JOPS - qu.edu.iq

12
http://qu.edu.iq/journalsc/index.php/JOPS Al-Qadisiyah Journal of Pure Science Vol.(26) Issue (4) (2021) pp.. 181โ€“192 Solving Riccati type โˆ’Difference Equations via Difference Transform Method Authors Names a: Ahmed Y. Abdulmajeed b: Ayad R. Khudair Article History Received on: 2/6/2021 Revised on: 15/7/2021 Accepted on:25/7/2021 Keywords: Time scales calculus; Differential transform method; Riccati type โˆ’difference equations DOI:https://doi.org/10.293 50/ jops. 2021.26. 4.1318 ABSTRACT In this paper, we deal with a time scale that its delta derivative of graininess function is a nonzero positive constant. Based on the Taylor formula for this time scale, we investigate the difference transform method (DTM). This method has been applied successfully to solve Riccati type โˆ’difference equations in quantum calculus. To demonstrate the ability and efficacy of this method, some examples have been provided. 1. Introduction One of the simplest and more important type of nonlinear differential equations are Riccati differential equations [32]. Due to their close connection to the Bessel function, these equations have often appeared in many physical problems, likes; static Schrรถdinger equation [12], Newtonโ€™s laws of motion [29], 3D- Gross-Pitaevskii equation [26], cosmology problem [33]. Also, it relates to many mathematical subjects, including; projective differential geometry [2], calculus of variations [41], optimal control [30], and dynamic programming [6]. Several techniques have been used to solve constant coefficients Riccati differential equations, such as; operation matrix method [31], variational iteration method [17], polynomial least squares method [9], homotopy perturbation method [1], Legendre wavelet method [3], and Adomianโ€™s decomposition method[15]. Riccati difference equations are not different from Riccati differential equations, as they have many applications in various fields. Where it arises in the filtering problem [27], the optimal control problem [5] and it has been studied by numerous scholars [4, 42, 38, 28]. In fact, the first study appeared on the difference Riccati equations was in 1905 by H. Tietze [39]. a Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq, E-Mail: [email protected] b Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq, E-Mail: [email protected]

Transcript of JOPS - qu.edu.iq

Page 1: JOPS - qu.edu.iq

http://qu.edu.iq/journalsc/index.php/JOPS

Al-Qadisiyah Journal of Pure Science Vol.(26) Issue (4) (2021) pp.. 181โ€“192

Solving Riccati type ๐’’๐’’ โˆ’Difference Equations via Difference Transform Method

Authors Names a: Ahmed Y. Abdulmajeed b: Ayad R. Khudair

Article History

Received on: 2/6/2021

Revised on: 15/7/2021

Accepted on:25/7/2021

Keywords:

Time scales calculus; Differential transform method; Riccati type ๐‘ž โˆ’difference equations

DOI:https://doi.org/10.293

50/ jops. 2021.26. 4.1318

ABSTRACT

In this paper, we deal with a time scale that its delta derivative of graininess function is a nonzero positive constant. Based on the Taylor formula for this time scale, we investigate the difference transform method (DTM). This method has been applied successfully to solve Riccati type ๐‘ž โˆ’difference equations in quantum calculus. To demonstrate the ability and efficacy of this method, some examples have been provided.

1. Introduction

One of the simplest and more important type of nonlinear differential equations are Riccati differential equations [32]. Due to their close connection to the Bessel function, these equations have often appeared in many physical problems, likes; static Schrรถdinger equation [12], Newtonโ€™s laws of motion [29], 3D- Gross-Pitaevskii equation [26], cosmology problem [33]. Also, it relates to many mathematical subjects, including; projective differential geometry [2], calculus of variations [41], optimal control [30], and dynamic programming [6]. Several techniques have been used to solve constant coefficients Riccati differential equations, such as; operation matrix method [31], variational iteration method [17], polynomial least squares method [9], homotopy perturbation method [1], Legendre wavelet method [3], and Adomianโ€™s decomposition method[15].

Riccati difference equations are not different from Riccati differential equations, as they have many applications in various fields. Where it arises in the filtering problem [27], the optimal control problem [5] and it has been studied by numerous scholars [4, 42, 38, 28]. In fact, the first study appeared on the difference Riccati equations was in 1905 by H. Tietze [39].

a Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq, E-Mail: [email protected]

b Department of Mathematics, College of Science, University of Basrah, Basrah, Iraq, E-Mail: [email protected]

Page 2: JOPS - qu.edu.iq

182 Ahmed Y. Abdulmajeed, Ayad R. Khudair, Al-Qadisiyah Journal of Pure Science 26,SPECIAL ISSUE NUM.4(2021)PP.181โ€“192

๐‘—๐‘—=0

The q-difference equation (q-DEs)is a type of difference equation that is based on q-calculus. Indeed, the old references refer to the beginning of q-calculus was in the late 20th century to make links between mathematics and physics [16]. It has a variety of uses in mathematics, engineering and science, including basic hypergeometric functions [10, 11, 36, 35, 34], orthogonal polynomials [25], combinatorics [19], and quantum theory [21]. In recent years, several scholars have attempted to solve many types of q-DEs by using semi-analytic methods, including; the q-differential transformation method (q-DTM)[13, 14], variational iteration method [40], succes- sive approximation method, and homotopy analysis method [37].

In this paper, we deal on time scale ๐•‹๐•‹ that its delta derivative of graininess function is a nonzero positive

constant, that is ๐œ‡ฮ” = ๐œ๐œ > 0. Based on Taylor formula for this time scale, we introduce some fundamental theorems related to DTM in order to solve the following Riccati type ๐‘ž โˆ’difference equations on the time

scale ๐•‹๐•‹ = ๐‘žโ„• = {0} โ‹ƒ {๐‘ž๐‘ก|๐‘ก โˆˆ โ„•, 0 < ๐‘ž < 1}:

ฮจฮ”(๐‘ก) = ๐‘”1(๐‘ก)ฮจ(๐‘ก) + ๐‘”2(๐‘ก)ฮจ(๐‘ก)2 + ๐‘”3(๐‘ก), ฮจ(๐‘ก) = ๐ด. (1)

where ๐‘”๐‘(๐‘ก), ๐‘Ÿ = 1,2,3 are analytic function on ๐•‹๐•‹.

2. Preliminaries

This section has provided a brief overview of time scale preliminary information and their relationship to q-calculus

Definition 2.1 [18] A time scale is a non-empty arbitrary closed subset of real numbers denoted by ๐•‹๐•‹. Time scale examples, [0,1], the natural numbers set โ„•, the real numbers set โ„, [0,1] โ‹ƒ [2,3] and the cantor set

whereas the set of rational numbers โ„š, complex numbers โ„‚, and [0,1), (0,1], (0,1), (0,1] ๐–ด {2 ๐‘ โˆ’ ๐‘Ž} are not time scales.

