Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666]...

17
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA Energies of the Electronic Configurations of the Singly, Doubly, and Triply Ionized Lanthanides and Actinides LEO BREwER Inorganic Materials Research Division, Lawrence Berkeley Laboratory and Department of Chemistry, University of California, Berkeley, California 94720 (Received 4 June 1971) Methods are described for estimating energies of the electronic configurations of the gaseous ions of the lanthanides and actinides. Energies are tabulated for the lowest spectroscopic level of the configurations involving 4f, 5d, 6p, and 6s electrons for the lanthanide ions and Sf, 6d, 7p, and 7s electrons for the actinide ions. Some additional values are listed to be added to the previous tabulation for neutral atoms. INDEX HEADrINGS: pectra; Lanthanides; Actinides. I have previously described' a method of calculating energies of some spectroscopic levels of neutral lantha- nide and actinide atoms from the thermodynamic data of the metals. These calculations were extended to provide a tabulation of the energies of the lowest spectroscopic levels of many of the electronic configura- tions of the neutral atoms.' The availability of these values now makes it possible to carry out similar calculations for the ions of these elements. Several authors 2 - 7 have estimated energy differences of electronic configurations such as fqd-fQ+±, qds-f'+1s, or fds2-ffq+1S2, where q is the number of f electrons re- maining in the core after promotion of one electron to a d orbital. These methods were based on the ideas of Racah 8 and Jorgensen.' The energy required to promote an electron from a 4f to 5d or from a 5f to 6d orbital varies rapidly in a somewhat irregular manner as nuclear charge is increased, but a large portion of the variation and most of the irregularity can be attributed to the pairing energy within the f core. For example, Nugent and Vander Sluis 2 were even able to assume that the energy of a given fq core as obtained from the data for the trivalent ions could be used unchanged in calculating energies of the neu tral atoms. Upon sub- tracting the electron-spin-pairing energy from the fvdsI-fv-ls2 energy differences for the neutral atoms, they obtain ed an almost linear curve from which they could make estimates of unknown values. Their method requires the assumption that interactions of the outer electrons with the f-electron core vary smoothly from element to element. Their results indicate that their assumption is reasonable for most f-electron cores, but it will be shown in this paper that, compared to partially filled cores, the ft and f' 4 cores interact sufficiently differently with certain groups of oute r electrons to cause discontinuities at the ends of the Nugent-Vander Sluis plot. In this discussion, it will be useful to introduce the symbol n for the total number of valence electrons for a given element. The valence electrons include 4f, 5d, 6p, and 6s electrons for the lanthanides and 5f, 6d, 7p, and 7s electrons for the actinides. n is fixed by the number of valence electrons for the neutral atom. For example, for Nd, n =6 and the configurations fm-SdsI(), fn-"ds(nI), fn-md(iii), and fm'(Iv) of Nd all contain the same f3 core. Figure 1 presents plots of the energy required to promote an electron from an f orbital to a d orbital for different groups of configurations. In all instances, energy differences between configurations are given by the energy difference between the lowest levels of each configuration. Exp erimental values are shown as circles. The three curves grouped together at the top of the figure correspond to promotion from configura- tions with fn-4 cores to configurations with Jfm- cores. The middle group of three curves deals with f t m 3 cores promoted to fn2 cores and the bottom curve corre- sponds to fm-I to fm-I promotions. The abscissa, ranging from 0 to 13, is q, the number of f electrons remaining after promotion of an electron from f to d. For q=2, for example, the promotion energies given are for the following energy differences, starting at the top of Fig.1: f 2 d-f'(Nd iv), flds-f's(Nd iII), f2ds2-f3sI(Nd II), f2d-f'(Pr ii), flds-f 3 s(Pr I), f2ds-f's2 Pr I), and f2d-f'(Ce II). For each promotion of an electron from an f to d orbital, the f core changes from fI to f 2 and the contributions due to change in the core should be closely the same. Either constant or proportional changes of core energy with change of q would yield closely parallel curves of the type shown in Fig. 1. However, if we are interested in accuracies of 1000 cm'l or better, we must recognize that the core energy is not quite constant. There are several ways of exploiting the concept of an approximately constant pairing energy for a given ft core. For example, we could consider the plots of the fzd-fq+l promotion energy for singly, doubly, and triply charged ions vs q, th e highest curve of each of the three groups of Fig. 1. The differences between any pairs of these curves would be expected to give straight lines. This is the basis of the Nugent-Vander Sluis calcula- tions, and we can draw a line to represent these differ- ences between q= 1 and q= 12 that is useful for making predictions, but there is a clear break in the slope between q=0 and q= 1. The differences are large, ranging from 57.9X 103 cm7' for the difference in f to d promotion energies of Ce iII and Pr iv to 65.3 X 103 cmur for the Tm. m and Yb iv difference. Although such plots can be useful, Racah 5 proposed a method based on the 1666 VOLUME 61, NUMBER 12 DECEMBER 1971

Transcript of Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666]...

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 1/17

JOURNAL OF THE OPTICAL SOCIETY OF AMERICA

Energies of the Electronic Configurations of the Singly, Doubly, andTriply Ionized Lanthanides and Actinides

LEO BREwER

Inorganic Materials Research Division, Lawrence Berkeley Laboratory and Department of Chemistry,

University of California, Berkeley, California 94720

(Received 4 June 1971)

Methods are described for estimating energies of the electronic configurations of the gaseous ions of the

lanthanides and actinides. Energies are tabulated for the lowest spectroscopic level of the configurations

involving 4f, 5d, 6p, and 6s electrons for the lanthanide ions and Sf, 6d, 7p, and 7s electrons for the actinide

ions. Some additional values are listed to be added to the previous tabulation for neutral atoms.

INDEX HEADrINGS: pectra; Lanthanides; Actinides.

I have previously described' a method of calculating

energies of some spectroscopic levels of neutral lantha-

nide and actinide atoms from the thermodynamic dataof the metals. These calculations were extended toprovide a tabulation of the energies of the lowest

spectroscopic levels of many of the electronic configura-tions of the neutral atoms.' The availability of thesevalues now makes it possible to carry out similarcalculations for the ions of these elements.

Several authors2-7 have estimated energy differencesof electronic configurations such as fqd-fQ+±,qds-f'+1s,

or fds2-ffq+1S2, where q is the number of f electrons re-

maining in the core after promotion of one electron to

a d orbital. These methods were based on the ideas ofRacah8 and Jorgensen.' The energy required to promotean electron from a 4f to 5d or from a 5f to 6d orbitalvaries rapidly in a somewhat irregular manner as

nuclear charge is increased, but a large portion of thevariation and most of the irregularity can be attributedto the pairing energy within the f core. For example,

Nugent and Vander Sluis2 were even able to assumethat the energy of a given fq core as obtained from thedata for the trivalent ions could be used unchanged in

calculating energies of the neutral atoms. Upon sub-tracting the electron-spin-pairing energy from thefvdsI-fv-ls2 energy differences for the neutral atoms,they obtained an almost linear curve from which theycould make estimates of unknown values. Their methodrequires the assumption that interactions of the outer

electrons with the f-electron core vary smoothly fromelement to element. Their results indicate that theirassumption is reasonable for most f-electron cores, butit will be shown in this paper that, compared to partiallyfilled cores, the ft and f'

4 cores interact sufficientlydifferently with certain groups of outer electrons tocause discontinuities at the ends of the Nugent-Vander

Sluis plot.In this discussion, it will be useful to introduce the

symbol n for the total number of valence electrons fora given element. The valence electrons include 4f, 5d,

6p, and 6s electrons for the lanthanides and5f, 6d, 7p,

and 7s electrons for the actinides. n is fixed by thenumber of valence electrons for the neutral atom. Forexample, for Nd, n =6 and the configurations fm-SdsI(),

fn-"ds(nI), fn-md(iii),and fm'(Iv) of Nd all containthesame f3 core. Figure 1 presents plots of the energyrequired to promote an electron from an f orbital to a d

orbital for different groups of configurations. In allinstances, energy differences between configurations are

given by the energy difference between the lowest levelsof each configuration. Experimental values are shownas circles. The three curves grouped together at the topof the figure correspond to promotion from configura-tions with fn-4 cores to configurations with Jfm- cores.The middle group of three curves deals with f

tm3 cores

promoted to fn2 cores and the bottom curve corre-sponds to fm-I to fm-I promotions. The abscissa, rangingfrom 0 to 13, is q, the number of f electrons remainingafter promotion of an electron from f to d. For q=2, forexample, the promotion energies given are for thefollowing energy differences, starting at the top of

Fig. 1: f2d-f'(Nd iv), flds-f's(Nd iII), f2ds2-f3sI(Nd II),f2d-f'(Pr ii), flds-f3 s(Pr I), f2ds-f's2 PrI), andf2d-f'(Ce II). For each promotion of an electron froman f to d orbital, the f core changes from fI to f2 andthe contributions due to change in the core should be

closely the same. Either constant or proportionalchanges of core energy with change of q would yieldclosely parallel curves of the type shown in Fig. 1.

