John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

download John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

of 50

Transcript of John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    1/50

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    2/50

    Computational NeuroscienceWhat computations are done by a neural system?

    How are they done?WHAT?

    Feature detectors, eg visual system.Coincidence detection for sound localization.Memory storage.Code: firing rate, spike timing.

    Statistics of spike trainsInformation theoryDecision theory

    Descriptive models

    HOW?Molecular & biophysical mechanisms at cell &

    synaptic levels firing properties, coupling.Subcircuits.System level.

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    3/50

    Course Schedule . * JR awayIntroduction to mechanistic and descriptive modeling, encoding concepts.Sept 6 Rinzel: Nonlinear neuronal dynamics I: mechanisms of cellular

    excitability and oscillationsSept 17 Rinzel: Nonlinear neuronal dynamics II: networks.Sept 20* Simoncelli: Descriptive models of neural encoding: LNP cascadeSept 27* Paninski: Fitting LIF models to noisy spiking data

    Decision-making.Oct 4 Glimcher: Neurobiology of decision making.Oct 11 Daw: Valuation and/or reinforcement learningOct 18 Rinzel: Network models (XJ Wang et al) for decision making

    Vision.Oct 25 Movshon: "Cortical processing of visual motion signals"Nov 1 Rubin/Rinzel: Dynamics of perceptual bistabilityNov 8* Cai/Rangan: Large-scale model of cortical area V1.Nov 15 Tranchina: Synaptic depression: from stochastic to rate model;

    application to a model of cortical suppression.Nov 22 no class (Thanksgiving)

    Synchronization/correlation.Nov 29 Pesaran: Correlation between different brain areasDec 6 Reyes: Feedforward propagation in layered networks

    Glimcher: Decisions, Uncertainty, and the Brain.The Science of Neuroeconomics

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    4/50

    Nonlinear Dynamics of Neuronal Systems-- cellular level

    John RinzelComputational Modeling of Neuronal Systems

    Fall 2007

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    5/50

    References on Nonlinear DynamicsRinzel & Ermentrout. Analysis of neural excitability and oscillations. In

    Koch & Segev (see below). Also as Meth3 on www.pitt.edu/~phase/

    Borisyuk A & Rinzel J. Understanding neuronal dynamics by geometricaldissection of minimal models. In, Chow et al, eds: Models and Methods inNeurophysics (Les Houches Summer School 2003), Elsevier, 2005: 19-72.

    Izhikevich, EM: Dynamical Systems in Neuroscience. The Geometry of Excitability and Bursting. MIT Press, 2007.

    Edelstein-Keshet, L. Mathematical Models in Biology. Random House, 1988.

    Strogatz, S. Nonlinear Dynamics and Chaos. Addison-Wesley, 1994.

    References on Modeling Neuronal System Dynamics

    Koch, C. Biophysics of Computation, Oxford Univ Press, 1998. Esp. Chap 7

    Koch & Segev (eds): Methods in Neuronal Modeling, MIT Press, 1998.

    Wilson, HR. Spikes, Decisions and Actions, Oxford Univ Press, 1999.

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    6/50

    Dynamics of Excitability and Oscillations

    Cellular level(spiking)

    Network level(firing rate)

    Hodgkin-Huxley model Wilson-Cowan model

    Membrane currents Activity functions

    Activity dynamics in the phase plane

    Response modes: Onset of repetitive activity(bifurcations)

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    7/50

    Nonlinear Dynamical Response Properties

    Cellular: HH

    brief input brief

    input

    Excitability Repetitive activity Bistability Bursting

    Network: Wilson-Cowan(Mean field)

    % f

    i r i n g

    Pexc

    Pinhib

    brief input

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    8/50

    Auditory brain stem neurons fire phasically, not to slowinputs. Blocking I KLT may convert to tonic.

    J Neurosci, 2002

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    9/50

    Take Home Messages

    Excitability/Oscillations : fast autocatalysis + slower negative feedback

    Value of reduced models

    Time scales and dynamics

    Phase space geometry

    Different dynamic states Bifurcations; concepts andmethods are general.

    XPP software:http://www.pitt.edu/~phase/ (Bard Ermentrouts home page)

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    10/50

    Synaptic input many, O(10 3 to 10 4)

    Dendrites, 0.1 to 1 mm long

    Axon,10-10 3 mm

    Classical neuron

    Signals: V m ~ 100 mV membrane potentialO(msec)

    ionic currents

    Membrane with ion channels variable density over surface.

