Joan Saldaña Universitat de Girona

51
RD processes on heterogeneous metapopulations: Continuous-time formulation and simulations wANPE08 – December 15-17, Udine Joan Saldaña Universitat de Girona

description

RD processes on heterogeneous metapopulations: Continuous-time formulation and simulations wANPE08 – December 15-17, Udine. Joan Saldaña Universitat de Girona. Outline of the talk. Introduction SIS model with homogeneous mixing Epidemic models on contact networks - PowerPoint PPT Presentation

Transcript of Joan Saldaña Universitat de Girona

Page 1: Joan Saldaña Universitat de Girona

RD processes on heterogeneous metapopulations: Continuous-time formulation and simulations

wANPE08 – December 15-17, Udine

Joan SaldañaUniversitat de Girona

Page 2: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Outline of the talk

1. Introduction1. SIS model with homogeneous mixing

2. Epidemic models on contact networks 1. Regular (homogeneous) random networks

2. Complex random networks

3. EM on complex metapopulations 1. Discrete-time diffusion

2. Continuous-time diffusion

Page 3: Joan Saldaña Universitat de Girona

wANPE08 - Udine

SIS model

The force of infection λ = rate at which susceptible individuals become infected

Proportional to the number of infective contacts

µ = recovery rate

ISdt

dISI

dt

dS ,

Page 4: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Homogeneous mixing

Any infective is equally likely to transmit the disease to any susceptible

λ = transmission rate across an infective contact x contact rate x proportion of infective contacts

= β · c · I / N

If c ≈ N → λ ≈ β · I (non-saturated) If c ≈ 1 → λ ≈ β · I / N (saturated) (c is the average rate at which new contacts are made and can

take into account other aspects like duration of a contact, etc.)

Page 5: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Basic reproductive number

= Average number of infections produced by an infective individual in a wholly susceptible

population

= c ·β ·T = c ·β ·1/μ

In a non-homogeneous mixing,

c ~ structure of the contact network → Consider the probability of arriving at an infected

individual across a contact instead of considering the fraction of infected individuals !!

0R

0R

Page 6: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Contact network epidemiology

What are the implications of network topology for epidemic dynamics?

(May 2001; Newmann 2002; Keeling et al. 1999, 2005; Cross et al. 2005, 2007; Pastor-Satorras & Vespignani 2001, …; Lloyd-Smith et al. 2005; etc. )

Page 7: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Contact network epidemiology

(Meyers et al. JTB 2005)

Page 8: Joan Saldaña Universitat de Girona

Meyers et al.JTB 2005

Page 9: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Complex contact networks

The contact structure in the population is given by

the degree (or connectivity) distribution P(k)

the conditional probability P(k’|k)

If these two probabilities fully determine the contact structure → Markovian networks

Page 10: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Degree distributions

Poisson: non-growing random networks

Exponential: growing networks with new nodes randomly attached without preference

Scale free (power law): preferential growing networks → existence of highly connected nodes (= superspreaders)

Page 11: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Network architectures

Meyers et al.JTB 2005

Page 12: Joan Saldaña Universitat de Girona

wANPE08 - Udine

A special degree distribution

Distribution of the degrees of nodes reached by following a randomly chosen link:

which has < k² > / < k > as expected value.

This is the value to be considered for c !!

k

kPkkq

)()(

Page 13: Joan Saldaña Universitat de Girona

wANPE08 - Udine

for contact networks

2

2

0 )(1 CVkTk

kTR

kTR 0

For this value of c, we have

(Anderson & May 1991; Lloyd & May 2001; May & Lloyd 2001)(Pastor-Satorras & Vespignani 2001, Newmann 2002)

For regular random networks, CV = 0 and hence

0R

Absence of epidemic threshold

in SF networks!!

Page 14: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Epidemics on metapopulations

Schematically (Colizza, Pastor-Satorras & Vespignani, Nature Physics 2007):

Page 15: Joan Saldaña Universitat de Girona

wANPE08 - Udine

An example

Page 16: Joan Saldaña Universitat de Girona

wANPE08 - Udine

More modern examples

Page 17: Joan Saldaña Universitat de Girona

wANPE08 - Udine

A nice picture of the 1st example

Page 18: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Modern examples

(Colizza et al., PNAS 2006)

Page 19: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Global invasion threshold

is not sufficient to predict the invasion success at the metapopulation level with small local population sizes (Ball et al. 1997; Cross et al. 2005, 2007)

Disease still needs to spread to different populations

= number of subpopulations that become infected from a single initially infected population Size of the local population (N), Rate of diffusion among populations (D) the length of the infectious period (1/μ).

