Jean-Guillaume Eon - UFRJ

120
Graph theory: fundamentals and applications to crystallographic and crystallochemical problems. The vector method Jean-Guillaume Eon - UFRJ ECM-23, 4-6 August 2006, Leuven

description

ECM-23, 4-6 August 2006, Leuven. Graph theory: fundamentals and applications to crystallographic and crystallochemical problems . The vector method. Jean-Guillaume Eon - UFRJ. Summary. Motivation Fundamentals of graph theory Crystallographic nets and their quotient graphs - PowerPoint PPT Presentation

Transcript of Jean-Guillaume Eon - UFRJ

Page 1: Jean-Guillaume Eon - UFRJ

Graph theory: fundamentals and applications to crystallographic and

crystallochemical problems.The vector method

Jean-Guillaume Eon - UFRJ

ECM-23, 4-6 August 2006, Leuven

Page 2: Jean-Guillaume Eon - UFRJ

Summary

• Motivation• Fundamentals of graph theory• Crystallographic nets and their quotient graphs• Space group and isomorphism class• Topological and geometric properties

Page 3: Jean-Guillaume Eon - UFRJ

Objectives

• Topology and Geometry: Description and Prevision of Crystal Structures

• Topological properties: Crystallographic Nets and Quotient Graphs

• Geometric properties: Crystal Structures as Embeddings of Crystallographic Nets

Page 4: Jean-Guillaume Eon - UFRJ

Crystal structures as topological objects

Crystal 1-Complex Net

Chemicalobject

Geometric object

Topological object

Atom Point Vertex

Bond Line Edge

Page 5: Jean-Guillaume Eon - UFRJ

Example: ReO3

1-Complex Crystallographic net= Embedding of the

Page 6: Jean-Guillaume Eon - UFRJ

Graph theory (Harary 1972)

A graph G(V, E, m) is defined by:– a set V of vertices,– a set E of edges,– an incidence function m from E to V2

u

v

w

m (e1) = (u, v)

m (e2) = (v, w)

m (e3) = (w, u)

V = {u, v, w} E = {e1, e2, e3}

e1e2

e3

e1 = uve1

-1 = vu

Page 7: Jean-Guillaume Eon - UFRJ

Simple graphs and multigraphs

loopMultiple edges

Simple graph: graph without loops or multiple edges

Multigraph: graph with multiple edges

Page 8: Jean-Guillaume Eon - UFRJ

Some elementary definitions

• Order of G: |G| = number of vertices of G• Size of G: ||G|| = number of edges of G• Adjacency: binary relation between edges or vertices• Incidence: binary relation between vertex and edge• Degree of a vertex u: d(u) = number of incident edges

to u (loops are counted twice)• Regular graph of degree r: d(u) = r, for all u in V

Adjacentvertices

Adjacentedges

Incidence relationship

Page 9: Jean-Guillaume Eon - UFRJ

Walks, paths and cycles• Walk: alternate sequence of incident vertices

and edges

• Closed walk: the last vertex is equal to the first = the last edge is adjacent to the first one

• Trail: a walk which traverses only once each edge

• Cycle: a closed path

• Forest: a graph without cycle

• Path: a walk which traverses only once each vertex

Page 10: Jean-Guillaume Eon - UFRJ

a.b.j.i trail

a.b.j.d path

b.j.d.e.f.g.h.i closed trail b.j.i cycle

Edges only are enough to define the walk!

b.j.i.b.c walk

b.j.i.b.j.i closed walk

Page 11: Jean-Guillaume Eon - UFRJ

Nomenclature

• Pn path of n edges• Cn cycle of n edges• Bn bouquet of n loops• Kn complete graph of n vertices• Kn

(m) complete multigraph of n vertices with all edges of multiplicity m

• Kn1, n2, ... nr complete r-partite graph with r sets of ni vertices (i=1,..r)

Page 12: Jean-Guillaume Eon - UFRJ

C5

P3

B4

Page 13: Jean-Guillaume Eon - UFRJ

K3(2)K4

K2, 2, 2

Page 14: Jean-Guillaume Eon - UFRJ

Connectivity

• Connected graph: any two vertices can be linked by a walk

• Point connectivity: κ(G), minimum number of vertices that must be withdrawn to get a disconnected graph

