JULY 26-30, 1976 SPONSORS INTERNATIONAL COMMISSION ON CLOUD PHYSICS … · 2008-02-15 · SPONSORS...

14
INTERNATIONAL CLOUD PHYSICS CONFERENCE JULY 26-30, 1976 BOULDER, COLORADO, U.S.A. SPONSORS INTERNATIONAL COMMISSION ON CLOUD PHYSICS (ICCP) OF THE INTERNATIONAL ASSOCIATION OF METEOROLOGY AND ATMOSPHERIC PHYSICS (IAMAP); AMERICAN METEOROLOGICAL SOCIETY; AMERICAN GEOPHYSICAL UNION; NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION; AND NATIONAL CENTER FOR ATMOSPHERIC RESEARCH (Supported by NSF). UNIVERSITATSBIBLIOTHEK HANNOVER TECHNiSCHE INFORMATIONS31BLIOTHEK The manuscripts reproduced in this collection of preprints are unrefereed papers presented at the International Conference on Cloud Physics; their appearance in this collection does not constitute formal publication. Prepared by and available from: AMERICAN METEOROLOGICAL SOCIETY 45 Beacon Street, Boston, Massachusetts, 02108, U.S.A.

Transcript of JULY 26-30, 1976 SPONSORS INTERNATIONAL COMMISSION ON CLOUD PHYSICS … · 2008-02-15 · SPONSORS...

INTERNATIONAL CLOUD PHYSICS CONFERENCE

JULY 26-30, 1976

BOULDER, COLORADO, U.S.A.

S P O N S O R S

INTERNATIONAL COMMISSION ON CLOUD PHYSICS (ICCP) OF THE

INTERNATIONAL ASSOCIATION OF METEOROLOGY AND

ATMOSPHERIC PHYSICS (IAMAP);

AMERICAN METEOROLOGICAL SOCIETY;

AMERICAN GEOPHYSICAL UNION;

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION;

AND

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH (Supported by NSF).

UNIVERSITATSBIBLIOTHEKHANNOVER

TECHNiSCHEINFORMATIONS31BLIOTHEK

The manuscripts reproduced in this collection of preprints are unrefereed paperspresented at the International Conference on Cloud Physics; their appearance inthis collection does not constitute formal publication.

Prepared by and available from:

AMERICAN METEOROLOGICAL SOCIETY45 Beacon Street, Boston, Massachusetts, 02108, U.S.A.

TABLE OF CONTENTS

FOREWORD

AUTHOR INDEX

SPECIAL INVITED LECTURES

CHAIRMAN: H. K. Weickmann, U.S.A.

CLOUDS FROM OUTER SPACE - A NEW VISTA. Verner E. Suomi,University of Wisconsin, Madison, Wis., U.S. A- (Invited Paper)

THE IMPACT OF NUMERICAL MODELING ON CLOUD PHYSICS RESEARCH.Harold D. Orville, South Dakota School of Mines and Technology, Rapid City,S. Dak., U. S. A. (Invited Paper)

PageI

XV

SESSION 1: EVOLUTION OF CLOUD DROPLET SPECTRA

1.1 INTRODUCTION

CHAIRMEN: J.D. Sartor, U.S.A., and Y. Sedunov, U.S.S.R.

1.1.1

1.2

CONCENTRATIONS OF AITKEN, CLOUD DROPLET CONDENSATIONAND ICE NUCLEI OVER SELECTED OCEANIC AND CONTINENTALSITES. P. A. Allee, Atmospheric Physics and Chemistry Laboratory,ERL/NOAA, Boulder, Colo.; and R. I. Sax and E. Delgado, NationalHurricane and Experimental Meteorology Laboratory, NOAA, CoralGables, Fla., U.S.A.

EVOLUTION OF CLOUD DROPLET SPECTRA: EFFECT OF NUCLEISPECTRA. P. Squires, Desert Research Institute, University of NevadaSystem, Reno, Nev., U.S.A. (Invited Paper)

1.2.1 NUMERICAL SIMULATION OF THE CLOUD DROPLET SIZE **DISTRIBUTION FORMATION PROCESS. I. S. Sedunov, E. L. Alexandrov,and N. V. Klepikova, Hydrometeorological Service, Moscow, U.S.S.R.

1.2.2 CLOUD CONDENSATION NUCLEUS SIZE DISTRIBUTIONS AND THEIR 9EFFECTS ON CLOUD DROPLET SIZE DISTRIBUTIONS. E. E. Hindman, ILMichelson Laboratories, China Lake, Calif., and P. V. Hobbs and L. F. Radke,Department of Atmospheric Sciences, University of Washington, Seattle,Wash., U.S.A.

1.2.3 A SIMPLE NUMERICAL SIMULATION OF THE CONDENSATIONAL 13GROWTH OF CLOUD DROPLETS IN BACKGROUND AIR. K. Bonis,E. Koflanovits, A. Meszaros, and E. Meszaros, Institute for AtmosphericPhysics, Budapest, Hungary.

1.2.4 THE CONDITIONS OF NON-PHOTOCHEMICAL SMOG FORMATION. *V. G. Morachevsky, E. Golovina, and A. Tsvetkova, Leningrad Hydro-meteorological Institute, Leningrad, U.S.S.R.

1.2.5 THE EFFECT OF RETARDED NUCLEUS ACTIVITY ON THE 17EVOLUTION OF THE CLOUD DROPLET SIZE SPECTRUM. J. Podzimek,Graduate Center for Cloud Physics Research, University of Missouri-Rolla,Rolla, Mo., U.S.A. (Reserve Paper)

•Manuscript not available. **Manuscript will appear in the back of the book; if received in time.