(Cross et al. 2005, 2007)

0R

*R

*R

Page 20: Joan Saldaña Universitat de Girona

wANPE08 - Udine

An alternative approach

Consider a complex metapopulation as a structured population of nodes classified by their connectivity (degree)

Include local population dynamics in each node

Forget about the geographical location of nodes and consider only the topological aspects of the network

Page 21: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Global invasion threshold *R

Page 22: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Global invasion threshold

In a regular random network with

Similar expressions can be derived for complex metapopulations. For instance, if D = const,

*R

111

11 00

*

R

k

kN

D

RkR

iN

110 R

(Colizza & Vespignani

Phys.Rev.Lett. 2007,

JTB 2008)

102

2

*

Rk

kkN

DR

Page 23: Joan Saldaña Universitat de Girona

wANPE08 - Udine

A discrete-time model

Page 24: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Assumptions

The spread of a disease is assumed to be two sequential (alternate) processes:

1) Reaction (to become infected or to recover) Homogeneous mixing at the population level

2) Diffusion: A fixed fraction of individuals migrate at the end of each time interval

(after react !!)

Page 25: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Transmission rates

In type-I (non-saturated) spreading:

In type-II (saturated) spreading:

kk 0

kBkAkk

k ,,0 with

Page 26: Joan Saldaña Universitat de Girona

wANPE08 - Udine

The discrete equations

'

1)|'()(

))(1()(

'

1)|'()(

))(1()(

',','

'',',

,,,,,

',','

'',',

,,,,,

kkkPDk

Dt

kkkPDk

Dt

kBkAk

kkBkBB

kBkBkAkkBBkB

kBkAk

kkBkAA

kBkAkkBkAAkA

Susceptible individuals:

Infected individuals:

Diffusion at theend of the

time interval

Page 27: Joan Saldaña Universitat de Girona

wANPE08 - Udine

The continuous equations

'

1)|'()(

))(1(

'

1)|'()(

))(1(

',','

'',',

,,,,,,

',','

'',',

,,,,,,

kkkPDk

Ddt

d

kkkPDk

Ddt

d

kBkAk

kkBkBB

kBkBkAkkBBkBkB

kBkAk

kkBkAA

kBkAkkBkAAkAkA

Taking the approximation dρ/dt ≈ ρ(t + 1) – ρ(t) it follows:

(Colizza et al., Nature Physics 2007)

Page 28: Joan Saldaña Universitat de Girona

wANPE08 - Udine

For sequential Type-I processes

1 BA DD

(Colizza et al., Nature Physics 2007)

The number of infectives and susceptibles are linear in the node degree k → Diffusion effect

Constant prevalenceacross the metapopulation

Lack of epidemic threshold in SF networks

Page 29: Joan Saldaña Universitat de Girona

wANPE08 - Udine

For sequential Type-II processes

1 BA DD

(Colizza et al., Nature Physics 2007)

The number of infectives and susceptibles are linear in the node degree k → Strong diffusion effect

Constant prevalenceacross the metapopulation

Page 30: Joan Saldaña Universitat de Girona

wANPE08 - Udine

The continuous-time model

The limit of the discrete model as τ → 0 is not defined !!!

→ The previous equations are not the continuous time limit of the discrete equations !!

Assuming uniform diffusion during each time interval (with probability τ ·Di), the limit as τ → 0 becomes well-defined and one obtains …

Page 31: Joan Saldaña Universitat de Girona

wANPE08 - Udine

The discrete equations

'

1)|'()(

))(1()(

'

1)|'()(

))(1()(

',','

'',',

,,,,,

',','

'',',

,,,,,

kkkPDk

Dt

kkkPDk

Dt

kBkAk

kkBkBB

kBkBkAkkBBkB

kBkAk

kkBkAA

kBkAkkBkAAkA

Susceptible individuals:

Infected individuals:

Page 32: Joan Saldaña Universitat de Girona

wANPE08 - Udine

The limit equations

','

,,,,

','

,,,,

'

1)|'()()(

'

1)|'()()(

kBk

BkBBkAkkBkBt

kAk

AkAAkAkkBkAt

kkkPDkDt

kkkPDkDt

Susceptible individuals:

Infected individuals:

(Saldaña, Phys. Rev. E 78 (2008))

Page 33: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Conserv. of number of particles

Consistency relation between P(k) and P(k’|k):

Mean number of particles:

Conservation of the number of particles:

)'|()'(')|'()( kkPkPkkkPkPk

0)]()([

ttt BA

)()()( , tkPt kik

i

Page 34: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Equilibrium equations

*,

'

*,

*,

**,

*',

'

*,

*,

**,

'

1)|'()(

'

1)|'()(

kBk

kBBkAkkB

kAk

kAAkAkkB

kkkPkD

kkkPkD

Page 35: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Uncorrelated networks

In uncorrelated networks:

= Degree distribution of nodes that we arrive at by following a randomly chosen link

)()'('

)|'( kqk

kPkkkP

Page 36: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Equilibrium equations in U.N.

