Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

48
Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors

Transcript of Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

Page 1: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

Jessica Arbona & Christopher BradyDr. In Soo Ahn & Dr. Yufeng Lu, Advisors

Page 2: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

• Goal• Adaptive Filter

◦ Adaptive Filtering System◦ Four Typical Applications of Adaptive Filters◦ How does the Adaptive Filter Work?

• Project Description◦ High Level Flowchart◦ Equipment List◦ Design Approach

• Procedure◦ MATLAB Simulation (Speech Data)◦ Hardware Design (Ultrasound Data) ◦ FIR filter structures (Ultrasound Data)◦ DSP/FPGA Implementation (Speech Data)

• Demonstration• Conclusion

2

Page 3: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

The goal of the project is to design and implement an active noise cancellation system using an adaptive filter.

3

Page 4: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

4

Page 5: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

The adaptive filtering system contains four signals: reference signal, d(n), input signal, x(n), output signal, y(n), and the error signal, e(n). The filter, w(n), adaptively adjusts its coefficients according to an optimization algorithm driven by the error signal.

5

Page 6: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

6

Adaptive System IdentificationAdaptive Noise Cancellation

Adaptive Prediction Adaptive Inverse

∑ ∑

NoiseFIR

AdaptiveFilter

AdaptiveFilter

Algorithme(n)

y(n)

d(n)

Delay x(n) ∑

Page 7: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

Cost Function

Wiener-Hopf equation◦D

Least Mean Square (LMS) Recursive Least Square (RLS)

7

dXXXopt rRf 1

)}({ 2 neEJ

Page 8: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

Widrow-Hoff LMS Algorithm◦

◦ d

8

)()(2)( nXnen

)(2

)()1( nnfnf

)()()()1( nXnenfnf

Page 9: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

• µ is the step size

• µ must be determined in for the system to converge

• f

9

)0(3

20

XXrL

Page 10: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

10

)()()()1( nXnXnRnR TXXXX

)1()1()1( 1 nrnRnf dXXX

)()()()1( nXndnrnr dXdX

Page 11: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

11

Page 12: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

12

Page 13: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

MATLAB/Simulink Xilinx System Generator

13

Xtreme DSP development kit: FPGA device (Virtex4 xC4SX35-10FF668) Two 14- bit DAC onboard channels Ultrasound Data

SignalWave DSP/FPGA board Audio CODEC (sampling frequency varies from 8kHZ to

48kHZ) Real-time workshop and Xilinx system generator in

MATLAB/Simulink TI DSP (TMS320C6713) and Xilink Virtex II FPGA (XC2V300-

FF1152) Speech Data

Hardware

Design Tools

Page 14: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

14

Least Mean Square◦ Design ◦ Test FIR filter structures◦ Implement

Hardware

Simulation

MATLAB◦ Least Mean Square (LMS)◦ Recursive Least Square (RLS)

Page 15: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

15

Page 16: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

16

Page 17: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

17

Speech Data Processing

MATLAB simulation with Tap (L) = 10◦ LMS◦ RLS

Speech Data

Recorded Voice Signal Recorded Engine Noise

Page 18: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

18

Figure 1: Desired Signal

Figure 2: Noise Signal

Figure 3: Reference Signal

Page 19: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

19

LMS RLS

Figure 4: LMS Filter Coefficients

Figure 5: RLS Filter Coefficients

Page 20: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

20

LMS RLS

Figure 8: Desired Signal and

Recovered Signal

Figure 9: Desired Signal and Recovered

Signal Green – Desired Signal Blue – Recovered Signal

Page 21: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

21

Page 22: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

22

Page 23: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

23

Page 24: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

24

Description:• L = 6• Adaptive FIR Filter

Page 25: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

25

Page 26: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

26

Page 27: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

27

Page 28: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

28

XtremeDSP- Virtex 4 Hardware Results

Orange – Input signalBlue – Output Signal

Page 29: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

29

Page 30: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

30

Page 31: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

31

Page 32: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

32

Page 33: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

33

Page 34: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

34

Page 35: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

35

Page 36: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

36

Page 37: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

37

Page 38: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

38

Page 39: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

39

Page 40: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

40

Page 41: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

41

Description:• L =10• Adaptive FIR Filter

Page 42: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

42

Page 43: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

43

Page 44: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

44

Page 45: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

45

Figure 12: Desired Signal and Recovered

Signal

Figure 13: Spectrum of Desired and Recovered

Signals

Page 46: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

46

Page 47: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

The adaptive filter is successfully simulated in MATLAB using various types of noise. The simulation results show a 24 dB reduction in the mean square error. These results are used in developing the Xilinx model of the system. After the system is successfully designed, alternative FIR structures are investigated in an attempt to improve efficiency. The standard FIR structure is found to be better suited for hardware implementation on a DSP/FPGA board.

47

Page 48: Jessica Arbona & Christopher Brady Dr. In Soo Ahn & Dr. Yufeng Lu, Advisors.

The adaptive filter is successfully simulated in MATLAB using various types of noise. The simulation results show a 24 dB reduction in the mean square error. These results are used in developing the Xilinx model of the system. After the system is successfully designed, alternative FIR structures are investigated in an attempt to improve efficiency. The standard FIR structure is found to be better suited for hardware implementation on a DSP/FPGA board.

48