) Vt (ml) %Volume

100 60 500 42 8.4

62.5 458 22 4.8

65 436 24 6.9

67.5 412 28 6.8

70 384 46 11.9

90 60 338 28 8.2

62.5 310 22 7.1

65 288 22 7.6

67.5 266 24 9.0

70 - - -

80 60 242 38 15.7

62.5 204 24 11.7

65 180 22 12.2

67.5 - - -

70 - - -

Page 32: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

19

Persentase volume menunjukkan jumlah volume yang dihasilkan pada tiap perlakuan

fraksinasi asap cair. Pada tekanan 100 mbar dan suhu 60oC diperoleh volume yang cukup besar yakni

42 ml. Berbeda dengan volume yang dihasilkan pada perlakuan berikutnya yakni pada suhu 62.5oC,

volume mengalami penurunan menjadi 22 ml. Hal ini disebabkan karena pada suhu awal mulai

banyak komponen yang menguap dan terfraksinasi, selain itu suhu air pada kondensor masih cukup

rendah sehingga proses kondensasi masih cukup baik dan mengakibatkan titik-titik air yang terbentuk

menjadi lebih banyak. Proses meningkatnya volume pada perlakuan berikutnya disebabkan oleh suhu

yang meningkat sehingga laju penguapan menjadi lebih cepat dan volume meningkat.

Demikian halnya yang terjadi pada tekanan 90 mbar dan suhu 60oC, terjadi peningkatan

volume di awal akibat penggantian air kondensor, sehingga proses kondensasi yang terjadi masih

cukup baik. Pada suhu 62.5oC volume mengalami penurunan dan kemudian kembali mengalami

peningkatan pada suhu yang lebih tinggi yaitu 65oC, dan 67.5oC. Pada tekanan 80 mbar, terjadinya

penurunan jumlah volume. Pada suhu 60oC, volume yang dihasilkan sebanyak 38 ml, namun seiring

dengan meningkatnya suhu menjadi 62.5oC, volume yang dihasilkan mengalami penurunan yaitu

sebanyak 24 ml. Pada suhu 65oC, jumlah volume yang dihasilkan meningkat akibat peningkatan suhu.

Ketidakstabilan yang terjadi disebabkan kinerja alat yang kurang ideal sehingga proses evaporasi dan

kondensasi yang kurang maksimal.

Fraksinasi asap cair pada tekanan 100 mbar dan volume awal 500 ml, jumlah fraksi yang

dihasilkan bervariasi untuk tiap perlakuan suhu. Volume tertinggi terdapat pada suhu 70oC, hal ini

dapat disebabkan karena proses penguapan yang lebih cepat terjadi akibat suhu tinggi dan sehingga

cairan hasil kondensasi menjadi lebih banyak. Proses distilasi vakum menggunakan rotary vacuum

evaporator dilakukan dengan 1 kali running untuk tiap perlakuan tekanan. Proses yang dilakukan

merupakan proses semi sinambung. Volume awal untuk proses selanjutnya merupakan hasil dari

proses distilasi sebelumnya. Grafik hasil fraksinasi pada tekanan 100 mbar disajikan pada Gambar 3

berikut.

Gambar 3. Grafik Hasil Fraksinasi pada Tekanan 100 mbar

Fraksinasi asap cair pada tekanan 90 mbar serta volume awal 338 ml, volume tertinggi

terdapat pada suhu 67.5 C. Hal ini menunjukkan bahwa suhu tinggi akan meningkatkan laju

42

2224

28

46

8.4

4.86.9 6.8

11.9

0

5

10

15

20

25

30

35

40

45

50

55 60 65 70 75

Vt(m

l)

Suhu oC

Vt (ml)

% volume

Vo= 500 mlTekanan = 100 mbar

Page 33: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

20

penguapan. Akibat tekanan rendah, maka titik didih komponen yang terkandung di dalamnya juga

menjadi lebih rendah sehingga proses penguapan menjadi lebih cepat. Sedangkan pada suhu 70oC

tidak dihasilkan lagi asap cair yang terfraksinasi. Hal ini terjadi karena asap cair tersebut tidak dapat

menguap dan terkondensasi karena tekanan yang cukup rendah (90 mbar), akibatnya cairan pirolisis

masuk seluruhnya ke labu destilat. Tekanan yang rendah mengakibatkan daya vakum lebih kuat untuk

menarik asap cair menjadi terlalu besar. Grafik hasil fraksinasi pada tekanan 90 mbar disajikan pada

Gambar 4 berikut.

Gambar 4. Grafik Hasil Fraksinasi pada Tekanan 90 mbar

Demikian juga halnya yang terjadi saat fraksinasi (distilasi vakum) pada tekanan 80 mbar.

Volume awal sebesar 242 ml. Persentase volume tertinggi berada pada suhu 60oC. Tekanan yang

semakin rendah mengakibatkan asap cair tidak dapat difraksinasi lagi pada suhu tinggi, karena

tekanan vakum yang sangat rendah berakibat semua cairan pirolisis masuk ke dalam tabung destilat.

Dari ketiga grafik dapat terlihat bahwa pada suhu 67.5oC dan 70oC asap cair tidak dapat terfraksinasi

lagi karena suhu yang tinggi dan tekanan yang rendah, seluruh asap cair masuk ke dalam tabung

destilat sehingga tidak memungkinkan untuk dilakukannya evaporasi dan kondensasi. Grafik hasil

fraksinasi pada tekanan 80 mbar disajikan pada Gambar 5 berikut.

28

22 2224

0

8.27.1 7.6

9

0

0

5

10

15

20

25

30

55 60 65 70 75

Vt(m

l)

Suhu oC

Vt (ml)

% volume

Vo= 338 mlTekanan = 90 mbar

Vo = 338 ml Tekanan = 90 mbar

Page 34: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

21

Gambar 5. Grafik Hasil Fraksinasi pada Tekanan 80 mbar

Peningkatan volume cairan yang terfraksinasi dipengaruhi oleh penguapan karena suhu yang

tinggi. Fraksinasi asap cair pada tekanan 80 mbar, menghasilkan jumlah volume yang mengalami

penurunan di awal, kemudian terjadi peningkatan seiring dengan meningkatnya suhu. Hal ini dapat

terjadi karena pengaruh waktu fraksinasi yang dibatasi dan berbedanya titik didih dari tiap komponen

yang terkandung dalam asap cair hasil pirolisis. Penggunaan alat yang kurang ideal menjadi salah satu

faktor yang menyebabkan proses fraksinasi dengan metode distilasi vakum ini berjalan kurang

sempurna. Keterbatasan alat yang hanya mampu bekerja hingga suhu dan tekanan tertentu sehingga

volume yang diperoleh juga tidak stabil.

D. ANALISIS WARNA, BAU, DAN pH

Analisis yang dilakukan pada hasil fraksinasi asap cair meliputi analisis fisik yang berupa

penampakan warna, bau, dan pH. Dari semua sampel hasil fraksinasi asap cair, terlihat bahwa warna

yang dihasilkan adalah putih bening. Tidak ada perbedaan warna diantara semua sampel. Suhu dan

tekanan tidak mempengaruhi warna pada proses fraksinasi. Perbedaan hanya terjadi pada asap cair

sebelum dan sesudah mengalami fraksinasi. Asap cair yang belum mengalami fraksinasi berwarna

coklat keruh, sedangkan yang merupakan hasil fraksinasi berwarna putih bening.

Distilasi vakum asap cair menghasilkan dua fasa berupa destilat dan residu. Destilat

merupakan zat yang mengalami proses evaporasi dan kondensasi yang berwujud cair, sedangkan

residu merupakan sisa dari hasil evaporasi dan kondensasi yang biasanya berbentuk zat yang

mengalami pemekatan.

Bau yang dihasilkan dari asap cair yang telah mengalami fraksinasi adalah bau sangit hasil

pembakaran. Tidak ada perbedaan bau diantara semua sampel pada tiap perlakuan. Demikian halnya

dengan bau asap cair sebelum dan sesudah mengalami fraksinasi. Baik suhu dan tekanan dari vakum

tidak mempengaruhi bau dari zat yang dihasilkan.

38

2422

0 0

15.7

11.7 12.2

0 0

-5

0

5

10

15

20

25

30

35

40

55 60 65 70 75

Vt(m

l)

Suhu oC

Vt (ml)

% Volume

Vo = 242 ml Tekanan = 80 mbar

Page 35: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

22

Analisis pH cairan hasil fraksinasi menggunakan kertas pH. Pengukuran pH dilakukan pada

semua sampel hasil fraksinasi. Dari hasil yang diperoleh terlihat bahwa pH berkisar antara 3-4. Ini

membuktikan bahwa banyak terkandung senyawa-senyawa yang bersifat asam.

Perbedaan nilai pH terjadi saat sebelum dan sesudah fraksinasi. Sebelum mengalami

fraksinasi, asap cair memiliki nilai pH 5-6, ini menunjukkan sifat yang cenderung asam. Setelah

mengalami fraksinasi, pH turun menjadi lebih asam pada kisaran 3-4. Penurunan pH ini terjadi akibat

fraksi-fraksi yang terbentuk menjadi lebih murni karena komponen-komponen yang telah terfraksinasi

di dalamnya menjadi lebih seragam. Komponen-komponen yang terkandung memiliki konsentrasi

(tingkat keasaman) yang lebih tinggi sehingga pH menjadi turun. Grafik hasil analisis pH disajikan

pada gambar 6.

