j No. +*0,p.+++3 ,**1 · *.2+. +.*. +.*0J g K ˘ˇ ˆ˙˝˛˚˜ !" #$ %&’() ˝˛ *+&,ˆ-%. / ..*0...

9
腉腍腏腅腄腌腋腃腁腆腂腀腎腇腑腈腁腊腋腐 臈膟膡臮*臝臔腶臶**臆膣膱膲* Soil Temperature Change and Heat of Wetting during Infiltration into Dry soils Takeo AKAE*, Aya TANAKA** and Munehide ISHIGURO* * The Graduate School of Environmental Science, Okayama University, -++ Tsushima-Naka, Okayama, Japan ** Okayama Prefecture Association of Land Improvement Project Promotion, +-1 Uchisange, Okayama, Japan Abstract In infiltratioin process of water to dry soils, rise of the temperature just before the wetting front arrival is observed. This phenomenon is caused by wetting heat released by adsorption of water vapor onto the soil and or wetting of the soil. The temperature change a#ects not only soil water potential, infiltration itself due to change in viscosity of the water but also bio-chemical phenomena by changing temperature environment. However, few quantitative experiments and analytic studies have been made on this phenomena of natural soils, many problems remain to be solved on this matter. In this research, to evaluate the soil temperature change quantitatively, infiltra- tion experiment was conducted on three types of natural soils under thermally insulated condi- tion and the temperature change was monitored. In addition, wetting heat of the soils was meas- ured by calorimetric method. The experimental results showed that the temperature increased at just before the wetting front by ,.-, ,+.0and /.2for the Masa soil, Ando soil and the red yellow soil, respectively. We observed strong relationship between the increases in the temper- ature and the wetting heats of each soil. The wetting heats of each soil showed strong relation- ship with the cation exchange capacity. Key words : Infiltration, Heat of wetting, Specific surface, Adiabatic infiltration experiment, Cat- ion exchange capacity +腇腅腈腆 臟膺腟膀臞腠臟膺臔腚腟臬臅臯膋臡膿臯腥膦臯腟 臅腹臟膺臔腟臺腝膂膊臚臱膂腬膪臧腓腩膳臻腝膽臏 腚腈腩臤膰臥臜臢膾臨腞腦腩臉臥臷臋膠腽腥 腞腦腩臥腸腞膃腊腙膮膴臥腟臨臅腤臟膺膀臞腬 膪臧腓腩臻腻腟腺腘腚腈腩膍臊臟膺腞臁腬膮膴腑腔腩腛腳腴腱腟臁臰膨腟腤腘 膭臸腮腲腴腰腃腠臟膨腞膞臌腑腪腖膽臏腣腚臘膁腓 腕腟腮腲腴腰腃膤腍臥腛腝腗腙膈臲腑腪腩腤腟腬膮 膴臥腛膜腡臦臟腟臯膂膊臃腟膐臛腌腧臕臵腑腪腙腎 膵臂腝臦臟腟膮膴臥腞腘腉腙腠膆膒腟臍臙腍腈腨 Keren and Shainberg, +31/, +313, +32* ; Kijne, +303腅腁 臍臙膕膅腍臄腑腪腙腉腩 Iwata, S. et al., +322腅腀 腒腌 腒腝腍腧腺臩腟臟膺腟膮膴臥臍臙膌膹 +311腞腦腩腤腟腝腜腍腈腩腍腕腟腠膷腝腉腣腖膍臊 腒腖臟膺腢腟臀膴腝腜膚臓腞臨臅腓腩膚膸腞腋腐腩膗膑 臫膻腞膛腧腪腙腋腨膯膥腟臁臰膼膖腚腟膮膴臥 臨臅腠膶腑腏至膫腚腎腩腛腒腙腷腫腪腩腟腍腺臩臚腚腈 Berge, H.F.M. ten, +330腅腀 * 腾膧臐膊臐膊腼膏膓膊膗膑膄 1**2/-* 腾膧膩臗臠臔 - 臖臵 ++ ** 腾膧膘臟臓膉膬膔臑臎膢膇 1***2,. 腾膧膩臣膧膁 +-1 腉腁腋腁腊 : 臀膴膮膴臥自臭致臇臒臥臀膴膯膙臼腭腯腵膝膎臹J. Jpn. Soc. Soil Phys. 臟膺腟臯No. +*0, p. +++3 ,**1

Transcript of j No. +*0,p.+++3 ,**1 · *.2+. +.*. +.*0J g K ˘ˇ ˆ˙˝˛˚˜ !" #$ %&’() ˝˛ *+&,ˆ-%. / ..*0...

