João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER...

57
João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse

Transcript of João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER...

Page 1: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

João Pedro Marques

The Stellar Evolution Code CESTAM

Numerical and physical challenges

ESTER Workshop – 10/06/2014 Toulouse

Page 2: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

The Stellar Evolution Code CESAM

Collocation method based on piecewise polynomial approximations projected on their B-spline basis

Stable and robust calculations

Restitution of the solution not only at grid points

Automatic mesh refinement

Page 3: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

The Stellar Evolution Code CESAM

Precise restoration of the atmosphere

Modular in design

Evolution of the chemical composition:

Without diffusion: implicit Runge-Kutta scheme

With diffusion: solution of the diffusion eq. using the Galerkin method

Page 4: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

The Stellar Evolution Code CESAM

Several EoS, opacities, nuclear reaction rates

Page 5: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Transport of Angular Momentum in Stellar

Radiative Zones(Zahn 1992)

Angular momentum transported by

Meridional circulation

Turbulent viscosity

Page 6: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Turbulence is anisotropic in RZs

Radiative zones are stably stratified: Turbulence much stronger in the horizontal

direction. “Shellular” rotation: Ω~constant in

isobars. Lots of simplifications possible.

Page 7: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Turbulence models: a weak spot

Horizontal viscosity: various approaches.

Richard and Zahn (1999), Mathis, Palacios and Zahn (2004).

Maeder (2009). Vertical viscosity:

Secular instability

Talon and Zahn (1997)

Page 8: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Meridional circulation transports heat and AM

Page 9: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Meridional circulation transports heat and AM

Ω(P,θ) μ(P,θ)

Page 10: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Meridional circulation transports heat and AM

Ω(P,θ) ρ(P,θ) μ(P,θ)

Thermal wind

Page 11: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Meridional circulation transports heat and AM

Ω(P,θ) ρ(P,θ) μ(P,θ)

S(P,θ)

Thermal wind

EoS

Page 12: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Meridional circulation transports heat and AM

Ω(P,θ)

Ω(P,θ)

ρ(P,θ) μ(P,θ)

S(P,θ)

Thermal wind

EoS

Page 13: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Meridional circulation transports heat and AM

Ω(P,θ)

Ω(P,θ)

ρ(P,θ) μ(P,θ)

S(P,θ)

S(P,θ)

Thermal wind

U, Dv

EoS

Page 14: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Meridional circulation transports heat and AM

Ω(P,θ)

Ω(P,θ)

ρ(P,θ) μ(P,θ)

S(P,θ)

S(P,θ)

μ(P,θ)

Thermal wind

U, Dv U, Dh

EoS

U, div F, div Fh, ε

Page 15: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Meridional circulation transports heat and AM

Ω(P,θ)

Ω(P,θ)

ρ(P,θ) μ(P,θ)

S(P,θ)

S(P,θ)

μ(P,θ)

Thermal wind

U, Dv U, Dh

EoS

U, div F, div Fh, ε

Page 16: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Meridional circulation transports heat and AM

Ω(P,θ)

Ω(P,θ)

ρ(P,θ) μ(P,θ)

S(P,θ)

ρ(P,θ)

S(P,θ)

μ(P,θ)

Thermal wind

U, Dv U, Dh

EoS

U, div F, div Fh, ε

Page 17: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Meridional circulation transports heat and AM

Ω(P,θ)

Ω(P,θ)

ρ(P,θ) μ(P,θ)

S(P,θ)

ρ(P,θ)

S(P,θ)

μ(P,θ)

Thermal wind

Thermal wind

U, Dv U, Dh

EoS

U, div F, div Fh, ε

Page 18: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Horizontal variations

Page 19: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

It's complicated...

Page 20: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

It's complicated...

Page 21: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

It's complicated...

Page 22: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

It's complicated...

4th order problem in Ω 2 boundary conditions at the top:

No shear. Angular momentum in the external CZ changes due to

advection by U + external torque. 2 boundary conditions at the bottom:

No shear. Angular momentum in the central CZ changes due to

advection by U, or U=0.

Solved by a finite-difference scheme (relaxation method), fully implicit in time.

Page 23: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

A few results: a 5 Msun

star at the ZAMS

Rota

tion a

xis

Equator

Page 24: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

A few results: a 5 Msun

star at the ZAMS

Rota

tion a

xis

Equator

Page 25: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

A few results: a 5 Msun

star in the MS

Rota

tion a

xis

Equator

Page 26: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

A few results: a 5 Msun

star in the MS

Rota

tion a

xis

Equator

Page 27: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

A few results: a 5 Msun

star at the TAMS

Rota

tion a

xis

Equator

Page 28: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

A few results: a 5 Msun

star at the TAMS

Rota

tion a

xis

Equator

Page 29: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

A few results: a 5 Msun

star at the TAMS

Rota

tion a

xis

Equator

Page 30: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

A few results: a 5 Msun

star at the TAMS

Rota

tion a

xis

Equator

Page 31: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

However... It doesn't really work!