• Line connectivity: λ(G), minimum number of edges that must be withdrawn to get a disconnected graph

Page 15: Jean-Guillaume Eon - UFRJ

Determine κ(G) and λ(G)

G

λ(G) = 3

κ(G) = 2

Page 16: Jean-Guillaume Eon - UFRJ

Subgraph of a graphComponent = maximum connected subgraphTree = component of a forest

T1 T2

G = T1 T2

Page 17: Jean-Guillaume Eon - UFRJ

Spanning graph = subgraph with the same vertex set as the main graph

G

T: spanning tree of G

T

Page 18: Jean-Guillaume Eon - UFRJ

Hamiltonian graph: graph with a spanning cycle

Show that K2, 2, 2 is a

hamiltonian graph

Page 19: Jean-Guillaume Eon - UFRJ

Eulerian graph: graph with a closed trail “covering” all edges

Show that K2, 2, 2 is an Eulerian graph

Page 20: Jean-Guillaume Eon - UFRJ

Distances in a graph

•Length of a walk: ||W|| = number of edges of W

•Distance between two vertices A and B: d(A, B) length of a shortest path (= a geodesic)

A

B A---B|=3|A---B|=4d(A, B)=3

Page 21: Jean-Guillaume Eon - UFRJ

Morphisms of graphs

• A morphism between two graphs G(V, E, m) and G’(V’, E’ m’) is a pair of maps fV and fE between the vertex and edge sets that respect the adjacency relationships:

for m (e) = (u, v) : m’ {f E (e)} = ( f V (u), f V (v))

or: f(uv) = f(u)f(v)

• Isomorphism of graphs: 1-1 and onto morphism

Page 22: Jean-Guillaume Eon - UFRJ

e3

e1

e2

v

w

C3

f

u

b

a

e4

e5

f(u) = f(v) = a f(w) = b

f(e1) = e4 f(e2) = f(e3) = e5

Example: an onto morphism in non-oriented graphs

f(vw) = f(v)f(w)

Page 23: Jean-Guillaume Eon - UFRJ

Aut(G): group of automorphisms

• Automorphism: isomorphism of a graph on itself.

• Aut(G): group of automorphisms by the usual law of composition, noted as a permutation of the (oriented) edges.

v

u

w

e1e2

e3

C3Generators for Aut(C3) order 6

(e1, e2, e3) order 3

(e1, e3-1) (e2, e2

-1) order 2{

Page 24: Jean-Guillaume Eon - UFRJ

Quotient graphs

• Let G(V, E, m) be a graph and R < Aut(G)• V/R = orbits [u]R of V by R• E/R = orbits [uv]R of E by R• G/R = G(V/R, E/R, m*) quotient graph, with

m* ([uv]R) = ([u]R, [v]R)

• The quotient map: qR(x) = [x]R (for x in V or E), defines a graph homomorphism.

Page 25: Jean-Guillaume Eon - UFRJ

e3

e1

e2

u v

w

R: generated by (e1, e2, e3)( noted R = <(e1, e2, e3)> )

C3

[u]R

[e1]R

B1 = C3/R

qR

Page 26: Jean-Guillaume Eon - UFRJ

u v

wx

e1

e2

e3

e4

R = <(u, v)(x, w)>

Find the quotient graph C4/R

C4[u]R

[x]R[e2]R

[e3]R

[e1]R

qR

Page 27: Jean-Guillaume Eon - UFRJ

Cycle and cocycle spaces on Z

• 0-chains: L0={∑λiui for ui V and λi in Z}• 1-chains: L1={∑λiei for ei E and λi in Z}• Boundary operator: ∂e = v – u for e = uv• Coboundary operator: δu = ∑ei for all ei = uvi

• Cycle space: C = Ker(∂) (cycle-vector e : ∂e = 0)• Cocycle space: C* = Im(δ) (cocycle-vector c = δu)• dim(cycle space): = ||G|| - |G| +1 (cyclomatic

number)

Page 28: Jean-Guillaume Eon - UFRJ

Cycle and cocycle vectors

A

B

C

D

1 2

3

4

56

Cycle-vector: e1+e2-e3

Cocycle-vector: δA = -e1+e2+e4

∂e1 = A - D

Page 29: Jean-Guillaume Eon - UFRJ

Cycle and cut spaces on F2 = {0, 1}(non oriented graphs)