Page 1: j No. +*0,p.+++3 ,**1 · *.2+. +.*. +.*0J g K ˘ˇ ˆ˙˝˛˚˜ !" #$ %&’() ˝˛ *+&,ˆ-%. / ..*0 ,*.00 ..,0 ˘ˇ ˙1 2 3 4 5˛˚˜678ˇ !" -%./ 9:)’; 4 5˛˚˜&’

���������� ������

����*�����**���*

Soil Temperature Change and Heat of Wetting during

Infiltration into Dry soils

Takeo AKAE*, Aya TANAKA** and Munehide ISHIGURO*

* The Graduate School of Environmental Science, Okayama University,

-�+�+ Tsushima-Naka, Okayama, Japan

** Okayama Prefecture Association of Land Improvement Project Promotion,

+�-�1 Uchisange, Okayama, Japan

Abstract

In infiltratioin process of water to dry soils, rise of the temperature just before the wetting front

arrival is observed. This phenomenon is caused by wetting heat released by adsorption of water

vapor onto the soil and or wetting of the soil. The temperature change a#ects not only soil water

potential, infiltration itself due to change in viscosity of the water but also bio-chemical phenomena

by changing temperature environment. However, few quantitative experiments and analytic

studies have been made on this phenomena of natural soils, many problems remain to be solved

on this matter. In this research, to evaluate the soil temperature change quantitatively, infiltra-

tion experiment was conducted on three types of natural soils under thermally insulated condi-

tion and the temperature change was monitored. In addition, wetting heat of the soils was meas-

ured by calorimetric method. The experimental results showed that the temperature increased

at just before the wetting front by ,.- , ,+.0 and /.2 for the Masa soil, Ando soil and the red

yellow soil, respectively. We observed strong relationship between the increases in the temper-

ature and the wetting heats of each soil. The wetting heats of each soil showed strong relation-

ship with the cation exchange capacity.

Key words : Infiltration, Heat of wetting, Specific surface, Adiabatic infiltration experiment, Cat-

ion exchange capacity

+� � � � �

������� ����������� ��������� ����� !"#$%"&'()*+,!-.��/*0 12� 345� 6789*:3;<� =>���89*3?�8@AB� CD3�7�E����&'()*,F�GH�/*0IJ��8K&CDLM*N� OPQ�KRS�EHTUVWPXY���S8Z[L\]-.^�_`)*0 a�VWPXYbc3N!dBefL\*E�&C

D3Ngh� i����"#j�klmnopL\Bq]0 rs!i��CD38HtB�uv�wx�c/yzKeren and Shainberg, +31/, +313, +32* ; Kijne, +303{�wx|}c~�L\Bt* zIwata, S. et al., +322{0 �m�!cn� G�����CD3wx��� �� z+311{89*E�!�c/*c� a����!t0 ^]� IJ�]�����D!���87�)*��8��*����� ��8�n\B�y� ���KR����CD37���L����q*N�B��\*�cG�$�/* zBerge, H.F.M. ten, +330{0

*���#�#�� #��¡ ¢1**�2/-* ��£¤¥� -¦p +�+**��§��¨�©ª«¬­® ¢1**�*2,. ��£¯�` +�-�1���� : �D� CD3� °±²³� ´3�D�µ� ¶·¸¹º»¼�

J. Jpn. Soc. Soil Phys.

�����jNo. +*0, p. +++3 �,**1�

Page 2: j No. +*0,p.+++3 ,**1 · *.2+. +.*. +.*0J g K ˘ˇ ˆ˙˝˛˚˜ !" #$ %&’() ˝˛ *+&,ˆ-%. / ..*0 ,*.00 ..,0 ˘ˇ ˙1 2 3 4 5˛˚˜678ˇ !" -%./ 9:)’; 4 5˛˚˜&’