Gambar 6. Grafik Hasil Analisis pH

Pada tekanan 100 mbar, pH terendah berada pada titik suhu 65oC dimana terdapat banyak

komponen asam di dalamnya. Demikian halnya pada tekanan 90 mbar, pH terendah juga berada pada

suhu 65oC dengan besarnya nilai pH=3. Hal ini menunjukkan, komponen-komponen yang terkandung

di dalamnya memiliki tingkat keseragaman yang cukup baik sehingga kandungan asamnya menjadi

tinggi. Berbeda halnya dengan hasil fraksinasi asap cair pada tekanan 80 mbar, pH terendah berada

pada titik suhu 62.5oC. Hal ini menunjukkan bahwa pada suhu-suhu awal fraksi-fraksi komponen

yang lebih murni sudah terbentuk dengan adanya tekanan yang cukup rendah yang mengakibatkan

titik didih dari komponen-komponen yang terkandung di dalamnya juga menjadi lebih rendah.

Komponen-komponen yang berada pada hasil fraksinasi dapat diketahui melalui hasil analisis GC-

MS. Jumlah komponen yang terdapat dalam tiap perlakuan fraksinasi disajikan pada Tabel 8.

E. ANALISIS GC-MS (GAS CHROMATOGRAPHY-MASS SPECTROMETRY) Pengujian GC-MS diperlukan untuk mengetahui komponen kimia yang terdapat dalam hasil

fraksinasi asap cair. Salah satu fungsi komponen-komponen tersebut adalah sebagai bahan tambahan

3.5 3.5

3

3.53.4

3.5

3.2

3

3.5

4.3

3.7

3.5

2

2.5

3

3.5

4

4.5

55 60 65 70 75

pH

Suhu (oC)

Tekanan 100 mbar

Tekanan 90 mbar

Tekanan 80 mbar

Page 36: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

23

pangan. Pengujian dilakukan di Pusat Laboratorium Forensik Mabes Polri, Jakarta. Kromatogram

hasil pengujian GC-MS tertera pada lampiran 5-11.

Umumnya, identifikasi hasil pirolisis dilakukan dengan menggunakan gas kromatogafi-

spektra massa atau Gas Chromatography-Mass Spectrometry (GC-MS). Interpretasi data GC-MS

dilakukan dengan mengelompokkan puncak-puncak kromatogram yang berubah pada variasi proses.

Senyawa dikelompokkan berdasarkan banyaknya C dalam senyawa dan pola perubahan konsentrasi

pada perubahan temperatur (Fatimah dan Nugraha, 2005).

Alat GC-MS yang digunakan memiliki seri HP 6890 yang berasal dari Amerika. Sebelum

dilakukan analisa, cairan harus dipreparasi terlebih dahulu untuk memisahkan fase organik dan

anorganik. Salah satu syarat bahan yang akan dianalisa menggunakan GC-MS adalah bahan yang

terlarut dalam pelarut organik dan tidak mengandung air, karena akan merusak kolom yang

merupakan komponen penting pada alat.

Cairan diekstrak telebih dahulu menggunakan kloroform yang bertujuan untuk memisahkan

fase polar dan nonpolar. Pemilihan kloroform dikarenakan sifatnya yang semi polar sehingga dapat

mengekstrak komponen yang polar dan nonpolar. Acap cair bersifat polar karena terlarut dalam air.

Namun, terdapat juga zat-zat yang besifat nonpolar di dalamnya, sehingga dipilih pengekstrak yang

dapat mewakili sifat keduanya.

Kedua fase dipisahkan dengan labu pemisah lalu dipekatkan dengan dialiri gas nitrogen inert.

Selama poses peparasi tidak digunakan panas sama sekali karena dikhawatirkan akan mengurangi

kandungan zat dalam cairan atau merusak struktur kimianya. Setelah kering, zat dilarutkan dalam

methanol yang bersifat polar sesuai sifat asap cair. Cara preparasi sampel untuk analisis GC-MS ini

disajikan pada Lampiran 1.

Cairan yang telah dipreparasi kemudian diinjeksikan ke dalam alat GC-MS sebanyak ± 5 L.

Suhu oven awal yang digunakan adalah 40oC. Ketika kontak dengan panas oven, methanol akan

menguap pada menit-menit awal. Oleh karena itu, dipakai waktu delay 2-3 menit untuk menguapkan

methanol sehingga hasil analisa untuk menit awal tidak terbaca software.

Komponen-komponen yang menguap akan dibawa oleh gas pengemban. Pada alat GC-MS

ini, gas pengemban yang akan digunakan adalah helium. Gas helium akan membawa komponen yang

teruapkan melewati kolom kapiler menuju detector sehingga membentuk puncak-puncak kromatogam

yang menyerupai gunung.

Area kromatogram yang terbentuk merupakan jumlah komponen yang terkandung dalam

cairan. Puncak kromatogram terbentuk didasarkan pada bobot molekul komponen yang teridentifikasi.

Semakin kecil bobot molekulnya, maka akan lebih cepat teridentifikasi, dan semakin kecil pula waktu

retensinya. Waktu retensi (retention time) merupakan waktu yang dibutuhkan senyawa untuk bergerak

melalui kolom menuju detector. Waktu retensi diukur berasarkan waktu dimana sampel diinjeksikan

sampai sampel menunjukkan ketinggian puncak maksimum dari senyawa itu (Anonim, 2008 di dalam

Febrianto, 2009).

Waktu retensi akan tertera pada puncak kromatogram. Pembacaan waktu retensi dipengaruhi

oleh jenis alat GC-MS yang digunakan karena setiap seri memiliki karakteristik tersendiri.

Hasil analisa GC-MS selanjutnya diolah menggunakan software MSD Chemstation, Data

Analysis tahun 2006. Dari software tersebut, dapat diketahui kandungan komponen dalam cairan

beserta kualitas dan kuantitasnya. Kualitas komponen merupakan kemiripan komponen yang terbaca

dengan komponen pada database. Semakin tinggi kualitasnya, semakin identik komponen dengan

database sehingga memiliki tingkat kepercayaan yang lebih baik. Kuantitas komponen disajikan

dengan % luas area dari total puncak yang terbentuk.

Page 37: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

24

Pembacaan data analisis pada penelitian ini menggunakan skala 5.106, nilai threshold sebesar

20, dan menggunakan database wiley 7. Cairan yang dianalisis dengan GC-MS terdapat pada

Lampiran 2. Hanya komponen yang memiliki kualitas di atas 90 dan % luas area di atas 1 % yang

diambil karena memiliki tingkat keidentikan sebesar 90 % dari database. Sedangkan komponen yang

memiliki kualitas di bawah 90 tidak diambil karena dinilai tidak terlalu identik dan kemungkinan

merupakan suatu pengotor tetapi memiliki struktur yang mirip dengan komponen dalam database.

Grafik hasil analisis GC-MS tekanan 100 mbar dan suhu 60oC, 62.5oC, 65oC, 67.5oC, dan 70oC

disajikan pada Gambar 7 berikut.

Gambar 7. Grafik hasil analisis GC-MS tekanan 100 mbar suhu 60, 62.5, 65, 67.5, dan 70oC

Grafik hasil analisis GC-MS di atas menunjukkan senyawa yang terkandung dalam hasil

fraksinasi bertekanan 100 mbar dengan suhu 60oC, 62.5oC, 65oC, 67.5oC, dan 70oC. Analisis

dilakukan pada berbagai variasi suhu pada tekanan yang sama. Komponen yang terkandung di

dalamnya adalah fenol, keton, furan, aldehid, hidrokabon, dan asam. Keseluruhan komponen ini dapat

digunakan sebagai bahan tambahan pangan yang berupa flavour, antioksidan, dan pengawet. Dari

grafik terlihat bahwa jumlah masing-masing komponen berbeda. Perbedaan ini terjadi karena adanya

perbedaan titik didih pada tiap-tiap komponen sehingga menguap dan berkondensasi pada suhu dan

tekanan yang bebeda pula.

Dari hasil analisis GC-MS untuk hasil fraksinasi menggunakan distilasi vakum terlihat

perbedaan jumlah luas area pada semua jenis senyawa. Perbedaan terjadi secara fluktuatif. Pada

komponen fenol terjadi peningkatan di awal, namun selanjutnya terjadi penurunan. Kenaikan mulai

terjadi pada suhu 62.5oC, dan terjadi perubahan yang cukup signifikan. Namun, % fenol kembali turun

pada suhu 65-67.5oC. Hal ini dapat disebabkan karena proses distilasi vakum yang berlangsung dalam

1 kali running untuk semua perlakuan suhu pada tiap tekanan, sehingga fenol banyak dihasilkan pada

satu titik suhu dan untuk suhu berikutnya jumlah fenol sudah tidak banyak lagi, namun masih dapat

dihasilkan pada suhu-suhu berikutnya. Hal ini terjadi karena proses distilasi dibatasi selama 8-10

menit.

