Jet Quenching Physics

37
Enke Wang (Institute of Particle Physics, Huazhong Normal University) I. Jet Quenching in QCD-based Model II. Jet Quenching in High-Twist pQCD III.Jet Tomography of Hot and Cold Strong Interaction Matter IV. Modification of Dihadron Frag. Function Jet Quenching Physics

description

Jet Quenching Physics. Enke Wang (Institute of Particle Physics, Huazhong Normal University) Jet Quenching in QCD-based Model Jet Quenching in High-Twist pQCD Jet Tomography of Hot and Cold Strong Interaction Matter Modification of Dihadron Frag. Function. Fragmentation Function. - PowerPoint PPT Presentation

Transcript of Jet Quenching Physics

Page 1: Jet Quenching Physics

Enke Wang (Institute of Particle Physics, Huazhong Normal University)

I. Jet Quenching in QCD-based Model

II. Jet Quenching in High-Twist pQCD

III. Jet Tomography of Hot and Cold Strong Interaction Matter

IV. Modification of Dihadron Frag. Function

Jet Quenching Physics

Page 2: Jet Quenching Physics

Fragmentation Function

)],(),()[(

2

1)(

2220

4

42

QzDQzDQ

dz

dWL

q

e

sdz

Qd

hhqh

hq

q

qq

hh

hee

p

pz h

h 2

222

0 3

4)(

Q

eNQ q

cqq

Evolution: DGLAP Equation2Q

),( 2QzD hhq

Page 3: Jet Quenching Physics

hadrons

q

q

hadrons

leadingparticle

leading particle

p-p collision

hadrons

q

q

hadrons

Leading particle suppressed

leading particle suppressedA-A collision

Jet Quenching:

EEE '

E

Modification of Fragmentation Function:

p

hp

S~

q

),( 2QzD hhq

hhh zzz

),(),(),(~ 222 QzDQzDQzD hhhqhhq

Page 4: Jet Quenching Physics

28 YEARS AGO

Page 5: Jet Quenching Physics

I. Jet Quenching in QCD-based Model

G-W (M. Gyulassy, X. –N. Wang) Model:

Static Color-Screened Yukawa Potential

Page 6: Jet Quenching Physics

Opacity Expansion Formulism (GLV)

Double Born Scattering

GLV, Phys. Rev. Lett. 85 (2000) 5535; Nucl. Phys. B594 (2001) 371

Elastic Scattering

Page 7: Jet Quenching Physics

First Order in opacity Correction

Page 8: Jet Quenching Physics

First Order in opacity Correction

Medium-induced radiation intensity distribution:

Induced radiative energy loss:

Induced gluon number distribution:

)cos(1)2)(( 111122

22

)1(

zBCqvqdLC

kdxd

dNx

g

sR

Non-Abelian LPM Effect

2)1( LE LE )1(

QCD:

QED:

Page 9: Jet Quenching Physics

Radiated Energy Loss vs. Opacity

First order in opacity correction is dominant!

Page 10: Jet Quenching Physics

Detailed Balance Formulism (WW)

E. Wang & X.-N. Wang, Phys. Rev. Lett.87 (2001) 142301

k

x0 p

k

x0 p

Stimulated Emission Thermal Absorption

B-E Enhancement Factor

1+N(k)

Thermal Distribution Func.

N(k)

Page 11: Jet Quenching Physics

Final-state Radiation

k

x0 p

k

x0 p

Energy loss induced by thermal medium:

0

)0()0(

)0(

T

abs d

dp

d

dpdE

22

2 )2('62

4ln

3

E

FsET

E

TC=

Net contribution: Energy gain

Stimulated emission increase E loss Thermal absorption decrease E loss

Page 12: Jet Quenching Physics

First Order in Opacity Correction

Single direct rescattering:

k

y0 y1 p

k

y0 y1 p

y0 y1 p

k

Double Born virtual interaction:

k

y0 y1 y1 p

y0 y1 y1 p

k

k

y0 y1 y1 p

y0 y1 y1 p

k

Key Point: Non-Abelian LPM Effect—destructive Interference!