��������������� ����� ���� ����� Anderson and Linville �+30,�+30-� � Perrier and Prakash �+311� ���������������� ���� ��� !�����"����#����$%&'�("� ����)���*'+��� ���� ,��-��������.�%&'�����/��01�� 2�����(3�,����� �!�4� ��5 6�,��� 7"�*'�������1,��� 7�����#8�9:�� �����.�+;<�=$+����7 %>��&;<�� '&�()��-��*+����?>�@AB�� CD�� ,E-��F��� .G/0�(3�����1����� �� HI-���J1�+1��� !�2K�3�44����� ����12����(3���� 7L�5�>���=65)+� M+� N���,�����O7���� ,��-0+86�9PQRST:� �CEC��;UG/0-��V�W<�+�

,� � � � �

,�+ ����� ��,�+�+ ����1���X!�YX����� �Z[Z)\�*+��()��>�� @AB+=� �>]^?@A� ()�� ,E-� �_B^�C`� D)EFGH�� CD��abIcDcJKLDH� ()� �M�+� ,�����F���� /�� -XN�d8�� ef�����7O�'���gQhiPj �'&P�ckQRP�� �F��5���%)+�

,�+�, ����� �����������SlTU� mVnI� WVnI� o�p�� JIS��q�'+X7���+� ,��� -YZ�V�_� pF �-./r/./� �(3�/T[Vs\�DPBtuvw7 �Decagon Device Inc., WP-.� ���+� 0+86�F���� ]�XN� N,xyz^ BET7 �_`a{b�|�� CPBtuh}~�By� �tv�v��,-**� ���+�

, mm/�����F������v�R��xv7�0"9PQRST:� �CEC� ����+�

,�, ������ !cd��e�f�+��� gl / cm, h* , cm

(0� / cm��Bh�ahR���g���{F�+� g����� ,* cmM�h* , cm�hR��+*�� �'/� /* cmM� / cmhR�� 0������ h* /* cm���g���{F�+� ���i

��j�Z^�� ����j��d�+#�k%-�+� ����M��lm�2+q� NhR����J��� Yl , mm���n3+� , mm��P�2��+ -����XN� ++*� ,.��o���� ����� vw�¡�-p¢*£+� CD����q�+./* g�cm-� @AB�� *.30 g�cm-� ,E-��+.,* g�cm-¤¥���01NhR�¦-�r§��7�g���st�+� NhR���¨d�©�J7u�01�lm�nd�� ��txv �ªvl«�|� a�Dv¬­�B EF� �Zw�+� x/�+q���g����h* / cm�hR�� ,����+� ��X!#®y�/z«�z^�{|�+q� g�����¯��~���v��� } ,*��¡����p¢*£+� �� !�°/M�z~/��+�+ChQ�jcd5�K¡���p¢*£+� ����7g������M2�-�)+��±�q+�� g���²³���y´tv�a1�µ1��+�g����-�K���z~/�ChQ�jcd��°/��� g���J�/� / cmx/*£� ���#®�+� ��y\�¨d�1�µ�2J�g�j��n3+������¶�0"���+� ����1N�*���� ��lm���� +T¦-���txv�·��+� ���� ��y\7g�������M¸w�+�������g���NhR�¦-���"��NhR

����XN�]"���¹'�o���G/0-��q�����+� !�NXN�F�� ,mº»F%)+�

�+ 1�����cdFig. + Infiltration apparatus under thermo-

insulated condition.