However, if we are interested in accuracies of 1000 cm'l

or better, we must recognize that the core energy is not

quite constant.There are several ways of exploiting the concept of

an approximately constant pairing energy for a givenft core. For example, we could consider the plots of thefzd-fq+l promotion energy for singly, doubly, and triply

charged ions vs q, the highest curve of each of the threegroups of Fig. 1. The differences between any pairs ofthese curves would be expected to give straight lines.This is the basis of the Nugent-Vander Sluis calcula-tions, and we can draw a line to represent these differ-ences between q= 1 and q= 12 that is useful for makingpredictions, but there is a clear break in the slope

between q=0 and q= 1. The differences are large,ranging from 57.9X 103cm7' for the difference in f to d

promotion energies of Ce iII and Pr iv to 65.3 X 103 cmur

for the Tm. m and Yb iv difference. Although such plotscan be useful, Racah5 proposed a method based on the

1666

VOLUME 61, NUMBER 12 DECEMBER 1971

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 2/17

December1971NERGY LEVELS OF LANTHANIDES AND ACTINIDES

° Ci

'2 1I 91 21

0

InI

-20-

-40

0 I 2 3 4 5 6 7 8 9 10 11 12 13

FIG. 1. Promotion energies for f to d electrons of lanthanides,reading down from the top:

iv f-ld-f-3III fn ds-f-3 s jq=n-4II f-ds"-f-3P

III fn3d fn-2 AII f-3ds-f"-2s q=n-3I f -3d s2---2s2

II f 2d-f.-l q=X-2.

same principles that can yield more-accurate predic-tions. Any of the methods that rely on differences of thetype discussed above require a sufficiently complete setof data for at least one stage of ionization. With theavailability of complete data for the neutral atoms,' hismethod can now be used to estimate values for the ions.

It will be shown that his method can be generalized to

be applied to many more types of electronic configura-tions than has been done in the past.

The Racah method can be illustrated by comparingthe f to d promotion energies for f 2 d-f'(Pr in),

f2 ds-f's(Pr ii), and f 2ds2 -f's2(Pr ), the values given

at q=2 for the middle group of curves of Fig. 1. Thesesatisfy the general requirement that f cores be the same.In addition, they belong to the same fn--f-I groupsand thus are for the same element. As can be seen from

Fig. 1, the promotion energies are closely the same when

these conditions are met. Racahs suggested that thedifferences of promotion energies would be approxi-

mately constant at about 5000 cm'l for the i-II differ-ence and somewhat larger for the II-III difference. Thetop curve of Fig. 2 shows, on an expanded scale, the

differences (f- 4d-fJ-3 ) Iv-(fn-4ds-fn-s) in betweenthe two top curves of Fig. 1. The next curves are

(fn-3d-f-2

) iii-(f-3

ds-f-2

s) iI and (fJ'-1ds-f-2

s)HI-(fn-3ds2-fin2s2) I from the second group of curves of

Fig. 1. The differences lie in the range 3000-8000 cm'lwith a maximum variation of 2000 cmnr for any of

these three sets of differences. As each experimentalpoint of Fig. 1 requires knowledge of the energies of twolevels, each experimental point of Fig. 2 corresponds toexperimental knowledge of energies of four levels. Where

experimental points are not indicated, as many as twoor three of the energy levels may be known and limits

can be placed on the range of positions of the curves.Only small portions of the curves are uncertain by morethan 1000 cm-1. Similar differences and smooth varia-tions are found for the other Racah curves.

The three groups of curves of Fig. 1 correspond tothree groups of Racah relationships. For the top group,as an example, the f- 4d-fP-(iv) promotion energy ofthe triply charged ion is compared with values of the fto d promotion energies for successively lower charged

ions with the same f cores. In the examples of Fig. 1,an s electron is added to both configurations for eachreduction of charge. Although not shown in Fig. 1, a

fourth curve lies just below the three curves showncorresponding to adding an additional d electron toobtain the promotion energy fn-4 d2 s2-fn-1ds2. In the

previous paper' on the neutral atoms, this relationshipwas used to estimate the energies of the tetravalent(four non-f electrons) configurations such as theestimate of 51X103 cm'l for the fd2s2 4

H 1 2 level of

Pr I. Only a few were listed for the lanthanides, as most

were far above the ionization limit. However, for theactinides, values were given for the tetravalent con-figurations through americium. A parallel group ofcurves can be generated by starting again with the

fn- 4 d-f- 3 promotion energy of the triply charged ionand adding an additional d electron to both configura-tions for each reduction of charge. Altogether, thef-4-n-3f Racah relations yield a group of seven closelyspaced curves of which only three are shown in Fig. 1.For the fn3-fn2 Racah group, five curves were used.For the ft-2-fn-l group, the Racah relationship wasused to generate a curve for the fn-2ds-fJ's promotion

E

0

10

8,

6'

4

2

0 -  3 4 5 6 7 8 9 10 11 12 13

q

FIG. 2. Racah plots for lanthanides, reading down from the top:

(fn-4d fn-3)vI-(fr- 4ds-fn1-s)ul, n-4(fn-3d-n-2)I-(fni-ds-fn-2s)II, q=n-3(fn-3ds-fn-2s)ii-(f-ds2-fn-2s2)I,=n-3.

I I I I I 1 I I I I I I I I

1Z-nm

131-

I--I

I I .I I I --v -

1667

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 3/17

LEO BREWER

energy from the f-2d-fn-l curve shown in Fig. 1. This

is useful for the prediction of the energies of some

univalent configurations of the neutral lanthanides.

The Racah method relates the energies of a limited

number of configurations, but the consideration of the

variation of promotion energies of the d, p, and s elec-

trons in terms of shielding of the nucleus and inter-electron interactions provides connections among all

of the configurations. The comparison of these promo-

tion energies at different stages of ionization can often

provide very accurate estimates. For example, the d

to p promotion energies for f-3ps2-f8- 3 ds2

(i) and for

fn-2p-f-2 d(II) are almost identical if compared for

cores with equal numbers of f electrons. The effect of

increasing the nuclear charge by one is almost exactly

shielded by the addition of two s electrons; the greatest

difference is only 900 cm~'. A large number of such

relationships must be satisfied, with each relationship

allowing a limited range of values for the energy of the

lowest level of a given configuration. They are solved

simultaneously by successive approximations until a

consistent set of relationships has been obtained. As the

Racah relationships allow the smallest range of values,

they are the key to testing the consistency of the

calculations.

40

30

E

0

-30 O1 2 3 4 5 6 7 8 9 10 11 12 13 14

q

FIG. 3. Promotion energies from 5d to 6s orbitals, reading downfrom the top:

fqs-Jfd xv

fsds-fsd2

iIIf~s-fqdinfqs

2l.fqds II

fgdS-fqd IIfqs-Jfd IIfis'-fqds I.

The experimental points for Hf Iv and Hf InI at q= 14 of the toptwo curves are from P. F. A. Klinkenberg, T. A. M. van Kleef,and P. E. Noorman, Physica 27, 151, 1177 (1961).

401

.E

0

30

20

10

501

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

q

FIG.4. Promotion enegies from 6p to 6s orbitals, reading downfrom the top:

f.n-4pKf.-4 IV

fn-3p-f-n3s III

f I3dp-f- 3ds IIff-2p f1V

2S II

f.-2

pS-f.-2S2

I.

The experimental point for Hf IV at q= 14 of the top curve is fromP. F. A. Klinkenberg, T. A. M. van Kleef, and P. E. Noorman,Physica 27, 151, 1177 (1961).