Demikian halnya yang terjadi pada komponen keton, tejadi peningkatan jumlah luas area

pada titik suhu 60oC dan kembali mengalami penurunan pada suhu 65

oC. Pada komponen furan,

33.3230.41

48.23 49.2345.97

9.04

17.24

8.64 10.07 10.96

0 0 3.043.5

0

32.93

0 0 0 04.1

7.91

2.81

2.82

0

0

10.96

20.67

2.32 0

-10

0

10

20

30

40

50

60

58 60 62 64 66 68 70 72

% L

uas

Are

a

Suhu oC

Fenol

Keton

Furan

Aldehid

Hidrokarbon

Asam

Page 38: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

25

terjadi peningkatan pada suhu 62.5oC dan kembali menurun pada suhu 67.5oC. Komponen

hidrokarbon meningkat jumlahnya pada suhu 60oC dan kembali turun pada suhu 65oC dan komponen

asam yang meningkat jumlahnya pada suhu 60oC dan turun pada suhu 67.5oC. Dari semua komponen

senyawa ini terjadi peningkatan jumlah pada suhu 60oC dan 62.5oC dan mengalami penuunan pada

suhu 65oC dan 67.5oC. Semua komponen-komponen senyawa ini mengalami peningkatan di awal

karena proses penguapan terjadi pada suhu-suhu awal, selanjutnya terjadi penurunan karena

jumlahnya yang telah berkurang.

Perbedaan terjadi pada komponen aldehid, terjadi penurunan di awal dan kemudian baru

terjadi kenaikan jumlah komponen yang dihasilkan. Hal ini dapat terjadi karena perbedaan titik didih

komponen aldehid, selain itu kendala alat juga dapat mempengaruhi jumlah komponen yang

dihasilkan. Komponen aldehid mengalami penurunan pada suhu 60oC dan kembali meningkat pada

suhu 65oC. Untuk fraksinasi yang keluar pada suhu rendah adalah aldehid, kemudian keton dan

hidrokarbon, dan yang terakhir adalah fenol dan asam.

Pengujian GC-MS selanjutnya adalah menganalisa hasil fraksinasi di titik suhu 60oC pada

tiga tekanan yang berbeda yaitu 80 mbar, 90 mbar, dan 100 mbar. Tekanan 80 mbar merupakan

tekanan paling rendah. Pada komponen fenol, terjadi penurunan jumlah fenol yang dihasilkan seiring

dengan peningkatan tekanan. Hal ini menunjukkan bahwa semakin tinggi tekanan, maka komponen

senyawa yang dapat menguap juga semakin sedikit, karena titik didih komponen tersebut juga makin

tinggi. Pada komponen keton juga terjadi peningkatan jumlah keton yang dihasilkan seiring dengan

tekanan yang makin tinggi sampai tekanan 90 mbar, namun selanjutnya terjadi penurunan, sedangkan

komponen furan mengalami hal yang sama dengan fenol, terjadi penurunan jumlah furan seiring

dengan meningkatnya tekanan. Grafik hasil analisis GC-MS, tekanan 100, 90, dan 80 mbar suhu 60oC

disajikan pada Gambar 8 berikut.

Gambar 8. Grafik hasil analisis GC-MS, tekanan 100, 90, dan 80 mbar suhu 60oC

Berbeda halnya dengan aldehid dan hidrokarbon, jumlah komponen ini mengalami

penurunan pada tekanan yang makin tinggi. Akan tetapi pada tekanan 90 mbar, terjadi peningkatan

kembali jumlah komponen tersebut. Hal ini terjadi karena aldehid dan komponen hidrokarbon

memiliki titik didih yang lebih rendah dibandingkan senyawa lainnya sehingga telah lebih dahulu

mengalami penguapan pada tekanan 100 mbar. Proses yang hanya berlangsung dalam sekali running

49.0846.74

33.32

12.87

30.93

9.0411.44 5.37

00 0

32.93

2.940

4.10 0 0

-10

0

10

20

30

40

50

60

70 75 80 85 90 95 100 105

% L

uas

Are

a

Tekanan (mbar)

Fenol

Keton

Furan

Aldehid

Hidrokarbon

Asam

Page 39: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

26

mengakibatkan komponen ini telah terfraksinasi di awal dan jumlahnya semakin menurun pada fraksi

berikutnya Sedangkan pada komponen asam, tidak terjadi peningkatan ataupun penurunan jumlah.

Komponen asam memiliki titik didih yang lebih tinggi sehingga membutuhkan waktu yang lebih lama

untuk dapat terfraksinasi dalam jumlah banyak.

Perbedaan jumlah komponen yang dihasilkan pada tiap tekanan yang berbeda disebabkan

karena komponen-komponen yang terkandung di dalam asap cair memiliki titik didih yang berbeda,

sehingga pada proses evaporasi tidak semua komponen tersebut mengalami penguapan yang sama,

sehingga hanya komponen tertentu yang mengalami kondensasi pada kombinasi perlakuan suhu dan

tekanan dapat terfraksinasi pada suhu dan tekanan tersebut. Tekanan vakum bertujuan agar

komponen-komponen yang memiliki titik didih tinggi lebih cepat menguap dan terpisah dengan

komponen lainnya yang memiliki titik didih berdekatan.

Selain itu, kendala alat yang kurang ideal juga mempengaruhi hasil fraksinasi yang diperoleh

menjadi kurang optimal. Komponen-komponen yang seharusnya menguap dan terkondensasi pada

suhu dan tekanan yang spesifik menjadi tersebar di seluruh perlakuan suhu dan tekanan yang ada. Hal

ini disebabkan karena keterbatasan alat yang digunakan untuk proses distilasi vakum. Penggunaan

rotary vacuum evaporator sebagai alat untuk proses distilasi vakum tidak mampu mencapai suhu

lebih tinggi dan tekanan yang lebih rendah, sehingga pada beberapa perlakuan terjadi peristiwa asap

cair seluruhnya masuk ke dalam tabung destilat dan tidak dapat terfraksinasi lagi.

F. KOMPONEN MAYOR DAN MINOR PADA HASIL FRAKSINASI ASAP

CAIR

Fraksinasi asap cair menunjukkan kandungan senyawa-senyawa yang bermanfaat sebagai

bahan tambahan pangan seperti antioksidan, flavour, dan pengawet diantaranya fenol, keton, furan,

aldehid, hidrokarbon, dan asam. Dari hasil pengujian GC-MS di titik suhu 60oC pada tekanan 80

mbar, 90 mbar dan 100 mbar, komponen senyawa terbanyak adalah fenol. Fraksi fenol paling

dominan tedapat di tekanan 80 mbar. Tekanan yang rendah membantu komponen fenol menguap di

titik suhu yang lebih rendah. Berbagai komponen yang dihasilkan pada fraksinasi asap cair disajikan

pada Tabel 8 berikut.

Tabel 8 Komponen Hasil Fraksinasi dan % Total Luas Area

Sampel Suhu (oC) Tekanan (mbar)

Total Luas Area (%) Komponen

Fenol Keton Furan Aldehid Hidrokarbon Asam

1 60 80 49.08 12.87 11.44 0 2.94 0

2 60 90 46.74 30.93 5.37 0 0 0

3 60 100 33.32 9.04 0 32.93 4.1 0

4 62.5 100 30.41 17.24 0 0 7.91 10.96

5 65 100 48.23 8.64 3.04 0 2.81 20.67

6 67.5 100 49.23 10.07 3.5 0 2.82 2.32

7 70 100 45.97 10.96 0 0 0 0

8 sisa 100 15.72 7.1 0 10.04 9.51 24.8

Berbeda halnya dengan komponen senyawa lainnya, jumlah komponen pada tiap tekanan

berbeda dan tidak mengalami perubahan secara linier. Hal ini disebabkan karena komponen fenol,

Page 40: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

27

keton, furan, aldehid, hidrokarbon terdiri dari senyawa-senyawa turunan lainnya yang titik didihnya

juga berbeda, sehingga jumlah yang diperoleh pada tiap perlakuan tekanan juga berbeda-

beda.Komponen terbanyak yang ditemukan adalah fenol pada suhu 67.5oC tekanan 100 mbar.

Komponen yang jumlahnya paling sedikit adalah aldehid. Komponen ini dominan pada satu titik suhu

60 oC dan tekanan 100 mbar, namun tidak terdapat pada perlakuan suhu dan tekanan lainnya kecuali

di sisa fraksinasi. Komponen asam pada fraksi asap cair tidak ditemukan pada titik suhu 60oC di

tekanan 80, 90, dan 100 mbar serta pada suhu 70oC tekanan 100 mbar. Komponen ini dominan berada

pada sisa fraksinasi. Komponen asam yang terkandung dalam fraksi asap cair memiliki titik didih

yang tinggi (>300 oC) seperti asam stearat dan asam palmitat. Komponen senyawa dan turunannya

tertera pada Lampiran 2.

Analisis GC-MS pada tekanan 100 mbar pada lima titik suhu yakni 60oC, 62.5oC, 65oC,

67.5oC, dan 70oC menunjukkan komponen senyawa terbanyak yang diperoleh adalah fenol.

Komponen ini juga ditemukan pada setiap titik suhu. Selanjutnya adalah keton, senyawa ini juga ada

di tiap titik suhu pada tekanan 100 mbar, akan tetapi jumlah tidak sebanyak fenol, kemudian berturut-

turut hidrokarbon, asam, furan, dan aldehid dengan jumlah yang berbeda-beda. Grafik komponen-

komponen senyawa beserta % total luas area tertera pada Lampiran 4.

G. SISA FRAKSINASI

Sisa fraksinasi asap cair pada tekanan 100 mbar mengandung banyak komponen asam. Hal

ini disebabkan karena titik didih asam yang terkandung pada asap cair tersebut cukup tinggi yakni

melebihi 300 C, sehingga memerlukan waktu yang lebih lama dan suhu yang lebih tinggi pula.

Komponen-komponen lainnya masih terdapat dalam cairan sisa fraksinasi, namun dengan persentase

yang lebih kecil. Grafik kandungan senyawa kimia sisa fraksinasi disajikan pada Gambar 9 berikut.