• The cycle space is generated by the cycles of G• Cut vector of G = edge set separating G in

disconnected subgraphs• The cut space is generated by δu (u in V)

Page 30: Jean-Guillaume Eon - UFRJ

u

v

w

Find δ(u + v + w)

Page 31: Jean-Guillaume Eon - UFRJ

u

v

wδu

Page 32: Jean-Guillaume Eon - UFRJ

u

v

w

Page 33: Jean-Guillaume Eon - UFRJ

u

v

w δu + δv

Page 34: Jean-Guillaume Eon - UFRJ

u

v

w δu + δv

Page 35: Jean-Guillaume Eon - UFRJ

u

v

w

Page 36: Jean-Guillaume Eon - UFRJ

u

v

w δu + δv + δw

Page 37: Jean-Guillaume Eon - UFRJ

u

v

w

Page 38: Jean-Guillaume Eon - UFRJ

Complementarity: L1 = C C*

• Scalar product in L1: ei.ej = ij

• dim(C*) = |G|-1

• dim(C) + dim(C*) = ||G||

• C C*

uC6

C6 . u = 0

Page 39: Jean-Guillaume Eon - UFRJ

Example: K2(3)

A B

e1

e2

e3

L1: e1, e2, e3 Natural basis (E)

C: e2 – e1, e3 – e2

C*: e1 + e2 + e3} Cycle-cocycle basis (CC)

CC = M.E M =-1 1 0 0 -1 1 1 1 1

Page 40: Jean-Guillaume Eon - UFRJ

Write the cycle-cocycle matrix for the graph below

A

B C

e1

e2 e3

e4

e5

M =

1 -1 0 0 0 0 1 -1 0 1 0 0 1 -1 0 1 1 1 1 0-1 -1 0 0 1

Page 41: Jean-Guillaume Eon - UFRJ

Periodic graphs

• (G, T) is a periodic graph if:

• G is simple and connected,

• T < Aut(G), is free abelian of rank n,

• T acts freely on G (no fixed point or edge),

• The number of (vertex and edge) orbits in G by T is finite.

Page 42: Jean-Guillaume Eon - UFRJ

Example: the square net

V = Z2

E = {pq | q-p = ± a, ± b}

a = (1,0), b = (0,1)

T = {tr: tr (p) = p+r, r in Z2}

Page 43: Jean-Guillaume Eon - UFRJ

Invariants in perodic graphs:1. rings

• Topological invariants are conserved by graph automorphisms

• A ring is a cycle that is not the sum of two smaller cycles

• A strong ring is a cycle that is not the sum of (an arbitrary number of) smaller cycles

Page 44: Jean-Guillaume Eon - UFRJ

Example 1: the square net

A cycle (with shortcuts)

Sum of three strong rings

A strong ring

Page 45: Jean-Guillaume Eon - UFRJ

Example 2: the cubic net

Strong rings:

Cz = ABCDA Cx = BEFCB Cy = CFGDC

A

B C

D

E F

G

Page 46: Jean-Guillaume Eon - UFRJ

A cycle that is not a ring: CBEFGDC

A

B C

D

E F

G

CF = shortcut

= Cx + Cy

Page 47: Jean-Guillaume Eon - UFRJ

A ring that is not a strong ring: ABEFGDA

No shortcut!

A

B

D

E F

G

C

= Cx + Cy + Cz

Page 48: Jean-Guillaume Eon - UFRJ

Invariants in periodic graphs: 2. Infinite geodesic paths

• Given a graph G, a geodesic L is an infinite, connected subgraph of degree 2, for which, given two arbitrary vertices A and B of L, the path AB in L is a geodesic path between A and B in G.

• L is a strong geodesic if the path AB in L is the unique geodesic between A and B in G.

Page 49: Jean-Guillaume Eon - UFRJ

Example 1: the square net

Strong geodesics

Geodesics

Yi

Xj

Infinite path (shortcut)

Page 50: Jean-Guillaume Eon - UFRJ

Are the following infinite paths geodesicsor strong geodesics?

Strong geodesic

Example 2: the β-W net

Page 51: Jean-Guillaume Eon - UFRJ

Strong geodesic

Page 52: Jean-Guillaume Eon - UFRJ

Geodesic

Page 53: Jean-Guillaume Eon - UFRJ

Example 3: the 34.6 net

Not every periodic graph has strong geodesics!