Definition 2.2 [8] Let ๐•‹๐•‹ be any time scale and ๐‘Ÿ โˆˆ ๐•‹๐•‹. Operator of a forward jump ๐œŽ: ๐•‹๐•‹ โ†’ ๐•‹๐•‹ is given as:

๐œŽ(๐‘Ÿ) = inf{๐‘  โˆˆ ๐•‹๐•‹: ๐‘  > ๐‘Ÿ} (2)

while, the Operator of a backward jump ๐œŒ: ๐•‹๐•‹ โ†’ ๐•‹๐•‹ at all ๐‘Ÿ โˆˆ ๐•‹๐•‹ is given as:

๐œŒ(๐‘Ÿ) = sup{๐‘  โˆˆ ๐•‹๐•‹: ๐‘  < ๐‘Ÿ} (3)

Definition 2.3 [7]

For ๐‘  โˆˆ ๐•‹๐•‹, the function ๐œ‡: ๐•‹๐•‹ โ†’ [0, โˆž) defined by

๐œ‡(๐‘ ) = ๐œŽ(๐‘ ) โˆ’ ๐‘  (4)

is called graininess function.

assume that

๐•‹๐•‹ = ๐‘žโ„• = {๐‘ž๐‘ก|๐‘ก โˆˆ โ„•, 0 < ๐‘ž < 1} โ‹ƒ {0}

Let the ๐‘ž โˆ’shift factorial is given by

(๐‘ก; ๐‘ž)0 = 1 ๐‘Ž๐‘›๐‘‘ (๐‘ก; ๐‘ž)๐‘š = โˆ๐‘šโˆ’1 (1 โˆ’ ๐‘Ž๐‘ž๐‘—๐‘—), ๐‘š = 1, โ€ฆ , ๐‘š

such that ๐‘ก is real number.

Page 3: JOPS - qu.edu.iq

183 Ahmed Y. Abdulmajeed, Ayad R. Khudair, Al-Qadisiyah Journal of Pure Science 26,SPECIAL ISSUE NUM.4(2021)PP.181โ€“192

๐‘

โˆ‘

Definition 2.4 [7] For ๐‘ก โˆˆ ๐‘žโ„•, the delta ๐‘ž โˆ’derivative of a function ๐‘”(๐‘ก) on ๐•‹๐•‹ = ๐‘žโ„• is given by

๐‘”๐‘”(๐‘ž๐‘ก)โˆ’๐‘”๐‘”(๐‘ก) , ๐‘–๐‘–๐‘“๐‘“ ๐‘ก โˆˆ ๐‘žโ„•

(๐‘žโˆ’1)๐‘ก

๐‘”ฮ”(๐‘ก) = โŽช

โŽจ lim โŽช๐‘›โ†’โˆž

๐—…

๐‘”๐‘”(๐‘ž๐‘›)โˆ’๐‘”๐‘”(0) , ๐‘–๐‘–๐‘“๐‘“ ๐‘ก = 0

๐‘ž๐‘›

(5)

Definition 2.5 [22] Let ๐บ: ๐‘žโ„• โ†’ โ„ a pre-antiderivative of the function ๐‘”: ๐‘žโ„• โ†’ โ„.such that ๐บ ๐›ฅ๐›ฅ(๐‘ก) = ๐‘”(๐‘ก). The indefinite integral of the function ๐‘” is define by

โˆซ ๐‘”(๐‘ก)ฮ”๐‘ก = ๐บ(๐‘ก) + ๐‘, (6)

where ๐‘ is a constant. Moreover, the definite integral is defined by

โˆซ๐‘‘๐‘‘

๐‘”(๐‘ก)ฮ”๐‘ก = ๐บ(๐‘‘) โˆ’ ๐‘”(๐‘), โˆ€๐‘, ๐‘‘ โˆˆ ๐‘žโ„• (7)

Definition 2.6 [8] The monomials ๐‘•๐‘›: ๐•‹๐•‹ ร— ๐•‹๐•‹ โ†’ โ„, ๐‘› โˆˆ โ„•0 on a time scale ๐•‹๐•‹ are defined by

๐‘•0(๐‘Ÿ, ๐‘ ) = 1 ๐‘• (๐‘Ÿ, ๐‘ ) = ๐‘Ÿ

๐‘• (๐‘Ÿ, ๐‘ )๐‘‘๐‘Ÿ, ๐‘› โˆˆ โ„•, ๐‘Ÿ, ๐‘  โˆˆ ๐•‹๐•‹. (8)

๐‘›+1 โˆซ๐‘  ๐‘›

Hence, the ฮ” โˆ’derivative of ๐‘•๐‘›(๐‘Ÿ, ๐‘ ) with respect to ๐‘Ÿ given by

๐‘•ฮ”(๐‘Ÿ, ๐‘ ) = ๐‘• (๐‘Ÿ, ๐‘ ), ๐‘› โ‰ฅ 1 (9)

Example 2.1 [8]

๐‘› ๐‘›โˆ’1

1. When ๐•‹๐•‹ = ๐‘žโ„•, we get

๐‘• (๐‘ก, ๐‘ ) = โˆ๐‘›โˆ’1

๐‘กโˆ’๐‘ ๐‘ž๐œ”

, โˆ€๐‘› โˆˆ โ„• (10)

๐‘›

2. When ๐•‹๐•‹ = โ„, we get

๐œ”=0 ๐œ” ๐‘›=0 ๐‘ž

๐‘›

3. When ๐•‹๐•‹ = โ„ค, we get

๐‘•๐‘› (๐‘ก, ๐‘ ) = (๐‘กโˆ’๐‘ )๐‘›

, โˆ€๐‘› โˆˆ โ„• (11) ๐‘›!

๐‘ก โˆ’ ๐‘  ๐‘•๐‘›(๐‘ก, ๐‘ ) = ๏ฟฝ๐‘› ๏ฟฝ, โˆ€๐‘› โˆˆ โ„• (12)

Theorem 2.1 [8] For all ๐‘ก, ๐‘  โˆˆ ๐•‹๐•‹ and ๐‘—๐‘— โˆˆ โ„•0, we have

0 โ‰ค ๐‘• (๐‘ก, ๐‘ ) โ‰ค (๐‘กโˆ’๐‘ )๐‘—๐‘—

, โˆ€๐‘Ÿ โ‰ฅ ๐‘  (13)

๐‘—๐‘— ๐‘—๐‘—!

Let ๐‘š โˆˆ โ„• and ๐‘”: ๐•‹๐•‹ โ†’ โ„ is ๐‘š โˆ’ ๐‘ก๐‘–๐‘–๐‘š๐‘’๐‘  differentiable function on ๐•‹๐•‹๐‘˜๐‘š

, ๐‘ก โˆˆ ๐•‹๐•‹.

Let ๐‘  โˆˆ ๐•‹๐•‹๐‘˜๐‘šโˆ’1

, then

โŽง

Page 4: JOPS - qu.edu.iq

184 Ahmed Y. Abdulmajeed, Ayad R. Khudair, Al-Qadisiyah Journal of Pure Science 26,SPECIAL ISSUE NUM.4(2021)PP.181โ€“192

๐‘—๐‘—=0

๐‘ 

โˆ‘ ๐‘™=1

๐‘—๐‘— =0 โˆ‘

๐‘ข=0

ฮ”๐‘ข

๐œ…๐œ…=0

๐œ…๐œ…=0 ๐œ…๐œ…=0

๐‘—๐‘—=0

๐‘”(๐‘ก) = โˆ‘๐‘šโˆ’1 ๐‘•๐‘—๐‘—(๐‘ก, ๐‘ )๐‘” ฮ”๐‘—๐‘— (๐‘ ) + ๐‘…๐‘š(๐‘ก) (14)

is called Taylors formula and the remainder term ๐‘…๐‘š(๐‘ก) is defined by

and it tends to zero as ๐‘š โ†’ โˆž.