Gambar 9. Grafik Kandungan Senyawa Kimia Sisa Fraksinasi

Pada sisa fraksinasi, terlihat bahwa komponen asam masih banyak tertinggal. Hal ini

disebabkan karena asam memiliki titik didih yang tinggi. Namun masih terdapat komponen-komponen

lain yang pada suhu dan tekanan awal mengalami fraksinasi, masih terdapat di sisa fraksinasi asap cair

tersebut. Hal ini dipengaruhi keadaan alat yang kurang stabil sehingga hasil yang didapatkan menjadi

kurang maksimal. Komponen fenol menjadi komponen terbanyak kedua yang ditemukan di sisa

0

10

20

30

Per

sen

tase

Senyawa

Sisa Fraksinasi

Sisa Fraksinasi

Page 41: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

28

fraksinasi setelah asam. Komponen ini telah terfraksinasi di suhu awal, namun masih terdapat di sisa

fraksinasi. Demikian halnya dengan komponen-komponen lain seperti keton, furan, aldehid, dan

hidrokarbon.

H. APLIKASI ASAP CAIR SEBAGAI BAHAN TAMBAHAN PANGAN

Komponen-komponen yang terdapat dalam hasil fraksinasi asap cair tongkol jagung dapat

dikelompokkan berdasarkan fungsinya. Salah satu fungsi dari cairan ini adalah sebagai bahan

tambahan pangan sepert pengawet, antioksidan, dan flavour. Secara umum, yang dimaksud sebagai

bahan tambahan pangan adalah bahan-bahan yang ditambahkan ke dalam makanan selama produksi,

pengolahan, pengemasan, atau penyimpanan untuk tujuan tertentu. Menurut Codex Alimentarius,

bahan tambahan makanan didefinisikan sebagai bahan yang tidak lazim dikonsumsi sebagai makanan

dan biasanya bukan merupakan komposisi khas makanan, dapat bernilai gizi atau tidak bernilai gizi,

ditambahkan ke dalam makanan dengan sengaja untuk membantu teknik pengolahan makanan

(termasuk organoleptik) baik dalam proses pembuatan, pengolahan, penyiapan, perlakuan,

pengepakan, pengemasan, pengangkutan, dan penyimpanan produk makanan olahan agar

menghasilkan atau diharapkan menghasilkan (langsung atau tidak langsung) suatu makanan yang

lebih baik atau secara nyata mempengaruhi sifat khas makanan tersebut (Winarno dan Rahayu, 1994).

Komponen yang berfungsi sebagai pengawet sebagian besar merupakan senyawa asam,

fenol, dan keton. Senyawa asam memiliki pH yang rendah sehingga dapat menghambat pertumbuhan

mikroorganisme tertentu, sedangkan fenol dan keton pada konsentrasi tertentu dapat merusak dinding

sel mikroorganisme. Berdasarkan fungsi tersebut, maka ketiga komponen tersebut dapat digunakan

sebagai pengawet yang dapat memperpanjang umur simpan makanan.

Pengawet adalah bahan tambahan makanan yang dapat mencegah atau menghambat

fermentasi, pengasam, atau peruraian lain terhadap makanan yang disebabkan oleh mikroorganisme.

Bahan tambahan makanan ini biasanya ditambahkan ke dalam makanan yang mudah rusak, atau

makanan yang disukai oleh medium tumbuhnya bakteri atau jamur misalnya pada produk daging,

buah-buahan, dsb (Winarno dan Rahayu, 1994).

Menurut Winarno dan Rahayu (1994), flavour adalah bahan tambahan makanan yang dapat

memberikan, menambah, dan mempertegas rasa dan aroma suatu makanan. Komponen yang berfungsi

sebagai flavour sebagian besar merupakan senyawa fenol, aldehid, furan, asam, dan keton.

Keempatnya merupakan senyawa aromatik yang dapat memberikan kesan aroma maupun rasa pada

makanan.

Antioksidan adalah bahan tambahan makanan yang digunakan untuk mencegah atau

menghambat terjadinya proses oksidasi. Antioksidan bisa digunakan pada minyak, lemak, dan

makanan yang mengandung minyak dan lemak, misalnya produk ikan dan daging. Selain itu, juga

digunakan pada produk buah dan sari buah dalam kaleng (Winarno dan Rahayu, 1994).

Antioksidan digunakan untuk melindungi unsur-unsur yang terdapat dalam makanan

terutama lemak serta unsur lain seperti vitamin yang juga perlu untuk dilindungi (Taylor, 1980).

Senyawa fenol mendominasi fungsi sebagai antioksidan. Beberapa jenis asam dan

hidrokarbon dapat juga dijadikan sebagai antioksidan karena berfungsi sebagai zat anti kanker dan

biasa terdapat pada tanaman herbal. Pada umumnya, cairan yang mengandung banyak senyawa fenol

akan banyak berfungsi sebagai antioksidan.

Page 42: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

29

V. KESIMPULAN DAN SARAN

A. KESIMPULAN

Proses fraksinasi asap cair dengan vakum distilasi bertujuan untuk menguapkan senyawa-

senyawa yang terkandung di dalamnya karena memiliki titik didih yang tinggi. Cairan yang telah

mengalami fraksinasi memiliki bau yang cukup kuat yakni bau sangit hasil pembakaran. Warna yang

dihasilkan adalah bening dan tidak ada perbedaan warna diantara semua perlakuan karena cairan yang

telah mengalami fraksinasi merupakan cairan murni dan pengotornya telah tertinggal pada residu.

Hasil analisis GC-MS menunjukkan bahwa peningkatan jumlah asap cair hasil fraksinasi

seiring dengan peningkatan suhu dan kemudian mengalami penurunan . Hal ini disebabkan karena

fraksinasi dilakukan dalam 1 kali running dan pada rentang waktu tertentu, sehingga apabila

komponen senyawa tersebut telah menguap dalam jumlah banyak pada suhu tertentu, maka jumlahnya

akan mengalami pengurangan pada semua suhu berikutnya.

Berdasarkan hasil penelitian, komponen terbanyak yang berada pada asap cair adalah fenol,

kemudian dilanjutkan oleh keton, furan, hidrokarbon, aldehid, dan asam. Komponen-komponen ini

dapat berfungsi sebagai bahan tambahan pangan yakni pengawet, anti oksidan, dan flavour.

Berdasarkan hasil analisis, maka senyawa aldehid adalah senyawa yang memiliki titik didih

paling rendah dan terfraksinasi dengan konsentrasi terbesar pada suhu rendah (60oC), sementara itu

senyawa fenol adalah senyawa dalam jumlah paling besar dan berada pada setiap tekanan (80, 90, dan

100 mbar) dan berada pada semua suhu (60-70oC).

Urutan munculnya senyawa pada proses fraksinasi ini adalah aldehid, keton, hidrokarbon,

fenol, furan, dan terakhir asam yang tertinggal di residu dari fraksinasi karena asam memiliki titik

didih yang tinggi yakni >300 oC.

B. SARAN

Perlu dikaji lagi proses fraksinasi asap cair ini dengan metode fraksinasi lain untuk

membandingkan hasil yang diperoleh dan penggunaan alat distilasi vakum yang ideal untuk

memperoleh hasil yang lebih maksimal. Selain itu, perlu dilakukan proses lanjut untuk mengetahui

pemanfaataan hasil fraksinasi asap cair sebagai bahan tambahan pangan.

Page 43: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

30

DAFTAR PUSTAKA

Amin, N.A.S. dan M. Asmadi. 2007. Optimization of Empty Palm Fruit Bunch Pyrolisis over HZSM-5

Catalyst for Production of Bio-oil. Chemical Reaction Engineering Group (CREG), Department

of Chemical Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia.

Anand, S. dan O.N. Srivastava. 2004. Formation and Characterization of Y : 247 film through spray

pyrolisis technique. Bull. Mater. Sci.,Vol. 27, No. 2 April 2004, pp. 113-119.

Anne, O. dan J. Kann. 2001. Determination of Peppermint and Orange Aroma Compounds in Food and Beverages. Proc. Estonian Acad. Sci. Chem., 2001, 50, 4, 217-225.

Anonim. 2003. Studi Kasus Implementasi Produksi Bersih Pada Industri Pangan. Direktorat Jendral

Industri dan Dagang Kecil Menengah, Departemen Perindustrian dan Perdagangan.

Badan Pusat Statistik Indonesia. 2009. Luas Panen, Produktivitas, dan Produksi Jagung Menurut

Provinsi 2009. Diakses dari www.bps.go.id pada 16 Februari 2010.

Bridgwater, A. V. 2002. The Future of Biomass Pyrolisis and Gassification: Status, Opportunities,

and Policies for Europe. Bio-Energy Research Group, Aston University, Birmingham B4 7ET.

Bridgwater, A.V. 2004. Biomass Fast Pyrolisis. Review Paper: 0354-9836, 8 (2004), 2.

Buckle, K. A., R.A. Edwards, G.H. Fleet dan M. Wooton. 1985. Ilmu Pangan. Terjemahan H.

Purnomo dan Adiono. Indonesian University Press, Jakarta.

Buranov, A.U. dan G. Mazza. 2004. Biomass Fast Pyrolisis. Review Paper: 0354-9836, 8 (2004), 2.

Cook, T.M. dan D.J. Cullen. 1987. Industri Kimia, Operasi, Aspek-aspek Keamanan dan Kesehatan.

Terjemahan. PT Gramedia, Jakarta.