Page 54: Jean-Guillaume Eon - UFRJ

Geodesic fiber

• 1-periodic subgraph F of a periodic graph G, such that:

• for any pair of vertices x and y, F contains all geodesic lines xy of G, and

• F is minimal, in the sense that no subgraph satisfies the above conditions.

Page 55: Jean-Guillaume Eon - UFRJ

Example: the β-W net

Page 56: Jean-Guillaume Eon - UFRJ

The 34.6 net

Page 57: Jean-Guillaume Eon - UFRJ

Crystallographic nets

• Crystallographic net: simple 3-connected graph whose automorphism group is isomorphic to a crystallographic space group.

• n-Dimensional crystallographic space group: a group Γ with a free abelian group T of rank n which is normal in Γ, has finite factor group Γ/T and whose centralizer coincides with T.

Page 58: Jean-Guillaume Eon - UFRJ

Local automorphisms

• Automorphism f with an upper bound b for the distance between a vertex and its image:

d{u, f (u)} < b for all u• The set L(N) of local automorphisms of an infinite

graph N forms a normal subgroup of Aut(N)• A net is a crystallographic net iff the group of

local automorphisms L(N) is free abelian and admits a finite number of (vertex and edge) orbits

Page 59: Jean-Guillaume Eon - UFRJ

Automorphisms and geodesics

• Graph automorphisms map (strong) geodesics on (strong) geodesics.

• A strong geodesic is said to be along f if it is invariant by the local automorphism f.

• Two strong geodesics are parallel if they are invariant by the same local automorphism.

• Local automorphisms map strong geodesics on parallel ones.

Page 60: Jean-Guillaume Eon - UFRJ

(0,0)

Example: the square net

(i, j)

Conversely: Let f be any local automorphism with f(0,0) = (i,j); then, we will see that ti, j

-1. f = 1

T={ti,j: ti,j (m, n) = (m+i, n+j)} : T L(N)

Y0 Yi

X0

Xj

Y0 invariant by t0,1 as Yi

X0 invariant by t1,0 as Xj

fixes X0 and Y0

fixes the whole net

L(N) = T

Page 61: Jean-Guillaume Eon - UFRJ

Example: the square net

Simple,

Every automorphism of the infinite graph can beassociated to an isometry of the plane

Crystallographic net

4-connected

L(N) = T free abelian

One vertex orbit

Two edge orbits

Page 62: Jean-Guillaume Eon - UFRJ

Quotient graph of a periodic graph: the square net

Q = G/T, T translation subgroup T of the automorphism group

Page 63: Jean-Guillaume Eon - UFRJ

Example: the β-W net

Show that β-W is a crystallographic net andFind its quotient graph

at

bt ct

t in Z2, i=(1,0), j=(0,1)

V = {at , bt , ct}

E = {atbt , atct , btct , atbt+j , atct+j , ctbt+i}

Page 64: Jean-Guillaume Eon - UFRJ

β-W net: quotient graph

a

b c

Page 65: Jean-Guillaume Eon - UFRJ

ReO3: vertex and edge lattices

O 1 O 1O 2

O 2

O 3

O 3

R e e1e2

Page 66: Jean-Guillaume Eon - UFRJ

Quotient graph: ReO3

O 1

e 2 e 1

O 2O 3

e 3

e 4 e 5

e 6R e

K1,3(2) K1,3

(2)

Page 67: Jean-Guillaume Eon - UFRJ

Structure Quotient graph

NaCl K2(6)

CsCl K2(8)

ZnS (sphalerite) K2(4)

SiO2 (quartz) K3(2)

CaF2 (fluorite) K1,2(4)

Simple structure types

Page 68: Jean-Guillaume Eon - UFRJ

Symmetry

: Space group of the crystal structure

• T: Normal subgroup of translations/T: Factor group

• Aut(G): Group of automorphism of the quotient graph G

/T is isomorphic to a subgroup of Aut(G)

Page 69: Jean-Guillaume Eon - UFRJ

ReO3: /T Aut(G) m3m

O 1 O 1O 2

O 2

O 3

O 3

R e e1e2

• C4 Rotation: (e1, e3, e2, e4)• C3 Rotation: (e1, e3, e5) (e2, e4, e6)

• Mirror: (e1, e2)

O 1

e 2 e 1

O 2O 3

e 3

e 4 e 5

e 6R e

Page 70: Jean-Guillaume Eon - UFRJ

Drawbacks of the quotient graph

• Non-isomorphic nets can have isomorphic quotient graphs

• Different 1-complexes with isomorphic nets can have non-isomorphic quotient graphs

• Different 1-complexes can have both isomorphic nets and isomorphic quotient graph!

