July 2009 doc.: IEEE 802.15- 15-09-0485-03-004g Project ... · PDF fileMichel Veillette...

32
doc.: IEEE 802.15- 15-09-0485-03-004g July 2009 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: Future Proof Platform for SUN – Technical Overview Date Submitted: July 6, 2009 Source: Steve Shearer, Independent Address: Pleasanton, CA, USA Voice: (408) 417 1137 , FAX: [], E-Mail: Shearer_inc @ yahoo.com Re: [802.15.4g] TG4g Call for Proposals, 2 February, 2009 Ab t t T hi lO i fh d OFDM l fS Sh L di &G M i d Abstract: T echnical Overview of the merged OFDM proposals of Steve Shearer, Landis&Gyr , Maxim and ETRI. This document highlights key signal processing areas of the proposal that make this a good choice for the new SUN PHY. Purpose: Technical Proposal to be discussed by IEEE 802 15 TG4g Purpose: Technical Proposal to be discussed by IEEE 802.15 TG4g Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right t dd d ithd t il ti dh i to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15. Submission Steve Shearer (Independent) Slide 1

Transcript of July 2009 doc.: IEEE 802.15- 15-09-0485-03-004g Project ... · PDF fileMichel Veillette...

doc.: IEEE 802.15- 15-09-0485-03-004gJuly 2009

Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs)

Submission Title: Future Proof Platform for SUN – Technical OverviewDate Submitted: July 6, 2009Source: Steve Shearer, IndependentAddress: Pleasanton, CA, USA Voice: (408) 417 1137 , FAX: [], E-Mail: Shearer_inc @ yahoo.comRe: [802.15.4g] TG4g Call for Proposals, 2 February, 2009

Ab t t T h i l O i f h d OFDM l f S Sh L di &G M i dAbstract: Technical Overview of the merged OFDM proposals of Steve Shearer, Landis&Gyr, Maxim and ETRI. This document highlights key signal processing areas of the proposal that make this a good choice for the new SUN PHY.

Purpose: Technical Proposal to be discussed by IEEE 802 15 TG4gPurpose: Technical Proposal to be discussed by IEEE 802.15 TG4gNotice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right t dd d ithd t i l t i d h ito add, amend or withdraw material contained herein.Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15.

Submission Steve Shearer (Independent)Slide 1

doc.: IEEE 802.15- 15-09-0485-03-004gJuly 2009

A Future Proof Platform for Smart Utility Networks

Top Level Technical Overview

Steve ShearerJuly 2009

Supporters: Roberto Aiello [Independent], Sangsung Choi [ETRI], Bob Fishette [Trilliant], Michel Veillette [Trilliant], David Howard [On-Ramp], Rishi Mohindra [MAXIM],Michel Veillette [Trilliant], David Howard [On Ramp], Rishi Mohindra [MAXIM],

Emmanuel Monnerie [Landis & Gyr], Partha Murali [Redpine Signal], Shusaku Shimada [Yokogawa Electric Co.], Kendall Smith [Aclara], Mark Wilbur [Aclara], Mark Thomson

[Aclara] , John Buffington [Itron], Rodney Hemminger [Elster], Elad Gottlib [Silver Springs Networks], Jay Ramasastry [Silver Springs Networks], Xing Tao [Chinese Academy of

Submission Steve Shearer (Independent)Slide 2

Networks], Jay Ramasastry [Silver Springs Networks], Xing Tao [Chinese Academy of Science], Betty Zhao [Huawei]

doc.: IEEE 802.15- 15-09-0485-03-004g

IntroductionJuly 2009

Introduction• The purpose of this presentation is to introduce key technical aspects 

of the Future Proof Platform merged OFDM proposal– Demonstrates that an OFDM system, properly configured to the 

application at hand, can lead to a highly efficient, low complexity PHY

• This presentation shows how the combination of several simple signal p p gprocessing methods have been used to create the SUN OFDM PHY proposal– And shows how this proposal is compatible with the existing standard 

and some new proposals

• We believe that this proposal is worthy of consideration as a candidate for new Smart Utility Networks PHY standardcandidate  for new Smart Utility Networks PHY standard.