II

Page

1.2.6 MICROPHYSICAL COMPUTATIONS IN URBAN AND RURAL CLOUDS. 22H.T. Ochs, HI and R. G. Semonin, Atmospheric Sciences Section, IllinoisState Water Survey, Urbana, 111., U.S.A. (Reserve Paper)

1.3 EVOLUTION OF CLOUD DROPLET SPECTRA: EFFECT OF TURBULENCE. *Y. Sedunov, Hydrometeorological Service of the U. S. S. R., Moscow, andV.M. Voloshchuk, Institute of Experimental Meteorology, Obninsk, U.S.S.R.(Invited Paper)

1.3.1 TURBULENCE EFFECT ON CLOUD DROPLET SPECTRUM DURING 27CONDENSATION. A. S. Stepanov, Institute of Experimental Meteorology,Obninsk, U.S.S.R.

1.3.2 DROPLET SIZE DEVELOPMENT IN WARM CUMULUS CLOUDS. 33A. N. Dingle and D. D. Harding, Department of Atmospheric and OceanicSciences, University of Michigan, Ann Arbor, Mich., U.S.A.

1.3.3 ON THE DECREASE OF DROPLET NUMBER WITH HEIGHT IN THE 37EARLY STAGE OF GROWTH IN A CONVECTIVE WARM CLOUD.Y. Takahashi, Independent Research Laboratory for Meteorology,Tokyo, Japan.

1.3.4 ACCELERATED MOTION OF CLOUD AND PRECIPITATION DROPS. 41J. D. Sartor, National Center for Atmospheric Research, Boulder, Colo.(Reserve Paper)

SESSION 2: ICE NUCLEI WORKSHOP AND RELATED SUBJECTS

CHAIRMEN: H. Georgii, Germany, and L. Krastanov, Bulgaria.

2.1.1 ICE NUCLEUS MEASUREMENTS - WORKSHOP SUMMARY AND 43CURRENT STATUS. G. Vali, Department of Atmospheric Science,University of Wyoming, Laramie, Wyo., U. S. A.

2.1.2 ICE NUCLEATION BY AEROSOL PARTICLES. N. Fukuta and R. C. 47Schaller, Denver Research Institute, University of Denver, Denver, Colo.,U.S.A.

2.1.3 FILTER MEASUREMENTS OF ICE NUCLEI CONCENTRATIONS AND 53SELECTED COMPARISONS. J. E. Jiusto, G.G. Lala, and J. Zamurs,Atmospheric Sciences Research Center, State University of New York,Albany, N.Y., U.S.A.

2.1.4 NATURALLY OCCURRING BIOLOGICAL ICE NUCLEANTS: A REVIEW. 57R. C. Schnell, Atmospheric Physics and Chemistry Laboratory, ERL/NOAA,Boulder, Colo., U.S.A.

2.1.5 ELEMENTAL COMPOSITION OF ATMOSPHERIC FREEZING NUCLEI. 6731

M. Grosch and H. Georgii, Institute for Meteorology and Geophysics,Frankfurt, F. R. G.

2.1.6 ICE-FORMATION BY USE OF SYNTHETIC ZEOLITE NUCLEI. 61L. Krastanov and L. Levkov, Geophysical Institute, Bulgarian Academyof Sciences, Sofia, Bulgaria.

2.1.7 OBSERVING SOUTH FLORIDA'S ICE NUCLEI SPECTRUM. J. Wisniewski, 64Department of Environmental Sciences, University of Virginia, Charlottesville,Va., U.S.A. (Reserve Paper)

•Manuscript not available. ••Manuscript will appear in the back of the book; if received in time.

Page

2.1.8 THE NATURE OF THE VARIATION OF ICE NUCLEUS CONCENTRATION. *T. Tanaka, Meteorological Research Institute; and K. Matsubara, TokyoDistrict Meteorological Observatory, Tokyo, Japan. (Reserve Paper)

2.1.9 ON ICE NUCLEATION OF SUPERCOOLED FOG. K. Sakurai, Department 68of Geoscience, Hokkaido University of Education, Asahikawa, Japan.(Reserve Paper)

2.1.10 SCAVENGING OF AEROSOL PARTICLES BY GROWING ICE CRYSTALS. 70F. Prodi, Institute for Atmospheric Physics, Bologna, Italy. (Reserve Paper)

2.1.11 THE KINETICS OF THE HETEROGENIC EMBRYO-FORMATION. 76G. Miloshev and S. Todorova, Geophysical Institute, Bulgarian Academy ofSciences, Sofia, Bulgaria. (Reserve Paper)

SESSION 3: BOROVKOV MEMORIAL SESSION - HYDROMETEOR MICROPHYSICS

3.1 ICE AND SNOW CRYSTALS

CHAIRMEN: R. List, Canada, and E. Meszaros, Hungary.

3.1.1 GROWTH MODES OF ATMOSPHERIC ICE CRYSTALS. H.K. Weickmann, 79Atmospheric Physics and Chemistry Laboratory, ERL/NOAA, Boulder,Colo., U.S.A.

3.1.2 SNOW CRYSTALS PHOTOGRAPHED IN SITU IN WINTER STORMS. 85N. J. Carrera, University of Chicago, Chicago, 111., U.S.A.

3.1.3 ICE CRYSTAL CONCENTRATIONS IN WINTERTIME CLOUDS. W. A. 91Cooper and G. Vali, Department of Atmospheric Science, University ofWyoming, Laramie, Wyo., U.S.A.

3.1.4 EXPERIMENTAL STUDIES ON THE INFLUENCE OF CRYSTAL DEFECT 97AND SURFACE NUCLEATION MECHANISMS ON THE GROWTH HABITOF ICE CRYSTALS. B.J. Anderson, V. Keller, C. McKnight, and J. Hallett,Desert Research Institute, University of Nevada System, Reno, Nev., U.S.A.

3.1.5 SHAPES OF SINGLE ICE CRYSTALS ORIGINATED FROM FROZEN CLOUD 103DROPLETS. C. Magono, S. Fujita, and T. Taniguchi, Department of Geo-physics, Hokkaido University, Sapporo, Japan.

3.1. 6 ON MORPHOLOGY OF SNOW CRYSTALS. T. Kobayashi, Institute of Low 107Temperature Science, Hokkaido University, Sapporo, Japan.