๐‘…๐‘š (๐‘ก) = โˆซ๐‘ก

๐‘”ฮ”๐‘š

(๐‘Ÿ)๐‘•

๐‘šโˆ’1

(๐‘ก, ๐œŽ(๐‘Ÿ))ฮ”๐‘Ÿ

Proposition 2.1 [8] Let ๐‘”: ๐•‹๐•‹ โ†’ โ„ is an analytic function at ๐‘  and at all ๐‘ก โˆˆ (๐‘  โˆ’ ๐œ€๐œ€, +โˆž) โ‹‚ ๐•‹๐•‹ holds that

๐‘”(๐‘ก) = โˆ‘โˆž ๐‘Ž๐‘—๐‘—๐‘•๐‘—๐‘—(๐‘ก, ๐‘ ). Then ๐‘”(๐‘ก) is infinitely ๐‘—๐‘— โˆ’times differentiable at ๐‘  and ๐‘”๐›ฅ๐›ฅ๐‘—๐‘—

(๐‘ ) = ๐‘Ž

Theorem 2.2 [24] For any ๐‘ก, ๐‘  โˆˆ ๐•‹๐•‹ with ๐œ‡๐›ฅ๐›ฅ = ๐œ๐œ > 0 a constant. Then the product of monomials ๐‘•๐‘ and ๐‘•๐œ…๐œ…

as follows

๐‘• (๐‘ก, ๐‘ )๐‘• (๐‘ก, ๐‘ ) = โˆ‘๐‘+๐œ…๐œ… ๐น(๐‘ข, ๐œ…, ๐‘Ÿ)๐‘•๐œŽ๐œŽ๐œ…๐œ…

(๐‘ , ๐‘ )๐‘• (๐‘ก, ๐‘ ), (15)

such that

๐‘ ๐œ…๐œ… ๐‘ข=๐œ…๐œ… ๐‘+๐œ…๐œ…โˆ’๐‘ข ๐‘ข

๐‘Ÿ(๐‘Ÿ+1) ๐œ…๐œ…

๐น(๐‘ข, ๐œ…, ๐‘Ÿ) = ๏ฟฝ ๐œ”=1 โˆ‘๐‘ขโˆ’๐œ…๐œ… (โˆ’1)๐‘โˆ’1๐œ‘๐‘™(๐‘ข)๐‘ข๐‘™(๐œ”+1)โˆ’ 2 , ๐‘“๐‘“๐‘œ๐‘Ÿ ๐‘ข > ๐‘Ÿ (16) 1, ๐‘“๐‘“๐‘œ๐‘Ÿ ๐‘ข = ๐œ…

๐œ‘๐‘™(๐‘ข, ๐‘Ÿ) = โˆ ๐‘ โ‰ ๐‘™

1โ‰ค๐‘ โ‰ค๐‘Ÿ

1

(๐‘ขโˆ’๐œ„๐œ„โˆ’๐‘ขโˆ’๐‘ ) , ๐œ‘1(๐‘ข) = 1 ๐‘Ž๐‘›๐‘‘ ๐‘ข = 1 + ๐œ๐œ (17)

Remark 2.1 ๐น(๐‘ข, ๐œ…, ๐‘Ÿ) in theorem(2.2) can be computed in another way according to the following formula [24]

๐น(๐‘ข, ๐œ…, ๐‘Ÿ) = โˆ‘๐‘ขโˆ’๐œ…๐œ… 1

๐‘ขโˆ’๐œ…๐œ… ๐‘—๐‘—2=๐‘—๐‘—1

๐‘ขโˆ’๐œ…๐œ… ๐‘—๐‘—3=๐‘—๐‘—2

๐‘ขโˆ’๐œ…๐œ… ๐‘—๐‘—๐œ…๐œ…โˆ’1=๐‘—๐‘—๐œ…๐œ…โˆ’2

๐‘ขโˆ’๐œ…๐œ… ๐‘—๐‘—๐œ…๐œ…=๐‘—๐‘—๐œ…๐œ…โˆ’1

๐œ…๐œ…

๐‘ข ๐œ„๐œ„=1 ๐‘—๐‘—๐œ„๐œ„ (18)

3. The ๐ช๐ช โˆ’differential transform method

In 1986, Zhou proposed the DTM and applied it to analyze the electric circuit problems [43]. Inspired Zhouโ€™s idea and based on q-Taylorโ€™s formula, the q-DTM has been introduced [20]. In 2011, ElShahed has been extended the q-DTM to two dimensional for solving partial q-DEs [13]. In the same year, the damped q-DEs with strongly nonlinear has been used successfully by using the q-DTM [23]. This section devoted to

derive some important formula related to DTM. Now, let ๐œ“๐œ“(๐‘ก) be is ๐‘ โˆ’ ๐‘ก๐‘–๐‘–๐‘š๐‘’๐‘  q-differentiable on ๐‘žโ„•, then by using theorem (2.1) with ๐‘ก0 one can approximate the function ๐œ“๐œ“(๐‘ก) as follows:

where

ฮจ(๐‘ก) = โˆ‘โˆž ฮจ๐‘ž[๐‘ข]๐‘•๐‘ข(๐‘ก, 0) (19)

ฮจ๐‘ž[๐‘ข] = ฮจ (0), โˆ€๐‘ข = 0,1,2, โ€ฆ (20)

The Eq.((20)) is called the DTM, while Eq. ((19)) is called inverse of DTM.

Suppose that the functions ฮฆ(๐‘ก), ฮจ(๐‘ก), and ฮž(๐‘ก) are approximate as ฮฆ(๐‘ก) = โˆ‘โˆž ฮฆ๐‘ž[๐œ…]๐‘•๐œ…๐œ…(๐‘ก, 0),

ฮจ(๐‘ก) = โˆ‘โˆž ฮจ๐‘ž[๐œ…]๐‘•๐œ…๐œ…(๐‘ก, 0) , and ฮž(๐‘ก) = โˆ‘โˆž ฮž๐‘ž[๐œ…]๐‘•๐œ…๐œ…(๐‘ก, 0) respectively, then the essential mathematical

operations achieved by DTM are presented in the next theorems.

โˆ‘ โˆ‘ โ‹ฏ โˆ‘ โˆ‘

๐‘—๐‘—

Page 5: JOPS - qu.edu.iq

185 Ahmed Y. Abdulmajeed, Ayad R. Khudair, Al-Qadisiyah Journal of Pure Science 26,SPECIAL ISSUE NUM.4(2021)PP.181โ€“192

๐‘

๐œ…๐œ…=1

๐œ…๐œ…=0 ๐œ…๐œ…=0

๐œ…๐œ…=0 ๐œ…๐œ…=1

๐œ…๐œ…=0 ๐œ…๐œ…=1

๐œ…๐œ…=1

Theorem 3.1 For any real constants ๐‘Ž, and ๐‘ , if โžต(๐‘ก) = ๐‘Ž ๐›ท๐›ท(๐‘ก) โˆ“ ๐‘ ๐‘‡(๐‘ก), then โžต๐‘ž[๐œ…] = ๐‘Ž ๐›ท๐›ท๐‘ž[๐œ…] โˆ“