**,

*,

**,

**,

*,

**,

)(

)(

BkBBkAkkB

AkAAkAkkB

k

kD

k

kD

*

,**

,* )(,)( kB

kBkA

kA kPkP

Page 37: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Disease-free equilibrium

In this case, and

→ the number of individuals is linear in the

node degree k → Diffusion effect

0*, kB

0*,

k

kkA

Page 38: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Endemic equilibrium in type-II

Saturation in the transmission of the infection → all the local populations have the equal

prevalence of the disease:

0*

*

0

*,

*

0

*, 1,

k

kk

kkBkkA

All are linear in thedegree k

Page 39: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Endemic equilibrium in type-II

Therefore, the condition for its existence at the metapopulation level is the same as the one for each subpopulation:

There is no implication of the network topology for the spread and prevalence of the disease

100

R

Page 40: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Endemic equilibrium in type-I

Increase of the prevalence with node degree (being almost linear for large k)

Absence of epidemic threshold in networks with unbounded maximum degree

There is an implication of the network topology for the spread and prevalence of the disease

When DA = DB, the size a each population is linear with k, as in type-II

Page 41: Joan Saldaña Universitat de Girona

wANPE08 - Udine

A sufficient condition in type I

The disease-free equilibrium will be unstable whenever the following condition holds:

This condition follows from the localization of the roots of the Jacobian matrix J of the linearized system around the disease-free equilibrium

0max

0

BD

k

k

Page 42: Joan Saldaña Universitat de Girona

wANPE08 - Udine

A sufficient condition in type I

Precisely, with

The roots of being simple and satisfying

B

CAJ

0)()()( BAJ pDp

)(

1

00

max

00

00

B

BB

Dk

k

Dk

kD

k

k

maxk

k

λ

λ

)(Bp

Page 43: Joan Saldaña Universitat de Girona

wANPE08 - Udine

A remark on the suff. condition

For regular random networks, k = <k> and the condition reads as

which is more restrictive than the n. & s. condition that follows directly from the model, namely,

100

BD

100

Page 44: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Simulations under type-I trans.

(Saldaña, Phys.Rev. E 2008)

Page 45: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Monte Carlo simulations

(Baronchelli et al., Phys .Rev. E 78 (2008))Not when

D and R occur simultaneously !!

Page 46: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Monte Carlo simulations - 2

The length τ of the time interval must be small enough to guarantee that events are disjointThe diffusing prob. of susceptibles and infectives

are τ·DA and τ·DB , respectivelyThe prob. of becoming infected after all the

infectious contacts is σ = σ(τ,k) τμ is the recovering probability

Page 47: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Monte Carlo simulations - 3

For infective individuals

For susceptible individuals

with

BB D

D

11

1)( kAD

kkkkB /1)1(1)( , and

Page 48: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Monte Carlo simulations - 4

This last inequality can be rewritten as

If we consider the minimum of these τ’s over the network: , the value of τ we take for each time step is

)(* t

)()1( *)(, tD kt

kAkB

)(,

1,

1min)( * t

Dt

kB

Page 49: Joan Saldaña Universitat de Girona

wANPE08 - Udine

MC simulations for type-II trans.

nodes5000

1

5.1

30

BA DD

(Juher, Ripoll,Saldaña, in preparation)

The same output as withdiscrete-time diffusion

Page 50: Joan Saldaña Universitat de Girona

wANPE08 - Udine

MC simulations for type-I trans.

nodes5000

1

3

5.10

BA DD

(Juher, Ripoll,Saldaña, in preparation)

Prevalence is NOTconstant with k !!

Page 51: Joan Saldaña Universitat de Girona

wANPE08 - Udine

Future work

Analytical study of the properties of the equilibrium in type-I transmission

More general diffusion rates (for instance, depending on the population degree)

Impact of degree-degree correlations

Introduction of local contact patterns