3.1.7 A WIND TUNNEL INVESTIGATION OF THE GROWTH RATE AND 113GROWTH MODE OF ICE PARTICLES BY RIMING. J. C. Pflaum andH.R. Pruppacher, University of California, Los Angeles, Calif., U.S.A.

3.1.8 ON THE DISTRIBUTION OF ADSORBED MOLECULES ON THE CRYSTAL 117FACE. T.G. Gzirishvili, T.N. Balakhvantseva, and M. F. Basilashvili,Institute of Geophysics of the Academy of Sciences of the Georgian S. S. R.,Tbilisi, U.S.S.R.

3.1.9 ON FACTORS WHICH DETERMINE THE HABITS OF ICE CRYSTALS *GROWN IN AIR. K. Isono, Water Research Institute, Nagoya University,Nagoya, Japan. (Reserve Paper)

•Manuscript not available.

TV

Page

3.1.10 DETERMINATION OF THE RATES OF ICE CRYSTAL FORMATION IN 121TWO LARGE CLOUD CHAMBERS. D. M. Garvey, L. E. Lilie, T. C. Grove,and L.O. Grant, Department of Atmospheric Science, Colorado State University,Ft. Collins, Colo., U.S.A. (Reserve Paper)

3.1.11 CRYSTALLINE EMBRYOS AT ICE-VAPOR INTERFACES. D. L. Bartley, 126Graduate Center for Cloud Physics Research, University of Missouri-Rolla,Rolla, Mo., U.S.A. (Reserve Paper)

3.1.12 ENERGETICS OF WATER-ICE SURFACE INTERACTIONS: A QUANTUM 130MECHANICAL STUDY. P. L.M. Plummer and E. M. Stein, Graduate Centerfor Cloud Physics Research, University of Missouri-Rolla, Rolla, Mo.,U.S.A. (Reserve Paper)

3.1.13 GROWTH PROCESSES OF ICE CRYSTALS AND A LAW WHICH IS 136RELATED TO THE SYMMETRIC GROWTH OF PLATE-LIKE SNOWCRYSTALS. A. Yamashita, Geophysical Institute, Tokyo University,Tokyo, Japan. (Reserve Paper)

3.1.14 ON THE ANGLES BETWEEN PRINCIPAL AXES OF NEIGHBOURING 142CRYSTALS OF FROZEN WATER DROPLETS. K. Kikuchi and H. Uyeda,Department of Geophysics, Hokkaido University, Sapporo, Japan. (ReservePaper)

3.2 ICE PARTICLE MULTIPLICATION

CHAIRMEN: I. Mazin, U.S.S.R., and R. Lavoie, U.S.A.

3.2.1 RECENT EXPERIMENTS ON "SPLINTER" PRODUCTION DURING 148RIMING. S. C. Mossop and E. R. Wishart, Division of Cloud Physics,C.S.I .R.O., Sydney, Australia.

3.2.2 ICE MULTIPLICATION THROUGH GRAZING COLLISIONS. A. N. 152Aufdermaur andH.R. Larsen, Observatorio Ticinese, Locarno-Monti,Switzerland.

3.2.3 AIRCRAFT MEASUREMENTS RELATING TO SECONDARY ICE CRYSTAL 157PRODUCTION IN FLORIDA CUMULI. J. Hallett and D. Lamb, DesertResearch Institute, University of Nevada System, Reno, Nev., U.S.A.;A. S. Ramachandra Murty, Indian Institute of Tropical Meteorology, Poona,India; and R. I. Sax, National Hurricane and Experimental MeteorologyLaboratory, NOAA, Coral Gables, Fla., U.S.A.

3.2.4 THE ICE PHASE IN CLOUDS. P. Goldsmith, J. Gloster, and C. Hume, 163Meteorological Office, Bracknell, England.

3.2.5 ICE CRYSTAL MULTIPLICATION BY CRYSTAL FRACTURE. 168L. Vardiman, Bureau of Reclamation, Denver, Colo., U.S.A. (Reserve Paper)

3.2.6 ICE PARTICLE MULTIPLICATION BY RIMING IN CUMULUS CLOUDS. 172R. F. Chisnell, Department of Mathematics, and J. Latham, Department ofPhysics, University of Manchester, Manchester, England. (Reserve Paper)

3.2.7 ICE PARTICLE MULTIPLICATION IN MOUNTAIN CUMULUS CLOUDS. 176J. LeCompte and L. O. Grant, Department of Atmospheric Science, ColoradoState University, Ft. Collins, Colo., U. S. A. (Reserve Paper)

Page

3.3 COLLISION AND COALESCENCE

CHAIRMEN: B.J. Mason, England, and G. Soulage, France

3.3.1 NEW TECHNIQUE FOR STUDYING THE DEPOSITION OF DROPLETS 180ON THE ICE CRYSTAL SURFACE. P. Yue and J. Podzimek, GraduateCenter for Cloud Physics Research, University of Missouri-Rolla, Rolla, Mo.,U.S.A.

3.3.2 INFLUENCE OF ELECTRICAL FIELD ON AGGREGATION OF LARGE 184AND SOLID PARTICLES. V. M. Muchnic and V. A. Djachuk, UkrainianHydrometeorological Research Institute, Kiev, U.S.S.R.

3.3.3 COLLISION EFFICIENCIES OF DROPLETS WITH DIAMETER BELOW 18840 /4m FOR NON-GRAVITATIONAL VELOCITIES. R. Balcer andJ. Czyz, Institute of Geophysics, University of Warsaw, Warsaw, Poland.

3.3.4 THE EFFECT OF ELECTRIC FIELDS AND ELECTRIC CHARGES ON 192THE COLLISION EFFICIENCY OF SMALL AND LARGE CLOUD DROPS.R.J . Schlamp, S.N. Grover, andH.R. Pruppacher, Department of Meteorology,University of California, Los Angeles, Calif., U.S.A.; and A. E. Hamielec,Department of Chemical Engineering, McMaster University, Hamilton, Canada.

3.3.5 EXPERIMENTAL STUDY OF THE COALESCENCE OF RAIN DROPS. 196Z. Levin and B. Machnes, Department of Environmental Sciences, Tel-AvivUniversity, Ramat Aviv, Israel.