Czernik, Stefan. 2002. Fluidizable Catalyst for Producing Hydrogen by Steam Reforming Biomass Pyrolysis Liquid. Slide Presentasi. Proceedings of the 2002 U.S. DOE Hydrogen Program

Review NREL. National Renewable Energy Laboratory, Golden, Colorado.

Dalton, L. 2002. What’s That Stuff Food Preservatives; Antimicrobials, Antioxidants, and Metal

Chelators Keep Food Fresh. Journal of Science and Technology Volume 80, Number 45.

Darmadji, P. 1995. Produksi Asap Cair dan Sifat-sifat Fungsionalnya. Fakultas Teknologi Pangan.

Universitas Gadjah Mada, Yogyakarta.

Daun, H. 1979. Interaction of Wood Smoke Component and Foods. Food Technol. 33(5) 66-71.

Effendi, S. dan Sulistiati. 1991. Bercocok Tanam Jagung. CV Yasaguna, Jakarta.

Eklund. 1982. Inhibitor of Clostridium botulinum Types A and B Toxin Production by Liquid Smoke

and NaCl in Hot Process Smoke Flavoured Fish. J. Food Protect. 6: 32-41.

Fardiaz, S. 1992. Polusi Air dan Udara. Kanisius, Yogyakarta.

Fatimah, I dan Nugraha. 2005. Identifikasi Hasil Pirolisis Serbuk Kayu Jati Menggunakan Principal

Component Analysis. Jurnal Ilmu Dasar Vol. 6 No. 1, 2005 : 41-47.

Fauzi, A. 2004. Isolasi Stronellal dari Minyak Atsiri Daun Sereh Wangi Metoda Distilasi Vakum.

Jurusan Teknik Kimia, Fakultas Teknik, Universitas Muhammadiyah Surakarta.

Page 44: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

31

Febrianto, N. A. 2009. Identifikasi dan Analisa Komponen Aroma pada Lemak Kakao Hasil

Refermentasi dengan Metode SPME GC (Solid Phase Microextraction-Gas Chromatography).

Skripsi. Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Bogor.

Fengel, D. dan Wegener. 1995. Wood: Chemistry, Ultrastructure, Reactions. Terjemahan S. Hardjono.

UGM Press. Yogyakarta.

Frassoldati, A., G. Migliavacca2, T. Crippa3, F. Velata3, and T. Farravelli3.2005. Detailed Kinetic

Modelling of Thermal Degradation of Biomasses. 1L.E.A.P.-Politecnico di Milano-Italy, 2Stazione Sperimentale de Combustibiliti – San Donato Milanese-Italy, 3Dipartimento di

Chimica Materiali e Ingegneria Chimica-Politecnico di Milano.

Geankopolis, G.J. 1983. Transport Process and Unit Operating, 2nd ed. Allyn Bacon.

Girrard, J.P. 1992. Technology of Meat and Meat Products. Ellis Horwood. New York.

Guenther, E. 1987. Minyak Atsiri, Jilid 1 (Terjemahan). UI Press, Jakarta.

Handojo, Linda. 1995. Teknologi Kimia Jilid II. PT Gramedia, Jakarta.

Harris, R. S dan E. Karmas. 1989. Evaluasi Gizi pada Pengolahan Pangan. Terjemahan Achmad S.,

Bandung Technology Institute Press, Bandung.

Henin, S. and S. Caillere. 1975. Fibrous Minerals: in Soil Components, Vol. 2, J.E. Gieseking, ed.,

Spinger Verlag, New York, 335-349.

Himpunan Alumni Fateta. 2005. Manfaat dan Bahaya Bahan Tambahan Pangan. FATETA, IPB,

Bogor.

Holleman, H. F. 1903. A Text Book of Organic Chemistry. John Wiley and Sons, New York.

Hollenback, C. M. 1978. Summaries of Addition Paper on Smoke Curing. The Symposium Smoke

Curing Advances in Theory of Food Tech. Dallas, Texas June 4-7.

Kirk, R. E., dan D.F. Othmer. 1964. Encyclopedia of Chemical Technology Vol. 3. The Interscience

Encyclopedia Inc, New York.

Maga, J. A. 1988. Smoke in Food Processing. CRC Press, Florida.

Moody, M.W dan G.J. Flick. 1990. Smoked, Cured, and Dried Fish. Di dalam Martin, R. E. dan G.J. Flick (eds). The Seafood Industry. Van Nostrand Reinhold, New York.

Nevell, T.P. dan S.H. Zeronian. 1985. Cellulose Chemistry and Its Applications. Ellis Harwood

United, Chicester.

Ono, Y. 1999. Solid Based Catalyst : Recent Development. Di dalam Recent Trends Catalysis. Narosa Publishing House, London.

Pearson, A.M dan F.W. Tauber. 1973. Processed Meats, Second Edition. AVI Publishing Company

Inc., Nestport Connecticut.

Pszczola, Donald E. 1995. Tour Highlight Production and Uses of Smoke-Based Flavors. Food

Technol. 49 (1) ; 70-74.

Purwaningtyas, A. 2010. Kajian Optimasi Proses Pirolisis Tongkol Jagung untuk Produksi Asap Cair.

Skripsi. Departemen Teknologi Industri Pertanian, FATETA, IPB, Bogor.

Raveendran, K., A. Ganesh, and K.C. Khilar. 1996. Pyrolisis Characteristics of Biomass and Biomass

Component. Journal of Fuel Vol. 75 No. 8, pp. 987-998. Elsivier Applied science Publisher,

London.

Page 45: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

32

Richana, N., P. Lestina, dan T.T. Irawadi. 2004. Karakterisasi Lignoselulosa dari Limbah Tanaman

Pangan dan Pemanfaatannya untuk Pertumbuhan Bakteri RXA III-5 Penghasil Xilanase. Jurnal

Pertanian Tanaman Pangan. 23(3)(2004) 171-176.

Ritcher, H. 2004. Chemical Characterization and Bioactivity of Polycyclic Aromatic Hydrocarbons

from Non-Oxidative Thermal Treatment of Pyrene-Contaminated Soil at 250-1000oC.

Massachusetts Institute of Technology, USA.

Saparinto, C. dan D. Hidayati. 2006. Bahan Tambahan Pangan. Penerbit Kanisius, Yogyakarta.

Silalahi, J. 2006. Antioksidan dalam Diet dan Karsinogenesis. Jurnal Cermin Dunia Kedokteran No.

153, 2006. Jurusan Farmasi, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas

Sumatera Utara, Medan, Indonesia.

Sjostrom, E. 1993. Wood Chemistry, Fundamentals and Applications, 2nd Edition. Laboratory of

Wood Chemistry, Forest Product Departement, Hensinki University of Technology, Espoo,

Finlandia. Sastrohamidjojo, Dr. Hardjono. Penerjemah. 1995. Kimia, Kayu, Dasar-dasar dan

Penggunaan, Edisi Kedua. UGM Press, Yogyakarta.

Slaubaugh, W.H dan T.D. Persons. 1976. General Chemistry. John Wiley and Sons, Inc., New York.

Sonobe, T. and N. Worasuwannarak. 2004. Pyrolisis Characteristics of Blends of Agricultural

Residues with Lignite. The Joint International Conference on “Sustainable Energy and

Environment (SEE)” 1-3 December 2004, Hua Hin.

Subekti, N. A., Syafruddin, . Effendi, dan S. Sunarti. 2009. Morfologi Tanaman dan Fase

Pertumbuhan Jagung. Balai Penelitian Tanaman Serelia, Maros.

Sun, Y. dan J. Cheng. 2002. Hydrolysis of Lignocellulosic Materials for Ethanol Production. Journal

of Bioresource Technology 83 (2002) 1-11.

Taylor, R.J. 1980. Food Additives. John Wiley and Sons, New York.

Tim Puslitbang Indhan Balitbang Dephan. 2007. Pemanfaatan Serat Rami untuk Pembuatan Selulosa.

Departemen Pertahanan Jakarta.

Van Santen dan Niemantsverdriet. 1995. Fundamental and Applied Catalyst : Chemical Kinetics and

Catalyst. Plenum Press. New York.

Vogel, A.L. 1958. Di dalam Johor Ning A.P. 1993. Proses Pemisahan Senyawa Fenol (C6H5OH) dari Limbah Cair Industri Pulp (Black Liquor) dengan Cara Fraksinasi Distilasi. Skripsi. Fateta-IPB,

Bogor.

Whittle, K. J., P. Howgate. 2002. Glossary of Fish Technology Terms.

www.onefish.org/global/ishTechnologyGlossary Feb 02.

Winarno, F.G. dan T.S. Rahayu. 1994. Bahan Tambahan untuk Makanan dan Kontaminan. Pustaka

Sinar Harapan, Jakarta.

Worasumannarak, N., T. Sonobe, W. Tanthapanichakoon. 2007. Pyrolisis Behaviors of Rice Straw, Rice Husk, and Corn Cob by TG-MS Technique. Journal of Analytical and Applied Pyrolisis 78

(2007) 265-271.

Wyman, C.E. 1987. Application of Corn Stover and Fiber. Di dalam White, Pamela J. dan Lawrence

S. Johnson. 2003. Corn: Chemistry and Technology. American Association of Cereal Chemist,

Inc, St. Paul, Minnesotta.

Yang, H., R. Yan, H. Chen, D. H. Lee, dan C. Zheng. 2007. Characteristics of Hemicellulose,

Cellulose, and Lignin Pyrolisis Journal of Fuel 86 (2007) 1781-1788.