Page 71: Jean-Guillaume Eon - UFRJ

A

BC

D

A AB B

C

C

D

D

Different nets with isomorphic quotient graphs

Page 72: Jean-Guillaume Eon - UFRJ

A

BC

D

AAB

B

C

C

D

D

A

D

BC

A (0 1 )

B (1 0 )

0 1

1 0

b

a

b

a

1 00 1

Vector method: the labeled quotient graph as a voltage graph

Page 73: Jean-Guillaume Eon - UFRJ

β-W net: Find the labeled quotient graph

at

bt ct

t in Z2, i=(1,0), j=(0,1)V = {at , bt , ct}E = {atbt , atct , btct , atbt+j , atct+j , ctbt+i}

A

B C10

01 01

Page 74: Jean-Guillaume Eon - UFRJ

The minimal net

• Translation subgroup isomorphic to the cycle space of the quotient graph G (dimension equal to the cyclomatic number)

• Factor group: isomorphic to Aut(G)• Unique embedding of maximum symmetry:

the archetype (barycentric embedding for stable nets)

Page 75: Jean-Guillaume Eon - UFRJ

Example 1: graphite layer - K2(3)

1

2

3

A B

1-chain space: 3-dimensional

Two independent cycles: a = e1-e2, b = e2-e3

One independent cocycle vector: e1+ e2+e3

e1

e2

e3

ab

Page 76: Jean-Guillaume Eon - UFRJ

1

2

3

A B

Generators of Aut[K2(3)]:

• (e1, e2, e3)• (ei , -ei)(A, B)• (e1, -e3)(e2, -e2)(A, B)

Linear operations in the cycle space (point symmetry):

(a, b) = (e1 – e2, e2 – e3) → (e2 – e3, e3 – e1) = (b, - a - b)

In matrix form: 0 -1

1 -1γ{(e1, e2, e3)} =

0 1

1 0γ{(e1, -e3)( e2, -e2)} =

-1 0

0 -1γ{(ei, -ei)} =

p6mm

Page 77: Jean-Guillaume Eon - UFRJ

Embedding in E3

Inversion of the cycle-cocycle Matrix

a = e1 – e2

b = e2 – e3

c = e1 + e2 + e3

a 1 -1 0 e1

b = 0 1 -1 x e2

c 1 1 1 e3

e1 2 1 1 ae2 = 1/3 -1 1 1 x be3 -1 -2 1 c

Barycentric embedding: c = 0

e1 = 1/3 (2a + b)e2 = 1/3 (-a + b)e3 = 1/3 (-a – 2b)

Page 78: Jean-Guillaume Eon - UFRJ

Atomic positions

p6mmGenerator 0 -1 -1 0 0 1 1 -1 0 -1 1 0Translation (0 0) (0 0) (0 0)

A: x + TB: x + e1 + T

After inversion: A → -x + T = B = x + 2a/3 + b/3 + T-2x = 2a/3 + b/3 + TWith t = b , x = -a/3 -2b/3 = 2a/3 + b/3

A: 2a/3 + b/3 + TB: a/3 + 2b/3 + T

Page 79: Jean-Guillaume Eon - UFRJ

Example 2: hyper-quartz

1

2

34

5

6

Archetype: 4-dimensionalTetrahedral coordenationCubic-orthogonal family:(e1-e4), (e2-e5), (e3-e6), ∑ei

