Jean-François Moyen and Gary Stevens

70
Partial melting of amphibolites and the genesis of Archaean TTG (and some geodynamical implications) Jean-François Moyen and Gary Stevens Stellenbosch University, South Africa

description

Partial melting of amphibolites and the genesis of Archaean TTG (and some geodynamical implications). Jean-François Moyen and Gary Stevens. Stellenbosch University, South Africa. TTG are. Orthogneisses Tonalites, Trondhjemites & Granodiorites (Na-rich series) Fractionnated REE, etc. - PowerPoint PPT Presentation

Transcript of Jean-François Moyen and Gary Stevens

Page 1: Jean-François  Moyen and Gary  Stevens

Partial melting of amphibolites and the

genesis of Archaean TTG(and some geodynamical implications)

Jean-François Moyenand

Gary Stevens

Stellenbosch University, South Africa

Page 2: Jean-François  Moyen and Gary  Stevens

TTG are...• Orthogneisses• Tonalites, Trondhjemites & Granodiorites

(Na-rich series)• Fractionnated REE, etc.• Largely homogeneous throughout the

Archaean• Originated by partial melting of amphibolites

(hydrated basalts), in garnet stability field

Page 3: Jean-François  Moyen and Gary  Stevens

Trace elements features of Archaean TTGs

Nb-Ta anomaly

Sr contents

Y & HREEdepletion

Page 4: Jean-François  Moyen and Gary  Stevens
Page 5: Jean-François  Moyen and Gary  Stevens

Les « gneiss gris »

Page 6: Jean-François  Moyen and Gary  Stevens

Minéralogie

Page 7: Jean-François  Moyen and Gary  Stevens

Eléments majeurs

Page 8: Jean-François  Moyen and Gary  Stevens

REE

Page 9: Jean-François  Moyen and Gary  Stevens

Conditions for making TTGs

Experimental melts

In Garnet stability field (Gt in residue)

Melting of hydrous basalt

KD

Gt/melt= 10 - 20

(other minerals ≤ 1)

Yb

Page 10: Jean-François  Moyen and Gary  Stevens

Geodynamic site ?

Thick (oceanic or continental) crust(e.g. Oceanic plateau)

Subduction

Intermediate cases:• Shallow subduction

(± underplating)• Stacked oceanic crust

Gt-in

Gt-in

Gt-in

Gt-in

Gt-in

Page 11: Jean-François  Moyen and Gary  Stevens

Partial melting of amphibolites

15-20 « modern » studies(1990-2000)

+ Phase diagrams (1970-80)

114 exp. fluid present or saturated

209 exp. « dehydration melting »

Page 12: Jean-François  Moyen and Gary  Stevens

Goal of the study

• Review and compilation of published data on experimental melting

• Elaboration of a global model for amphibolite melting

• Implications for trace element contents

• Geological/geodynamical consequences

Page 13: Jean-François  Moyen and Gary  Stevens

Review and compilation of published work

• Starting materials

• Solidus position & melt productivity

• Mineral stability fields

(Moyen & Stevens, subm. to AGU monographs)

Page 14: Jean-François  Moyen and Gary  Stevens

Starting materials

Page 15: Jean-François  Moyen and Gary  Stevens

Fluids and melting

• Fluid-saturated (free fluid phase)

• Fluid-present (yielded by breakdown of hydrous minerals in the near sub-solidus), limited availability

• Fluid-absent (dehydration melting)

• Dry

Page 16: Jean-François  Moyen and Gary  Stevens

Fluid saturated

Page 17: Jean-François  Moyen and Gary  Stevens

Dehydration melting

Page 18: Jean-François  Moyen and Gary  Stevens

Fluid-present

Page 19: Jean-François  Moyen and Gary  Stevens

Experimental solidus position

Page 20: Jean-François  Moyen and Gary  Stevens

Melt productivity: dehydration melting

Page 21: Jean-François  Moyen and Gary  Stevens

Melt productivity: water saturated

(+ Qz)

Page 22: Jean-François  Moyen and Gary  Stevens

Melt productivity: fluid-present

(- Qz)

Page 23: Jean-François  Moyen and Gary  Stevens

Mineral stability limits

Page 24: Jean-François  Moyen and Gary  Stevens

Control on amphibole stability

Page 25: Jean-François  Moyen and Gary  Stevens

Control on plagioclase stability

Page 26: Jean-François  Moyen and Gary  Stevens

Mineralogical models

CaO 11.0 10.0 9.0

Na2O 2.2 2.8 3.3

K2O 0.1 0.5 1.0

TiO2 1.2 2.1 0.8

Amp. Comp.Ti-rich

High Mg#

Si poor

Int.