DETAILS OF METHOD OF CALCULATION

After sufficient successive approximations have been

made to develop reliable curves to represent the variousrelationships described above, we can assign values to

the lowest level of each configuration. The method ofestimating energies of each configuration will be illus-

trated for the singly ionized lanthanides. The lowestlevels of the fqs and fed configurations are experiment-

ally established except for the fqd configurations of Tband Ho. The comparison of the energy to promote anelectron from a d orbital to an s orbital for the singly,

doubly, triply ionized lanthanides as indicated in Fig. 3provides estimated values for Tb and Ho with an un-

certainty of less than 1000 cm'l. In Fig. 3, values aregiven for the fad to fqs, fads to fq 52, and fqd2 to feds

promotional energies vs q, the number of f electrons.This comparison cancels out any contributions of the

Jorgensenpairing energy due to the f core. Altogether,

12 curves involving either one or two non-f electronswere used together with additional curves for configura-tions with more than two non-f electrons. The othercurves are not shown in Fig. 3 for clarity, because they

fall too close to the curves presented. All of the curves

show a characteristic rise between q= 0 and q=1 andthen a slow drop until the sharp break between q=9and q= 10 followed by a slow drop and then a sharpdrop between q= 13 and q = 14. The experimental pointof 18.254X 103cm'l for Yb iI f' 3ds-fl 3 d2 (q= 13 pointof third curve from bottom) has been omitted and re-

placed by a dotted section of the curve to avoid theconfusion of intersection with the curve below. This is

the only experimental point that was out of line. Theuniformly low values for q=0 and q= 14 indicates that

I I I I I I I I I I I I 1

I I , I I I I I I I I

1668 Vol. 61

I I II I I I I I I I I I I

l E

1I *-

I I I I I . . . . .

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 4/17

ENERGY LEVELS OF LANTHANIDES AND ACTINIDES

TABLE I. Lanthanum.

Odd terms 103cm-, Even terms

La II11fs

3F2

014.148 d

2 3F2 0.000

fd1G

4o*' 16.599 ds 3D, 1.895

dp lD 2o* 24.463 S2

so 7.395Ps 3P0° 31.786 fp 3G3 35.453

f2 3H4 55.107

p

23pO

60.095

La III12f 2F5/2' 7.195 d 2D3/2 0.000P 2P1/2' 42.015 s 2S1/2 13.591

aFor explanationof the asterisks and parentheses for all tables, see discussionentitled Tabulation of Level Values.

TABLEII. Cerium.

Odd terms 103cm-1

Even terms

Ce ii13-15fd2

4H7/20* 0.000 f2S 4H /2 3.854fds 2G9/2* 2.382 f2d 4Kil/ 2 7.092fs2 2Fs/2° 9.779 fdp 2H19,2* 24.663f

2p 4I9/2° 25.766 fps (

4G512) (34.0)

f3 419/2a 38.195 d2s

4F5/2* 37.849

fp2

(4Gs/2

0)a (61.5)A1 d

3(4F3/2) (40.0)48

d2p (

4Gs/2°) (66.0)±F6 ds

2(2D3 /2 ) (49.0)i2

dps (4F3/2

0) (73.0) A3

PS 

(2P5/2O) (92.0) 4

Ce iii16.17fd IG4o* 3.277 2 3H(4 0.000fs

3F2

019.236 d

23F2 40.440

dp 3F20

92.635 fp 2, 2 (3F3)* 48.267

Ps (3P0°) (118.0)d5 ds

3Di 63.335

gfE[9] (3H4°)* 122.906 S2 1SO (87.0)i5p

23p0 (152.0)49

Ce iv15

f 2F5/2I 0.000 d2D3/2 49.737

p 2P1/2' 122.585 S 2S1/2 86.602

TABLE II. Praseodymium.

Odd terms 10 cm-1

Even terms

Pr 1119,20

f3s 5I40 0.000 f

2d

2(5L6) (5.5)

f3d

5L6

03.893 f

2ds (5K5) (8.0)42

f

2

dp (

5

L6 ) (31.0)42 f2

S2

(3H4) (16.0)42f2ps (514°) (39.5)+2 f3p 5K5 22.675

fd2s (SH30)* (55.0)44 f4 (614) (32.0)42fd

3(5140) (57.0)+4 f2p

2(6I4) (68.0)A2

fds2

(3H4°) (67.0)d43 fd2P (5K5) (83.0)-6

fdps (54) (91.0)-4--

Pr III21f419/2 . 0.000 f2d 2H9/2* 12.847f2P 4,2 4HS7/2°* 58.158 HsH7/2 28.399fd' 417/2,* 60.520 fdp (4I9/2) (114.0) i3fds

4117/2 84.135 fps (4G5/2) (140.0)45

fS2

(2Fs/2') (110.0)45

fp2

(4G5/2°) (175.0)±9

Pr iv22

-24

fd lG4o* 61.171 f2 3H4 0.000fs 3F2° 100.259 fP U2A (3F3)* 136.851

d' 3F2 139.712

December 19711669

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 5/17

TABLE IV. Neodymium.

Odd terms 103 m-1 Even terms

Ndn25-28

f3d2 6MK/2 9.229 f4s 6 7/2 0.000

J3d 2 11.310 f 4d6L11/2 4.438

f3

s (I 9/2°) (17.5)=E1 f3dp6M13/2 34.782

f4p

6K9/2° 23.230 f

3ps (

6K9 /2) (42.0)41

(6115/20) (33.0)43 f2d2s (6L11/2) (67.0) 9

f

3

p

2

(

6

K9/2

0

)(71.0)±4 4d

3(6L

2 1

/

2

) (69.0)±9

M3d2p (95.0)±9 f2ds2 (4KI1/2) (78.0)45

Nd 11I29

f 3d (5L61) (16.0) 1 Nf, 4I4 0.000

f3s (5140) (30.5)42 f3p (5K5) (61.0)±2

f~dp (SL6) (126.0)44 f2d2 (5L6) (72.0)+5

f2ps (5I4°) (154.0)4±7 f2ds (6K5) (96.0)±5

f2S2 (3H4) (122.0)47

f2p2 (5I4) (186.0)±9

Nd IV3,30

4/20 0.000 Pd 4I9/2* (71.5)41

pp 4I9/2o (147.0)±42 4SH7/2 (l10.0)±5

fd2

(4H7/2O)* (160.0)45

TABLEV. Promethium.

Odd terms 10 cm-1 Even terms

Pm II31

f5s (71H2) 0.000 f4d2 (7M6) (9.5)3

f5d 4 5.332 fPds (7L5) (11.0)±E2

f4dp (

7M50) (35.0) 43 f

4e2 (514) (17.0)±3

f4ps (7K4

0) (42.0)±43 f ~p (7I3) (23.4)

f3d2s (7M6 ) (70.0)±9 f6 (

7Fo) (26.0)±E2

f3d

3 (7M60) (72.0)±9 f

4p

2 (7K4) (71.0)±4

f3ds

2 (5L6

0) (82.0)±-7 f3d

2p (

7N7) (97.0)±9

Pm III00 f

4d (

6Lil/2) (16.0)±2

f ~p (IKs/2°)(61.0) 43 f45 ( I7/2) (29.5)-t3

f3d2 (6M 13/2) (76.0)46 f3 dp (6M1312) (130.0)±5f3ds (6L11/2°) (99.5)±5 f3pS (6 9 /2) (155.0)a±7

f3d2 (419 12

0) (125.0)±47

f3p

2(6K9/2o) (190.0)±9

Pm IV

f3d (

5L6

0) (75.5)±2 f4 (5I4) 0.000

f3S (614°) (113.0)45 fpp (5K5) (150.0)43f2d

2(

5L6) (172.0)A6

TABLEVI. Samarium.

Odd terms 103cm-1 Even terms

Sm II32,338s 7 /2

018.289 f 6s 8Fli2 0.000

f5ds (5K7 /2

0) (19.0) f

6d 8H3/2 7.135

f5d2 (8LO/2

0) (19.0)±4 f1dp (

8L912) (44.0)±2

f6p (6GH12

0) (23.4) fNpS (8I5/2) (49.0)±1

f652

(51H/20) (24.0)±42 f4d2s (

8M1112) (77.0)±9

pp2(815/20) (79.0)±3 f4d3 (8M112) (80.0)±9

f4d5

2(

6L12/2) (89.0)±4-7

Sm In34-3

f 5d 7K4° 24.5 S 6

7Fo 0.000

f5 (71H20) (36.0)±2 fp (7I3, (67.5)±2

f4dp (

7M6

0) (137.0)46 f4d2 (7M6) (83.0)45

f4pS (7K4

0) (161.0)±7 f

4ds (

7M5 ) (103.0)i5

f4S2 (5jI4) (130.0)±7

f4p

2 (7K4) (195.0)±9

Sm IV3.37

f615,2 0.000° f4d (6L,1/2) (76.0)±2

f4p (6K9/2

0) (152.0)±5 f

4s (6I7/2) (113.0)±6

f3d2 (

6M13/2o) (175.0)±A8

Vol. 611670 LEO BREWER

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 6/17

December1971NERGY LEVELS OF LANTHANIDES AND ACTINIDES

TABLE VII. Europium.