3.3.6 THE EFFECT OF ELECTRIC CHARGES AND FIELDS ON THE 201COLLECTION EFFICIENCY OF CLOUD DROPS. E. S. Lobl, MeteorologyResearch, Inc., Altadena, Calif., U.S.A. (Reserve Paper)

3.3.7 THE ONSET AND EARLY GROWTH OF SNOW CRYSTALS BY RIMING. 207R. F. Reinking, Weather Modification Program Office, ERL/NOAA, Boulder,Colo., U.S.A. (Reserve Paper)

3.3.8 WATER DROP SEPARATION PROBABILITIES. C.P.R. Saunders, 215Department of Atmospheric Science, University of Wyoming, Laramie, Wyo.,U.S.A.; and S. Al-Said and M. Gay, University of Manchester, Manchester,England. . (Reserve Paper)

3.4

CHAIRMEN:

3.4.1

3.4.2

3.4.3

HAILSTONES

I. Burtsev, U.S.S.R., and J. Kuettner, U.S.A.

THE NATURE OF HAILSTONE EMBRYOS. V. G. Khorguani and M. I. Tlisov, 219High Mountain Geophysical Institute, Nalchik, U.S.S.R.

HAIL EMBRYO STUDIES. C.A. Knight and N. C. Knight, National Centerfor Atmospheric Research, Boulder, Colo., U.S.A.

CRYSTALLOGRAPHIC STRUCTURE OF SOME LARGE HAILSTONES ANDITS CORRELATION WITH ATMOSPHERIC CONDITIONS. E. M; de Achavaland L. Lubart^ Servicio Meteorologico Nacional; L. Levi, Comision Nacionalde Energia Atomica; and M. E. Saluzzi, Comision Nacional de InvestigacionesEspaciales, Buenos Aires, Argentina.

222

227

VI

3.4.4 ON THE VARIATION OF THE COLLECTION EFFICIENCIES OFICING CYLINDERS. R. List, P.I. Joe, G. Lesins, P.R. Kry, J.D.McTaggart-Cowan, P.W. Stagg, E. Freire, R. E. Stewart, and M. C.Steiner, Department of Physics, University of Toronto, Toronto, Canada;M. R. de Quervain and J. Von Niederhausern, Swiss Federal Institute forSnow and Avalanche Research, Davos, Switzerland; and E. P. Lozowski,University of Alberta, Edmonton, Canada.

3.4.5 HAILSTONE GROWTH. D.v.d. S. Roos, J. C. Vogel, andA.E. Carte,National Physical Research Laboratory, CSIR, Pretoria, South Africa.

3.4.6 THE MODELING OF HAILSTONE GROWTH AND MELTING PROCESSES.A.I. Kartsivadze, A.M. Okudjava, V.A. Lapinskas and V. A. Chikhladze,The Institute of Geophysics of the Georgian Academy of Sciences, Tbilisi,U.S.S.R.

3.4.7 RAINDROP AND HAILSTONE SIZE DISTRIBUTIONS INSIDE HAILSTORMS.P. L. Smith, J r . , D. J. Musil, S. F. Weber, J. F. Spahn, G. N. Johnson, andW. R. Sand, Institute of Atmospheric Sciences, South Dakota School of Minesand Technology, Rapid City, S. Dak., U.S.A.

3. 4. 8 Paper withdrawn.

3.4.9 AERODYNAMICS OF FREELY FALLING BODIES. R. E. Stewart,R. List, and U. W. Rentsch, Department of Physics, University of Toronto,Toronto, Canada. (Reserve Paper)

3.4.10 LOSS OF ACCRETED WATER FROM GROWING HAILSTONES.P.I. Joe, R. List, P.R. Kry, P.Y.K. Lui, P.W. Stagg, J.D. McTaggart-Cowan, M. C. Steiner, R. E. Stewart, E. Freire, and G. Lesins, Departmentof Physics, University of Toronto, Toronto, Canada; M. R. de Quervain andJ. Von Niederhausern, Swiss Federal Institute for Snow and AvalancheResearch, Davos, Switzerland; and E. P. Lozowski, University of Alberta,Edmonton, Canada. (Reserve Paper)

Page

233

240

246

252

258

264

SESSION 4: EVOLUTIONARY CLOUD PROCESSES

4.1 CUMULUS CLOUDS

CHAIRMEN: B. Ackerman, U.S.A., and M. Buikov, U.S.S.R.

4.1.1 AIRCRAFT OBSERVATIONS IN THE SUB-CLOUD LAYER OVER LAND. 270C. E. Coulman and J. Warner, Division of Cloud Physics, C.S.I.R.O.,Sydney, Australia.

4.1.2 EFFECTS OF A LARGE CITY UPON CONVECTIVE CLOUDS AND 275COALESCENCE RAIN. R. R. Braham, Jr. and M. Dungey, University ofChicago, Chicago, 111., U.S.A.

4.1.3 PHYSICAL STRUCTURE OF CONVECTIVE CLOUDS AND THEIR 279INFLUENCE ON METEOROLOGICAL FIELDS. I. P. Mazin and S. M.Shmeter, Central AerologicalObservatory, Moscow, U.S.S.R.

4.1.4 THE INTERACTION OF SMALL CUMULI WITH THEIR ENVIRONMENT. 283J.W. Telford and P. B. Wagner, Desert Research Institute, University ofNevada System, Reno, Nev., U.S.A.

vn

Page

4.1.5

4.1.6

4.1.7

TEMPERATURE AND HUMIDITY SIGNATURES OF SOME SHALLOW 288FAIR-WEATHER Cu CLOUDS AND THEIR RELATED DYNAMICS ANDMICROPHYSICS. R. Rosset, J. F. Gayet, F. Le Dimet, and J. and J. Pastre,Laboratoire de Dynamique et Microphysique de l'Atmosphere, Universitede Clermont-Ferrand, France.

DESCRIPTION OF MDONG PROCESSES IN INITIAL CUMULUS. 292K. S. Danielson, L.O. Grant and A. J. Schanot, Department of AtmoshericScience, Colorado State University, Ft. Collins, Colo., U.S.A.