�����V � +*0¼ �,**1�12

Page 3: j No. +*0,p.+++3 ,**1 · *.2+. +.*. +.*0J g K ˘ˇ ˆ˙˝˛˚˜ !" #$ %&’() ˝˛ *+&,ˆ-%. / ..*0 ,*.00 ..,0 ˘ˇ ˙1 2 3 4 5˛˚˜678ˇ !" -%./ 9:)’; 4 5˛˚˜&’

,�- �������,����������� ���� , mm����������� ������������� � � ,* g!�� ,"���#$�� %&�'� �(���)* �+� ,-�'�./0� 1�� 2345�6 7��89�:��; �<��='��>?�� ++*@��A��B ,.CD���E� FGHIJ�KLMNB�O�� ,

"�PQ +"��R� STUB�U��STU��V�������� ����WM������X��� Y1�Z[� %&���\]�^_B���M��'�� �`M�a�����b���cd�� -��e�f���� LM�BM� ghi�� Y�fMR -!����B'��� �`���M�a� fM0"j�]?�Ya�k#�E� =P +"�%&�'�$���������b�e�f��%&� l��mn�� mnE�o'p�M��� M�qrI 7s(�t7u; v� �Iwxy� EF; BM�0z�a] NB� -)D� ,*D{B'��|+�� '�},E� o'p���� �cd��'���~�c���<��� �f-.�E� ,�����<��~�-��'��>?��%&�R��B!���

Qim��Cs�Ws�7T�Ts;�Cw�Ww�7T�Tw;��Ws �

YYB� Qim : %&� 7J�g�+;� T : %&E� gM�7@;� Ts : ����M� 7@;� Tw : f���M� 7@;�Cs : �/��-� 7J�g�+�K�+;� Ws : ���� 7g;�Cw : f�-� 7J�g�+�K�+;�Ww : f��� 7g;B� �

%&�R� ���f-�0����h1 � �YB�*..,/ mm������a�����<��� ���f-�1�hi�'���%&�0�/�23B�f��4�����\* ��B� Ya� � %&��0�hR23�0�h���* /�� ¡* a¢£ 1 � �YB� %&��\�0�������<��R� , mm�����/�¤)� � *.*1/ mm��� *.*1/¥*..,/ mm, *..,/¥*.2/ mm, *.2/¥,.** mm� ./�¤)�$[¦� �1§1�¤)�<��%&��'���

-� ����

-�+ �����2�+����¨©5]67ª��� �N����

-�R� -«��c�f)8ª¬­��� �9®�

��, %&�'���Fig. , Wetting heat measurement apparatus.

��+ ��������������¨©567ª

���

����

����

�/��� 7g�cm-; ,40. ,40, ,400

¯ 7*4*,¥,4*; mm

G�6 7*4**,¥*4*,;�� 7*4**, mm��;

1/

+-

0

-+

-.

,/

2/

+,

-

�ª SL SCL SL

pª°± 7�;²ª°± 7�;²ª³´µª�

-*43

,*4,

+*41

+412

-2

-.4.

-40

*4.

,24+

+14/

+*40

-4/-

-23¶ 7m,�g; .4*/ +-42 ,/42

·�¸� 7�; ,4+ +.4, +4-

:�3�¹º�� 7cmolc�kg; .4.. --4+ 2431

��- f)8ª¬­Fig. - Soil moisture characteristic curves of soils.

;< : �A�»�¼&�a=]P=M1�a%&� 13

Page 4: j No. +*0,p.+++3 ,**1 · *.2+. +.*. +.*0J g K ˘ˇ ˆ˙˝˛˚˜ !" #$ %&’() ˝˛ *+&,ˆ-%. / ..*0 ,*.00 ..,0 ˘ˇ ˙1 2 3 4 5˛˚˜678ˇ !" -%./ 9:)’; 4 5˛˚˜&’

��. ���������� �Fig. . Temperature change at each depth during infiltration.

����� � +*0� �,**1�14

Page 5: j No. +*0,p.+++3 ,**1 · *.2+. +.*. +.*0J g K ˘ˇ ˆ˙˝˛˚˜ !" #$ %&’() ˝˛ *+&,ˆ-%. / ..*0 ,*.00 ..,0 ˘ˇ ˙1 2 3 4 5˛˚˜678ˇ !" -%./ 9:)’; 4 5˛˚˜&’

��/ ���������� �Fig. / Locations of wetting fronts and maximum temperature.