    Dendrites graded potentials,linear in classical view

    Axon characteristic impulses, propagationneurons,muscles

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    11/50

    Electrical Activity of Cells V = V(x,t) , distribution within cell

    uniform or not?, propagation?Coupling to other cellsNonlinearitiesTime scales

    V t

    2 V x2Cm +Iion(V)= + I app + coupling

    Current balance equation for membrane:

    capacitive channels cable properties other cells

    d4R i

    g c,j(V j V)

    g syn,j (V j(t)) (V syn -V)

    Coupling: electrical - gap junctions

    j

    j

    chemical synapsesother cells

    = gk(V, W) (VV k )Iion = I ion(V, W)

    kchannel types

    W/ t = G(V, W)gating dynamics

    generally nonlinear

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    12/50

    Nobel Prize, 1959

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    13/50

    Current Balance:(no coupling, no cable properties, steady state )

    0 gK (V-V K ) + g Na (V-V Na) + g L(V-V L)

    VL NaK

    LL Na NaK K

    gggVgVgVg

    ++

    ++

    Replace E by V

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    14/50

    HH Recipe:

    V-clamp Iion components

    Predict I-clamp behavior?

    IK (t) is monotonic; activation gate, nI Na(t) is transient; activation, m and

    inactivation, h

    e.g., g K (t) = I K (t) /(V-V K ) = G K n4(t)

    with V=V clampgating kinetics:dn/dt = (V) (1-n) (V) n

    = (n

    (V) n)/ n(V)

    n(V) increases with V.

    OFF ON

    P P * (V)

    (V)

    mass action for subunits or HH-particles

    I Na(t) = G Nam3(t) h(t) (V-V Na)

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    15/50

    HH Equations

    Cm dV/dt + G Na m3 h (V-V Na) + G K n4 (V-V K ) +G L (V-V L) = I app [+d/(4R) 2V/x2]

    dm/dt = [m (V)-m]/ m(V)dh/dt = [h (V) - h]/ h(V)dn/dt = [n (V) n]/ n(V)

    space-clamped

    , temperaturecorrection factor = Q

    10**[(temp-temp

    ref )/10]

    HH: Q 10=3

    V

    Reconstruct action potential

    Time courseVelocityThresholdRefractory periodIon fluxes

    Repetitive firing?

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    16/50

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    17/50

    1 m 2 has about100 Na + and K +

    channels.

    HH model is a mean-fieldmodel that assumes anadequate density of channels.

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    18/50

    Bullfrog sympatheticGanglion B cell

    Cell is compact,electrically but notfor diffusion Ca 2+

    MODEL:

    HH circuit+ [Ca 2+] int+ [K+] ext

    g c & gAHP depend on [Ca 2+] int

    Yamada, Koch, Adams 89

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    19/50

    Cortical Pyramidal Neuron

    Complex dendritic branchingNonuniformly distributed channels

    Pyramidal Neuron with axonal tree

    Schwark & Jones, 89

    Koch, Douglas,Wehmeier 90

    HH action potential biophysical time scales.

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    20/50

    p p y

    I-V relations: ISS(V) I inst(V)steady state instantaneous

    HH: I SS(V) = G Na m3(V) h (V) (V-V Na) + G K n4(V) (V-V K ) +G L (V-V L)

    Iinst(V) = G Na m3(V) h (V-V Na) + G K n (V-V K ) +G L (V-V L)

    fast slow, fixed at holding valuese.g., rest

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    21/50

    Dissection of HH Action Potential

    Fast/Slow Analysis - based on time scale differences

    h, n are slow relativeto V,m

    Idealize AP to 4 phases V

    th,n constant during

    upstroke and downstroke

    V,m slaved during plateauand recovery

    h,n constant duringupstroke and downstroke

    Upstroke

    R and E stable

    T - unstable

    C dV/dt = - I inst(V, m (V), h R , nR ) + I app

    R T E

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    22/50

    Repetitive Firing, HH model and others

    Response to current step

    nerve block

    Subthreshold

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    23/50

    Repetitive firing in HH and squid axon-- bistability near onset

    Linear stability: eigenvalues of 4x4 matrix. For reduced model

    w/ m=m (V): stability if Iinst /V + C m/ n > 0.

    Rinzel & Miller, 80

    HH eqns Squid axon

    Guttman, Lewis & Rinzel, 80

    Interval of bistability

    Bistability in motoneurons

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    24/50

    Bistability in motoneurons

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    25/50

    2-compartment model; plateau generator in dendrite

    Morris-Lecar membrane model

    Booth & Rinzel, 95

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    26/50

    Bistability in 2-compt model

    Response to up/down ramp; hysteresis

    Switching between states

    bl d l h l l

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    27/50

    Two-variable Model Phase Plane Analysis

    ICa

    fast, non-inactivatingIK -- delayed rectifier, like HHs I K

    Morris & Lecar, 81 barnacle musclel

    VVK VL VCaVrest

    negative feedback: slow

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    28/50

    h ll l

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    29/50

    Get the NullclinesdV/dt = - I

    inst(V,w) + I

    app

    dw/dt = [ w(V) w] / w(V)

    V

    I inst

    w = w rest

    w > w rest

    dV/dt = 0Iinst (V,w) = I app

    w

    wrest

    V-nullcline

    V

    w-nullcline

    rest state

    w= w (V)

    dw/dt = 0

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    30/50

    Case of small

    traj hugs V-nullcline -except for up/down

    jumps.