๐‘ ๐‘‡๐‘ž[๐œ…], โˆ€๐œ… = 0,1,2, โ€ฆ

Lemma 3.1 If 0 โˆˆ ๐•‹๐•‹ and ๐œ‡๐›ฅ๐›ฅ = ๐œ๐œ is nonzero constant, then multiplying any two monomials, ๐‘•๐‘(๐‘ก, 0) and

๐‘•๐œ…๐œ…(๐‘ก, 0) , is given as follows:

๐‘•๐‘(๐‘ก, 0)๐‘•๐œ…๐œ…(๐‘ก, 0) = ๐น(๐‘Ÿ + ๐œ…, ๐œ…, ๐‘Ÿ)๐‘•๐‘+๐œ…๐œ…(๐‘ก, 0), ๐œ…, ๐‘Ÿ โ‰  0, โˆ€๐‘ก โˆˆ ๐•‹๐•‹ (21)

Proof. Since ๐œŽ๐‘š(0) = 0 for all ๐‘š = 0,1,2, โ€ฆ, we have

1, ๐‘Ÿ = 0 ๐‘•๐œŽ

๐‘š(0,0) = ๏ฟฝ0, ๐‘œ. ๐‘ค. , โˆ€๐‘š = 0,1,2, โ€ฆ (22)

Using theorem(2.2), one can get

๐‘• (๐‘ก, 0)๐‘•

(๐‘ก, 0) = โˆ‘๐‘+๐‘š ๐น(๐‘ข, ๐œ…, ๐‘Ÿ)๐‘•๐œŽ๐œ…๐œ…

(0,0)๐‘•

(๐‘ก, 0), (23)

๐‘ ๐œ…๐œ… ๐‘ข=๐œ…๐œ… ๐‘+๐œ…๐œ…โˆ’๐‘ข ๐‘ข

The result can be get it by substitute Eq.((22)) in Eq.((23)).

Theorem 3.2 If ๐‘‡(๐‘ก) = โžต๐›ฅ๐›ฅ(๐‘ก), then ๐‘‡๐‘ž[๐œ…] = โžต๐‘ž[๐œ… + 1], โˆ€๐œ… = 0,1,2, โ€ฆ

Theorem 3.3 If ๐‘‡(๐‘ก) = โžต(๐‘ก)๐›ท๐›ท(๐‘ก), then

ฮจ๐‘ž[0] = ฮž๐‘ž[0] ฮฆ๐‘ž[0]

ฮจ๐‘ž[1] = ฮž๐‘ž[1] ฮฆ๐‘ž[0] + ฮž๐‘ž[0] ฮฆ๐‘ž[1]

ฮจ๐‘ž[๐‘Ÿ] = ฮž๐‘ž[๐‘Ÿ] ฮฆ๐‘ž[0] + ฮž๐‘ž[0] ฮฆ๐‘ž[๐‘Ÿ] + โˆ‘๐‘โˆ’1 ฮž๐‘ž[๐‘Ÿ โˆ’ ๐œ…] ฮฆ๐‘ž[๐œ…]๐น(๐‘Ÿ, ๐‘Ÿ โˆ’ ๐œ…, ๐œ…), ๐‘Ÿ = 2,3,4, โ‹ฏ

Proof. Let ฮจ(๐‘ก) = ฮž(๐‘ก)ฮฆ(๐‘ก) so one can have

โˆž ๐œ…๐œ…=0 ฮจ๐‘ž[๐œ…]๐‘•๐œ…๐œ…(๐‘ก, 0) = ๏ฟฝโˆ‘โˆž ฮž๐‘ž[๐œ…]๐‘•๐œ…๐œ…(๐‘ก, 0)๏ฟฝ๏ฟฝโˆ‘โˆž ฮฆ๐‘ž[๐œ…]๐‘•๐œ…๐œ…(๐‘ก, 0)๏ฟฝ

โˆž ๐œˆ๐œˆ=0

โˆž ๐œ…๐œ…=0 ฮž๐‘ž[๐œˆ๐œˆ]ฮฆ๐‘ž[๐œ…]๐‘•๐œ…๐œ…(๐‘ก, 0)๐‘•๐œˆ๐œˆ(๐‘ก, 0)

By using lemma(3.1), one can have

โˆž ๐œ…๐œ…=0 ฮจ๐‘ž[๐œ…]๐‘•๐œ…๐œ…(๐‘ก, 0) = โˆ‘โˆž ฮž๐‘ž[๐œ…]ฮฆ๐‘ž[0]๐‘•๐œ…๐œ…(๐‘ก, 0) + โˆ‘โˆž ฮž๐‘ž[0]ฮฆ๐‘ž[๐œ…]๐‘•๐œ…๐œ…(๐‘ก, 0)

โˆž ๐‘=1

โˆž ๐œ…๐œ…=1 ฮž๐‘ž[๐‘Ÿ]ฮฆ๐‘ž[๐œ…]๐น(๐œ… + ๐‘Ÿ, ๐‘Ÿ, ๐œ…)๐‘•๐œ…๐œ…+๐‘(๐‘ก, 0) (24)

Now, change the index in the third sum of Eq.((24)), we have

โˆž ๐œ…๐œ…=0 ฮจ๐‘ž[๐œ…]๐‘•๐œ…๐œ…(๐‘ก, 0) = โˆ‘โˆž ฮž๐‘ž[๐œ…]ฮฆ๐‘ž[0]๐‘•๐œ…๐œ…(๐‘ก, 0) + โˆ‘โˆž ฮž๐‘ž[0]ฮฆ๐‘ž[๐œ…]๐‘•๐œ…๐œ…(๐‘ก, 0)

โˆž ๐‘=2 โˆ‘๐‘โˆ’1 ฮž๐‘ž[๐‘Ÿ โˆ’ ๐œ…]ฮฆ๐‘ž[๐œ…]๐น(๐‘Ÿ, ๐‘Ÿ โˆ’ ๐œ…, ๐œ…)๐‘•๐‘(๐‘ก, 0) (25)

Finally, the coefficients of ๐‘•๐‘(๐‘ก, 0) are compared, and the result is obtained directly.

Theorem 3.4 If ๐‘“๐‘“(๐‘ก) is analytic function on time scale ๐•‹๐•‹ = ๐‘žโ„• and ๐‘‡(๐‘ก) = ๐‘“๐‘“(๐‘ก)๐›ท๐›ท(๐‘ก), then

ฮจ๐‘ž[0] = ๐‘“๐‘“(0) ฮฆ๐‘ž[0]

โˆ‘

= โˆ‘ โˆ‘

โˆ‘

+ โˆ‘ โˆ‘

โˆ‘

+ โˆ‘

Page 6: JOPS - qu.edu.iq

186 Ahmed Y. Abdulmajeed, Ayad R. Khudair, Al-Qadisiyah Journal of Pure Science 26,SPECIAL ISSUE NUM.4(2021)PP.181โ€“192

๐œ…๐œ…=0

๐‘ž

๐‘=0

๐‘ž

๐œ…๐œ…=1

๐œ…๐œ…=0

ฮจ๐‘ž[1] = ๐‘“๐‘“ฮ”(0) ฮฆ๐‘ž[0] + ๐‘“๐‘“(0) ฮฆ๐‘ž[1]

ฮ”๐‘Ÿ

โˆ‘๐‘โˆ’1

ฮ”๐‘Ÿโˆ’๐œ…๐œ…

ฮจ๐‘ž[๐‘Ÿ] = ๐‘“๐‘“ (0) ฮฆ๐‘ž[0] + ๐‘“๐‘“(0) ฮฆ๐‘ž[๐‘Ÿ] + ๐œ…๐œ…=1 ๐‘“๐‘“ (0) ฮฆ๐‘ž[๐œ…]๐น(๐‘Ÿ, ๐‘Ÿ โˆ’ ๐œ…, ๐œ…), ๐‘Ÿ = 2,3,4, โ‹ฏ

Proof. Since ๐‘“๐‘“(๐‘ก) is analytic function on time scale ๐•‹๐•‹ = ๐‘žโ„•, one can get ๐‘“๐‘“(๐‘ก) = โˆ‘โˆž ๐‘“๐‘“ฮ”๐œ…๐œ…

(0)๐‘•

๐œ…๐œ… (๐‘ก, 0). Therefore, the result can be obtained directly using theorem(3.3).