�� : ������������������� 15

Page 6: j No. +*0,p.+++3 ,**1 · *.2+. +.*. +.*0J g K ˘ˇ ˆ˙˝˛˚˜ !" #$ %&’() ˝˛ *+&,ˆ-%. / ..*0 ,*.00 ..,0 ˘ˇ ˙1 2 3 4 5˛˚˜678ˇ !" -%./ 9:)’; 4 5˛˚˜&’

��0 ���������� Fig. 0 Temperature profiles at di#erent times during infiltration.

����� � +*0� �,**1�16

Page 7: j No. +*0,p.+++3 ,**1 · *.2+. +.*. +.*0J g K ˘ˇ ˆ˙˝˛˚˜ !" #$ %&’() ˝˛ *+&,ˆ-%. / ..*0 ,*.00 ..,0 ˘ˇ ˙1 2 3 4 5˛˚˜678ˇ !" -%./ 9:)’; 4 5˛˚˜&’

���������� ������ � ,/.2 m,�g,

������ +-.2 m,�g� ���� ..*/ m,�g������� ����� ��� ����!"��� �� ������ ���#$���� %&"-.+0'+*- cm ()pF -./* +,%&" -.+0'+*/ cm ()pF

/./* #�-.�� ����� ���� ���#$�� / 012�� 3#�4�� -��5�%�� ����� �+,������!��� ���������#$���� ���!��������#����!� �/+��#�� �������65��78,9�:;<=������>?@�A#������B!%�2/+��3�!78,9��

-�, ���������-�,�+ ��� ����C�.�� DEFG#HI��4 1 cm, +1 cm, ,1./ cm,

-1./ cm, .1./ cm#J�#�K#FG��L0 -M#�N���O12O��� DEPQ#RS��I���� K�����TUV5�!� W�/DE-#��� !"���OXY�K��#Z2O� � �[���$%-K�S\�O���]^!]�/�_`K�UV#&�!a��b�/

b� K�#Z#&��'�/�O��� K�UV�� ����� ,cd-c� ����� ,*cd,/c� ���� ../cd0.,c�/�Oeb� ������#K�UV�(2��

-�,�, ���������C�/� -f)�N#DEPQJ���gK�*hJ

�0� DEijk#FG��2l;mA2��#��� DEPQ#no&��� pq#rstu�e�O�����&�� ���������_v+w���� �gK�#*hFG�DEPQ�_v+w��!� xy�z��{EPQ�b�|}+�~�*h2O��� DEPQ�bP,K�!UV5�#�� -��!DEPQ#P,���-�b�~���2O� %�^9� {E !*h2OK�!UV2��#�78,9�� {EPQ#����-�OK�!UV5�����Anderson, (+30,* ����2Oeb� �9!-��

%������.2O���-�,�- ����� ����C�0���K#]^,��/!FG����no2O����012O����g��K���N#M0���O� ��� ,-.1c����� .1./c� ��� ,0./c�� *h5�{E #� ^���O� �9�9�/� 0��� 2+2� �K�/#������0�2O��� 5/|�� DEPQ#RS2�]^���K�!UV2� �gK����5�� �gK�!��^9�k,� 5/|�� �gK�*h]^�b�������/���9XY�K�!#Z2O��� �gK��b�k,#J��e��K��1�� FG!HI2� PQ!]����5�_`��+��� PQP,#���l/K��L�� {E #*h��b� / !*h5�3��� �gK��2+,P,�# !"!�^�3�012O��� �gK�k,#��+/K�#Z�� $%5�-��b3�^9������ *h2� !�� �� !"��bXY�¡4^9O��3�012O���

-�- �������-�-�+ ���-M#�Nf)�¢�£¤�A#{E ¥.¦§0�

��,�12O���¢�£¤�A#¥. �5¨ 0�©2Oz��� ¥. ..2- J�g��25¨ (Iwata, S.

et al., +322* � /.30 J�g�/�O��� 67¥.2�{E # �5¨ �b��#��##_vª82O��3�+,� 67���¥.¦§�«�¬9 ��78,9�� ¥. �5¨ #­#:®�2O�� ¥.�¯2�¢�£¤�A#°�#±�����#�78,9�� ��� �;²³�¢�£¤�A# +0.+�+,���# ,+.0�#<´���#� =³q#¥.0o8µ��#>¶ �¬95��?� ���78,9���Nf)�� �������# ,+.. J�g012� �����# /.0. J�g, ������# -.,/ J�g���� {E #� ^#$�� @ DErs�e��DE���/4K�UV#$�ª82O��� �gK�*h2#·-�� *��S��78,9�#� A¸·

��, �N#{E (J�g*

¥.³ >¶{E B¹C­ �;²³ (�* {E

����������¢�£¤�A

0

0

0

0

-4,/

,+4.*

/40.