Submission Steve Shearer (Independent)Slide 3

doc.: IEEE 802.15- 15-09-0485-03-004g

ContentsJuly 2009

Contents• Proposal meets the requirements of the PAR

• Some common concerns about OFDMSome common concerns about OFDM

• Key aspects of this proposal– Data rates / Bandwidth– Compatibility with existing MAC– Modulation– Soft decisions– Convolutional coding– Time and Frequency Spreading– Data structure– Reference Transmitter Diagram

• How Multicarrier systems maximize the use of the radio channel– Inter Symbol InterferenceInter Symbol Interference– Frequency selective fading– Spatial/Geographic nulls– Rayleigh fading– Performance Advantage Snapshot

Submission

Performance Advantage Snapshot

• Conclusions

Slide 4 Steve Shearer (Independent)

doc.: IEEE 802.15- 15-09-0485-03-004g

Requirements of the PARJuly 2009

Requirements of the PAR• Operation in any of the regionally available license exempt frequency bands, such as 

700MHz to 1GHz, and the 2.4 GHz band.

• Data rate of at least 40 kbits per second but not more than 1000 kbits per second

• Carrier Grade Reliability

• Achieve the optimal energy efficient link margin given the environmental conditions• Achieve the optimal energy efficient link margin given the environmental conditions encountered in Smart Metering deployments.

• Principally outdoor communications– “highly obstructed, high multipath locations with inflexible antenna orientation”

– “Applications for Wireless Smart Metering Utility Network further intensify the need for maximum range”

– “Wireless Smart Metering Utility Network requirement of 100% coverage”

– “ability to provide long‐range point‐to‐point circuits available for meshing”

• PHY frame sizes up to a minimum of 1500 octets• PHY frame sizes up to a minimum of 1500 octets

• Simultaneous operation for at least 3 co‐located orthogonal networks

• Connectivity to at least one thousand direct neighbors characteristic of dense urban

Submission

• Connectivity to at least one thousand direct neighbors characteristic of dense urban deployment

Steve Shearer (Independent)Slide 5

doc.: IEEE 802.15- 15-09-0485-03-004g

This Proposal meets the PARJuly 2009

This Proposal meets the PAR• It is applicable to the 700, 800, 900 MHz and 2.4Ghz bands

• Scalable data rates from 780 kbps down to 46 kbps– Enables accessing “difficult‐to‐get‐to” nodes

• Achieves excellent energy efficient link margin  (Eb/N0) to achieve Carrier Grade reliability without wasting power

• Designed for outdoor environments because it addresses:‐– Multipath by using long symbol times and a cyclic prefix

– Spatial nulls by using slow frequency hopping or Frequency Diversity

– Fading by employing channel coding and Time Diversity for improved packet errorFading by employing channel coding  and Time Diversity for improved packet error performance

– Provides long range where necessary

• Supports packet sizes up to 2047 octets with low PER in outdoor environments

• Is adjacent channel friendly to allow co‐located orthogonal networks

• Supports connectivity  to multiple neighbors

• In addition battery consumption can be shown to be as low or lower than single

Submission

• In addition, battery consumption can be shown to be as low, or lower, than single carrier systems

Steve Shearer (Independent)Slide 6

doc.: IEEE 802.15- 15-09-0485-03-004g

Common concerns about OFDMJuly 2009

Common concerns about OFDM• More complicated MAC?

– Intended to re‐use current 802.15.4e MAC

Hi h SNR?• High SNR?– This proposal shows reliable operation in negative SNR conditions

• High PAPR?– Low order modulation allows PA back‐off to be 3dB or less

• High TX Power?– 15 to 30dB link margin advantage allows lower TX power   

(same data rate on the same link)

• Complexity?Complexity?– Orders of magnitude lower than popular WLAN systems

• Cost?– System cost can be as low as single carrier systems 

• Accurate Xtal oscillators?– 20 ppm is sufficient, 40 ppm can be tolerated  

• High Power consumption?– Analysis shows superior performance for battery operated devices   

Submission

y p p y p

• ‘Brick wall’ analog filters?– Not necessary

Steve Shearer (Independent)Slide 7

doc.: IEEE 802.15- 15-09-0485-03-004g

Key ParametersJuly 2009

Key Parameters• Several configurations to suit different Regulatory b/w 

requirements– Option 1  1060 kHz  128 pt FFT

• Channel Coding derived from ½ rate convolutional mother code

• Coding rates from 3/4 through to 1/8p p

– Option 2   518 kHz    64 pt FFT

– Option 3  264 kHz     32 pt FFT

– Option 4  146 kHz      16 pt FFT

– Option 5   68 kHz        8 pt FFT

Coding rates from 3/4 through to 1/8 using

– Puncturing

– Frequency Repetition

– Time Repetition

• Common parameters for all options– Symbol time    128us 

– Cyclic prefix   25.6us

– Tone spacing  9.7kHz

• Soft decision decoding for higher performance

– Multipath tolerance > 25us at all data rates

– Low order modulation  BPSK, QPSK, 16QAM

• Supports low packet‐by‐packet frequency hopping to mitigate spatial nulls

OFDM Option 1

OFDM Option 2

OFDM Option 3

OFDM Option 4

OFDMOption 5

Unit

FFT size 128 64 32 16 8Active Tones 108 52 26 14 6# Pilots tones 8 4 4 2 2hopping to mitigate spatial nulls