Ti-poor

Low Mg#

Si rich

KoB ThB AB

Quartz 0 1 10

Plagioclase 25 40 54

Amphibole 75 59 36

Amp:Plag 3:1 3:2 2:3

Page 27: Jean-François  Moyen and Gary  Stevens

Mineralogical models

KoBKoB ThBKoB ThB AB

Page 28: Jean-François  Moyen and Gary  Stevens

Composition of experimental melts

Page 29: Jean-François  Moyen and Gary  Stevens

Very unlikely for amphibolite melting!

Na2O contents in experimental melts

Page 30: Jean-François  Moyen and Gary  Stevens

K2O

Page 31: Jean-François  Moyen and Gary  Stevens

Major elemen

ts

A linear model, of the form

C/C0 = a F + b

Page 32: Jean-François  Moyen and Gary  Stevens

Modelled melts

Page 33: Jean-François  Moyen and Gary  Stevens

Model vs. TTGs

Page 34: Jean-François  Moyen and Gary  Stevens

Preliminary conclusions (1)

• K2O content depends on the source. Only relatively K-poor sources (< 0.7 %) make TTGs … but really depleted sources won’t.

• This means that K-rich amphibolites can indeed melt into granites (Sisson et al., 2005)

• With appropriate sources, tonalites & trondjhemites occur for F = 20-40 % (900-1100 °C)

Page 35: Jean-François  Moyen and Gary  Stevens

Model for trace element

Cl = C0

F + D (1 - F)

Experimental data

D = Kdi. Xi

Arbitrary

Litterature

Page 36: Jean-François  Moyen and Gary  Stevens

KoBKoB ThBKoB ThB AB

Trace elements contents of the 3 sources

Page 37: Jean-François  Moyen and Gary  Stevens

Melt proportions

KoB ThB AB

Page 38: Jean-François  Moyen and Gary  Stevens

Mineral proportions: amphibole and plagioclase

KoB ThB AB

Page 39: Jean-François  Moyen and Gary  Stevens

Mineral proportions: garnet

KoB ThB AB

KD

Gt/melt= 10 - 20Yb

Page 40: Jean-François  Moyen and Gary  Stevens

Mineral proportions: rutile

KoB ThB AB

KD

Rt/melt= 25 - 150Nb

KD

Rt/melt= 50 - 200Ta

Page 41: Jean-François  Moyen and Gary  Stevens

REE contents in (modelled) melts

KoB ThB AB

Page 42: Jean-François  Moyen and Gary  Stevens

REE contents in (modelled) melts

KoB ThB AB

Page 43: Jean-François  Moyen and Gary  Stevens

REE contents: La/Yb

KoB ThB AB

Page 44: Jean-François  Moyen and Gary  Stevens

Y contents

KoB ThB AB

Page 45: Jean-François  Moyen and Gary  Stevens

Sr contents and the role of residual plagioclase

(Martin & Moyen, 2001, Geology 30 p 319-322; after Zamora, 2000)

Page 46: Jean-François  Moyen and Gary  Stevens

Sr/Y

KoB ThB AB

Page 47: Jean-François  Moyen and Gary  Stevens

Nb/Ta

KoB ThB AB

Page 48: Jean-François  Moyen and Gary  Stevens

Effect of pressure

Page 49: Jean-François  Moyen and Gary  Stevens
Page 50: Jean-François  Moyen and Gary  Stevens
Page 51: Jean-François  Moyen and Gary  Stevens

TTG composition as a depth indicator

Nb-Ta anomalyand Nb/Ta

Sr contents

Y & HREEdepletion

Page 52: Jean-François  Moyen and Gary  Stevens

TTG composition as a depth indicator (cont.)

HREEdepletion

Eu anomaly

Page 53: Jean-François  Moyen and Gary  Stevens

Preliminary conclusions (2)

• Appropriate depletion in Y, Yb, etc. requires pressures above ca. 15 kbar (rather than 10 kbar = Gt-in)

• Y, Yb, Sr/Y, Nb/Ta etc. are indicators of melting depth

• Low- and high-pressure TTGs with contrasted signatures?