Page 46: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

33

Yoder, C.H, F.H. Suydan, dan F.A. Snavely. 1980. Di dalam Purwanto, A. 1995. Kajian Awal

Pemisahan Campuran Aseton-Butanol-Etanol Hasil Fermentasi dengan Distilasi Sederhana dan

dengan Pendekatan Model Isotherm Flash. Skripsi. FATETA-IPB, Bogor.

Zaitsev, I., I. Kizeveter, L. Lawnor, T. Makarova, L. Mineer, dan V. Podsevalor. 1969. Fish Curing

and Processing. Mir Publishers, Moscow.

Page 47: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

34

LAMPIRAN

Page 48: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

35

Lampiran 1. Prosedur analisis kimia bahan dan kadar serat hasil pirolisis serta

metode preparasi GC-MS

1. Analisa Kadar Air (AOAC, 1999)

Penetapan kadar air dilakukan dengan metode oven. Prinsip kadar air adalah menguapkan air

yang ada dalam bahan pangan dengan jalan pemanasan. Cawan kosong dikeringkan dalam oven pada suhu 105oC selama 10 menit kemudian didinginkan dalam desikator selama 15 menit. Sebanyak 2-3 g

sampel ditimbang di dalam cawan yang telah dioven dan diketahui bobotnya. Sampel dioven pada

suhu 105oC selama 5 jam. Sampel didinginkan dalam desikator selama 15 menit dan ditimbang bobot

akhirnya. Pekerjaan ini diulangi hingga bobotnya tetap.

Bobot Awal Sampel (g) – Bobot Akhir Sampel (g)

Kadar Air = x 100 %

Bobot Awal Sampel (g)

2. Analisa Kadar Serat

a. Penentuan neutral detergent fibre (NDF) atau serat detergen netral (SDN) (AOAC, 1995)

Total serat adalah sisa ekstraksi dengan larutan deterjen netral yang disebut serat deterjen

netral (SDN). Serat deterjen netral adalah fraksi dinding sel yang terdiri dari selulosa, lignin, dan

mineral lainnya.

± 0.5 g contoh dimasukkan ke dalam gelas piala 600 ml, kemudian ditambahkan 100 ml

larutan SDN, dipanaskan di atas pemanas listrik, setelah mendidih ditutup dengan sistem refluks dan

dibiarkan selama 1 jam. Setelah 1 jam, diangkat lalu larutan disaring ke dalam cawan masir yang telah

diketahui bobotnya (W1). Gelas piala dan cawan masir dicuci dengan air panas hingga tak berbusa,

kemudian dibilas dengan aseton. Kemudian dikeringkan dalam oven ± 105oC selama semalam. Cawan dikeluarkan dan didinginkan dalam desikator lalu ditimbang (W2). Cawan dibersihkan lalu dibakar

dalam tanur selama 3 jam setelah dicapai suhu ± 550oC

W2-W1

Kadar SDN (g/100g) = x 100 %

Bobot Contoh (g)

W1 : bobot cawan kosong

W2 : bobot cawan + residu pengeringan dalam oven 105oC

b. Penentuan acid detergent fibre (ADF) atau serat deterjen asam (SDA) (Van Eys et al., 1991) SDA adalah sisa ekstraksi dari larutan asam sulfat 1N dan 20 g CTAB (cetyltrimethyl

ammoniumbromida). Fraksi ini terdiri dari selulosa, lignin dan silika.

± 1 g bahan dimasukkan ke dalam gelas piala 600 ml lalu ditambahkan 100 ml larutan

deterjen asam. Kemudian dipanaskan hingga mendidih dan ditutup dengan alat refluks selama 1 jam.

Lalu diangkat dan disaring dalam cawan masir yang telah diketahui beratnya (W1). Gelas piala dan

cawan masir dicuci dengan air panas sampai tidak berbusa. Kemudian bilas secara berurutan dengan

aseton dan heksan. Cawan diangkat dan dikeringkan di dalam oven bersuhu 105oC selama semalam.

Kemudian diangkat dan didinginkan dalam desikator, lalu ditimbang (W2).

W2-W1

Kadar SDA (g/100g) = x 100 %

Bobot Contoh (g)

Hemiselulosa (g/100) = SDN – SDA

Page 49: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

36

c. Penentuan lignin atau acid detergent lignin (ADL), selulosa, dan silika (Van Eys et al., 1991).

Ke dalam ADF ditambahkan 3 x 50 ml H2SO4 72 %. Aduk setiap jam agar asam keluar.

Setelah tiga jam, sisa asam dalam residu dicuci dengan air panas hingga tidak berbusa lalu dicuci

dengan aseton. Cawan dikeringkan pada oven bersuhu 105oC selama semalam. Cawan diangkat,

didinginkan dalam desikator, lalu ditimbang (W3). Cawan dibakar dengan tanur bersuhu 550oC

selama 3 jam, didinginkan dan ditimbang (W4).

W2-W3

Kadar Selulosa (g/100g) = x 100 %

Bobot Contoh (g)

W3-W4

Kadar Lignin (g/100g) = x 100 %

Bobot Contoh (g)

W4-W1

Kadar Silika (g/100g) = x 100 %

Bobot Contoh (g)

3. Preparasi cairan untuk analisis GC-MS

Cairan diekstrak dengan kloroform dengan perbandingan 1:10 di dalam labu pemisah.

Kemudian dikocok-kocok beberapa kali dan didiamkan untuk memisahkan komponen terlarut dan

tidak terlarut. Bagian bawah dipisah dan pekerjaan tersebut diulang hingga tiga kali. Cairan yang

sudah diestrak dikeringkan dengan dialiri nitrogen inert. Selanjutnya dilarutkan dengan methanol

secukupnya.

Page 50: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

37

Lampiran 2. Komponen Senyawa Hasil Analisis GC-MS

Sampel Suhu (oC) Tekanan (mbar) Golongan Jenis Senyawa RT %Area Quality CAS Number

1 60 80 Fenol phenol, 2-methyl- 6.25 8.2 97 000095-48-7

phenol, 2-methoxy- 6.49 10.28 95 000090-05-1

phenol, 4-methyl- 6.62 9.88 96 000106-44-5

phenol, 4-ethyl- 7.97 16.28 91 000123-07-9

phenol, 4-ethyl-2-methoxy- 9.36 3.9 91 002785-89-9

Keton cyclopentanone, 2-methyl- 3 1.83 90 001120-72-5

2-cyclopentene-1-one, 2-methyl- 3.75 1.82 93 001120-73-6

2-cyclopentene-1-one, 3-methyl- 4.55 4.22 94 002758-18-1

2-cyclopentene-1-one, 2,3-dimethyl- 5.6 5 90 001121-05-7

Furan 2-Furanmethanol 3.26 11.44 98 000098-00-0

Hidrokarbon ethane, 1,1,2,2-tetrachloro 3.91 2.94 95 000079-34-5

2 60 90 Fenol phenol 5.25 7.21 94 000108-95-2

phenol, 2-methyl- 6.27 3.91 97 000095-48-7

phenol, 2-methoxy- 6.52 9.39 95 000090-05-1

phenol, 4-methyl- 6.66 8.98 96 000106-44-5

phenol, 2,4-dimethyl- 7.71 2.42 97 000105-67-9

phenol, 4-ethyl- 8.01 14.83 91 000123-07-9

keton cyclopentanone, 2-methyl- 3.01 1.22 90 001120-72-5

2-heptanone 3.51 3.2 90 000110-43-0

2-cyclopenten-1-one, 2-methyl- 3.76 2.97 94 001120-73-6

ethanone, 1-(2-furanyl)- 3.85 2.59 90 001192-62-7

2-cyclopenten-1-one, 3-methyl- 4.56 2.97 95 002758-18-1

2,3-dimethyl-2-cyclopenten-1-one 5.62 3.88 90 001121-05-7

2-nonanone 6.35 6.94 95 000821-55-6

2-undecanone 9.42 7.16 92 000112-12-9

Page 51: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

38

Furan 2-Furanmethanol 3.27 5.37 98 000098-00-0

3 60 100 Fenol phenol 5.25 3.69 94 000108-95-2

phenol, 2-methyl- 6.27 3.51 97 000095-48-7

phenol, 2-methyl- 6.38 1.35 90 000095-48-7

phenol, 2-methoxy- 6.52 6.38 95 000090-05-1

phenol, 4-methyl- 6.65 5.57 96 000106-44-5

phenol, 2,4-dimethyl- 7.7 2.28 96 000105-67-9

phenol, 2-ethyl- 8.01 10.54 91 000090-00-6

Keton 2-cyclopenten-1-one, 2-methyl- 3.77 4.42 94 001120-73-6

2,3-dimethyl-2-cyclopenten-1-one 5.63 2.67 91 001121-05-7

ethanone, 1-phenyl 6.13 1.95 94 000098-86-2

hidrokarbon benzeneethanol, 2-methoxy- 9.39 4.1 95 007417-18-7

aldehid 2-furancarboxaldehyde 2.99 28.24 94 000098-01-1

2-furancarboxaldehyde 3.08 1.3 93 000098-01-1

2-furancarboxaldehyde, 5-methyl- 4.56 3.39 94 000620-02-0

4 62.5 100 fenol phenol, 4-ethyl- 7.309 21.48 93 000123-07-9

phenol, 2,6-dimethoxy- 9.849 8.93 97 000091-10-1

keton benzophenone 13.383 11.5 93 000119-61-9

7,9-di-tert-butyl-1-oxaspiro [4.5]deca-6,9-diene-2,8-dione 16.416 5.74 99 000000-00-0