Theorem 3.5 If ๐‘“๐‘“(๐‘ก) is analytic function on time scale ๐•‹๐•‹ = ๐‘žโ„• and ๐‘‡(๐‘ก) = ๐‘“๐‘“(๐‘ก)๐›ท๐›ท2(๐‘ก), then

ฮจ๐‘ž[0] = ๐‘“๐‘“(0) ฮฆ2[0]

ฮจ๐‘ž[1] = ๐‘“๐‘“ฮ”(0) ฮฆ2[0] + 2๐‘“๐‘“(0) ฮฆ [1]ฮฆ [0] ๐‘ž

ฮ”๐‘Ÿ 2

๐‘ž ๐‘ž

โˆ‘๐‘โˆ’1

ฮจ๐‘ž[๐‘Ÿ] = ๐‘“๐‘“

๐œ…]ฮฆ๐‘ž[๐œ…]๐น(๐‘Ÿ, ๐‘Ÿ โˆ’ ๐œ…, ๐œ…)

(0)ฮฆ๐‘ž[0] + ๐‘“๐‘“(0)ฮฆ๐‘ž[๐‘Ÿ]ฮฆ๐‘ž[0] + ๐‘“๐‘“(0)ฮฆ๐‘ž[0]ฮฆ๐‘ž[๐‘Ÿ] + ๐‘“๐‘“(0) ๐œ…๐œ…=1 ฮฆ๐‘ž[๐‘Ÿ โˆ’

+ โˆ‘๐‘โˆ’1 ๐‘“๐‘“ฮ”๐‘Ÿโˆ’๐œ…๐œ…

(0)ฮฆ [๐œ…]ฮฆ [0]๐น(๐‘Ÿ, ๐‘Ÿ โˆ’ ๐œ…, ๐œ…) + โˆ‘๐‘โˆ’1 ๐‘“๐‘“ฮ”๐‘Ÿโˆ’๐œ…๐œ…

(0)ฮฆ [0]ฮฆ [๐œ…]๐น(๐‘Ÿ, ๐‘Ÿ โˆ’ ๐œ…, ๐œ…) ๐œ…๐œ…=1 ๐‘ž ๐‘ž ๐œ…๐œ…=1 ๐‘ž ๐‘ž

+ โˆ‘๐‘โˆ’1 โˆ‘๐œ…๐œ…โˆ’1 ๐‘“๐‘“ฮ”๐‘Ÿโˆ’๐œ…๐œ…

(0)ฮฆ [๐œ… โˆ’ ๐‘ข]ฮฆ [๐‘ข]๐น(๐œ…, ๐œ… โˆ’ ๐‘ข, ๐‘ข)๐น(๐‘Ÿ, ๐‘Ÿ โˆ’ ๐œ…, ๐œ…) , ๐‘Ÿ = 2,3,4, โ‹ฏ ๐œ…๐œ…=1 ๐‘ข=1 ๐‘ž ๐‘ž

Proof. According to theorem (3.3), we find ฮฆ2(๐‘ก) = โˆ‘โˆž ฮฅ๐‘ž[๐‘Ÿ] ๐‘•๐‘(๐‘ก, 0)

Where ฮฅ๐‘ž[๐‘Ÿ] define as follows:

ฮฅ๐‘ž[0] = ฮฆ2[0]

ฮฅ๐‘ž[1] = 2ฮฆ๐‘ž[1]ฮฆ๐‘ž[0]

ฮฅ๐‘ž[๐‘Ÿ] = ฮฆ๐‘ž[๐‘Ÿ]ฮฆ๐‘ž[0] + ฮฆ๐‘ž[0]ฮฆ๐‘ž[๐‘Ÿ] + โˆ‘๐‘โˆ’1 ฮฆ๐‘ž[๐‘Ÿ โˆ’ ๐œ…]ฮฆ๐‘ž[๐œ…]๐น(๐‘Ÿ, ๐‘Ÿ โˆ’ ๐œ…, ๐œ…), ๐‘Ÿ = 2,3,4, โ‹ฏ

However, since ๐‘“๐‘“(๐‘ก) is analytic function on time scale ๐•‹๐•‹ = ๐‘žโ„•, we can get ๐‘“๐‘“(๐‘ก) = โˆ‘โˆž ๐‘“๐‘“ฮ”๐œ…๐œ…

(0)๐‘•

๐œ…๐œ… (๐‘ก, 0).

Using theorem(3.4), we have

ฮจ๐‘ž[0] = ๐‘“๐‘“(0) ฮฅ๐‘ž[0]

ฮจ๐‘ž[1] = ๐‘“๐‘“ฮ”(0) ฮฅ๐‘ž[0] + ๐‘“๐‘“(0) ฮฅ๐‘ž[1]

ฮ”๐‘Ÿ

โˆ‘๐‘โˆ’1

ฮ”๐‘Ÿโˆ’๐œ…๐œ…

ฮจ๐‘ž[๐‘Ÿ] = ๐‘“๐‘“ (0) ฮฅ๐‘ž[0] + ๐‘“๐‘“(0) ฮฅ๐‘ž[๐‘Ÿ] + ๐œ…๐œ…=1 ๐‘“๐‘“ (0) ฮฅ๐‘ž[๐œ…]๐น(๐‘Ÿ, ๐‘Ÿ โˆ’ ๐œ…, ๐œ…), ๐‘Ÿ = 2,3,4, โ‹ฏ

Now, replace the values of ฮฅ๐‘ž[๐‘Ÿ] in the above equations by its equivalent values in terms ฮฆ๐‘ž[๐‘Ÿ], we get

the result directly.