Page 54: Jean-François  Moyen and Gary  Stevens

High P TTGs

Low P TTGs

Not really TTGs

Archaean granulites (and intraplate geotherms)

Subduction of younglithosphere

(5 M

a)

(20

Ma)

(50

Ma)

Subduction of oldlithosphere

Tonalites & trondhjemites

(F = 20-40 %)Appropriate trace elts. signature

High Sr, La/Yb, Nb/TaLow Y, Yb

Low Sr, La/Yb, Nb/TaHigh Y, Yb

TTG genesis in P-T space

Page 55: Jean-François  Moyen and Gary  Stevens

A regional example

• Barberton, South Africa

• 3.5 to 3.2 greenstone belt and gneisses

Page 56: Jean-François  Moyen and Gary  Stevens

Swaziland

R.S.A

.

20 km

Crust accretion around BSB3600-3500 Ma

Steynsdorp pluton

3509 ± 7 Ma

Ngwane gneisses (Swaziland)

3490 ± 3 to 3644 ± 2 Ma

Lower Onverwacht groupca. 3500 Ma

Dwalile Suite greenstone remnantsCa. 3500 Ma ?

Page 57: Jean-François  Moyen and Gary  Stevens

Swaziland

R.S.A

.

20 km

Crust accretion around BSB3450 Ma

Stolzburg, Theespruit, etc. plutons

3443 ± 4 to 3460 ± 5 Ma

Tsawela gneisses (Swaziland)

3458 ± 6 to 3437 ± 6 Ma

Upper Onverwacht groupca. 3400 Ma

Page 58: Jean-François  Moyen and Gary  Stevens

Swaziland

R.S.A

.

20 km

Crust accretion around BSB3220 Ma

Kaap Valley, Neelshoogte, Badplaas, etc. plutons

ca. 3220 Ma

Usutu granodiorite (Swaziland)

3231 ± 4 to 3216 ± 3 Ma

Fig Tree and Moodies groupsca. 3200 Ma

Dalmein plutonCa 3220 Ma

Page 59: Jean-François  Moyen and Gary  Stevens

Geochemistry:3600-3500 Ma

Steynsdorp plutonSteynsdorp pluton

Ngwane gneissesNgwane gneisses

Page 60: Jean-François  Moyen and Gary  Stevens

Geochemistry:3450 Ma event

Stolzburg & Theespruit plutonsStolzburg & Theespruit plutons

Tsawela gneissesTsawela gneisses

Page 61: Jean-François  Moyen and Gary  Stevens

Geochemistry:3220 Ma event

Kaap Valley, Nelshoogte Kaap Valley, Nelshoogte & Badplaas plutons& Badplaas plutons

Page 62: Jean-François  Moyen and Gary  Stevens

TTG evolution around Barberton Greenstone Belt

3.6 – 3.4 Ga

3.4 – 3.2 Ga

Page 63: Jean-François  Moyen and Gary  Stevens

Amphibolites with HP relicts

Page 64: Jean-François  Moyen and Gary  Stevens
Page 65: Jean-François  Moyen and Gary  Stevens

Preliminary conclusions (3)

• TTGs in Barberton record progressively deeper sources

• This is consistent with progressive steepening or onset of subduction, and could witness the progressive accretion of a continental nucleus and its early growth

• At 3.2 Ga (true subduction established), the geothermal gradient recorded in some metamorphic rocks is consistent with the gradient corresponding to TTG genesis

Page 66: Jean-François  Moyen and Gary  Stevens

Secular/Geodynamical implications

Progressively cooler gradients ?

Early ArchaeanLate ArchaeanModern

Page 67: Jean-François  Moyen and Gary  Stevens

Geodynamical implicationsSteepening/onset of subduction ?

Page 68: Jean-François  Moyen and Gary  Stevens

Preliminary conclusions (4)

• Secular chemical evolution of TTGs reflects increasing melting depth and increasing interactions with the mantle

• This is consistent with a subduction origin for TTGs

• Secular cooling of the Earth makes the melting deeper and deeper along the subducted slab, allowing more and more interactions with the mantle

• Alternately, this could witness progressive onset of subduction

Page 69: Jean-François  Moyen and Gary  Stevens

Conclusions

• TTGs are diverse, and their chemistry reflects the depth of melting; melting occurred mostly at 15-20 kbar, but can have occurred anywhere between 10-12 and 30 kbar.

• Most TTGs are probably originated in subductions, and interacted with the mantle to some degree

• The changes in TTG compositions can probably be correlated with changes in tectonic styles –either in terms of secular evolution, or in one single area

Page 70: Jean-François  Moyen and Gary  Stevens

The Sand River GneissesCa. 3.1 Ga TTG gneisses in Messina area,Limpopo Belt, South Africa(R. White, Melbourne, for scale)