.42-

*4//

-432

+4,,

*412

+043

+240

,+40

+04+

ººº

/430*

* : Iwata S. et al. (+322)

D5 : »¼��#DE���/4�K�L�{E 17

Page 8: j No. +*0,p.+++3 ,**1 · *.2+. +.*. +.*0J g K ˘ˇ ˆ˙˝˛˚˜ !" #$ %&’() ˝˛ *+&,ˆ-%. / ..*0 ,*.00 ..,0 ˘ˇ ˙1 2 3 4 5˛˚˜678ˇ !" -%./ 9:)’; 4 5˛˚˜&’

��������� ��� � ������� ���� *.2+.� +.*.� +.*0 J�g�K������� ���� �!�"�#$�%&'()� ���*+&,�-%./�� ��� ..*0� �� ,*.00� � �� ..,0������� 1�2�3�� 4�5���678���!�"�-%./�9:�)';� 4�5���&'<�-%./=����*+&>?@�A�6B�1��C�)(��

-�-�, �����������DE������8FGH�I�-&C

�)(�� *.*1/ mmJK�LMN�DE��O�PQR�6 -*.* J�g�SATU� *.*1/ mmJK�PVN(*.*1/W*..,/ mm6� ,,.0 J�g� ,/�X%YK@��*..,/W*.2/ mm� ,,./ J�g6Z�[\�]�NU� *.2/

W,.* mm6 +3.3 J�g^_`a&bc��� N'� ,.*

mmJK�� ,+.0 J�g�Nd)';� Ze!E��fO�g<��h3�Nd)(�� LM�D�Z\ijN����kg1��la6B�=� ,;ijN�DE�������m)� ��n��I�oa2p���Z\ijU�N(� 1��� ��&�� q�r�stu=vw�)';� xiN�DE�&'()Aq�stu&'<�y�z{6aN;����=*+@��|��}2��� 1�~&g()�� -. -. .6A����}��

-�-�- �� ��������1��������������Py���

��C�)(�� (`��R�A��Py������A&����*+���UYK�� ���6� .�J.65���*+=�2�NUN;� ��6A /�J.6���.� ����*+��2�NUN�� ���*+=�2�NUN�Py������6�pF ..,���6� pF /.,&��@�� 1�1�a2� 5�&���-�]�*+A� pF ..,W/.,J.&#$�� &*+��#$@�Z\�-�]Aij(1�=p����

-�-�. ��������� �������� �CEC��

-���"������I�o',��������

����� ��2&������� ����������� ���&���)���&�i�)(�� 1�&��� 9�&�_�)(�,�&�I�o��i��A&���=�i@�� �¡|2�� ¢£.� +311¤ A��� �¥¦6�� ��=�I�o&§�)¨&ijN����C���=¨©�6B�� 1��� N,ª«z{�6�� N,ª«=z{���¬I�=8F���=� y�­�¬I�J¬&®¯°>±�²�³��´µstu&Az{��� ,;¶·N¸6���=*+

��- ����D���� ¢J�g¤

�D ¢mm¤¹*4*1/ *4*1/W*4.,/ *4.,/W*42/ *42/W,4*

run +

run ,

,341

-*4,

,-4-

,+43

,,43

,,4*

,*4,

+34/

�h -*4* ,,40 ,,4/ +343

��2 ������� � �I�o����Fig. 2 Relationship between wetting heat and

CEC and that of between wetting heat

and specific surface.

��1 ��Py�����Fig. 1 Dependence of wetting heat on initial

water content.