4. Illustrated Examples

Example 4.1 Consider the Riccati q-difference equation as follows:

ฮจฮ”(๐‘ก) = 1 โˆ’ ฮจ(๐‘ก)2 (26)

ฮจ(0) = 0 (27)

When ๐‘ž tends to 1, the solution exactly has the form

Page 7: JOPS - qu.edu.iq

187 Ahmed Y. Abdulmajeed, Ayad R. Khudair, Al-Qadisiyah Journal of Pure Science 26,SPECIAL ISSUE NUM.4(2021)PP.181โ€“192

๐œ…๐œ…=1

Applying DTM to Eq.((26)) , we have

ฮจ๐‘ž[1] + ฮจ2 ๐‘ž[0] โˆ’ 1 = 0

ฮจ๐‘ž[2] + 2ฮจ๐‘ž[1] ฮจ๐‘ž[0] = 0

ฮจ(๐‘ก) = ๐‘ก๐‘Ž๐‘›๐‘•(๐‘ก) (28)

ฮจ๐‘ž[๐‘Ÿ + 1] = โˆ’ฮจ๐‘ž[๐‘Ÿ] ฮจ๐‘ž[0] โˆ’ ฮจ๐‘ž[0] ฮจ๐‘ž[๐‘Ÿ] โˆ’ โˆ‘๐‘โˆ’1 ฮจ๐‘ž[๐‘Ÿ โˆ’ ๐œ…] ฮจ๐‘ž[๐œ…]๐น(๐‘Ÿ, ๐‘Ÿ โˆ’ ๐œ…, ๐œ…), ๐‘Ÿ =

2,3,4, โ‹ฏ (29)

Again apply DTM to the initial conditions in Eq.((27)) , one can have

ฮจ๐‘ž[0] = 0. (30)

Using the Maple software, one can solve the recurrence relation in Eq.((29)) with Eq.((30)) to have the value of the unknown coefficients as follows:

ฮจ๐‘ž[1] = 1

ฮจ๐‘ž[2] = 0

ฮจ๐‘ž[3] = โˆ’3 + ๐‘ž

ฮจ๐‘ž[4] = 0

ฮจ๐‘ž[5] = 2(๐‘ž2 โˆ’ 4๐‘ž + 5)(โˆ’3 + ๐‘ž)2

ฮจ๐‘ž[6] = 0

ฮจ๐‘ž[7] = (โˆ’3 + ๐‘ž)3(๐‘ž2 โˆ’ 3๐‘ž + 3)(๐‘ž4 โˆ’ 9๐‘ž3 + 35๐‘ž2 โˆ’ 69๐‘ž + 59)(๐‘ž2 โˆ’ 4๐‘ž + 5)

ฮจ๐‘ž[8] = 0

ฮจ๐‘ž[9] = 2(๐‘ž2 โˆ’ 4๐‘ž + 5)2(๐‘ž2 โˆ’ 3๐‘ž + 3)(โˆ’3 + ๐‘ž)4(2๐‘ž6 โˆ’ 26๐‘ž5 + 143๐‘ž4 โˆ’ 427๐‘ž3

+737๐‘ž2 โˆ’ 711๐‘ž + 313)(๐‘ž4 โˆ’ 8๐‘ž3 + 24๐‘ž2 โˆ’ 32๐‘ž + 17)

โ‹ฎ

So, ฮจ(๐‘ก) โ‰ƒ โˆ‘9 ฮจ๐‘ž[๐‘Ÿ]๐‘•๐‘(๐‘ก, 0) is the first ten terms of the solution of this problem. Moreover, when ๐‘ž โ†’ 1 ๐‘=0

this solution is given by

lim ฮจ(๐‘ก) = ๐‘ก โˆ’ ๐‘žโ†’1

1 ๐‘ก3

3 +

2 ๐‘ก5

15 โˆ’

17

315 ๐‘ก7 +

62

2835 ๐‘ก9 + โ‹ฏ (31)

When ๐‘ž โ†’ 1, the solution in Eq.((31)) agrees exactly with the Taylor series of the given solution. Also, Eq.((31)) is agreement with the result in, Example(1) [37].

Example 4.2 Consider the Riccati q-difference equation as follows:

ฮจฮ”(๐‘ก) = 1 + 2ฮจ(๐‘ก) โˆ’ ฮจ2(๐‘ก) (32)

ฮจ(0) = 0 (33)

Page 8: JOPS - qu.edu.iq

188 Ahmed Y. Abdulmajeed, Ayad R. Khudair, Al-Qadisiyah Journal of Pure Science 26,SPECIAL ISSUE NUM.4(2021)PP.181โ€“192

๐‘ž

๐œ…๐œ…=1

When ๐‘ž tends to 1, the solution exactly has the form

ฮจ(๐‘ก) = โˆš2tanh(โˆš2๐‘ก +

Applying DTM to Eq.((32)) , we have

ฮจ๐‘ž[1] = 2ฮจ๐‘ž [0] โˆ’ ฮจ2 [0] + 1

ฮจ๐‘ž[2] = 2ฮจ๐‘ž [1] โˆ’ 2ฮจ๐‘ž [1] ฮจ๐‘ž[0]

1 ๐‘™๐‘™๐‘œ๐‘”(

โˆš2โˆ’1

2 โˆš2+1 )) + 1 (34)

ฮจ๐‘ž [๐‘Ÿ + 1] = 2ฮจ๐‘ž [๐‘Ÿ] โˆ’ 2ฮจ๐‘ž[๐‘Ÿ] ฮจ๐‘ž[0] โˆ’ โˆ‘๐‘โˆ’1 ฮจ๐‘ž[๐‘Ÿ โˆ’ ๐œ…] ฮจ๐‘ž[๐œ…]๐น(๐‘Ÿ, ๐‘Ÿ โˆ’ ๐œ…, ๐œ…), โˆ€๐‘Ÿ = 2,3,4, โ‹ฏ

(35)

Again apply DTM to the initial conditions in Eq.((33)) , one can have

ฮจ๐‘ž[0] = 0. (36)

Using the Maple software, one can solve the recurrence relation in Eq.((35)) with Eq.((36)) to have the value of the unknown coefficients as follows:

ฮจ๐‘ž[1] = 1

ฮจ๐‘ž[2] = 2

ฮจ๐‘ž[3] = 1 + ๐‘ž

ฮจ๐‘ž[4] = โˆ’4๐‘ž2 + 22๐‘ž โˆ’ 26

ฮจ๐‘ž[5] = โˆ’2(๐‘ž โˆ’ 3)(๐‘ž3 โˆ’ 9๐‘ž2 + 31๐‘ž โˆ’ 37)

ฮจ๐‘ž[6] = โˆ’4๐‘ž7 + 56๐‘ž6 โˆ’ 352๐‘ž5 + 1276๐‘ž4 โˆ’ 2832๐‘ž3 + 3732๐‘ž2 โˆ’ 2536๐‘ž + 548

ฮจ๐‘ž[7] = ๐‘ž11 โˆ’ ๐‘ž10 โˆ’ 239๐‘ž9 + 3230๐‘ž8 โˆ’ 21721๐‘ž7 + 91686๐‘ž6 โˆ’ 262608๐‘ž5 + 524197๐‘ž4

โˆ’725540๐‘ž3 + 669551๐‘ž2 โˆ’ 373085๐‘ž + 95377

ฮจ๐‘ž[8] = 8๐‘ž15 โˆ’ 228๐‘ž14 + 2956๐‘ž13 โˆ’ 22836๐‘ž12 + 114738๐‘ž11 โˆ’ 375506๐‘ž10 + 685838๐‘ž9

+144320๐‘ž8 โˆ’ 5305474๐‘ž7 + 18573384๐‘ž6 โˆ’ 38811708๐‘ž5 + 55564898๐‘ž4 โˆ’ 55575960๐‘ž3

+37593290๐‘ž2 โˆ’ 15612662๐‘ž + 3034030

ฮจ๐‘ž[9] = โˆ’20๐‘ž20 + 888๐‘ž19 โˆ’ 18662๐‘ž18 + 247048๐‘ž17 โˆ’ 2312130๐‘ž16 + 16272346๐‘ž15 โˆ’