    ML model- excitableregime

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    31/50

    Repetitive Activity in ML (& HH)

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    32/50

    Onset is viaHopf bifurcation

    Type II onsetHodgkin 48

    Anode Break Excitation or

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    33/50

    Anode Break Excitation or Post-Inhibtory Rebound (PIR)

    IK - deactivated

    Post inhibitory facilitation PIF

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    34/50

    Subthreshold nonlinearities:ipsp can enhance epsp,and lead to spiking

    Post inhibitory facilitation, PIF,transient form of PIR

    Model of coincidence-detectingcell in auditory brain stem.Has a subthreshold K + current I KLT .

    Theory PIF Experiment (Gerbil MSO, slice)

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    35/50

    Competing factors:hyperpolarzn (farther from V th)and hyperexcitable (reduced w)

    Dependence on inh

    B ti g S t R t ith F t I hibiti i PIF

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    36/50

    Boosting Spontaneous Rate with Fast Inhibition, via PIF

    Firing Response to Poisson-G ex train Enhanced by Inhibition (Poisson-G inh)Gex only: Add G inh: # of spikes: 10, 15

    Std HH model; 100 Hz inputs; ex= inh=1 ms

    w/ R Dodla. PhysRev E, in press

    Adjust params changes nullclines: case of 3 rest states

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    37/50

    Adjust param s changes nullclines: case of 3 rest states

    Stable or Unstable?

    3 states not necessarily:stable unstable stable.

    3 states Issis N-shaped

    small enough,then both upper/middleunstable if on middle branch.

    ML: large 2 stable steady states

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    38/50

    Neuron is bistable: plateau behavior.

    Saddle point, withstable and unstable manifolds

    V

    t e.g., HH withVK = 24 mV

    Iapp switching pulses

    ML: small both upper states are unstable

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    39/50

    Neuron is excitable with strict threshold .

    thresholdseparatrix long

    Latency

    Vrest

    saddle

    IK-A can give long latencybut not necessary.

    Iss must be N-shaped.

    Onset of Repetitive Firing 3 rest states

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    40/50

    p g

    SNIC- saddle-node on invariant circle

    V

    wIapp

    excitable

    saddle-node

    limit cycle

    homoclinic orbit;infinite period

    emerge w/ large amplitude zero frequency

    Response/Bifurcation diagramML: small

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    41/50

    ML: small

    freq ~ II1

    Firing frequency starts at 0.low freq but no conductancesvery slow

    IK-A ? (Connor et al 77)

    Type I onsetHodgkin 48

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    42/50

    Wilson-Cowan Model

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    43/50

    dynamics in the phase plane.

    Je

    Phase plane, nullclines for range of J e.

    Oscillator death

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    44/50

    - Je

    Pex

    Regime of repetitive activity

    Subthreshold

    Oscillator Death but cells are firing

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    45/50

    Frequency

    - Je

    Type I

    Type II

    Transition from Excitable to Oscillatory

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    46/50

    Type II, min freq 0Iss monotonicsubthreshold oscillnsexcitable w/o distinct thresholdexcitable w/ finite latency

    Same for W-C network models.

    Type I, min freq = 0ISS N-shaped 3 steady statesw/o subthreshold oscillationsexcitable w/ all or none (saddle) thresholdexcitable w/ infinite latency

    Hodgkin 48 2 classes of repetiitive firing;Also - Class I less regular ISI near threshold

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    47/50

    Noise smooths the f I relation

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    48/50

    Noise smooths the f-I relation

    Type II

    Type I

    I app

    frequency

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    49/50

    FS cellnear threshold

    RS cell, w/ noise FS cell, w/ noise

    Take Home Message

  • 8/3/2019 John Rinzel- Nonlinear Dynamics of Neuronal Systems --Cellular Level

    50/50

    Take Home Message

    Excitability/Oscillations : fast autocatalysis + slower negative feedback

    Value of reduced models

    Time scales and dynamics

    Phase space geometry

    Different dynamic states Bifurcations

    XPP software:http://www.pitt.edu/~phase/ (Bard Ermentrouts home page)