Page 13: Jet Quenching Physics

Energy Loss in First Order of Opacity

Energy loss induced by rescattering in thermal medium: )1()1()1(

absradEEE

Take limit:

1EL E LT 2

Zero Temperature Part:

0

)0(

)1(

T

rad d

dpdE

048.0

2ln

4 2

2

L

EC

g

Fs

L2

GLV ResultTemperature-dependent Part:

0

)1()1(

)1(

T

abs d

dp

d

dpdE

2

22 )2('61ln

3

E

g

Fs

T

L

E

LTC

Energy gain

Page 14: Jet Quenching Physics

Numerical Result for Energy Loss

3.0S

)1()1()0(

radabsabsEEEE

• Intemediate large E, absorption is important

•Energy dependence becomes strong

•Very high energy E, net energy gain can be neglected

Page 15: Jet Quenching Physics

Parameterization of Jet Quenching with Detailed Balance Effect

)/5.7/()6.1/( 02.1

001

EEdL

dE

d

Average parton energy loss in medium at formation time:

Energy loss parameter proportional to the initial gluon density 2

00

1

ARd

dN

Modified Fragmentation Function (FF)

),(

)],(/),()[1(),,(

2'0/

/

2'0/

'2'0

/

'/2

/

cchL

gghc

gcch

c

cLccch

zDe

zDz

zLzD

z

zeEzD

(X. -N. Wang , PRC70(2004)031901)

,//),/( ''cTgcTcTc EpLzEppz

Page 16: Jet Quenching Physics

Comparison with PHENIX Data

PHENIX,

Nucl. Phys. A757 (2005) 184

Page 17: Jet Quenching Physics

II. Jet Quenching in High-Twist pQCD

e-

, )) (( ,( )qh

q h hHdW

d f x p q Dxd

zz

x

pypedy

xf yixpBq )()0(

2

1

2)(

/( ) 0 (0) , , ( ) 02 2 2

h hip y zhq h h q h h q

S

z dyD z e Tr p S p S y

Frag. Func.

22 )(2)(2

1),,( xpqxpqpTreqpxH q

Page 18: Jet Quenching Physics

Modified Fragmentation Function

2 2 2( , ) ( , ) ( , )h h hD z Q D z Q D z Q

Cold nuclear matter or hot QGP medium lead to the modification of fragmentation function

Page 19: Jet Quenching Physics

Jet Quenching in e-A DISX.-N. Wang, X. Guo, NPA696 (2001); PRL85 (2000) 3591

e-

Page 20: Jet Quenching Physics

Modified Frag. Function in Cold Nuclear Matter

2 2 2( , ) ( , ) ( , )h h hD z Q D z Q D z Q 2 12

24

0

( , ) ( , )2

h

Q

S hq h h L q h

z

zd dzD z Q z x D

z z

2 ( , ) 21( , ) (virtual)

(1 ) ( )

Aqg L A S

L Aq c

T x x Czz x

z f x N

Modified splitting functions

_2 1(

1 2 1 2

2)

1

( , ) (0) ( ) ( ) ( )2 2

( ) ( )1 1

B

L Lix p y ix

ix p yA

y

g

y

q L

pe

dyT x x dy dy e A F y F y y A

y y ye

Two-parton correlation:

LPM

Page 21: Jet Quenching Physics

Modified Frag. Function in Cold Nuclear Matter

hadrons

ph

parton

E

),,()(0 EzDzD ahah

)(0 zDah

are measured, and its QCD evolutiontested in e+e-, ep and pp collisions

Suppression of leading particles

Fragmentation function without medium effect:

Fragmentation function with medium effect:

),1

(1

1),( 0

z

zD

zEzD ahah

Page 22: Jet Quenching Physics

Heavy Quark Energy Loss in Nuclear MediumB. Zhang, E. Wang, X.-N. Wang, PRL93 (2004) 072301; NPA757 (2005) 493

Mass effects:

1) Formation time of gluon radiation time become shorter

222 )1(

)1(2

Mzl

qzz

T

f

LPM effect is significantly reduced for heavy quark

2) Induced gluon spectra from heavy quark is suppressed by

“dead cone” effect

4

2

2

04

222

2

/]1[][

Mzl

lf

T

T

qQ

zq

l

q

M

T

0

Dead cone Suppresses gluon radiation amplitude at 0

Page 23: Jet Quenching Physics

Heavy Quark Energy Loss in Nuclear Medium

)]},,(),,()[1(),,(2

1{

~)~~(~

)1(

1~

),(

22

2

22

1

/~22

3

4

2~

~

1

0

2

2

2

2

22

MlzcMlzceMlzc

x

xxxd

zz

zdz

xQN

xCCQxz

TT

xx

T

L

ML

x

xL

Ac

BsA

B

Q

g

AL

M

LPM Effect

,~~

2

2

Qx

Mx

x

x

A

B

A

L

AN

A Rmx

1

1) Larg or small :

Bx

2Q

A

A

B

c

SAQ

gR

Qx

x

N

CCz

2

2~~

2) Larg or small :2Q

2

22

2~~

A

A

B

c

SAQ

gR

Qx

x

N

CCz

Bx

Page 24: Jet Quenching Physics

Heavy Quark Energy Loss in Nuclear Medium

The dependence of the ratio between charm quark and light quark energy loss in a large nucleus

2Q

The dependence of the ratio between charm quark and light quark energy loss in a large nucleus

Bx

Page 25: Jet Quenching Physics

III. Jet Tomography of Hot and Cold Strong Interaction Matter

E. Wang, X.-N. Wang, Phys. Rev. Lett. 89 (2002) 162301

2 21 1 22 2

22 2 2 2

0 0 0 0

1 (1 )( ,

()

, )

( )2

Q Qs A sT

g L T

Aqg

T cT T T

L

Aq

Cd zz dz z z x d dz

Nk

T x x

f x

Cold Nuclear Matter:Quark energy loss = energy carried by radiated gluon

2 2 13ln

2A

s N Ac B

CE C m R

N x

Energy loss

3/2AE

Page 26: Jet Quenching Physics

Comparison with HERMES Data

HERMES Data: Eur. Phys. J. C20 (2001) 479

22 0060.0)(~

GeVQC 33.0)( 2 Qs 22 3GeVQ , ,

Page 27: Jet Quenching Physics

Initial Parton Density and Energy Loss

jet1

jet2

0

32

2( ) ln

R

s

EE d

00( ) ( )R r

01 0

2d

A

E ER

Initial energy loss in a static medium with density 0

:0E

0 0.1 fm 015

2AR

1

0.5 GeV/fmd

dE

dx

6.140

dx

dEGeV/fm

Initial parton density (Energy loss ) is 15~30 times that in cold Au nuclei !

Page 28: Jet Quenching Physics

Comparison with STAR data

STAR, Phys. Rev. Lett. 91 (2003) 172302

Page 29: Jet Quenching Physics

IV. Modification of Dihadron Frag. Function

h1 h2

jet

A. Majumder, Enke Wang, X. –N. Wang, Phys. Rev. Lett. 99 (2007) 152301

Dihadron fragmentation:

h1

h2

Page 30: Jet Quenching Physics

DGLAP for Dihadron Fragmentation

2

1

1

1

2

2

2 11 2

1 222

21

2

( , , )( ) ( )

ln( , , )q

qh h

q q hg

z z

h

D z z Q dyP

z zD Q

y yy g h h

Q y

h1h2

h1h2

h1

h2

1

1 2

2

22

121ˆ ( ) (( , )

1)

(,

)( )

1q

z

q

z

hg hqgz

Dz

D Qy

dyP y q g

yQ

y y

Page 31: Jet Quenching Physics

Evolution of Dihadron Frag. Function

Page 32: Jet Quenching Physics

Evolution of Dihadron Frag. Function

)()(),( 21212121 zDzDzzD h

qhq

hhq

Page 33: Jet Quenching Physics

Medium Modi. of Dihadron Frag. Function

Page 34: Jet Quenching Physics

Nuclear Modification of Dihadron Frag. Func.

)(

)()(

212

2222 zN

zNzR

h

Ah

h

e-A DIS

Page 35: Jet Quenching Physics

Hot Medium Modification

Page 36: Jet Quenching Physics

Thank YouThank You

Page 37: Jet Quenching Physics