ALTpCUMULUS AS DISTINCT AIR MASSES IN THE ATMOSPHERE. 300M. Cadez, Faculty of Mathematics and Natural Sciences, Belgrade, Yugoslavia.

4.2 CUMULUS CONGESTUS, CUMULONIMBUS OBSERVATIONS

CHAIRMEN: K. Haman, Poland, and J. Warner, Australia.

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

4.2.7

THE EVOLUTION OF CUMULONIMBUS SYSTEMS IN RELATION TO 304LOW-LEVEL THERMALLY-DRIVEN MESOSCALE SYSTEMS. W.R.Cotton and R. L. George, Department of Atmospheric Science, ColoradoState University, Ft. Collins, Colo.; and R. A. Pielke, Department ofEnvironmental Sciences, University of Virginia, Charlottesville, Va., U.S.A.

AN INVESIGATION OF THE RELATIONSHIP BETWEEN SURFACE 308KINEMATICS AND HAILSTORM DEVELOPMENT. J. C. Fankhauser,C.G. Wade, and C. G. Mohr, National Center for Atmospheric Research,Boulder, Colo., U.S.A.

DISCONTINUOUS ASPECTS OF THE GROWTH OF A CLOUD FROM 314CuCgtoCuCb STAGE. D. Ramond, CNRS, and D. Tixeront, L.D.M.A.,Universite de Clermont-Ferrand, France.

MICROSTRUCTURE OF A CuCg CLOUD. J. F. Gayet, Laboratoire de 320Dynamique et Microphysique de l'Atmosphere, Universite de Clermont-Ferrand, France.

CLOUD DROPLET SPECTRA MEASURED IN ALBERTA THUNDER- 326STORMS. J. C. McLeod, Department of Meteorology, McGill University,Montreal, Canada. (Reserve Paper)

SINGLE-LEVEL MICROPHYSICAL STRUCTURE OF FLORIDA CUMULI: 332SELECTED CASE STUDIES. R. I. Sax, J. C. Eden, and P. T. Willis, NationalHurricane and Experimental Meteorology Laboratory, NOAA, Coral Gables,Fla., U.S.A. (Reserve Paper)

WATER CONTENT AND ENTRAINMENT OF SELECTED CONVECTIVECLOUDS. K. Doster and P. T. Willis, National Hurricane and ExperimentalMeteorology Laboratory, NOAA, Miami, Fla., U.S.A. (Reserve Paper)

338

4.3 CUMULUS AND Cb MODELS

CHAIRMEN: D. Atlas, U.S.A., and Y. Ogura, U.S.A.

4.3.1 COMPARISONS OF CLOUD MODEL PREDICTIONS: A CASE STUDYANALYSIS OF ONE- AND TWO-DIMENSIONAL MODELS. B.A. Silverman,D. A. Matthews, and L. D. Nelson, Division of Atmospheric Water ResourcesManagement, Bureau of Reclamation, Denver, Colo.; and H. D. Orville, F. J.Kopp, and R. D. Farley, South Dakota School of Mines and Technology, RapidCity, S. Dak., U.S.A.

343

VTTT

Page

4.3.2 THE NUMERICAL SIMULATION OF A HAILSTORM. H.D. Orville 349and F. J. Kopp, Institute of Atmospheric Sciences, South Dakota Schoolof Mines and Technology, Rapid City, S. Dak., U. So A.

4.3.3 COLD DOWNDRAFTS IN CUMULONIMBUS CLOUDS: A NUMERICAL 357EXPERIMENT. K. E. Haman and M. Niewiadomski, Institute of Geophysics,University of Warsaw, Warsaw, Poland.

4.3.4 NUMERICAL SIMULATION OF CUMULONIMBUS CONVECTION IN 361TEMPERATE ATMOSPHERES. D.A. Bennetts, Meteorological Office,Bracknell, England.

4.3.5 A NUMERICAL MODEL OF THE SYSTEM OF CONVECTIVE CLOUDS 364AND SHOWERS FOR WIND CHANGE WITH HEIGHT. S. L. Lebedev,World Data Centre Hydrometeorological Service of the USSR, Obninsk,Kaluga, U.S.S.R.

4.3.6 ON SPREADING AND WASHOUT OF ADMDCTURES IN CUMULI RAIN 368CLOUDS. B.J. Styra, S. S. Shalavejus, L.J. Morkeliunas, B. K. Vebriene,and N. K. Shpirkauskaite, Institute of Physics and Mathematics of the Academyof Sciences of the Lithuanian S. S. R., Vilnius, U. S. S. R.

4.3.7 NUMERICAL SIMULATION OF MICROPHYSICAL PROCESSES AND 372THEIR INFLUENCE UPON THE DYNAMICS OF A CONVECTIVECLOUD. V. P. Lominadze, I. T. Bartishvili, N. A. Begalishvili, N.D.Japaridze, B.A. Mishveladze, andG.A. Nadibaidze, TranscaucasianHydrometeorological Research Institute, Tbilisi, U.S.S.R. (Reserve Paper)

4.3.8 THE EFFECTS OF PRESSURE PERTURBATION ON PRECIPITATING 374CLOUDS. C.S. Chen, Institute of Atmospheric Sciences, South DakotaSchool of Mines and Technology, Rapid City, S. Dak., U.S.A. (Reserve Paper)

4.4 STRATUS CLOUDS AND RADIATION

CHAIRMEN: J. London, U.S.A., and V. Morachevsky, U.S.S.R.

4.4.1 RADIATIVE-DIFFUSE MODELS OF ARCTIC STRATUS CLOUDS. 382G. Herman, Space Science and Engineering Center, University of Wisconsin,Madison, Wis., and R. Goody, Center for Earth and Planetary Physics,Harvard University, Cambridge, Mass., U.S.A.

4.4.2 ALBEDO REDUCTION AND RADIATIONAL HEATING OF WATER 388CLOUDS BY ABSORBING AEROSOL PARTICLES. H. Grassl, Institutef. Meteorologie, University of Mainz, Mainz, F. R. G.