Odd terms 103Cm-1 Even terms

Eu ii38,39f7s 9S4. 0.000 f

7p 9P 23.774

f7d 9D2° 9.923 flds 9H1 (28.5) 1f6dp (9120) (54.0)42 f6d2 (s12) (31.5)+2NS ('Go') (57.0)42 f6s2 (7Fo) (33.0)+2

f5d

2s (

9L4

0) (96.0)49 f8 (

7F6) (58.0)+2

f5

d3

(9

L4

0

) (98.0)49 f6

p2

(9

Go) (87.0) 43ffd,2

(7K 4°) (107.0)48

Eu 11138-40f

7SS7/2

00.000 f6d (8H3/2) (34.5)41

f6p (

0G112') (78.0)±2 J(

0Fl,2) (45.0)+2

f 5d2 (8L/20) (102.0)+6 f5dp (8L/2) (156.0)+8f'ds (8K7/2 ) (125.0)+7 fPps (815/2) (180.0)±9f 5S

 (6115/32) (150.0)+8

Eu IV,37

f5d (

7K4°) (85.5)+1 f6

7Fo 0.000

f5S (7H12) (120.0)+5 f'p (7I3) (160.0)+5f

4d2

(7M 6) (185.0)+i8

TABLEVIII. Gadolinium.

Odd terms 103cm-' Even terms

Gd II41-44f

7ds 1

0D5/2

 0.000 f

8s 8F,3/2 7.992

f7S2

8S7/2 ° 3.444 fsd 8G,5/2* 18.367f

7d2

1°F3/2' 4.027 f7ps I°P7/2 25.669

f8p 6,2 8D,,/2o* 32.595 f7dp 1

0F3/2 25.960

pp2

(1OP7/ 20

) (56.0)+3 f6d2S ('103/2) (77.0)-+9f9 (6115/20) (56.0)42 f

6d

3('0I3,2) (80.0)i9

f6d2p ('0K,/2

0) (107.0)+9 f6ds2 (8013/2) (88.0)+7

Gd III4.46

f7d

9D2

00.000 f8 (

7F6) (1.5)+1

f7s 9S4° 9.195 J

7p 7, 1

9F3 43.020

f

6

dp (9120) (131.0)+7 f

6

d

2

( 12) (78.0)47f 6pS (9Go°) (155.0)47 f6ds (9H,) (99.0)45

f6,

2(7Fo) (122.0)+47

Gd IV46

,47

f7

8S7/ 2 ° 0.000 f6d 8f3/2 (96.0) 1f

6p 8G1/20 (171.0)+3 f

6S 8F1/2 (130.0)14

f5d2(8L9/2) (205.0)+49

TABLE X. Terbium.

Odd terms 103 m-, Even terms

Tb J148,49f 9s (7H80) 0.000 f8ds (9G7)* (3.3)f~p(d 0 (9F8o)* (28.0)+2 f8s 2 (7F6) (5.5)+2f 8ps(6,0) (9F6)* (28.0)==2 f8d2 (9NM)* (9.0)i3f

8dp (9H4o)* (30.0)42 J

9p( 125) (7117)* (24.9)

f7d2s ("IF2

0) (43.0)49 flO (OIN) (40.0) +4

f7d

3( 1F2

0) (48.0)49 f p

2(6,0) (OF6)* (60.0)+5

f7dS

2(9D2O) (53.0)+7 f

7d2p ("GI) (72.0)4+9

f7dps (11F2) (78.0)48

f7ps

2(ON3 ) (100.0) +9

Tb iIIfO (61,15/20) 0.000 f8d (8G,3/)* (9.5)41f7

d2 ('0F 3/2) (51.0)i9 f8S (

0F, 3/2) (18.0)4+3

f8p(6,I) (8F,1/ 2

0)* (52.0)+3 f7dp ('

0F3 12) (104.0)+7

f7ds (W°D5/20) (71.0)+15 f

7ds ('OP7 /2) (125.0)kiz9

f7s

2(8S7 /2) (93.0)47

f7p2 (bOP7/2) (160.0)49

Tb IV3,37

f7d (

9D2

0) (60.0)+44 fJ

7F6 0.000

f 7s (9S40') (93.0)45 f 7p (9P) (135.0)45

f6d

2(p12) (180.0)49

1671

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 7/17

TABLE X. Dysprosium.

Odd terms 10 cm-1 Even terms

DY II60-52

f 9ds 8H17/20* 10.594 f'°s 6I17/2 0.000

f9s

261115/20 12.336 f'5 d 6117/2* 14.846

f9d2 (8K17/

0)* (19.0)43 f ps('2

5,O) (81H1h2)* (36.0)±1

f10p(8,j) (6I1 /2)* 25.192 f~dp (IKss/2)* (38.0)+2

ft41151/20) (44.0)42 f

8d

2s (IOGi5/

2

)* (64.0)49

f 9p2 ('V,0) (lHns,2T)* (67.0) 43 f8d3 (10G1512)* (70.0)i9

f8 j2p (1OI9/2o)* (93.0)49 f8ds2

(SG1i,2)* (73.0)±7f8dps (1oH9/20)* (98.0)48

Dy iII

f9d (7H81)* (17.5) flO (NIO) 0.000

f1S ('L[80) (25.0)i42 fgp( W) (7I7)* (60.0) 2f8dp (M140)* (125.0)46 f d2

M(OH8)* (71.0)49

f ps(6,0) (9F6o)* (145.0) 9 f8ds (9G7)* (91.0)d5

f8s2 (7F6) (112.0)46f8p2(6,0) (9F6)* (180.0)=9

Dy IV,37

f 96115,20 0.000 f

8d (

8G1512)* (73.0)d3

f8p(6,J) (8F11/2o)* (147.0)±6 f8s (

8F13/2) (105.0)i5

f7d2

(0F3/20)

(156.0)4-9

d electrons are stabilized more than s electrons by manner with the additional check by use of Fig. 3 to

interaction with the unfilled f core. relate the d2 and ds values. Again, except for Pm, the

With the s and d levels fixed, the next step is to use uncertainties are less than 1000 cm-'.

the Racah relations that provide the f- 2s-f-3ds and The fn-1 configurations for the singly charged ion are

fn-2d-ft- 2 d2 energy differences for the singly charged established from the fn-2d-f7-' values given in the

ion from the established values for the f- 2s2-f-Vds

2 lowest curve of Fig. 1. This curve was fixed by com-

and fn-2 ds-f-l3 d2s differences for the neutral atoms. parison with the curves of the fn-

3-fn-2 and fn-1fn-3

The procedure should be clear from the discussion above groups given above in Fig. 1. The estimated values for

in relation to Figs. 1 and 2. In this manner, the energiesPr, Nd, Pm, Eu, and Gd are uncertain by about 2000

of the ds levels were estimated for Pr, Pm, Sm, Eu, Tb, cm'l and the values for Tb, Dy, Ho, Er, and Tm are

Ho, and Er with uncertainties of less than 1000 cm'l uncertain by about 3000 cm1l.

except for the Pm value which is uncertain by 2000 The p levels can be calculated from the s to p promo-

cm'l. The energies of the d2 levels were estimated for tion energies given in Fig. 4. As noted in the discussion

Pr, Pm, Sm, Eu, Tb, Dy, Ho, and Er in the same of Fig. 3, a number of additional curves for promotion

TABLEXI. Holmium.

Odd terms 103cm-, Even terms

Hon13

f its5I8° 0.000 f1052 (6Is) (10.0)-42

f11d (5 K60 )* (15.8)+1 flds (7K9)* (11.5)

fl'ps(8,°) (718o)* (34.0)42 f10d2 (7L1o)* (23.0) 1

f10dp (7L1o')* (39.0) 1 flp( (#,) (5I7)* (25.5)

f9d3s (

9Kio')* (72.0)h=9 f 12 ' (3HO) (46.0) 4

f9dS

2(7H180)* (79.0) 7 f10

p2(8,0) (7I8)* (66.0) 5

f9d3 (BKioT)* (79.0)47 f

9dps (9K6)* (103.0)4±8

f~d2p (9M6)* (103.0)d9

Ho III64,66

fll 4115/2° 0.000 f10d 6117/2* 18.1

flOp 6115/20* 57.498 f10

S 6I17/2 21.824

f9d2 (8K17/2T)* (79.0)48 fldp (K11 /2)* (130.0)i8

f9ds (8117/2o)* (96.0)45 flps(V-,0) (6H15/2)* (150.0)±9

f9S2 (H15/2°) (117.0)=18

f9p

2('V,0) (81H1620)* (185.0)d9

Ho IV,37f9d (7H8°)* (81.0)-3 flO 6I8 0.000

f's (7H81) (122.0)±35 PP('#l) (7H17)* (155.0)±5f(d2 (9Hs)* (178.0)+9

Vol. 611672 LEO BREWER

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 8/17

December1971NERGY LEVELS OF LANTHANIDES AND ACTINIDES

TABLE XII. Erbium.