�"���º » +*0¼ ¢,**1¤18

Page 9: j No. +*0,p.+++3 ,**1 · *.2+. +.*. +.*0J g K ˘ˇ ˆ˙˝˛˚˜ !" #$ %&’() ˝˛ *+&,ˆ-%. / ..*0 ,*.00 ..,0 ˘ˇ ˙1 2 3 4 5˛˚˜678ˇ !" -%./ 9:)’; 4 5˛˚˜&’

���������

.� � � � �

��� �� ���� ����� ��������� ��� !"�#$�%&'�( )*����� +,-��./01 ���23&45$6�%&7'-�8��9�. !"�:�,&,�;� 7'-�<�=>� ��?@A? !5B���� ��������� <CDE ,.-F� ,+.0F� /.2F�EGH#$�%IJK��L�I�MN� :�,�#$�%�O �P5QRIS��� 9�.�:�,�� T CEC��QRIP5L�I��M HU�

� �

V3�.�WX Y�UB�� Z[\]^�_]`�Pabcdefg_]`�hYi9j �k&lUB5�m5� n-Bop&-8�

� �

Anderson, D.M. and Linville, A. (+30,) : Temperature

fluctuations at a wetting front : I. Characteristic

temperature-time curves, Soil Sci. Soc. Am. J., ,0 :

+.�+2.

Anderson, D.M. and Linville, A. (+30-) : Temperature

fluctuations at a wetting front : II. The e#ect of

initial water content of the medium on the mag-

nitude of the temperature fluctuations, Soil Sci.

Soc. Am. J., ,1 : -01�-03.

Berge, H.F.M. ten : qr#s^��t u+330v : �#

��wExy !"�,�^�� z� {�|}� p. -+.

Iwata, S. (+31,) : Thermodynamics of soil water. II,

Soil Sci., ++- : -+-�-+0.

Iwata, S., Tabuchi, T. and Warkentin, B.P (+322) : Soil-

water interaction Machanism and application,

Mercel Dekker Inc., New York : p. +*,.

Keren, R. and I. Shainberg (+31/) : Water vapor iso-

therms and heat of immersion of Na- and Ca-

Montmorilonite sysytems, I. Homoionic clay, Clays

and Clay Minerals, ,- : +3-�,**.

Keren, R. and I. Shainberg (+313) : Water vapor iso-

therms and heat of immersion of Na- and Ca-

Montmorilonite sysytems, II. Mixed systems, Clays

and Clay Minerals, ,1 : +./�+/+.

Keren, R. and I. Shainberg (+32*) : Water vapor iso-

therms and heat of immersion of Na- and Ca-

Montmorilonite sysytems, III. Thermodynamics,

Clays and Clay Minerals, ,2 : ,*.�,+*.

Kijne, J.W. (+303) : On the interaction of water mole-

cules and Montmorilonite surfaces, Soil Sci. Soc.,

Amer. Proc., -- : /-3�/.-.

~� � u+311v : ������(��������,7' �5B�������(�� R����� uS.Sv �5B u�v�� \���� 02� /*�/1.

Perrier, E.R. and Prakash, O.M. (+311) : Heat and va-

por movement during infiltration into dry soils,

Soil Sci., +,. (,) : 1-�10.

��-��.������ !5B�� ��?@��4 ��HUB?@A? $6I������I���� L�� ?@M��J-�^�xI�. �������� JK��:�, ���� �� $6�%�� �.^�^���������%� �.^����%& ¡B����<��� ¢£��¤MN H¥� �.¦�K%�(�� �¢£������� -M-HI�� L��� �5B�§¨�. ©��'�(H23!�ª«¬ R��­®���_��¯�B°H¥� ��M ��±G²³I´¥µ�B5���� �� ���� ����� ��������� ��� !"�#$�%&'�( )*����� +,���-��./01���23 /01�$6�%&7'-� 8�� 9�.�:�,&,�;� 7'-� <�=>� ��?@A? !5B���� ����� ���� <CDE,.-F� ,+.0F� /.2F�EGH#$�%IJK-� :�,�#$�%�O �P5QRIS������ � 9�.�:�,�� ��¶H�ª CEC��QRIP5L�I��M HU�

·¸¹º» : ,**1¹ + º . »·�¹º» : ,**1¹ . º +2»

�� : ������� ��H¼#$�%�:�, 19