• Non hopping mode to ease concerns on battery consumption

• Complexity is orders of magnitude

# Data Tones 100 48 22 12 4

Approximate Signal BW 1064.45 517.58 263.67 146.48 68.36 kHzBPSK 1/2 rate coded and 4x repetition 97.66 46.88 21.48 11.72 3.91 kbpsBPSK 1/2 rate coded and 2x repetition 195.31 93.75 42.97 23.44 7.81 kbpsBPSK 1/2 rate coded 390.63 187.50 85.94 46.88 15.63 kbpsBPSK 3/4 rate coded 585.94 281.25 128.91 70.31 23.44 kbpsQPSK 1/2 rate coded 781 25 375 00 171 88 93 75 31 25 kbps

Submission

• Complexity is orders of magnitude lower than WLAN

Slide 8 Steve Shearer (Independent)

QPSK 1/2 rate coded 781.25 375.00 171.88 93.75 31.25 kbps

QPSK 3/4 rate coded 1171.88 562.50 257.81 140.63 46.88 kbps16‐QAM 1/2 rate coded 1562.50 750.00 343.75 187.50 62.50 kbps16‐QAM 3/4 rate coded 2343.75 1125.00 515.63 281.25 93.75 kbps

doc.: IEEE 802.15- 15-09-0485-03-004g

Scalable Data Rates / BandwidthJuly 2009

Scalable Data Rates / Bandwidth 

• P id l bili i• Provides scalability in a highly structured way– Avoids a wide array of 

Submission

yindependent parameters

Steve Shearer (Independent)Slide 9

doc.: IEEE 802.15- 15-09-0485-03-004g

Multicarrier ModulationJuly 2009

Multicarrier Modulation

• This proposal modulates each carrier using BPSK, QPSK, or 16‐QAMThis proposal modulates each carrier using  BPSK, QPSK, or 16 QAM 

• The PSK symbols are mapped onto individual tones in the frequency domaindomain

• Several frequencies are nulled outh ll d h l i h i l i f h– The nulled DC component helps in the implementation of cheap, zero‐IF receivers (does not exclude passband receivers)

– The nulled frequencies at the band edges significantly ease filtering complexity for adjacent channel performancecomplexity for adjacent channel performance

• An appropriate size Inverse FFT produces the time domain samples for transmission

Submission

for transmission

Slide 10 Steve Shearer (Independent)

doc.: IEEE 802.15- 15-09-0485-03-004g

Modulation and PAPRJuly 2009

Modulation and PAPR• PA nonlinearity causes two issues

– Spectral regrowth from compression of the peaks100

200

300

ProbabilityDistribution

Function

– High EVM from signal distortion

• The amplitude of an OFDM signal is approximately Rayleigh distributed

0 0.5 .85 1 1.5 1.7 2 2.5 30

80

100

X: 57Y: 96.17

Only 4% of samples

CumulativeDistributionapproximately Rayleigh distributed

– Fortunately the peaks don’t happen very often thus minimizing average spectral regrowth 

0 1 2 30

20

40

60

Amplitude

Only 4% of samplesgreater than 2 sigma

DistributionFunction

EVM = -9dB

• This proposal uses only low order modulations which can withstand much higher EVM without loss of performance

1

EVM = -9dB

• Therefore PA linearity requirements for this proposal id bl d d

-1

0

Submission

are considerably reduced– See IEEE 802.15‐15‐09‐0483‐00‐004g for details

Steve Shearer (Independent)Slide 11

-1 0 1

doc.: IEEE 802.15- 15-09-0485-03-004g

CompatibilityJuly 2009

Compatibility• The basic concept of this PHY is directly compatible with the current 

802.15.4e work– It does not impose any further requirements on the MAC

– Allows the entire upper s/w stack to be re‐used 

• All modes can use packet‐by‐packet frequency hopping– Although this is probably only necessary for narrowband modes