89406344๐‘ž14

+392904980๐‘ž13 โˆ’ 1403278564๐‘ž12 + 4115164306๐‘ž11 โˆ’ 9966897976๐‘ž10 +

19979418384๐‘ž9

โˆ’33100759636๐‘ž8 + 45089744554๐‘ž7 โˆ’ 50018425772๐‘ž6 + 44494246668๐‘ž5 โˆ’ 30993249576๐‘ž4

+16286776898๐‘ž3 โˆ’ 6068996878๐‘ž2 + 1427426744๐‘ž โˆ’ 158832042

Page 9: JOPS - qu.edu.iq

189 Ahmed Y. Abdulmajeed, Ayad R. Khudair, Al-Qadisiyah Journal of Pure Science 26,SPECIAL ISSUE NUM.4(2021)PP.181โ€“192

๐‘=0

๐‘ž

๐œ…๐œ…=1

โ‹ฎ

Therefore ฮจ(๐‘ก) โ‰ƒ โˆ‘9

ฮจ๐‘ž[๐‘Ÿ]๐‘•๐‘(๐‘ก, 0) is the first ten terms of the solution of the given problem. When

๐‘ž โ†’ 1 this solution is given by

lim ฮจ(๐‘ก) = ๐‘ก + ๐‘ก2 ๐‘žโ†’1

+ 1

๐‘ก3 3

โˆ’ 1

๐‘ก4 3

โˆ’ 7

๐‘ก5 15

โˆ’ 7

๐‘ก6 45

+ 53

315 ๐‘ก7 +

71

315 ๐‘ก8 +

197

2835 ๐‘ก9 + โ‹ฏ (37)

When ๐‘ž โ†’ 1, the solution in Eq.((37)) agrees exactly with the Taylor series of the given solution.

Example 4.3 Consider the Riccati q-difference equation as follows:

ฮจฮ”(๐‘ก) = 2ฮจ2(๐‘ก) โˆ’ ๐‘กฮจ(๐‘ก) + 1 (38)

ฮจ(0) = 0 (39)

When ๐‘ž tends to 1, the solution exactly has the form

Applying DTM to Eq.((38)) , we have

ฮจ๐‘ž[1] = 2ฮจ2[0] + 1

ฮจ(๐‘ก) = ๐‘ก

1โˆ’๐‘ก2 (40)

ฮจ๐‘ž[2] = 4ฮจ๐‘ž[1]ฮจ๐‘ž[0] + ฮจ๐‘ž[0]

ฮจ๐‘ž[๐‘Ÿ + 1] = 4ฮจ๐‘ž[๐‘Ÿ]ฮจ๐‘ž[0] + ฮจ๐‘ž[๐‘Ÿ โˆ’ 1]๐น(๐‘Ÿ, 1, ๐‘Ÿ โˆ’ 1)

+2 โˆ‘๐‘โˆ’1 ฮจ๐‘ž[๐‘Ÿ โˆ’ ๐œ…]ฮจ๐‘ž[๐œ…]๐น(๐‘Ÿ, ๐‘Ÿ โˆ’ ๐œ…, ๐œ…), โˆ€๐‘Ÿ = 2,3,4, โ‹ฏ (41)

Again apply DTM to the initial conditions in Eq.((39)) , one can have

ฮจ๐‘ž[0] = 0. (42)

Using the Maple software, one can solve the recurrence relation in Eq.((41)) with Eq.((42)) to have the value of the unknown coefficients as follows:

ฮจ๐‘ž[1] = 1

ฮจ๐‘ž[2] = 0

ฮจ๐‘ž[3] = 9 โˆ’ 3๐‘ž

ฮจ๐‘ž[4] = 0

ฮจ๐‘ž[5] = 15(๐‘ž2 โˆ’ 4๐‘ž + 5)(๐‘ž โˆ’ 3)2

ฮจ๐‘ž[6] = 0

ฮจ๐‘ž[7] = โˆ’3(๐‘ž2 โˆ’ 3๐‘ž + 3)(๐‘ž2 โˆ’ 4๐‘ž + 5)(6๐‘ž4 โˆ’ 54๐‘ž3 + 211๐‘ž2 โˆ’ 419๐‘ž + 361)(๐‘ž โˆ’ 3)3

โˆ’725540๐‘ž3 + 669551๐‘ž2 โˆ’ 373085๐‘ž + 95377

ฮจ๐‘ž[8] = 0

Page 10: JOPS - qu.edu.iq

190 Ahmed Y. Abdulmajeed, Ayad R. Khudair, Al-Qadisiyah Journal of Pure Science 26,SPECIAL ISSUE NUM.4(2021)PP.181โ€“192

๐‘=0

ฮจ๐‘ž[9] = 15(12๐‘ž6 โˆ’ 156๐‘ž5 + 858๐‘ž4 โˆ’ 2562๐‘ž3 + 4423๐‘ž2 โˆ’ 4271๐‘ž + 1885)(๐‘ž2 โˆ’ 3๐‘ž + 3)

ร— (๐‘ž4 โˆ’ 8๐‘ž3 + 24๐‘ž2 โˆ’ 32๐‘ž + 17)(๐‘ž2 โˆ’ 4๐‘ž + 5)2(๐‘ž โˆ’ 3)4

โ‹ฎ

Therefore ฮจ(๐‘ก) โ‰ƒ โˆ‘9

ฮจ๐‘ž[๐‘Ÿ]๐‘•๐‘(๐‘ก, 0) is the first ten terms of the solution of the given problem. When

๐‘ž โ†’ 1 this solution is given by

lim ฮจ(๐‘ก) = ๐‘ก + ๐‘ก3 + ๐‘ก5 + ๐‘ก7 + ๐‘ก9 + โ‹ฏ (43) ๐‘žโ†’1

When ๐‘ž โ†’ 1, the solution in Eq.((43)) agrees exactly with the Taylor series of the given solution.

5. Conclusions

In this study, we introduce the difference transform method (DTM) based on Taylor formula for any time scale with its delta derivative of graininess function is a nonzero positive constant. Riccati type ๐‘ž โˆ’difference equations on quantum calculus have been successfully solved and the results coincide exactly with the Taylor series of the exact solution when ๐‘ž โˆ’ tends to 1. In fact, this method is applicable to solving any nonlinear difference equations on any time scale with ๐œ‡ฮ” > 0.

References

[1] S. Abbasbandy, Iterated heโ€™s homotopy perturbation method for quadratic riccati differential equation, Applied Mathematics and Computation, 175 (2006), pp. 581โ€“589.

[2] D. D. Alessandro, Invariant manifolds and projective combinations of solutions of the riccati differential equation, Linear Algebra and its Applications, 279 (1998), pp. 181โ€“193.

[3] S. Balaji, Legendre wavelet operational matrix method for solution of fractional order riccati differential equation, Journal of the Egyptian Mathematical Society, 23 (2015), pp. 263โ€“270.

[4] K. Balla, Asymptotic behavior of certain riccati difference equations, Computers & Mathematics with Applications, 36 (1998), pp. 243โ€“250.

[5] A. Beghi and D. Dโ€™alessandro, Discrete-time optimal control with control dependent noise and generalized riccati difference equations, Automatica, 34 (1998), pp. 1031โ€“1034.