Model fails to reproduce radial differential rotation in subgiant and red-giant stars.

Model does not reproduce solid-body rotation in solar models.

Changing model parameters does not solve the problem.

Therefore, new AM transport mechanisms needed:– Internal gravity waves (IGW).– Magnetic fields.

Page 32: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Theoretical rotation profiles of subgiant star KIC 7341231

Best model

Page 33: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Theoretical average rotation rate from splittings

Rotation profiles

Mixed modes withmostly p-mode character

Mixed modes withmostly g-mode character

Page 34: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Theoretical splittings do not agree with observations

Observed splittings

Theoretical splittings

Factor of ~102

Page 35: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Internal Gravity Waves

ω does not depend on on magnitude of k.

Only on the angle between k and the vertical.

Therefore, cg orthogonal

to cp.

Holton (2009)

Page 36: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Internal Gravity Waves

ω does not depend on on magnitude of k.

Only on the angle between k and the vertical.

Therefore, cg orthogonal

to cp.

cp

cg

Page 37: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Internal Gravity Waves: ray tracing

Low frequency

High frequency

Page 38: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

IGWs can accelerate the mean flow

When they are transient and/or they are dissipated/excited.

Radiative damping: a factor exp(-τ) appears with:

It depends strongly on the intrinsic frequency σ, σ = ω – m(Ω – Ω

c) (Doppler shift!)

Zahn at al. 1997

Page 39: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

IGWs can accelerate the mean flow

Prograde and retrograde waves are Doppler shifted if there is differential rotation.

They are damped at different depths.– Retrograde waves brake the mean flow when they

are damped.– Prograde waves accelerate the mean flow when

they are damped. Angular momentum is transported!

Page 40: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Plumb-McEwan Experiment

Page 41: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Plumb-McEwan Experiment

Page 42: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

A new method is needed

σ(r) = ω – m[Ω(r) – Ωc] : local methods no longer

possible! A new ''test module'' to experiment.

Page 43: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

A finite volume method

Equation to solve:

Three fluxes: Meridional circulation. Viscosity. IGW flux.

Page 44: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

A finite volume method

(Variation of AM in cell k during Δt) = [(flux through face k-1/2) – (flux through face k+1/2)] Δt.

Viscous flux evaluated at present time step. IGW and U fluxes extrapolated from previous time

steps using a 3rd order Adams-Bashforth method.

k-1 k k+1

Cell k Face k+1/2Face k-1/2

Page 45: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Adams-Bashforth method for wave and meridional circ fluxes

Stable, accurate. Needs fluxes at 3 previous time steps. Prototypical eq:

Solution:

ωi = time step ratios.

Page 46: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

How does it come together

Once we have calculated Ω at the present time step:

Compute wave fluxes at the faces of cells;

Compute meridional circulation flux.

Next time step:– Extrapolate IGW and U fluxes using 3rd

order A-B.– Solve diffusion eq. for Ω using these fluxes.

Implemented in test module and it works!

Page 47: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

The role of wave heat fluxes

Simplification:

Local cartesian grid.

Boussinesq.

Quasi-geostrophic.

Adiabatic.

Page 48: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Cartesian grid

Coordinates: (x, y, z)

X → direction of rotation (zonal)

Y → meridional Z → vertical

V = (u, v, w)

Page 49: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Waves can accelerate the mean flow

Momentum equation:

Coriolis

Wave momentum flux divergence

Forcing

Page 50: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

But heat fluxes also contribute

Momentum equation:

Heat equation:

b: buoyancy

Diabatic heating

Vertical advection

Page 51: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

But heat fluxes also contribute

Momentum equation:

Heat equation:

b: buoyancy

Diabatic heating

Vertical advection

b(y) and u(z) connected by the thermal wind equation!

Page 52: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Residual circulation: the transformed eulerian

mean (TEM) The problem:

Wave fluxes and circulation nearly cancel.

It is not clear what is driving.

A solution: use residual circulation:

Page 53: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Eliassen-Palm flux

The TEM equations are:

F is the Eliassen-Palm flux:

Page 54: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Eliassen-Palm flux

The equations become:

F is the Eliassen-Palm flux:

Heat and momentum fluxesdo not act separately:

only in the combination givenby the EP flux!

Page 55: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

TEM in stars

We derived a formulation for stellar interiors.

We are testing in the '' test module''...

Work in progress...

Page 56: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Other developments

Magnetic braking by stellar winds: several models– Kawaler (1988)– Reiners and

Mohanty (2012)– Gallet and Bouvier

(2013)

Page 57: João Pedro Marques The Stellar Evolution Code CESTAM Numerical and physical challenges ESTER Workshop – 10/06/2014 Toulouse.

Problems

A ''shear layer oscillation'' just below the CZ– We are developing numerical methods

to handle this.

Is rotation really shellular in RZ?– Lessons from geophysics seem say

''no''!

Transfer of AM between CZ and RZ.

What about magnetic fields???