– Wider band modes allow Battery efficient non‐hopped operation in many popular bands (e g 900MHz)bands  (e.g. 900MHz)

• The time domain waveform leaving the antenna is different in nature to that of FSK or DSSS systems, but this is invisible to the upper layersof FSK or DSSS systems, but this is invisible to the upper layers 

Submission Steve Shearer (Independent)Slide 12

doc.: IEEE 802.15- 15-09-0485-03-004g

OFDM enables simple Soft decisionJuly 2009

OFDM enables simple Soft decision generation

Th d d l t f h t t t th bit ‘ fid l l ’• The demodulator for each tone outputs the bits as ‘confidence levels’ based on an estimate of the channel quality– Bits demodulated during a fade will have small +/‐ confidence levels

– Bits demodulated in a peak will have larger +/‐ confidence levelsBits demodulated in a peak will have larger +/ confidence levels

• Provides additional information about where errors may lie– Decoder can concentrate its error correction capabilities on the bits that are p

most likely in error

100 strong 1's data is likely to be in errorlow confidence 1's & 0's

-100

0

Soft Decision demodulator output for each tonestrong 0's

Submission

• Allows Maximal Ratio Combining for Frequency Spreading and Time Spreading modes

Steve Shearer (Independent)Slide 13

doc.: IEEE 802.15- 15-09-0485-03-004g

Frequency SpreadingJuly 2009

Frequency Spreading• Frequency spreading is a method of replicating  PSK symbols on different carriers

• The diagram indicates how the left half of the spectrum is replicated using conjugated versions of the PSK symbols

• Protects against frequency selective fading by providing Frequency Diversity– Enhances SNR performance

Submission Slide 14 Steve Shearer (Independent)

doc.: IEEE 802.15- 15-09-0485-03-004g

Frequency De‐spreadingJuly 2009

Frequency De‐spreading• Frequency diversity relies on the fact that fading on 

separate carriers is independentseparate carriers is independent– While one is fading the other may be strong

• Soft decision PSK symbols 100 faded section non-faded section• Soft decision PSK symbols can be optimally combined at the receiver with little computational overhead

-100

0

100

Tone(n)

faded section non faded section

p

• Diversity gain offers significant improvement in -100

0

100

Tone(n+j)

+

faded sectionnon-faded section

significant improvement inperformance as shown by the quality of the combined data

( j)

0

100combination combination

Submission

– No ‘dead ‘ spots

Steve Shearer (Independent)Slide 15

-100

doc.: IEEE 802.15- 15-09-0485-03-004g

Time SpreadingJuly 2009

Time Spreading• Time spreading is a method of replicating OFDM symbols at different 

timestimes

• The diagram indicates how symbols are repeated

• Protects against Rayleigh fading by providing Time Diversity– Enhances SNR performance

• Frequency Spreading and Time Spreading can be used together for additional robustness

Submission Steve Shearer (Independent)Slide 16

doc.: IEEE 802.15- 15-09-0485-03-004g

Convolutional CodeJuly 2009

Convolutional Code• Convolutional Codes are well know for their ability to effectively use 

soft decisions to correct errorssoft decisions to correct errors– Coding gain is normally quoted as Eb/N0 

– SNR improvement at a normalized net information rate

– And with modern hardware, they are easy to implementAnd with modern hardware, they are easy to implement

• This proposal uses a constraint length 7, ½ rate codeWell known generator polynomials G [133 171]– Well known generator polynomials  G1,2 = [133, 171], 

• Offers a coding gain of 6 dB for the same information rate(9dB SNR)– (9dB SNR) 

Submission Steve Shearer (Independent)Slide 17

doc.: IEEE 802.15- 15-09-0485-03-004g

Puncturing for Flexible data ratesJuly 2009

Puncturing for Flexible data rates• Puncturing is a process of removing redundancy to increase the coding rate

– Bits are removed before transmissionBits are removed before transmission– And replaced with dummy bits on reception

• This is a well researched area (Hagenauer et al.)– Used in many systems

• Easy to implement using array indexing operations

• Provides very flexible data rates with no computational overheadcomputational overhead

Submission Slide 18 Steve Shearer (Independent)

doc.: IEEE 802.15- 15-09-0485-03-004g

InterleavingJuly 2009

Interleaving• Interleaving is used to spread bits in frequency over one symbol

– Still investigating if interleaving over more symbols gives a performanceStill investigating if interleaving over more symbols gives a performance advantage