hidrokarbon cyclotetradecane 15.915 7.91 98 000295-17-0

asam hexadecanoid acid 16.73 10.96 99 000057-10-3

5 65 100 fenol phenol 4.76 11.28 91 000108-95-2

phenol, 2-methyl- 5.72 3.46 97 000095-48-7

phenol, 3-methyl- 6.035 9.5 96 000108-39-4

phenol, 2-methoxy- 6.23 3.61 94 000090-05-1

phenol, 2,4-dimethyl- 7.029 1.78 94 000105-67-9

phenol, 4-ethyl- 7.334 14.93 91 000123-07-9

phenol, 4-ethyl-2-methoxy- 8.881 2.32 91 002785-89-9

Page 52: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

39

phenol, 2,6-dimethoxy- 9.841 1.35 91 000091-10-1

keton 2-cyclopenten-1-one, 3-methyl- 4.531 1.07 94 002758-18-1

2-cyclopenten-1-one, 3-methyl- 4.599 1.46 91 002758-18-1

2-cyclopenten-1-one, 2-hydroxy-3-methyl 5.372 1.7 96 000080-71-7

2,3- dimethyl-2-cyclopenten-1-one 5.533 1.71 94 001121-05-7

3-ethylcyclopent-2-en-1-one 6.137 1.49 91 005682-69-9

2-cyclopenten-1-one, 3-ethyl-2-hydroxy 6.646 1.21 96 021835-01-8

furan 2-Furanmethanol 3.24 3.04 95 000098-00-0

hidrokarbon ethane, 1,1,2,2-tetrachloro 3.868 2.81 95 000079-34-5

asam n-hexadecanoid acid 16.841 13.73 99 000057-10-3

9-octadecanoid acid 18.438 1.68 99 000112-80-1

octadecanoid acid 18.667 5.26 99 000057-11-4

6 67.5 100 fenol phenol 4.727 6.43 94 000108-95-2

phenol, 2-methyl- 5.712 3.98 97 000095-48-7

phenol, 4-methyl- 6.009 9.91 97 000106-44-5

phenol, 2-methoxy- 6.213 4.61 97 000090-05-1

phenol, 2,4-dimethyl- 7.029 1.86 95 000105-67-9

phenol, 4-ethyl- 7.301 16.78 91 000123-07-9

2-methoxy-4-methylphenol- 7.674 1.98 91 000093-51-6

phenol, 4-ethyl-2-methoxy- 8.864 2.44 91 002785-89-9

phenol, 2,6-dimethoxy- 9.841 1.24 93 000091-10-1

keton 2,5-hexadione 4.013 1.16 90 000110-13-4

2-cyclopenten-1-one, 3-methyl- 4.523 3.07 91 002758-18-1

2-cyclopenten-1-one, 2-hydroxy-3-methyl 5.338 1.35 97 000080-71-7

2,3-dimethyl-2-cyclopenten-1-one 5.508 1.94 94 001121-05-7

2-cyclopenten-1-one, 3-ethyl-2-hydroxy 6.63 1.24 96 021835-01-8

7,9-di-tert-butyl-1-oxaspiro [4.5]deca-6,9-diene-2,8-dione 16.425 1.31 99 000000-00-0

furan 2-Furanmethanol 3.24 3.5 94 000098-00-0

Page 53: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

40

Hidrokarbon ethane, 1,1,2,2-tetrachloro 3.869 2.82 95 000079-34-5

asam hexadecanoic acid 16.73 1.26 97 000057-10-3

9-octadecanoid acid 18.429 1.06 99 000112-80-1

7 70 100 fenol phenol 4.803 6.28 91 000108-95-2

phenol, 2-methyl- 5.771 3.93 95 000095-48-7

phenol, 3-methyl- 6.069 6.56 96 000108-39-4

phenol, 2-methoxy- 6.264 4.46 97 000090-05-1

phenol, 2-ethyl- 6.901 1.62 95 000090-00-6

phenol, 2,5-dimethyl 7.063 2.87 96 000095-87-4

phenol, 4-ethyl 7.394 12.62 91 000123-07-9

phenol, 2-methoxy-4-metyhl 7.708 2.2 91 000093-51-6

phenol, 4-(1-methylethyl)- 8.176 1.17 95 000099-89-8

phenol, 4-ethyl-2-methoxy- 8.915 4.26 95 002785-89-9

keton 2-cyclopenten-1-one, 2-methyl- 3.834 2.08 90 001120-73-6

2-cyclopenten-1-one, 3-methyl- 4.65 1.2 91 002758-18-1

2-cyclopenten-1-one, 3,4-dimethyl 4.998 1.48 91 030434-64-1

2-cyclopenten-1-one, 2,3-dimethyl 5.567 2.34 93 001121-05-7

pyrrolidine, 1-(1-cyclopenten-1-y1) 8.328 1.21 94 007148-07-4

1H-Inden-1-one, 2,3-dihydro- 9.008 1 97 000083-33-0

.beta. Tumerone 13.723 1.65 97 082508-14-3

8 sisa fraksinasi Fenol phenol 4.709 2.9 94 000108-95-2

phenol, 4-methyl- 6.001 2.15 95 000106-44-5

phenol, 4-ethyl- 7.292 3.53 93 000123-07-9

2-methoxy-4-vinylphenol- 9.356 1.73 96 007786-61-0

phenol, 2,6-dimethoxy- 9.832 5.41 95 000091-10-1

keton 2-cyclopenten-1-one, 3-methyl- 4.514 1.2 93 002758-18-1

2-cyclopenten-1-one, 2-hydroxy-3-methyl 5.33 2.79 96 000080-71-7

2-cyclopenten-1-one, 3-ethyl-2-hydroxy 6.612 1.7 96 021835-01-8

Page 54: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

41

ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- 14.496 1.41 93 002478-38-8

hidrokarbon cyclododecane 11.327 3.24 97 000294-62-2

cyclododecane 13.731 1.19 98 000294-62-2

dodecane 14.199 1.54 90 000112-40-3

quinoline 8.379 3.54 97 000091-22-5

aldehid benzaldehyde, 4-hydroxy-3-methoxy 10.529 6.83 95 000121-33-5

benzaldehyde, 4-hydroxy-3,5-dimethoxy 13.689 1.07 90 000134-96-3

asam hexadecanoic acid 16.747 8.97 99 000057-10-3

9-octadecanoid acid (Z)- 18.438 10.81 99 000112-80-1

octadecanoid acid 18.608 2.33 98 000057-11-4

9-octadecenamide, (z)- 23.866 2.69 93 000301-02-0

Page 55: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

42

Lampiran 3. Hasil Analisis GC-MS beserta Titik Didih dan Struktur Molekul

No Golongan Senyawa CAS Number Total Luas Area Titik Didih (℃) MF BM (g/mol) Nama Produk

1 Fenol Phenol 000108-95-2 37.79 182 C6H6O 94.11 Phenol

phenol, 2-methyl- 000095-48-7 28.34 C7H7O 107.1299 2-methylphenol

phenol, 2-methoxy- 000090-05-1 38.73 205 C7H8O2 124.13 Guaiacol

phenol, 3-methyl- 000108-39-4 16.06 203℃ C7H8O 108.14 m-cresol

phenol, 4-methyl- 000106-44-5 36.49 202℃ C7H8O 108.14 p-cresol

phenol, 2-ethyl- 000090-00-6 12.16 195-197℃ C8H10O 122.16 2-ethylphenol

phenol, 4-ethyl- 000123-07-9 100.45 218-219 C8H10O 122.16 4-ethylphenol

phenol, 2,4-dimethyl- 000105-67-9 8.34 211℃ C8H10O 122.17 2,4-dimethylphenol

phenol, 2,6-dimethoxy- 000091-10-1 11.52 261℃ C8H10O3 154.16 2,6-dimethoxyphenol

phenol, 4-ethyl-2-methoxy- 002785-89-9 12.92 234-236℃ C9H12O2 152.19 4-ethylguaiacol

2 Keton cyclopentanone, 2-methyl- 001120-72-5 3.05 139-140℃ C6H10O 98.14 cyclopentanone, 2-methyl-

2-cyclopentene-1-one, 2-methyl- 001120-73-6 11.29 158 - 161 C6H10O 96.12892 2-cyclopentene-1-one, 2-

methyl-

2-cyclopentene-1-one, 3-methyl- 002758-18-1 15.19 74(p=15 mmHg) C6H8O 96.12892 2-cyclopentene-1-one, 3-methyl-

2-cyclopentene-1-one, 2,3-dimethyl- 001121-05-7 17.54 C7H10 110.156 2-cyclopentene-1-one, 2,3-dimethyl-

7,9-di-tert-butyl-1-oxaspiro [4.5]deca-6,9-diene-2,8-dione 000000-00-0 7.05 C7H24O3 276.3707

7,9-di-tert-butyl-1-oxaspiro [4.5]deca-6,9-diene-2,8-dione

2-cyclopenten-1-one, 2-hydroxy-3-methyl 000080-71-7 5.84 245.2 C6H8O2 112.13 3-Methyl-1,2-cyclopentanedione