Odd terms 103 m-, Even terms

Er n6l,56fls2

(41,s2°) (7.0) fs 2S 4H13/2 0.000f~lds (6K1 3/2o)* (10.5) f -d 6,3 (qI92)* 16.553fud2 (6Ks,/2,)* (23.6)±1 fsd (61/)*f'

2P(6,2) (

4 f2 (25.7)±t2 flldp(QT,2) (OKII/2)* (39.0)lIfl2 (2F7 2  ) (43.0)13 f'0e~s (8L21/2)* (72.0)±9

flp

2

(5,0) (6A5/20)* (65.0)42 flodS 

(6I17/2)* (77.0)±5f'Odps (8L 13/20 )* (102.0)46 fl0d

3(ML21/2)* (80.0)±9

flOdp (8M, 3 ,2

0)* (102.0)±9

Er II134flld(-,A) ((K6

0)* (17.2)41 fl2

fs ('18') (20.0)43 fllp( 2) (1K7)) (56.0)02f'Odp (IL6°)* (130.0)±5 fPlp& ' (7K)" (56.0)±271d

2Lio)* (79.0)4±5

fP ps (7180)* (145.0)i7 flOds (7K 7)* (95-0)4±3

flIS2 (6Is) (111.0)-45fl0 p

2(8,°) (7Is)* (180.0)49

Ernt3 

PIl 4I15/2° °°°° Eriv, fl~d 6LI7/2*(83.0)-4-3f'0p(8,2) (6I15/2)* (155.0)±5 fl

05

617/2 (110.0) 45

f9d2('t,2) (8

L11 1 20

)* (188.0)±9

TABLE XIII. Thulium.

Odd terms 103cm-' Even terms

Tm II57-61f s

3F4

00.000 f sS

2 3H6 12.457

fl3d 2EA] 3P2O* 17.625 fl2ds 3[4] (SK5)* 16.568fl

2ps 6,0 ('I 6)* 38.225 f'

3p 71 (

3F3 )* 25.980

f-2dp 6,2 (rI40)* 44.838 f'sd2(6,2) (5I4)* 30.509

fud2s (7L7 °)* (78.0)±9 f'4 'So (34.0)±4flld 2

(SK6°)* (83.0)47 f'2p2(6,0) (I6)* (71.0)45

flld3 (7L7 °)* (87.0)49

Tm III62J13

2F7/2

00.000 fl

2d 6,2 (4Ig/2)* 22.897

fl2

p 6,24

H 1 1 /2O* 62.064 f2

s4

fLf13/2 25.303flld

2(6L,1,2

0)* (85.0)±9 fudp (6Lil/2)* (136.0)±t7

f~lds (6Kl3/2°)* (100.0)75

fllp2(15 0) (1 1/2 ) (185.0)-49

Tm IV.37

flld('5 ) (5L6o)* (82.0)±3 fl2 3

ff 0.000fll (5IsO) (108.0)4-5 fllp(~ I, (sK7)* (154.0)-i5

flOd2

(?Lio)* (190.0)i9

TABLEXIV. Ytterbium.

Odd terms 103cm-, Even terms

Yb ,i63,64f 13S

  2F7/2

021.419 f 14s 2Si/2 0.000

fl'3 ds 3[2] (4G6/2a)* 26.759 fl

4d

2D3/2 22.961

fl4p 2p1/2

 27.062 fJ

3ps 7,° (4F712)* 47.912

fl3d

23[( ] (

4G5s/2)* 45.013 fl

3dp z,2 (

4F3/2)* 55.702

f'3p2(,0) (4F7/2O)* (81.0)±5 f2d2S2 (6Ks/2)* (93.0)±9f'sds2(6,) (

4Hg9 /2)* (97.0)44

fl2d3 (6Kg/2)* (103.0)±9

Yb ii165.66f'

3d 212 P2°* 33.385 f'4 'So 0.000

f'ss3F4

034.656 fl

3p 2 (

3D3)* 72.140

f' 2dp(6,2) (5140)* (152.0)44 f'2d

2(6,2) (5I4)* (103.0)±3

f6ps(6,0) (5f O)* (165.0)46 f'2ds(6,I) (I56)* (114.0)42f 2S

2(3H6) (130.0)±4

fl2p

2(6,0) (ff6)* (200.0)49

Yb IV65

f53 2F7/2o 0.000 f'2d(6,A) (4

H9 /2)* 88.195fl2p(6, ) (

4Hf

1/2O)* (160.0)4±4 f1

2S (4Hf3/2) (1 14.0)±4

fd2Iu,2 )* (195.0)±9

1673

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 9/17

TABLE XV. Lutecium.

Odd terms 103cm1 Even terms

Lu 167,68

fP4ps 3po° 27.264 f14s2 'So 0.000

fl4dp 3F2

0 41.225 fl4ds 3D, 11.796

fl3d2s (6H40)* (85.0)49 fl4d23F2 29.406

fl3ds

2(3F2

0)* (87.0)44 fl

4p2

(3Po) (62.0)45

f3dH 4 )* (97.0)4i9 fldps(2, 3) (5G2)* (114.0)d5f13d2p (5I2)* (116.0)+9

Lu iII69

-7 2

fd4p 2pP/20

38.402 f'4s 2SI/2 0.000

fPPd(3IJ-] (4G5/2

0)* (83.0)45 f 4d 2D3/2 5.708

f'3ds(

3[.]) (

4G5s 2

0)* (92.0)/2 fl

3dp(1,2) (

4F3/2)* (131.0)45

fl352 (2 F7/2

0) (107.0)45 fl

2pS(7,0) (

4F7/2)* (142.0)-9

Lu IV72

1'd(S ) (3p2O * (100.0)-3 fso 0.000

fl35 (3F4 °) (125.0)45 fP3

p(21A) (3D3) (172.0)45

f'2d2(6,2) ('I4)* (215.0)4-9

TABLEXVI. Actinium.

Odd terms 103cm1 Even terms

Ac ii

PS 3po0

20.956 S2 0.000

dp3F2

0 26.447 ds3D' 4.740

fs 3F2 

28.201 d23F2 13.236

fd3H4 ° 38.907 p

2 (3Po) (49.0)4-3

fp 3F2* 54.633

f 2 (3H4) (69.0) 4-5

Ac iia

f 2F5/2 23.455 s 2S1 /2 0.000

P 2P1/2' 29.466 d 2D3/2 0.801

TABLEXVII. Thorium.

Odd terms 103cm' Even terms

Th ii7374

fS2

2r6/2' 4.490 ds2 2D3/2 0.000

fds 4117/20 6.168 d2s4F,/2* 1.522

fd2

4117/20* 12.486 d3 4F3/2 7.001

dps (4Ff312

0

) (21.0)43 f2s 4H7f2 (22.0)+1ps

2(2p1 /2

0) (27.0)d8 fps

4G,/2 26.489?

d2p

4F3/2

0* 36.39 f2d (4192)* (31.0)d3

f2p (4Is/2°) (48.0)±42 fdp (4Io/2) (31.0) 4-1

fp2

(4Gs5/2) (54.0) 44

f3 (4Is/2°) (55.0)45

Th nI73,5

,76

fd 4 0.810 d2 3

F2 0.000

fs3F3°* 3.337 ds, 5.461

dp 2 37.217 S 

'So 11.898

Ps § t 3Po0 42.196 J2 3H4 15.959

fP 123 3G  34.372p

2(3po) (80.0) 5

Th IV75,77

f 2F5/20 0.000 d 2D3/2 9.193

p 2PI/20

60.239 s 2S1/2 23.130

Vol. 61674 L EO B RE WE R

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 10/17

December1971NERGY LEVELS OF LANTHANIDES AND ACTINIDES

TABLE XVIII. Protactinium.