• Interleaving equation for 32‐FFT shown below

• Details for other n‐FFT’s given in detailed document IEEE 802.15‐15‐09‐0489‐00‐004g

Submission Steve Shearer (Independent)Slide 19

doc.: IEEE 802.15- 15-09-0485-03-004g

Data StructureJuly 2009

Data Structure

P k d f• Packets are made up of:‐– Synchronization sequence

– PHY header coded for maximum robustness

– Variable length data payload coded according to data rate 

Submission Slide 20 Steve Shearer (Independent)

doc.: IEEE 802.15- 15-09-0485-03-004g

Synchronization SequenceJuly 2009

Synchronization Sequence

• RF carrier reference and signal processing clock are derived from the same source– Frequency  correction also corrects the symbol timing

• Synchronization sequence is made up of two sections

f d b k i/4

STF

– Set of tones spaced by 38.8 kHz for coarse frequency and time sync

- pi/4

+ pi/4

itude

Tone spacing38.8 kHz

Good Frequencyauto correlation

properties

– Set of closely spaced tones for channel estimation and fine frequency/time sync

+ pi/2

LTF

- 260 kHz + 260 kHz0 Hz

Pha

se /

Am

pli

fine frequency/time sync

• This scheme allows simultaneous correction of timebase and frequency error for

- 260 kHz 0 Hz + 260 kHz

- pi/2

Tones spaced by9.7 kHz

Submission

• This scheme allows simultaneous correction of timebase and frequency error for very loose tolerance Xtals.

Slide 21 Steve Shearer (Independent)

doc.: IEEE 802.15- 15-09-0485-03-004g

PHY HeaderJuly 2009

PHY Header

• The PHY header contains 5 fields– Rate field specifies the data rate of the payload frame– Length specifies the length of the payload– Scrambling seed for the PSDU  

• helps with Regulatory compliance• helps with Regulatory compliance

– Header Check sequence• 8 bit CRC taken over the data fields only• Avoids erroneous decoding of payloads and saves power consumption

– Tail bits for Viterbi decoder flushing

• Encoded at the lowest data rate for robustness

Submission Slide 22 Steve Shearer (Independent)

doc.: IEEE 802.15- 15-09-0485-03-004g

Data Unit (PSDU)July 2009

Data Unit (PSDU)

• Frame PayloadFrame Payload– 8 to 2047 octets 

• CRC– 32 bit IEEE CRC for error detection

• Tail and Pad bits– Used to clear encoder memory

Submission Slide 23 Steve Shearer (Independent)

doc.: IEEE 802.15- 15-09-0485-03-004g

Reference Transmitter DiagramJuly 2009

Reference Transmitter Diagram

• Summary of transmitter signal processingSummary of transmitter signal processing

• Constellation Mapping block determines mapping of symbols and number of tones

Submission Slide 24 Steve Shearer (Independent)

doc.: IEEE 802.15- 15-09-0485-03-004g

Representative SUN ChannelsRepresentative SUN Channels• Simple two tap channel models used for performance evaluation

– ETSI ETSI EN 300 392‐2 V3.2.1 (2007‐09)

• Performance simulations currently use only Pseudo Static methodology• Performance simulations currently use only Pseudo Static methodology– Realistic fading rates still need to be defined for this application

Channel Models taken from ETSI ETSI EN 300 392‐2 V3.2.1 (2007‐09)

Propagation ModelTap 

NumberRelative delay (us)

Average relative 

power (dB)Rural Area (Rax) 1 0 0Typical Urban (Tux) 1 0 0

2 5 ‐22.3Bad Urban (Bux) 1 0 0

2 5 ‐3Hilly Terrain (HTx) 1 0 0

2 15 ‐8.6

Submission

doc.: IEEE 802.15- 15-09-0485-03-004g

Key Channel ImpairmentsJuly 2009

Key Channel Impairments• Amplitude fading due to non LOS path

• Multipath due to reflections – Frequency selective fading

I t S b l I t f

Spectral analysis of 300 kHz channel. Two ray channel, 5us multipath

0

B)

– Inter Symbol Interference

• Spatial propagationll ( t h )

-40

-20

Am

plitu

de (d

Bnulls (not shown)

• How does OFDM 

0

-150 kHz

Frequency

overcome these problems?