Lengths: √2, √2, √2, √6Space group: 25/08/03/003

Page 80: Jean-Guillaume Eon - UFRJ

Nets as quotients of the minimal net

100

010 001

<111> = translation subgroup generated by 111 N/<111>: T = <{100, 010}>

N (T = Z3) N/<111>-1 -1 0

ab

Page 81: Jean-Guillaume Eon - UFRJ

(Periodic) voltage net

ab

100010

= 1 1 1

Page 82: Jean-Guillaume Eon - UFRJ

Embeddings as projections of the archetype

A

B

C

D

1 2

3

4

56

3-d archetype,2-d structures: 1-d kernel

3-cycle: 3.92, 93 4-cycle: 4.82

Page 83: Jean-Guillaume Eon - UFRJ

A

BC

D0 1

1 0

A

BC

D0 0 1

0 1 0

1 0 0

A

D

BC

1 00 1

A

D

BC

0 1 00 0 1

1 0 0

S r[S i ]

( 4 3 2 )2

I1

(4 .8 )4

2

p m m(3 .9 ,9 )

3 1

2 3

p m

Page 84: Jean-Guillaume Eon - UFRJ

Check the space group of 4.82

A

B

1 2

3

4

56

DC

Kernel: c = e4 + e6 + e3 – e2

Generators:(e4,e6,e3,-e2)(e1,-e5,-e1,e5)(A,B,C,D)(e4,-e6)(e2,e3)(e1,-e1)(A,C)

Cycle basis:a = e1 + e4 + e5 – e3

b = e1 + e2 - e5 + e6

Notice: a ┴ b ┴ c

Page 85: Jean-Guillaume Eon - UFRJ

Point symmetry

(a, b) → (-e5 + e6 + e1 + e2, -e5 – e4 – e1 + e3) = (b, -a)

(a, b) → (-e1 – e6 + e5 – e2, -e1 + e3 - e5 – e4) = (-b, -a)

p4mmGenerator 0 -1 0 -1 1 0 -1 0 Translation (0 0) (0 0)

Walk: A → B → C → D → AFinal translation : c = 0

e4 e6 e3 -e2

Page 86: Jean-Guillaume Eon - UFRJ

Find the space group of quartz

1

2

34

5

6

a = 1000 = e1 - e4

b = 0100 = e2 - e5

c = 0010 = e3 - e6

d = 0001 = e4 + e5 + e6

Hyper quartz = N[K3(2)]

Quartz = N[K3(2)]/<1110>

A

B C

Page 87: Jean-Guillaume Eon - UFRJ

Point symmetry

Generators: (1,4)(2,5)(3,6) order 2 (1,2,3)(4,5,6)(A,B,C) order 3 (1,6)(2,5)(3,4)(B,C) order 2

(e1 + e2 + e3 - e4 - e5 - e6 = 0 )

Basis: (a, b, d)

order 12

: (a, b, d) (-a, -b, d) C2 rotation d : (a, b, d) (b, -a-b, d) C3 rotation d: (a, b, d) (-a-b, b, -d) C2 rotation d

C6 rotation

Page 88: Jean-Guillaume Eon - UFRJ

Translation part

Associated to the C3 rotation:

Walk: A → B → C → A

Final translation : e1+e2+e3 = d 31 or 62

e1 e2 e3

For and , t=0 (fixed points) P6222

Page 89: Jean-Guillaume Eon - UFRJ

Isomorphism class of a net

ab

Find the labeled quotient graph for the double cell

a bb

Page 90: Jean-Guillaume Eon - UFRJ

Isomorphism class of a net

4, a

bb

1 3 2

Automorphisms of the quotient graph G, which leave the quotient group of the cycle space by its kernel invariant, can be used to extend the translation group if they act freely:

t(o.q-1o [W]) = o.q-1

o [.(W)] ,where δ is a path in G from O to (O)

Kernel: e1-e2

: (e1, e2)(e3, e4)

Page 91: Jean-Guillaume Eon - UFRJ

Isomorphism class of a nett(o. q-1

o [W]) = o.q-1o [.(W)]

t: new translationo: arbitrary origin in N: boundary operatorq: N G = N/TW: walk in G starting at O=q(o)q-1

o [W]: walk in N starting at o and projecting on Wo. q-1

o [W]: defines a vertex of Nδ: a fixed, arbitrary path in G from O to (O): (extension) automorphism of the quotient graph G

W = OO (path nul): t(o) = o.q-1o

[]