Odd terms 10 cm-' Even terms

PaII78-80fds

2(3H40) (6.0)±43 f

2s

23H4 0.000

fd2s (5H31)* (6.0)44 f

2ds

5K 5 0.823

f3s (5I40) (8.0)±41 f

2d

2(5L6) (6.0)

fd3 (5140) (11.0)±5 d2s2

(3F2) (25.0)45

f3

d (5

L6

0

) (16.0) 43 fdps (6I4) (28.0)±t5f 2ps (5I40) 22.550? fps2(3F3)* (33.0)±48

f 2dp (5L6

0) (26.0) f

3p (

5K5) (33.0)±2

f 4 (6I14) (38.0)4-6fd

2p (

9K5) (41.0)±4

f2p

2('14) (50.0)45

Pa III79f3 (419/2°) (4.5)4±1 f

2d

4 1,1/2* 0.000

fd2

(4H7/20)* (10.0)±6 f2S (M17/2) (4.0)

fds (4H7/20) (17.0)±4 ds (4F5 /2)* (45.0)410

fs2

(2F5/2

0) (26.0)46 fdp (4K9/2) (50.0)±6

f2p (419/2°) (36.0) fps (4G512) (57.0)±t6

fp2

(4G5 /2

0) (95.0)±8

Pa IV

fd (3H4°) (20.0)46 f2 (H4) 0.000fs (3F20 ) (37.0)47 d

2(3F2) (45.0)4±10

fp (3G3) (75.0)45

of s to p electrons are omitted for clarity. The dp-ds(ii) similar manner. The entire class of curves for theand p-s(ii) curves are presented in Fig. 4 as an example promotion of an electron from a p to s orbital shows aof how closely the curves can follow one another. very regular and slow variation with q, and it is quiteAnother example is the dp-ds(i) curve, which would easy to estimate promotion energies with an uncertaintyfall just above the bottom curve of Fig. 4 for the much less than 1000cm'7.ps-s

2(I) promotion energy. The experimental points for The dp levels can also be obtained from the ds levels

the dp-ds promotion range from 1.2 to 1.5X 103 cm'l and the s to p promotions energies of Fig. 4. In addition,above the pS-S2 curve. In contrast to Fig. 3, there is no curves similar to those of Figs. 3 and 4 can be preparedclear evidence for discontinuities at q = 0 and q= 14 and for d to p promotion and the energies of the dp levels

the s and p electrons must interact with the f cores in a can be checked by starting from the d2 levels. These

TABLEXIX. Uranium.

Odd terms 10' cm-, Even terms

U 118-8 4

f35S2 419/20 0.000 f4S 6I7/2 4.664f3ds

6L 21/2

00.289 f

4d 6L11/2 12.514

f3d

2 6M H/2  4.585 f

2d

2s 6L11/2 13.783

f4p (6K9/2) (29.0)42 f

2ds

2 4K1,/2 15.680

fS (6H5/20) (32.0)±7 f2 d3 (6L,1/2) (19.0)±3f

2dps ('LII/2

0) (38.0)±5 f

2pS 6K9/2 23.315

f2ps

2(419g2°) (44.0) +5 f3dp 6M53/2 26.191

f3p

2(6K9/2

0) (50.0)42

fd2S2

(4H7/20)* (50.0) ±10f2d2p (6M2 3/2

0) (51.0)42

U III85f

3d

5L6

 (0.0)41 f4 ('14) (1.0)±1

f3S (514') (4.0)±2 f

2d

2(5L6) (20.0)47

f2dp (

5L,

0) (61.0)±10 f

2ds (

5K5) (27.0)±5

f2ps (5I4°) (69.0)±10 Pp (5K5) (36.0)±6fds

2(3H4°) (83.0)±10 f

2s

2(3H4) (37.0)46

d2s2

(3F2) (70.0) ±10

f2p

2('14) (108.0)±9

U IVf3 (41I9/2) 0.000 f

2d (4K,1/) (30.0)46

fd2 (4117/20)* (65.0)410 f2S (4H7/2) (50.0)+7f2p (4Is/2°) (89.0)±9

1675

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 11/17

LEO BREWER

TABLEXX. Neptunium.

Odd terms 103cm-, Even terms

NP IIf 6s (71120) (0.0) f

4S2

(614) (2.0)43f6d (

7K4 °) (10.0) f

4ds (

7L5) (2.0)+2

f3

d2s (

7M6°) (23.0)-5 f

4d2 (

7M') (7.0) 4-3

f4pS (

7K4

0) (25.0) 43 f6 (

7Fo) (22.0)+8

f3 ds2 (5L8O) (26.0)44 f~p (713) (23.0)41f4dp (

7MI

0) (28.0) 44 fpdps (7M6) (50.0)a+5

f3d3 (

7MG°) (29.0)+6 f

4p2

(7K4 ) (53.0)45

flps2 (2K5) (55.0)410

fpdcp (7N7 ) (60.0)4-7

f2d2s2

(5L4) (70.0)410

Np IIIf5 (8H5/20) (0.0) f

4d (6L1,/2 ) (6.0)+3

f3d

2(GM,3122) (34.0)+6 f

4s ('17,2) (10.0)44

f3

ds (8Lil/ 2

0) (41.0)45 f.dp (6M13,2) (76.0)4+6

f4p (

8K912

0) (42.0)47 fNps (

8K912 ) (83.0)+7

f3s; (419/2°) (50.0)47f.p

2(

8K9120) (123.0)+9

NP IVf3d

(L6

0

) (38.0)47 f4 (6I4) 0.000f3s (6I4°) (58.0)410 f2d2 (sL) (85.0)410f3p (MK0) (99.0):10

same p-d promotion-energy curves can be used to from an s orbital to a p orbital. Such relationships areestimate the energies of the ps levels from the ds levels. often useful for predictions.Then the s to p promotion energies can be used to To estimate values for configurations with three non-fcalculate the energies of the s2 levels from the ps levels, electrons, it is necessary to use the Racah relationshipsThese values can be checked through curves of the type to obtain d2s-ds, ds2-s2 , and d3-d2 differences asof Fig. 3 starting with the ds level. The p  levels can be discussed in connection with Figs. 1 and 2. The energyobtained from either of the p2 -dp or p2-ps promotions

of the dps configuration can be obtained from the ds

2

or by the p2-ds energy difference. This last difference is value by use of s-p promotions curves similar to those

interesting in that one electron is promoted from a d in Fig. 4. The energy of the pS2 configuration was

orbital to a p orbital, whereas one electron is demoted calculated from the estimates of the ps2-ds2 promotion,

TABLEXXI. PlUtOniUm.

Odd terms 103cm-' Even terms

Pu n18086-80f5s2

f15/2, 8.199 f65s 8

F 12 0.000f5ds

8K7/20

8.710 f6d 8113/2 12.008f

7('S7 /2

0) (14.0)48 f~ps 8I6/2 30.956

fad2 8

L9/2

0

17.297 f

5

dp (8L9L2) (34.0)45f p 8GI/20 22.039 f

4d's

8M11,2 37.641

f5p2

(815/20) (60.0)+5 J4d52 6L11/2 (41.5)42f

4dps ( MII/2') (65.0) + 7 f4d3 8M l/2) (42.0) 425

f4p52 (.gK9 2  ) (72.0)249f4d2p (

8N1 312

0) (75.0)45

f3d2s2

(4M I312') (95.0)10

Pu IIIf6d (

7K4

0) (13.0)+43 J6 (

7F0 ) 0.000

f6s (712-) (17.0)+t4 f5p (7I3) (49.0)±5

f4dp (

7MG°) (93.0)i7 f

4d2 (7M0) (50.0)+6

f4ps (

7K4

0) (98.0)+7 f

4ds (775) (57.0)+t5

f4s

2(5I4) (65.0)+6

f4

p2

(7K4 ) (140.0)+9

Pu IVf5 (81512') 0.000 f 4d (6Lit12) (47.0)+5f3d2 (

5'I,,3/2) (105.0)+10 f

4s ('17/2) (65.0)+46

f4p (K91,20) (106.0)+6

1676Vol. 61

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 12/17

December1971NERGY LEVELS OF LANTHANIDES AND ACTINIDES

TABLE XXII. Americium.