4.4.3 NUMERICAL MODEL OF RADIATION FOG AND STRATUS FORMATION 392TAKING INTO ACCOUNT INTERACTIONS AMONG DYNAMICAL,RADIATIVE AND MICROPHYSICAL PROCESS. M. V. Buikov and V. I.Khvorostianov, Ukrainian Hydrometeorological Research Institute, Kiev,U.S.S.R.

4. 4. 4 Paper withdrawn.

4.4.5 REFLECTION OF HORIZONTALLY INHOMOGENEOUS CLOUDS. 396P. Wendling, Meteorologisches Institut, University of Munich, Munich, F. R. G.

4.4.6 MICROPHYSICS OF POST SANTA ANA FOGS. J.G. Hudson and 400P. Squires, Desert Research Institute, University of Nevada System, Reno,Nev., U.S.A. (Reserve Paper)

IX

Page

SESSION 5: SATELLITE OBSERVATIONS, CLOUD SYSTEMS, CLOUD CLIMATOLOGY

5.1 SATELLITE OBSERVATIONS

CHAIRMEN: Y. Chernikov, U.S.S.R., and T. Vonder Haar, U.S.A.

5.1.1 SOME RESULTS FROM A SKYLAB CLOUD PHYSICAL PROPERTIES 405INVESTIGATION. J.C. Alishouse, National Environmental Satellite Service,NOAA, Suitland, Md., U.S.A.

5.1.2 ESTIMATES FROM SATELLITES OF TOTAL ICE AND WATER CONTENT 407OF CLOUDS. J .T. Bunting and J.H. Conover, Air Force Geophysics Labora-tory, Hanscom AFB, Bedford, Mass., U.S.A.

5.1.3 EFFECTS OF CLOUD SIZE AND CLOUD PARTICLES ON SATELLITE 413OBSERVED REFLECTED BRIGHTNESS. D.W. Reynolds, T.B. McKee,and K. S. Danielson, Department of Atmospheric Science, Colorado StateUniversity, Ft. Collins, Colo., U.S.A.

5.1.4 PHYSICAL AND RADIATIVE PROPERTIES OF SUMMER CLOUDS IN 417ALASKA FROM SATELLITE IMAGERY. A. K. Biswas and K. O. L. F.Jayaweera, Geophysical Institute, University of Alaska, Fairbanks, Alaska,U.S.A.

5.1.5 SATELLITE CLOUD CLIMATOLOGY OF SUMMERTIME CUMULUS 423RESEARCH AREAS. R. W. Stodt and L. O. Grant, Department of AtmosphericScience, Colorado State University, Ft. Collins, Colo., U.S.A.

5.2 CLOUD SYSTEMS AND CLOUD CLIMATOLOGY

CHAIRMEN: R. Braham, U.S.A., and R. Kapoor, India.

5.2.1 EFFECTS OF THE LIFE-CYCLES OF CUMULUS CLOUDS ON THE 428LARGE-SCALE HEAT AND MOISTURE BUDGETS. H.-R. Cho, Departmentof Physics, University of Toronto, Toronto, Canada.

5.2.2 Paper withdrawn.

5.2.3 AIRCRAFT AND DOPPLER RADAR MEASUREMENTS OF THE MICRO- 434PHYSICS AND DYNAMICS OF LONGITUDINAL ROLLS ASSOCIATEDWITH DEEP ICE CLOUDS. A.J. Heymsfield, National Center for Atmos-pheric Research, Boulder, Colo.; R. E. Carbone, Meteorology Research, Inc.,Altadena, Calif.; and P. V. Hobbs, University of Washington, Seattle, Wash.,U.S.A.

5.2.4 CLOUD DROPLET SPECTRA, AEROSOL CONCENTRATIONS AND RAIN 442ACTIVITY IN MARITIME, MODIFIED MARITIME AND CONTINENTALREGIONS. R.K. Kapoor, S.K. Paul, L.T. Khemani, S.K. Sharma, A. S.R.Murty, K. Krishna, and Bh.V. RamanaMurty, Indian Institute of TropicalMeteorology, Poona, India.

5.2.5 A KINEMATIC DESCRIPTION OF SOME COLORADO THUNDERSTORMS. 446R. E. ErbesandL.O. Grant, Department of Atmospheric Science, ColoradoState University, Ft. Collins, Colo., U.S.A. (Reserve Paper)

5.2.6 SIGNIFICANT DIFFERENCES AMONG FOUR SIMULTANEOUS MESOSCALE 452RAWINSONDE OBSERVATIONS: IMPORTANT EFFECTS ON CLOUD MODELPREDICTIONS. D. A. Matthews and R. L. Eddy, Division of Atmospheric WaterResources Management, Bureau of Reclamation, Denver, Colo., U.S.A.(Reserve Paper)

Page

SESSION 6: PHYSICS OF PRECIPITATION

6.1 PRECIPITATION PARTICLES

CHAIRMEN: K. Isono, Japan, and T. Ohtake, U.S.A.

6.1.1 AN OBSERVATION OF NATURAL CLOUD SEEDING WITH ACCOMPANY- 458ING RELEASE OF PRECIPITATION. L. F. Radke and P.H. Herzegh,Department of Atmospheric Sciences, University of Washington, Seattle, Wash.,U.S.A.

6.1.2 ON THE FALL PATTERN OF EARLY SNOW FLAKES. M. Kalikawa, 464Department of Earth Science, Faculty of Education, Akita University, Akita,Japan.

6.1.3 A COMPARISON OF SURFACE AND AIRBORNE ICE CRYSTAL OBSERVA- 468TIONS IN OROGRAPHIC CLOUDS. D.C. Rogers, Department of AtmosphericScience, University of Wyoming, Laramie, Wyo., U.S.A.

6.1.4 EVOLUTION OF RAINDROP SIZE DISTRIBUTIONS IN STEADY STATE 472RAINSHAFTS. J.R. Gillespie and R. List, Department of Physics, Universityof Toronto, Toronto, Canada.