2-cyclopenten-1-one, 3-ethyl-2-hydroxy 021835-01-8 4.15 C7H10O2 126.15 2-cyclopenten-1-one, 3-ethyl-2-

hydroxy

3 Furan 2-Furanmethanol 000098-00-0 23.31 170℃ C5H6O2 98.1 furfuryl alcohol

4 Hidrokarbon ethane, 1,1,2,2-tetrachloro 000079-34-5 8.57 147℃ C2H2Cl4 167.85 tetrachloroethane

cyclododecane 000294-62-2 4.43 239 C12H24 168.32 cyclododecane

5 Aldehid 2-furancarboxaldehyde 000098-01-1 29.54 167 C5H4O2 96.08 2-furaldehyde

6 Asam hexadecanoid acid 000057-10-3 34.92 351.5℃ C16H32O2 256.42 palmitic acid

9-octadecanoid acid 000112-80-1 13.55 360℃ C18H34O2 282.46 oleic acid

octadecanoid acid 000057-11-4 7.59 361℃ C18H36O2 284.48 stearic acid

Page 56: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

43

Lampiran 4. Grafik Komponen Senyawa Hasil Analisa GC-MS beserta % Luas Area

Page 57: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

44

Lampiran 5. Kromatogram GC-MS Tekanan 80 mbar dan suhu 60 oC

4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0 2 2 . 0 0 2 4 . 0 0 2 6 . 0 0 2 8 . 0 0 3 0 . 0 0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

3 0 0 0 0 0 0

3 2 0 0 0 0 0

3 4 0 0 0 0 0

3 6 0 0 0 0 0

3 8 0 0 0 0 0

4 0 0 0 0 0 0

4 2 0 0 0 0 0

4 4 0 0 0 0 0

4 6 0 0 0 0 0

4 8 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C : S A M P E L I 8 0 M B A R 6 0 C 3 8 M L U L A N G 1 . D

2 . 3 9

2 . 5 5

3 . 0 0

3 . 2 6

3 . 7 5

3 . 8 3 3 . 9 1

4 . 0 1

4 . 5 4

5 . 6 0 6 . 2 5

6 . 4 9

6 . 6 3

7 . 9 8

8 . 0 7

9 . 3 6

Page 58: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

45

Lampiran 6. Kromatogram GC-MS Tekanan 90 mbar dan suhu 60 oC

4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0 2 2 . 0 0 2 4 . 0 0 2 6 . 0 0 2 8 . 0 0 3 0 . 0 0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

3 0 0 0 0 0 0

3 2 0 0 0 0 0

3 4 0 0 0 0 0

3 6 0 0 0 0 0

3 8 0 0 0 0 0

4 0 0 0 0 0 0

4 2 0 0 0 0 0

4 4 0 0 0 0 0

4 6 0 0 0 0 0

4 8 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C : S A M P E L I I 9 0 M B A R 6 0 C M L U L A N G . D 2 . 5 5

3 . 0 1

3 . 2 8

3 . 5 1

3 . 7 6

3 . 8 5

4 . 5 7

5 . 2 5

5 . 6 3 6 . 2 7

6 . 3 5

6 . 5 2

6 . 6 5

7 . 7 1

8 . 0 1

8 . 1 0

9 . 4 2

Page 59: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

46

Lampiran 7. Kromatogram GC-MS Tekanan 100 mbar dan suhu 60 oC

4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0 2 2 . 0 0 2 4 . 0 0 2 6 . 0 0 2 8 . 0 0 3 0 . 0 0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

3 0 0 0 0 0 0

3 2 0 0 0 0 0

3 4 0 0 0 0 0

3 6 0 0 0 0 0

3 8 0 0 0 0 0

4 0 0 0 0 0 0

4 2 0 0 0 0 0

4 4 0 0 0 0 0

4 6 0 0 0 0 0

4 8 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C : S A M P E L I I I 1 0 0 M B A R 6 0 C M L U L A N G . D

2 . 1 6

2 . 5 6

2 . 7 7 2 . 8 6

2 . 9 9

3 . 0 9

3 . 3 2

3 . 7 7

3 . 8 5

4 . 1 5

4 . 5 6

4 . 9 4

5 . 0 0

5 . 2 5

5 . 6 4

5 . 9 7

6 . 1 3

6 . 2 7

6 . 3 5 6 . 3 9

6 . 5 3

6 . 6 5

7 . 7 0

8 . 0 1

8 . 1 1

9 . 4 0

1 7 . 4 5

Page 60: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

47

Lampiran 8. Kromatogram GC-MS Tekanan 100 mbar dan suhu 65 oC

4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0 2 2 . 0 0 2 4 . 0 0 2 6 . 0 0 2 8 . 0 0 3 0 . 0 0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

3 0 0 0 0 0 0

3 2 0 0 0 0 0

3 4 0 0 0 0 0

3 6 0 0 0 0 0

3 8 0 0 0 0 0

4 0 0 0 0 0 0

4 2 0 0 0 0 0

4 4 0 0 0 0 0

4 6 0 0 0 0 0

4 8 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C : S A M P E L 2 . D

3 . 2 4

3 . 8 1

3 . 8 7

4 . 0 2

4 . 5 3 4 . 6 0

4 . 7 6

4 . 9 5

5 . 0 2

5 . 2 9

5 . 3 7

5 . 5 3

5 . 7 2

6 . 0 4

6 . 1 3

6 . 2 3

6 . 3 1

6 . 6 5 7 . 0 3

7 . 3 3

7 . 6 8

8 . 8 8

8 . 9 7

9 . 8 4

1 6 . 4 2

1 6 . 8 4

1 8 . 4 3

1 8 . 6 7

Page 61: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

48

Lampiran 9. Kromatogram GC-MS Tekanan 100 mbar dan suhu 67.5 oC

4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0 2 2 . 0 0 2 4 . 0 0 2 6 . 0 0 2 8 . 0 0 3 0 . 0 0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

3 0 0 0 0 0 0

3 2 0 0 0 0 0

3 4 0 0 0 0 0

3 6 0 0 0 0 0

3 8 0 0 0 0 0

4 0 0 0 0 0 0

4 2 0 0 0 0 0

4 4 0 0 0 0 0

4 6 0 0 0 0 0

4 8 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C : S A M P E L 3 . D

3 . 2 4

3 . 8 7

4 . 0 2

4 . 5 2

4 . 7 3

4 . 9 9 5 . 3 4

5 . 5 1

5 . 7 1

6 . 0 1

6 . 2 2

7 . 0 3

7 . 3 0

7 . 6 7

8 . 8 7

1 6 . 4 2 1 6 . 7 3

Page 62: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

49

Lampiran 10. Kromatogram GC-MS Tekanan 100 mbar dan suhu 70 oC

4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0 2 2 . 0 0 2 4 . 0 0 2 6 . 0 0 2 8 . 0 0 3 0 . 0 0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

3 0 0 0 0 0 0

3 2 0 0 0 0 0

3 4 0 0 0 0 0

3 6 0 0 0 0 0

3 8 0 0 0 0 0

4 0 0 0 0 0 0

4 2 0 0 0 0 0

4 4 0 0 0 0 0

4 6 0 0 0 0 0

4 8 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C : S A M P E L 4 . D

3 . 1 5

3 . 3 0

3 . 7 0

3 . 8 3

3 . 8 8

4 . 0 3

4 . 1 9 4 . 2 7

4 . 5 0

4 . 5 3 4 . 6 5

4 . 8 0

5 . 0 0

5 . 0 6

5 . 3 2

5 . 4 1

5 . 4 9

5 . 5 7

5 . 7 7

5 . 8 3

5 . 8 8

5 . 9 2

6 . 0 7

6 . 1 9

6 . 2 7

6 . 3 2

6 . 3 6 6 . 4 6

6 . 5 0

6 . 6 7

6 . 9 1

7 . 0 7

7 . 3 9

7 . 5 1

7 . 5 9

7 . 7 1

7 . 9 4

8 . 0 9

8 . 1 8

8 . 3 3

8 . 6 2

8 . 9 1

9 . 0 1

9 . 3 2

9 . 8 5

9 . 9 4 1 0 . 2 5

1 1 . 5 2 1 3 . 6 3

1 3 . 7 3

1 4 . 1 6

1 6 . 4 2

Page 63: KAJIAN IDENTIFIKASI BAHAN TAMBAHAN PANGAN HASIL … · Saya menyatakan dengan sebenar-benarnya bahwa skripsi dengan judul ... menjadi asisten praktikum mata kuliah Pengawasan ...

50

Lampiran 11. Kromatogram GC-MS Sisa Fraksinasi

4 . 0 0 6 . 0 0 8 . 0 0 1 0 . 0 0 1 2 . 0 0 1 4 . 0 0 1 6 . 0 0 1 8 . 0 0 2 0 . 0 0 2 2 . 0 0 2 4 . 0 0 2 6 . 0 0 2 8 . 0 0 3 0 . 0 0

2 0 0 0 0 0

4 0 0 0 0 0

6 0 0 0 0 0

8 0 0 0 0 0

1 0 0 0 0 0 0

1 2 0 0 0 0 0

1 4 0 0 0 0 0

1 6 0 0 0 0 0

1 8 0 0 0 0 0

2 0 0 0 0 0 0

2 2 0 0 0 0 0

2 4 0 0 0 0 0

2 6 0 0 0 0 0

2 8 0 0 0 0 0

3 0 0 0 0 0 0

3 2 0 0 0 0 0

3 4 0 0 0 0 0

3 6 0 0 0 0 0

3 8 0 0 0 0 0

4 0 0 0 0 0 0

4 2 0 0 0 0 0

4 4 0 0 0 0 0

4 6 0 0 0 0 0

4 8 0 0 0 0 0

T i m e - - >

A b u n d a n c e

T I C : S A M P E L 5 . D

5 . 3 3

9 . 8 4

1 0 . 5 3

1 1 . 3 3

1 6 . 7 4 1 8 . 4 3