Page 92: Jean-Guillaume Eon - UFRJ

Isomorphism class of a net

4, a

bb

1 3 2

Kernel: e1-e2

Extension by = (e1, e2)(e3, e4)

b

A B

{A, B}

{e1, e2} {e3, e4}

With o in q-1(A) and = e3 : t (o) = o.q-1o [e3]

t 2 (o) = t (o.q-1o [e3]) = o.q-1

o [e3.(e3)] = o.q-1o [e3.e4] = a(o)

t2 = at ?

ab

ab

t:

t(o. q-1o [W]) = o.q-1

o [.(W)]

Page 93: Jean-Guillaume Eon - UFRJ

Show that cristobalite has the diamond net

100

101

001

010010

e1

e8e7

e6e5e4e3

e2

A

C

B

D

Kernel: e2 – e1 = e7 – e8

e3 – e4 = e6 – e5

(1,8)(2,7)(3,6)(4,5)(A,D)(B,C)

{A,D} {B,C}

{1,8}

{2,7}, 100

{4,5}, k

e8 – e4 + e1 – e5 = 001 → e1 – e5 + e8 – e4 = 001

2k = e4 – e8 + e5 – e1 = 0 0 -1

{3,6}-{4,5} = 010 l = 010 + k

{3,6}, l

Page 94: Jean-Guillaume Eon - UFRJ

Non-crystallographic nets

Local automorphisms = T x {I, σ} : abelian but not free!

T

σ

T = <t: t (xm) = xm+1 , x = a, b>

a

b

t te

A Bσ: (e, -e)

Page 95: Jean-Guillaume Eon - UFRJ

Non-crystallographic nets

Local automorphisms = T’ x {I, σ}

T’

σ

T’ = <t’: t’ (am) = bm+1 , t (bm) = am+1 >

a

b

t’

-t’

Page 96: Jean-Guillaume Eon - UFRJ

tfc and derived nets

A

B C001

100 010

Page 97: Jean-Guillaume Eon - UFRJ

A

B C

10 01

tfc/<(001)>

Page 98: Jean-Guillaume Eon - UFRJ

A

B C

1 1

tfc / < (001), (110) >

Local automorphisms = not abelianBut : (b0, c0) ↔ (b, c)

b0

c0

T

The 1-periodic graph is a geodesic fiber

Page 99: Jean-Guillaume Eon - UFRJ

Projection of a geodesic fiber on the quotient graph: the β-W net

at

bt ct

A

B C10

01 01

F

G G/T

F/<01> is asubgraph of G/T

01 01

Page 100: Jean-Guillaume Eon - UFRJ

The 34.6 net (G/T = K6)

10

10

10

11

(Counterclockwiseoriented cycles)

21

G 21

G 10

10-1 0

-1 010

Page 101: Jean-Guillaume Eon - UFRJ

Determine the quotient graph G/T of the 32.4.3.4 net,

list all the cycles of G/T; find the strong geodesic lines

of 32.4.3.4 and its geodesic fibers.

a

d

b

c

Page 102: Jean-Guillaume Eon - UFRJ

A

D

B

C

10

10

10 01

0101

2-cyclesAB, CD: 10AD, BC: 01

3-cyclesABC: 00, 01, 11, 10ABD: 00, 01, -1 0, -1 1ACD: 00, -1 0, 0 -1, - 1 -1BCD: 00, 0 -1, 1 -1, 10

4-cyclesABCD: 00, 01, 10, 11, 1 -1ABDC: 01, 11, -1 1ADBC: 1 -1, 10, 11

Strong geodesic lines: 10, 01

disjoint cycles

tangent cycles

Geodesic fibers: 11, -1 1

Page 103: Jean-Guillaume Eon - UFRJ

a

d

b

c

A

D

B

C

10

10

G 10

Page 104: Jean-Guillaume Eon - UFRJ

A

D

B

C

10 01

G 11

01

a

d

b

c01

Page 105: Jean-Guillaume Eon - UFRJ

A

D

BC

11

G 11

a

d

b

c

Page 106: Jean-Guillaume Eon - UFRJ

Geodesic fibers and local automorphisms

• Local automorphisms send geodesic fibers to parallel geodesic fibers.

• The absence, in 2-connected labeled quotient graphs, of automorphism that leave unchanged the vector labels of any loop or cycle ensures the derived graph is a crystallographic net.