6.1.5 OBSERVATIONS OF THE DEVELOPMENT OF PRECIPITATION-SIZED 478ICE PARTICLES IN NORTHEAST COLORADO THUNDERSTORMS. J. E.Dye, C.A. Knight, P. N. Johnson, T.W. Cannon, and V. Toutenhoofd,National Center for Atmospheric Research, Boulder, Colo., U.S.A. (ReservePaper)

6.1.6 ICE CRYSTALS IN THE ANTARCTIC ATMOSPHERE. T. Ohtake, 484Geophysical Institute, University of Alaska, Fairbanks, Alaska, U.S.A.(Reserve Paper)

6. 2 PRECIPITATION SYSTEMS - OBSERVATIONS

CHAIRMEN: J. Jiusto, U.S.A., and C. Magono, Japan.

6.2.1 MESOSCALE STRUCTURE OF PRECIPITATION IN EXTRATROPICAL 488CYCLONES. P.V. HobbsandR.A. Houze, J r . , Department of AtmosphericSciences, University of Washington, Seattle, Wash., U.S.A.

6.2.2 A CLOUD STRUCTURE AND THE RAIN EFFICIENCY AS OBSERVED 494BY RADARS AND RAINDROP RECORDER. M. Fujiwara, MeteorologicalResearch Institute, Tokyo, Japan.

6.2.3 COORDINATED DOPPLER RADAR AND AIRCRAFT OBSERVATIONS OF 500RIMING AND DROP BREAKUP IN STRATIFORM PRECIPITATION.R. E. Passarelli, J r . , Cloud Physics Laboratory, University of Chicago,Chicago, 111., U.S.A.

6.2.4 CONDITIONAL SYMMETRIC INSTABILITY - A POSSIBLE EXPLANATION 506FOR RAINBANDS. D. A. Bennetts, Meteorological Office, Bracknell, andB. J. Hoskins, Department of Geophysics, Reading, England.

6.2.5 RADIATIVE-PRECIPITATIVE EQUILIBRIUM OF THE NORTHERN 511ATMOSPHERE. M. Hantel and H. Langholz, Meteorologisches Institutder Universitat, Bonn, F. R. G.

XI

Page

6.2.6

6.2.7

6.2.8

FINE STRUCTURE OF RAINFALL SYSTEM FORMED NEAR A CYCLONE.T. Takeda, Water Research Institute, Nagoya University, Nagoya, Japan.(Reserve Paper)

515

INTERPRETATION OF FOIL IMPACTOR IMPRESSIONS OF WATER AND 519ICE. C.A. Knight, N.C. Knight, W.W. Grotewold, andT.W. Cannon, NationalCenter for Atmospheric Research, Boulder, Colo., U.S.A. (Reserve Paper)

DROP-SIZE DISTRIBUTIONS IN UNICELL, MULTICELL AND SQUALLLINE STORMS. F. Pasqualucci, National Institute for TelecommunicationsResearch of the Council for Scientific and Industrial Research, Johannesburg,Republic of South Africa. (Reserve Paper).

522

6. 3 PRECIPITATION SYSTEMS - NUMERICAL MODELS

CHAIRMEN: C. Chappell, U.S.A., and P. Hobbs, U.S.A.

6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

NUMERICAL MODELING OF RAIN FORMATION IN A WARM CUMULUS.B.N. Sergueyev, Central Aerological Observatory, Moscow, U.S.S.R.

528

WARM RAIN UNDER TRADE WIND INVERSION IN HAWAII. T. Takahashi, 532Cloud Physics Observatory, Department of Meteorology, University of Hawaii,Hilo, Hawaii.

STOCHASTIC VERSUS DETERMINISTIC HAILSTONE SELECTION 537MECHANISMS. K. C. Young, Institute of Atmospheric Physics, Universityof Arizona, Tucson, Ariz., U.S.A.

A THEORETICAL STUDY OF THE EVOLUTION OF MIXED PHASE 543CUMULUS CLOUDS. B. C. Scott and P. V. Hobbs, Department of AtmosphericSciences, University of Washington, Seattle, Wash., U. S. A.

HAIL IN AN AXISYMMETRIC CLOUD MODEL. T. Takahashi, Cloud 548Physics Observatory, University of Hawaii, Hilo, Hawaii, U.S.A. (ReservePaper)

SESSION 7:

7.1

CHAIRMEN:

7.1.1

7.1.2

7.1.3

7.1.4

CLOUD PHYSICS INSTRUMENTATION

NEW INSTRUMENTS - FIELD STUDIES

J. Dessens, France, and D. Veal, U.S.A.

THREE NEW INSTRUMENTS FOR CLOUD PHYSICS MEASUREMENTS:THE 2-D SPECTROMETER, THE FORWARD SCATTERING SPECTRO-METER PROBE, AND THE ACTIVE SCATTERING AEROSOL SPEC-TROMETER. R.G. Knollenberg, Particle Measuring Systems, Inc.,Boulder, Colo., U.S.A.

CLOUD PHYSICS MEASUREMENTS WITH POLARIZATION DIVERSITYLIDAR. K. Sassen, Department of Atmospheric Science, University ofWyoming, Laramie, Wyo., U.S.A.

554

562

RAIN RESULTING FROM MELTING SNOW. L.J. Battan and J. B. Theiss, 567Institute of Atmospheric Physics, University of Arizona, Tucson, Ariz., U.S.A.

A PARTICLE CAMERA FOR POWERED AIRCRAFT. T.W. Cannon,National Center for Atmospheric Research, Boulder, Colo., U. S. A.

572

•Manuscript not available.

XII

Page

7.1.5 THE MEASUREMENT OF CLOUD DROPLET SPECTRA. P. Ryder, 576Meteorological Office, Bracknell, England.

7.1.6 FIELD MEASUREMENTS OBTAINED WITH TWO OPTICAL ICE 581PARTICLE COUNTERS IN CUMULUS CLOUDS OVER FLORIDA.F. M. Turner and L. F. Radke, Cloud Physics Group, Department ofAtmospheric Sciences, University of Washington, Seattle, Wash., U.S.A.;A. S. Ramachandra Murty, Indian Institute of Tropical Meteorology, Poona,India; and R. I. Sax, National Hurricane and Experimental MeteorologyLaboratory, NOAA, Coral Gables, Fla., U.S.A.