[6] R. Bellman and R. Vasudevan, Dynamic programming and solution of wave equations, in Wave Propagation, Springer Netherlands, 1986, pp. 259โ€“309.

[7] M. Bohner and A. Peterson, Dynamic equations on time scales: An introduction with applications, Springer Science & Business Media, 2001.

[8] M. Bohner and A. C. Peterson, Advances in dynamic equations on time scales, Springer Science & Business Media, 2002.

[9] C. Bota and B. Cฤƒruntu, Analytical approximate solutions for quadratic riccati differential equation of fractional order using the polynomial least squares method, Chaos, Solitons & Fractals, 102 (2017), pp. 339โ€“345.

[10] W. Y. Chen and H. L. Saad, On the gosperโ€“petkovลกek representation of rational functions, Journal of Symbolic Computation, 40 (2005), pp. 955โ€“963.

Page 11: JOPS - qu.edu.iq

191 Ahmed Y. Abdulmajeed, Ayad R. Khudair, Al-Qadisiyah Journal of Pure Science 26,SPECIAL ISSUE NUM.4(2021)PP.181โ€“192

[11] W. Y. C. Chen, H. L. Saad, and L. H. Sun, An operator approach to the al-salamโ€“carlitz polynomials, Journal of Mathematical Physics, 51 (2010), p. 043502.

[12] M. Dehghan and A. Taleei, A compact split-step finite difference method for solving the nonlinear schrยจ odinger equations with constant and variable coefficients, Computer Physics Communications, 181 (2010), pp. 43โ€“51.

[13] M. El-Shahed and M. Gaber, Two-dimensional q-differential transformation and its application, Applied Mathematics and Computation, 217 (2011), pp. 9165โ€“9172.

[14] M. El-Shahed, M. Gaber, and M. Al-Yami, The fractional q-differential transformation and its application, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), pp. 42โ€“55.

[15] M. A. El-Tawil, A. A. Bahnasawi, and A. Abdel-Naby, Solving riccati differential equation using adomianโ€™s decomposition method, Applied Mathematics and Computation, 157 (2004), pp. 503โ€“514.

[16] T. Ernst, The history of q-calculus and a new method, 2000.

[17] F. Geng, A modified variational iteration method for solving riccati differential equations, Computers & Mathematics with Applications, 60 (2010), pp. 1868โ€“1872.

[18] S. Georgiev, Fractional dynamic calculus and fractional dynamic equations on time scales, Springer, Cham, Switzerland, 2018.

[19] M. Jambu, Quantum calculus an introduction, in New Trends in Algebras and

Combinatorics, WORLD SCIENTIFIC, feb 2020.

[20] S.-C. Jing and H.-Y. Fan, q -taylorโ€™s formula with its q -remainder, Communications in Theoretical Physics, 23 (1995), pp. 117โ€“120.

[21] A. Lavagno, Basic-deformed quantum mechanics, Reports on Mathematical Physics, 64 (2009), pp. 79โ€“ 91.

[22] H.-K. Liu, Application of a differential transformation method to strongly nonlinear damped q- difference equations, Computers & Mathematics with Applications, 61 (2011), pp. 2555โ€“2561.

[23] H.-K. Liu, Application of a differential transformation method to strongly non-

linear damped q-difference equations, Computers & Mathematics with Applications, 61 (2011), pp. 2555โ€“ 2561.

[24] H.-K. Liu, The formula for the multiplicity of two generalized polynomials on time scales, Applied Mathematics Letters, 25 (2012), pp. 1420โ€“1425.

[25] A. P. Magnus, Special nonuniform lattice (snul) orthogonal polynomials on discrete dense sets of points, Journal of Computational and Applied Mathematics, 65 (1995), pp. 253โ€“265.

[26] A. Neirameh, Exact analytical solutions for 3d- grossโ€“pitaevskii equation with periodic potential by using the kudryashov method, Journal of the Egyptian Mathematical Society, 24 (2016), pp. 49โ€“53.

[27] G. D. Nicolao, On the time-varying riccati difference equation of optimal filtering, SIAM Journal on Control and Optimization, 30 (1992), pp. 1251โ€“1269.

Page 12: JOPS - qu.edu.iq

192 Ahmed Y. Abdulmajeed, Ayad R. Khudair, Al-Qadisiyah Journal of Pure Science 26,SPECIAL ISSUE NUM.4(2021)PP.181โ€“192

[28] S. Nishioka, Differential transcendence of solutions of difference riccati equations and tietzeโ€™s treatment, Journal of Algebra, 511 (2018), pp. 16โ€“40.

[29] M. Nowakowski and H. C. Rosu, Newtonโ€™s laws of motion in the form of a riccati equation, Physical Review E, 65 (2002).

[30] L. Ntogramatzidis and A. Ferrante, On the solution of the riccati differential equation arising from the LQ optimal control problem, Systems & Control Letters, 59 (2010), pp. 114โ€“121.

[31] K. Parand, S. A. Hossayni, and J. Rad, Operation matrix method based on bernstein polynomials for the riccati differential equation and volterra population model, Applied Mathematical Modelling, 40 (2016), pp. 993โ€“1011.

[32] W. Reid, Riccati differential equations, Academic Press, New York, 1972.

[33] H. C. Rosu, S. C. Mancas, and P. Chen, Barotropic FRW cosmologies with chiellini damping, Physics Letters A, 379 (2015), pp. 882โ€“887.

[34] H. L. Saad and M. A. Abdlhusein, New application of the cauchy operator on the homogeneous rogersโ€“ szegรƒลฑ polynomials, The Ramanujan Journal, 56 (2021), pp. 347โ€“367.

[35] H. L. Saad and F. A. Reshem, The operator g(a; b;dq) for the polynomials wn(x; y; a; b; q), Journal of Advances in Mathematics, 9 (2013), pp. 2888โ€“2904.

[36] H. L. Saad and A. A. Sukhi, Another homogeneous q-difference operator, Applied Mathematics and Computation, 215 (2010), pp. 4332โ€“4339.

[37] M. S. Semary and H. N. Hassan, The homotopy analysis method for q-difference equations, Ain Shams Engineering Journal, 9 (2018), pp. 415โ€“421.

[38] J. Sugie, Nonoscillation theorems for second-order linear difference equations via the riccati-type transformation, II, Applied Mathematics and Computation, 304 (2017), pp. 142โ€“152.

[39] H. Tietze,ยจUber funktionalgleichungen, deren lยจ osungen keiner algebraischen differentialgleichung genยจ ugen kยจ onnen, Monatshefte fยจ ur Mathematik und Physik, 16 (1905), pp. 329โ€“364.

[40] G.-C. Wu, Variational iteration method for q-difference equations of second order, Journal of Applied Mathematics, 2012 (2012), pp. 1โ€“5.

[41] M. I. Zelikin, Riccati equation in the classical calculus of variations, in Control Theory and Optimization I, Springer Berlin Heidelberg, 2000, pp. 60โ€“79.

[42] H. Zhang and P. M. Dower, Max-plus fundamental solution semigroups for a class of difference riccati equations, Automatica, 52 (2015), pp. 103โ€“110.

[43] J. Zhou, Differential Transformation and Its Applications for Electrical Circuits, Huazhong Univ. Press, Wuhan, China, 1986.