Page 107: Jean-Guillaume Eon - UFRJ

Cycle figure

10

0 -1

10

01 11

-1 0

0 -1-1 -1

Def: vector star in the direction of geodesic fibers

Graphite layer

Page 108: Jean-Guillaume Eon - UFRJ

Topological density

ρ = lim ∑k=1,r Ck / rn

Ck: kth coordination numbern : dimension of the net

r→∞

ρ = Z.{Σσ f(σ)}/ n! Z : order of the quotient graphf(σ) : frequency of the face σ of the cycles figure= inverse product of the lengths of the verticesof the face of the cycles figure

Page 109: Jean-Guillaume Eon - UFRJ

Topological density: graphite layer

10

01 11

-1 0

0 -1-1 -1

σ1

f(σ1) = 1/(2.2)

ρ = Z.{Σσ f(σ)}/ n!

ρ = 2.6.(2.2)-1/2! = 3/2

Page 110: Jean-Guillaume Eon - UFRJ

Topological density: net 32.4.3.4

10-1 0

01

0 -1

11-1 1

-1 -1 1 -1

3-cycle

2-cycle

ρ = 4.8.(2.3)-1/2! = 8/3

Page 111: Jean-Guillaume Eon - UFRJ

Find the topological density the β-W net

B C

01 01

A

1010

01

0 -1

11-1 1

-1 -1 1 -1

3-cycle

2-cycle

ρ = 3.8.(2.3)-1/2! = 2

Page 112: Jean-Guillaume Eon - UFRJ

Plane nets

Embedding of the quotient graph in the torus

A

B C

10 01

a

a

bb

Face boundaries project on oriented trails ofthe quotient graph

Page 113: Jean-Guillaume Eon - UFRJ

Oriented trails are based on oriented edges

e1, 10 e2, 01

A

B C

a b10

c

a0-1 b1-1a1-1

c10

e1, 10 e2, 01

A

B C

Page 114: Jean-Guillaume Eon - UFRJ

K4 revisited

3.92, 93 4.82

Two classes of trails: 3-cycles and 4-cycles

Page 115: Jean-Guillaume Eon - UFRJ

A plane net from K3, 3

Cyclomatic number:υ = 9 – 6 + 1 = 4

Kernel : two tangent 4-cycles

a

a

b b

4.102, 42.10

Page 116: Jean-Guillaume Eon - UFRJ

Topological invariants of nets in projection on the quotient graph

• Strong geodesic• Geodesic fiber

• Strong ring

• Shorter isolated cycle• Connected subgraph of

shorter cycles (of equal length) with equal or opposite net voltages

• Set of edge-disjoint cycles with nul net voltage

Page 117: Jean-Guillaume Eon - UFRJ

Non-ambiently isotopic embeddings of the same net

ThSi2 SrSi2

Page 118: Jean-Guillaume Eon - UFRJ

Self-interpenetrated ThSi2

Page 119: Jean-Guillaume Eon - UFRJ

Self-interpenetrated SrSi2

Page 120: Jean-Guillaume Eon - UFRJ

Some references• Beukemann A., Klee W.E., Z. Krist. 201, 37-51 (1992)• Carlucci L., Ciani G., Proserpio D.M., Coord. Chem. Rev. 246, 247-289 (2003)• Chung S.J., Hahn Th., Klee W.E., Acta Cryst. A40, 42-50 (1984)• Delgado-Friedrichs O., Lecture Notes Comp. Sci. 2912, 178-189 (2004)• Delgado-Friedrichs O., O´Keeffe M., Acta Cryst. A59, 351-360 (2003)• Blatov V.A., Acta. Cryst. A56, 178-188 (2000)• Eon J.-G., J. Solid State Chem. 138, 55-65 (1998)• Eon J.-G., J. Solid State Chem. 147, 429-437 (1999)• Eon J.-G., Acta Cryst. A58, 47-53 (2002)• Eon J.-G., Acta Cryst, A60, 7-18 (2004)• Eon J.-G., Acta Cryst A61, 501-511 (2005)• Harary F., Graph Theory, Addison-Wesley (1972)• Klee W.E., Cryst. Res. Technol., 39(11), 959-960 (2004)• Klein H.-J., Mathematical Modeling and Scientific Computing, 6, 325-330 (1996)• Schwarzenberger R.L.E., N-dimensional crystallography, Pitman, London (1980)• Gross J.L, Tucker T.W., Topological Graph Theory, Dover (2001)