Odd terms 103 Cm- 

Even terms

Am I189,91

f7s 9S40 0.000 f6s

2(7Fo) (18.5)-- 1

f7d (

9D2

0) (14.0) f6ds (911) (20.5) 4l I

f6ps (9Go') (40.5)-41 f

7p ONP) (24.0)4 1

f6dp (9120) (44.0)±3 f6d

2(9I2) (29.0)42

fJd2s

(

9

L4

0

) (59.0)z15 fa (

7

F6) (32.0):49f5 dS2 (7K4 °) (60.0)4±5 f6p 2 (9Go) (70.0):43f5d3 (9L4

0) (62.0)47 f dps (

9L4) (83.0)d46

f5ps

2(7I3) (90.0)49

f5d

2p (

9MO) (97.0)i8

Am III92f7 (S 7/2

0) 0.000 f6d (8H3/2) (24.0)43

f6p (

8G1120) (57.0)44 f 6s (WF112) (27.0)d4

f5d

2(KL9/2

0) (70.0)i5 fJdp (

8L9/2) (113.0)46

f5ds (

8K 7/2) (77.0)-5 f1ps (8I5,2) (117-0)4-6

f552

(8H5/20) (84.0)46f

5p

2(8I5/20) (157.0):47

Am IV3,94

f5d (

7K4 °) (56.0)L5 f6 7Fo 0.000

fas (7H2°) (74.0)-4-6 fsp C7IO(I 14.0) 4-6f4 d2 (7M6) (125.0)48

which was expected to be very close to the p-d promo- TABULATION OF LEVEL VALUES

tion of the doubly charged ions. Most of the pS2 levels Tables I-XXX present, 11

-10 4 for all of the lanthanides

and all of the p2S, dp2, and P3 levels were estimated to and actinides, the energy-levelvalues of the lowest level

be well above the ionization limits and are not given in of the lowest spectroscopic term of each electronic con-the tables of energies if they are more than 10000 cm-' figuration for singly, doubly, and triply charged ions.above the ionization limits. The values given are restricted to configurations in-

In a similar manner, but in a different order depend- volving 4f, 5d, 6p, and 6s electrons for the lanthanides

ing upon which data are available, energies can be and 5f, 6d, 7p, and 7s electrons for the actinides.calculated for the lowest level of each of the electronic The energies are given in thousands of wavenumbers.

configurations of the other stages of ionization and for Experimental values are given to 0.001X103 cm-'.

the various ions of the actinides. Estimated values are given in parentheses to the nearest

TABLEXXIII. Curium.

Odd terms 102 cm-, Even terms

Cm Ii96f

7S2

8S7/20

0.000 f8s 8F13/

22.094

f7ds '

0D5/2

04.011 f

8d ('Gi5/)* (18.0)41

f7d

2'OF3/20 14.830 f

7ps (lOP

7/2) (23.0)

f9 (6H15/20) (26.0)49 f 7dp ('8F3/) (29.0)f8p(6j2) (

8F11 /2o)* (26.0)41 f6dS

2(8H3/2) (54.0)42

f7

p2

( OP7/ 2

0) (53.0) f

6d2s (I213/2) (54.0)43

f6dps (1013/20) (77.0)i4 f

6d3 (1OI3/2) (58.0)±5

f6pS

2(8G112') (80.0)dE9

f6d

2p ('

0K 5/2

0) (93.0):46

Cm IIIf

7s (9S4

0) (5.0)45 (

7F6) 0.0

f7d (9D0) (5.0)43 f7p (9PO) (36.0)-5f

6dp (9120) (103.0)i8 f

6d

2(9I2) (63.0)+7

f 6ps (9Go°) (105.0)48 f 6ds (9H1) (67.0)±7f652 (

7Fo) (72.0)±8

fJp2

(9Go) (145.0)±9

Cm IV96

1 7 857/2° 0.000 f6d (8H3,2) (69.0)±5f6p (8GI12

0) (126.0)46 f65 (8FI/2) (86.0)46f

5d

2(8L9/2

0) (150.0)48

1677

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 13/17

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 14/17

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 15/17

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 16/17

December1971ENERGY LEVELS OF LA NT]

TABLE XXXI. Additional energy levels ofthe neutral atoms, 103 m-'.

La I fd 2f

2s

Ce I f2d2f

2dp

f3s

Pr f 4sf

2p

2s

Nd i f 5sf

3p

2s

Pm I f6d2

f6s

f4p

2s

Sm I f6

dpf~d

3

Eu i f 6ps2

Gd f8d

2

Tbi f8d3

f9d2f '°s

f7

d2s

2

Dy I f 9d3

f

9

p2s

fl's

Ho i f 'd3

f1 2

s

Er f11

d2p

f 11d3f 13s

Tm f ' sf l3d2

fl2d2pfl

2d

3

YbI f' 3dps 2E2

f l4d2

f13

d2p

Lu I fl4d2p

Cm I f6d

2S

2

(4H7/2 *(4H7/2)(1L6)

(5L6°)(

6f0o)

(6I7/2)(617,2)(7H20)

(7K 4

0)

(8L9/2

0)

(0Fll2)

(OK7/2)

9I2(

9L4)

(9G7)*

(10H1512)

(0K17/2 *(0117,2)*(6I 17/2)('

0F 3/2

0)

(9gHs)*

(slo0)

(0IW1/2)*

(K113/2)(IK6)*(

7K7a)*

(3F 4O)

('51/2)(OG1121)*

(4G1l20)*

(6I9/2)*

(6G 2)*

(3F2)

(5G2)*

(4G5I2°)(9I 2)

(35.5)-+ 1(52.0) -10(24.8) --1(26.6)(42.0)--8

(40.0)--6(42.0)+4(40.0)--5(46.0) 3(23.0) 1(34.0)+4(47.0)--325.809a(32.0)+t2(41.0)(42.0)--2(25.0) +1(34.0)43(42.0)--9(45.0) i5(35.0)--2

(43.4) 4-1(45.0)+49(39.0)--2(47.0)+9(38.5) +2(39.0)+t3(42.0) 4+9(33.0)49(44.5) +t2(46.0)+43(48.0)--4

39.880b4 7.58 4b

5 9 .3 77b(39.0)+2(50.0) +7

  Reference60.bReference 104.

ACKNOWLEDGMENTS

I wish to thank Dr. J. Blaise, Dr. P. Camus, Dr. J.G. Conway, Dr. R. D. Cowan, Dr. S. P. Davis, Dr. H.M. Crosswhite, Dr. W. C. Martin, Dr. S. Nir, Dr. L. J.Radziemski, Jr., Dr. N. Spector, Dr. D. W. Steinhaus,Dr. J. Sugar, Dr. E. F. Worden, and Dr. J. R. Wyartfor their cooperation in private communications. Thiswork was supported by the U. S. Atomic Energy

Commission.

REFERENCES

1 L. Brewer, J. Opt. Soc. Am. 61, 1101 (1971).2 L. J. Nugent and K. L. Vander Sluis, J. Opt. Soc. Am. 61, 1112

(1971).3E. Loh, Phys. Rev. 147, 332 (1966).4D. S. McClure and Z. Kiss, J. Chem. Phys. 39, 3251 (1963).5M. H. Crozier, Phys. Rev. 137A, 1781 (1965).6W. C. Martin, J. Opt. Soc. Am. 61, 1682 (1971).7P. Camus, J. Phys. (France) 27, 717 (1966).8G. Racah, Cours au College de France, Paris, 1964, as reported

in Ref. 7 and in notes taken at the lectures.9C. K. Jorgensen, Mol. Phys. 5, 271 (1962).10

C. E. Moore, Bibliography of the Analyses of Optical AtomicSpectra, Section 4, Natl. Bur. Std. (U.S.) Spec. Publ. 306-4 (U.S.Govt. Printing Office, Washington, D.C., 1969).

11C. E. Moore, A tomticEnergy Levels, Vol. III, Natl. Bur. Std.(U.S.) Circ. 467 (U.S. Govt. Printing Office, Washington, D.C.,1958).

12 H. Odabasi, J. Opt. Soc. Am. 57, 1459 (1967).

HIANIDES AND ACTINIDES 1681

'3G. R. Harrison, W. E. Albertson, and N. F. Hosford, J. Opt.Soc. Am. 31, 439 (1941).

14 Ph. Schuurmans, Physica 12, 589 (1946).15W. C. Martin, private communication, Feb. 1971.16 . Sugar, J. Opt. Soc. Am. 55, 33 (1965).17N. Spector, J. Opt. Soc. Am. 55, 492 (1965).18R. J. Lang, Can. J. Res. 14A, 127 (1936).19N. Rosen, G. R. Harrison, and J. R. McNally, Jr., Phys. Rev.

60, 722 (1941).20 h. Schuurmans, Physica 11, 419 (1946).21 . Sugar, J. Opt. Soc. Am. 53, 831 (1963); J. Res. Natl. Bur.

Std. (U.S.) 73A, 333 (1969).22 . Sugar, J. Opt. Soc. Am. 55, 1058 (1965); 61, 727 (1971).