Submission

+150 kHzTime

Frequency

Steve Shearer (Independent)Slide 26

doc.: IEEE 802.15- 15-09-0485-03-004g

Multipath ‐ ISIJuly 2009

Multipath ‐ ISI• Multipath introduces Inter Symbol Interference 

– Every previous bit degrades every current bity p g y

• OFDM overcomes ISI by – making the symbol much longer than the multipath

– And using a cyclic prefix to contain the ISI

• OFDM retains the data rate by adding more carriers in the same proportion h l h i f h b las the lengthening of the symbol

• Frequency hopping is very useful to mitigate spatial nulls but doesn’t helpmitigate spatial nulls but doesn’t help with ISI

The delayed multipath components are contained in this prefix at the receiver and d t t i t th d d l ti

Submission Steve Shearer (Independent)Slide 27

do not contaminate the demodulation process.

doc.: IEEE 802.15- 15-09-0485-03-004g

Multipath – Frequency selective fadingJuly 2009

Multipath – Frequency selective fading• Multipath also causes frequency nulls in the received spectrum

• OFDM overcomes frequency nulls by dividing up the channel into individual carriers– So if one is knocked out, at least  Frequency selective

the others aren't affected

• Frequency Diversity 

Damaged carrier

fade

combining, or interleaving across frequency, togetheri h FEC h l

0

20

40

ude

(dB

)

with FEC, help to‘fill in the gaps’

68

1012

-40

-20

Time

Am

plit

Submission Steve Shearer (Independent)Slide 28

02

4Frequency (Carrier #)Soft decision streams

out of each carrier

doc.: IEEE 802.15- 15-09-0485-03-004g

Visualization of OFDM’s advantageJuly 2009

Visualization of OFDM s advantage• Notice how the multiple carrier soft decision streams accurately 

convey channel quality information in both Time and Frequencyconvey channel quality information in both Time and Frequency– Re‐creating the previous spectral analysis

• This  valuable information allows 

Surface of 300 kHz channel constructed using demodulated soft decisions.

Two ray channel, 5us multipath

20

40

B)

effective combination of Time and Frequency diversity

-60

-40

-20

0

20

Am

plitu

de (d• This is a key to 

why OFDM systems have such a 

f

4

6

8

10

12

Frequency(carrier #)

performance advantage 

Submission

0

2 TimeIndividual carrier

soft decisionsSteve Shearer (Independent)Slide 29

doc.: IEEE 802.15- 15-09-0485-03-004g

Performance Advantage SnapshotJuly 2009

Performance Advantage Snapshot• FS10 and TN19 propagation channels as measured by L&G in low rise urban area

– 1.6us multipath

• Bu0 and Ht0 channels as defined by ETSI for “Bad Urban” and “Hilly Terrain”

100100kbps OFDM and 100kbps MSK for 125 byte packets in various channels

MSK TN19MSK FS10

Bu0 and Ht0 channels as defined by ETSI for  Bad Urban  and  Hilly Terrain– 5us and 15us multipath 

respectively

OFDM h 18 29 dB

10-1

MSK AWGNMSK Bu0MSK Ht0OFDM Bu0OFDM Ht0OFDM AWGNOFDM FS10

• OFDM shows  18 – 29 dB advantage even in benign1.6us multipath channels  with short 125 byte 

10-2

PE

R

OFDM FS10OFDM TN19

FS10TN1929 dB

ypackets

10AWGN4dB

FS1018 dB

29 dB

• The advantage is even greater– for Bu0 and Ht0 

– Longer packets

Submission

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 38 40 40 42 44 4610-3

EbN0 (dB)

Steve Shearer (Independent)Slide 30

doc.: IEEE 802.15- 15-09-0485-03-004g

ConclusionsJuly 2009

Conclusions• This Proposal adequately meets all the requirements of the PAR

– Wide applicability in a range of Regulatory requirements

– Wide range of data rates

– Superior performance in the outdoor channels defined in the PAR

– Carrier Grade Reliabilityy

– Wide range of packet lengths

– Excellent link margin and efficiency

Add d b OFDM• Addressed some common concerns about OFDM

• Detailed the key Technical aspects that make up the proposal

Sh d h OFDM hi it f i th h h l• Showed how OFDM achieves its performance in the chosen channels– Hinted at some results

– See later presentations for more details

Submission

• Provides flexibility is a consistent, highly structured waySteve Shearer (Independent)Slide 31

doc.: IEEE 802.15- 15-09-0485-03-004g

Thank You for your attentionJuly 2009

Thank You for your attention

• What will you do with the dB’s you’ve saved?

• Questions 

Submission Steve Shearer (Independent)Slide 32