7.1.7 AN AUTOMATIC SEQUENTIAL RAINFALL SAMPLER FOR ANALYSIS 587OF CONTAMINANTS ^AT ABOUT 10"6 ppm LEVEL. J. P. Lacaux andJ. Dessens, Universite de Clermont, Centre de Recherches Atmospheriques,Lannemezan, France.

7.1.8 EFFECTS OF AIRPLANE FLOWFIELDS ON HYDROMETEOR CONCEN- 591TRATION MEASUREMENTS. H. G. Norment, Atmospheric Science Associates,Bedford, Mass., U.S.A. (Reserve Paper)

7.1.9 AUTOMATED ANALYSIS OF CLOUD PARTICLE CAMERA DATA. 597J. LeCompte and K. Danielson, Department of Atmospheric Science,Colorado State University, Ft. Collins, Colo.; and T. Cannon, NationalCenter for Atmospheric Research, Boulder, Colo., U.S.A. (Reserve Paper)

7. 2 NEW INSTRUMENTS - LABORATORY STUDIES

CHAIRMEN: A. Gagin, Israel, and J. Latham, England.

7.2.1 SUPERSATURATION REGIME WITHIN A SETTLING CLOUD CHAMBER: 602PRELIMINARY RESULTS. K. M. Weickmann and W. R. Barchet, Departmentof Meteorology, University of Wisconsin, Madison, Wis., U.S.A.

7.2.2 FIELD APPLICATIONS OF A NEW CLOUD CONDENSATION NUCLEUS 607SPECTROMETER: INVESTIGATIONS OF CONTINENTAL AND MARITIMEAEROSOLS. V.K. Saxena and N. Fukuta, Denver Research Institute, Univer-sity of Denver, Denver, Colo., U.S.A.

7.2.3 A CCN SPECTROMETER. J.G. Hudson, Desert Research Institute, 613University of Nevada System, Reno, Nev., U.S.A.

7.2.4 AN AUTOMATIC LIGHT SCATTERING CCN COUNTER. G.G. Lala and 618J. E. Jiusto, Atmospheric Sciences Research Center, State University ofNew York, Albany, N.Y., U.S.A.

7.2.5 AN ATMOSPHERIC CLOUD PHYSICS LABORATORY FOR THE SPACE 622LABORATORY. R. Smith, J. Anderson, B. Schrick, and C. Ellsworth,Marshall Space Flight Center, Huntsville, Ala.; and M. Davis, NationalCenter for Atmospheric Research, Boulder, Colo., U.S.A.

7.2.6 AIRCRAFT AEROSOL SAMPLING ERRORS. G. J. Mulvey and J. D. 630Sheaffer, Department of Atmospheric Science, Colorado State University,Ft. Collins, Colo., U.S.A. (Reserve Paper)

7.2.7 IN SITU MEASUREMENT OF ICE CRYSTAL CONCENTRATIONS USING 635A LASER-TELEVISION-MEMORY SYSTEM. L. E. Lilie, T.C. Grove, andD. M. Garvey, Department of Atmospheric Science, Colorado State University,Ft. Collins, Colo., U. S. A. (Reserve Paper)

xni

Page

7. 3 NEW INSTRUMENTS - OBSERVING SYSTEMS

CHAIRMEN: A. Kartsivadze, U.S.S.R., and B. Silverman, U.S.A.

7.3.1 THE NOAA AIRCRAFT OBSERVATION SYSTEM. B.B. Phillips, Weather 638Modification Program Office, ERL/NOAA, Boulder, Colo., U.S.A.

7.3.2 LIGHTNING CHARGE CENTER LOCATIONS RELATIVE TO PRECIPITA- 642TION IN A THUNDERSTORM. P. Krehbiel, M. Brook, R. McCrory, andD. Tarbox, New Mexico Institute of Mining and Technology, Socorro, N. Mex.,U.S.A.

7.3.3 RADAR AND RELATED HYDROMETEOR OBSERVATIONS INSIDE A 644MULTICELL HAILSTORM. D.J. Musil and A. S. Dennis, Institute ofAtmospheric Sciences, South Dakota School of Mines and Technology,Rapid City, S. Dak.; C. Knight and I. Paluch, National Center for Atmos-pheric Research, Boulder, Colo.; and W. R. Sand, Department of NaturalResources, University of Wyoming, Laramie, Wyo., U.S.A.

7.3.4 INFRARED AIRBORNE IMAGERY OF ARCTIC STRATUS DEVELOPMENT 650AND DISSIPATION. P. M. Kuhn and L. P. Stearns, Atmospheric Physics andChemistry Laboratory, ERL/NOAA, Boulder, Colo., U.S.A.

7.3.5 PROGRESS IN PRECIPITATION GROWTH MEASUREMENTS. R.M. 653Cunningham, Air Force Geophysics Laboratory, Hanscom AFB, Bedford,Mass., U.S.A.

7.3.6 CLOUD DROPLET DISTRIBUTION IN HIGH ELEVATION CONTINENTAL 658CUMULI. D. W. Breed and L. O. Grant, Department of Atmospheric Science,Colorado State University, Ft. Collins, Colo.; and J. E. Dye, National Centerfor Atmospheric Research, Boulder, Colo., U.S.A. (Reserve Paper)

7.3.7 FORECASTING AND VERIFYING HYDROMETEOR SPECTRA. A. A. 665Barnes, J r . , and V. G. Plank, Air Force Geophysics Laboratory, HanscomAFB, Bedford, Mass., U.S.A. (Reserve Paper)

7.3.8 THE MEASUREMENT OF AIR MOTION IN AND NEAR CLOUDS. 669P.B. Wagner and J. W. Telford, Desert Research Institute, University ofNevada System, Reno, Nev., U.S.A. (Reserve Paper)

XIV