23J. Sugar, private communication, Feb. 1971.24 M. Wilson and M. Fred, J. Opt. Soc. Am. 59, 827 (1969).25J. Wyart, these de 3e Cycle, University of Paris (Orsay),

1968.26 R. Hoekstra, Ph.D. thesis, University of Amsterdam, 1969.27 J. Blaise, J. Chevillard, J. Verges, and J. F. Wyart, Spectro-

chem. Acta 25B, 333 (1970).28 J. F. Wyart, J. Phys. (France) 31, 559 (1970).29 H. Crosswhite and H. M. Crosswhite, J. Opt. Soc. Am. 60,

1556A (1970).30 D. J. G. Irwin, Ph.D. thesis, Johns Hopkins Univ., 1969

(Univ. Microfilms, Ann Arbor, Mich.), No. 69-21,084.31S. P. Davis, private communication, Feb. 1971.32 W. E. Albertson, Astrophys. J. 84, 26 (1936).

33J. Blaise, C. Morillon, M.-G. Schweighofer, and J. L. Verges,Spectrochem. Acta 24B, 405 (1969).

34J. Becher, Ph.D. thesis, Johns Hopkins Univ., 1965 (Univ.Microfilms, Ann Arbor, Mich.), No. 66-4956.

36 A. A. Dupont, Ph.D. thesis, Johns Hopkins Univ., 1966 (Univ.Microfilms, Ann Arbor, Mich.), No. 66-7025

36A. A. Dupont, J. Opt. Soc. Am. 57, 867 (1967).37W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys.

49, 4412, 4423, 4450 (1968).38H. N. Russell, W. Albertson, and D. N. Davis, Phys. Rev.

60, 641 (1941).19 . Koniordos and R Winkler, Phys. Letters (Amsterdam)

A27, 198 (1968).40 P. Bagus and J. Picart, Compt. Rend. 266B, 842 (1968).41H. N. Russell, J. Opt. Soc. Am. 40, 550 (1950).42 D. Desmarais and E. H. Pinnington, J. Opt. Soc. Am. 57,

1245 (1967).43

J. Blaise and T. A. M. van Kleef, Compt. Rend. B268, 792(1969).

44N. Spector, J. Opt. Soc. Am. 59, 488 (1969); 60, 763 (1970).45W. R. Callahan, J. Opt. Soc. Am. 53, 695 (1963).46 J. F. Kielkopf, Jr., Ph.D. Thesis, Johns Hopkins Univ., 1969

(Univ. Microfilms, Ann. Arbor, Mich.), No. 69-21,087.47 . F. Kielkopf, Jr. and H. M. Crosswhite, J. Opt. Soc. Am.

60, 347 (1970).48 S. P. Davis, Astrophys. J. 132, 486 (1960).49E. Meinders, Physica 42, 427 (1969).

10K. L. Vander Sluis and J. R. McNally, Jr., J. Opt. Soc. Am.60, 1209 (1970).

51N. Spector, J. Opt. Soc. Am. 61, 672A (1971).62J. F. Wyart, Compt. Rend. 272, 933 (1971).13J. Sugar, J. Opt. Soc. Am. 58, 1519 (1968).64 . H. McElaney, J. Opt. Soc. Am. 57, 870 (1967).65H. M. Crosswhite, private communication.

56K. L. Vander Sluis and J. R. McNally, Jr., J. Opt. Soc. Am.60, 94 (1970).

57 J. Blaise and P. Camus, Compt. Rend. 260, 4693 (1965).68 . Camus and J. Blaise, Compt. Rend. 261, 4359 (1965).69N. Spector, J. Opt. Soc. Am. 57, 312 (1967).60P. Camus, these de doctorate, University of Paris (Orsay),

1971.61 P. Camus and J. Sugar, private communication, Feb. 1971.62 J. Sugar, J. Opt. Soc. Am. 60, 454 (1970).63W. F. Meggers, J. Res. Natl. Bur. Std. (U.S.) 71A, 396 (1967).64N. Spector, J. Opt. Soc. Am. 58, 837 (1968).61 B. W. Bryant, J. Opt. Soc. Am. 55, 771 (1965).60 . Sugar, J. Opt. Soc. Am. 60, 571 (1970); private communi-

cation, Feb. 1971.67E. H. Pinnington, Can. J. Phys. 41, 1305 (1963),68Z. B. Goldschmidt, in Spectroscopic and Group Theoretical

Methods in Physics, edited by F. Block, S. G. Cohen, A. De-Shalit,

8/13/2019 Journal of the Optical Society of America Volume 61 Issue 12 1971 [Doi 10.1364_JOSA.61.001666] BREWER_ LEO -- Energies of the Electronic Configuratio…

http://slidepdf.com/reader/full/journal-of-the-optical-society-of-america-volume-61-issue-12-1971-doi-101364josa61001666 17/17

LEO BREWER

S. Sambursky, and I. Talmi (North-Holland, Amsterdam, 1968;Am. Elsevier, New York, distr.), pp. 441-457.

69A. Steudel, Z. Physik. 152, 599 (1958).70J. Sugar and J. Reader, J. Opt. Soc. Am. 55, 1286 (1965).71H. Heilig and P. Kasten, Naturwiss. 54, 338 (1967).72

J. Sugar and V. Kaufman, J. Opt. Soc. Am. 60, 1556A (1970).73G. W. Charles, private communication, May 1958; J. Opt.

Soc. Am. 54, 267 (1964).74J. B. Ganz, Bull. Res. Counc. Israel 9F, 31 (1960).75P. F. A. Klinkenberg Physica 16, 185, 618 (1950).

76G. Racah, Physica 16, 651 (1950).77P. F. A. Klinkenberg and R. J. Lang, Physica 15, 774 (1949).78 A. Giacchetti, J. Opt. Soc. Am. 57, 728 (1967).79M. Wilson, J. Opt. Soc. Am. 57, 429 (1967).80 . Blaise, private communication, Mar. 1971.81M. Diringer, Ann. Phys. (Paris) 10, 89 (1965).82 Z. Ben Osman, these, University of Paris, 1966.83 J. Blaise, J. Phys. (Paris) Colloq. 30, 74 (1969).84 L. J. Radziemski, Jr., D. W. Steinhaus, R. D. Cowan, J. Blaise,

G. Guelachvilli, Z. Ben Osman, and J. Verges, J. Opt. Soc. Am.60, 1556A (1970); private communications, Feb. and Mar., 1971.

86R. D. Cowan, private communication, Feb. 1971.86J. Bauche, J. Blaise, and M. Fred, J. Opt. Soc. Am. 54, 565A

(1964).87M. Fred, J. Blaise, and R. Gutmacher, J. Opt. Soc. Am. 56,

1416A (1966).

8 8L. A. Korostyleva and A. R. Stringanov, Opt. Spektrosk.

20, 194, 545 (1966).89 . Blaise and A. Steudel, Z. Physik 209, 311 (1968).90F. S. Tomkins, M. Fred, S. Gerstenkorn, and J. Blaise, J.

Opt. Soc. Am. 60, 1555A (1970).91M. Fred and F. S. Tomkins, J. Opt. Soc. Am. 47, 1076 (1957).92 R. Winkler, Z. Physik 184, 433 (1965).93

J. G. Conway and B. R. Judd, J. Chem. Phys. 41,1526 (1964).  L. J. Nugent, R. D. Baybarz, and J. L. Burnett, J. Phys.

Chem. 73, 1177 (1969).

95E. F. Worden and J. G. Conway, Physica 33, 274 (1967);private communication, Jan. 1971.

96B. G. Wybourne, J. Chem. Phys. 40, 1456 (1964).97E. F. Worden, E. K. Hulet, R. Lougheed, and J. G. Con-

way, J. Opt. Soc. Am. 57, 550 (1967).98E. F. Worden, R. G. Gutmacher, R. W. Lougheed, and J. G.

Conway, J. Opt. Soc. Am. 60, 1555A (1970).99

J. G. Conway, E. K. Hulet, and R. J. Morrow, J. Opt. Soc.Am. 52, 22 (1962).

'° E. F. Worden and J. G. Conway, J. Opt. Soc. Am. 60, 1144(1970).

101B. G. Wybourne, J. Chem. Phys. 36, 2301 (1962).102 E. F. Worden, R. G. Gutmacher, R. W. Lougheed, J. G. Con-

way, and R. J. Mehlhorn, J. Opt. Soc. Am. 60, 1297 (1970).103N. Edelstein, J. G. Conway, D. Fujita, W. Kolbe, and R.

McLaughlin, J. Chem. Phys. 52, 6425 (1970).

104 . Nir, Ph.D. thesis, Hebrew Univesity, Jerusalem, 1969.

1682 Vol. 61