I.T.U. STRUCTURAL ANALYSIS GROUP 2016-2017...

100
1 I.T.U. STRUCTURAL ANALYSIS GROUP 2016-2017 SPRING SEMESTER GRADUATION DESIGN PROJECT

Transcript of I.T.U. STRUCTURAL ANALYSIS GROUP 2016-2017...

1

I.T.U.STRUCTURAL ANALYSIS GROUP2016-2017 SPRING SEMESTERGRADUATION DESIGN PROJECT

2

DESIGN STORAGE BUILDING WHICH IS MADE OF

REINFORCED CONCRETE AND STEEL ELEMENTS

PREPARED BY:

AHMET GÜNDÜZ

BORA SAMAN

SERCAN TUTKAÇ

ADVISOR:

ASSIST. PROF. DR. BARIŞ ERKUŞ

3

1.INTRODUCTION2.PRELIMINARY DESIGN3.STRUCTURAL ANALYSIS4.DETAILED DESIGN5.BIM STRUCTURAL INTEGRATION6.CONCLUSION

CONTENT

4

PROJECT DATA

Building Type Storage Building

# of Bays (X-Direction) 5

# of Bays (Y-Direction) 3

Plan Dimensions 30x18m

Number of Stories 3

Building Height 14.6m

INTRODUCTION: PROJECT DATA

5

INTRODUCTION: FLOOR PLANS

1. Floor Plan

5

INTRODUCTION: FLOOR PLANS

2. Floor Plan

6

INTRODUCTION: FLOOR PLANS

3. Story Plan View

RC FRAME

STEEL TRUSS

HORIZONTAL STABILITY MEMBERS

7

INTRODUCTION: ELEVATIONS

1-1 and 4-4 Axis

8

INTRODUCTION: ELEVATIONS

2-2 and 3-3 Axis

STEEL TRUSSES

9

INTRODUCTION: ELEVATIONS

A-A,B-B and C-C Axis

10

INTRODUCTION: ELEVATIONS

D-D, E-E and F-F Axis

12

INTRODUCTION: 3D VIEWS

13

INTRODUCTION

WHY THIS STRUCTURE

MOMENT FRAME STRUCTURE

WITHOUT SHEAR WALL

CANTILEVER COLUMN

PROGRAMMING

COMBINATION OF STEEL AND RC

14

DESIGN BASIS: STRUCTURAL SYSTEM

GRAVITY SYSTEM

LATERAL SYSTEM

FOUNDATION SYSTEM

DESIGN BASIS: GRAVITY SYSTEM

RC SLAB ALIMINIUM MEMBER BEAM

TRUSS PURLIN COLUMN

15

16

DESIGN BASIS GRAVITY SYSTEM LOAD PATH

RC SLAB

17

DESIGN BASIS GRAVITY SYSTEM LOAD PATH

STEEL ROOF

DESIGN BASIS : LATERAL SYSTEM

SPECIAL MOMENT RESISTING FRAME SPECIAL R. C. CANTILEVER COLUMN

18

DESIGN BASIS : LATERAL SYSTEM

SPECIAL R.C. CANTILEVER COLUMN

SPECIAL MOMENT RESISTING FRAME

19

DESIGN BASIS : SPECIAL MOMENT RESISTING FRAME

ASCE 7-10

R 8

Cd 5,5

Ωd 3

TSC-DRAFT 2017

SMRF

20

DESIGN BASIS : SMRF – LOAD PATH

21

ASCE 7-10

R 2,5

Cd 2,5

Ωd 1,25

DESIGN BASIS : SPECIAL R. C. CANTILEVER

TSC-DRAFT 2017

S. R. C. CANTILEVER

22

23

[ASIDE] NONLINEAR BEHAVIOUR OF STRUCTURES

EQUIVALENT ENERGY

δ𝑖 = δ𝑒

δ

P𝑒

P𝑖

P

EQUIVALENT DISPLACEMENT

P𝑖

δ𝑖δ𝑒

δ

P

P𝑒Elastic Response

InelasticResponse

24

[ASIDE] CODE PARAMETERS

E

δ𝑖δ𝑒

δ

P

P𝑒

R

ΩdE

Ωd

Cd

E=𝑆𝑎

𝑅

EQUIVALENT ENERGY

SIMILAR APPLIES TOEQUIVALENT DISPLACEMENT

P

E

δ𝑖δ𝑒

δ

P𝑒

R=8

ΩdE

Ωd=3

Cd = 5,5

[ASIDE] CODE PARAMETERS – SPECIAL MOMENT FRAME

BENDING ESHEAR Ω𝑒E

25

P

E

δ𝑖δ𝑒

δ

P𝑒

R=3

ΩdE

Ωd=2

Cd = 2,5

[ASIDE] CODE PARAMETERS – CANTILEVER COLUMN

BENDING ESHEAR ΩeE

26

DESIGN BASIS: EQ PARAMETERS – SPECIAL MOMENT FRAME

Bending (M) EShear (V) Ωe E

δ

P

E E=𝑆𝑎

𝑅=8

27

DESIGN BASIS:EQ PARAMETERS – CANTILEVER COLUMN

SPECIAL CASE (!)CODE PARAMETERS OUR PROJECT

Ground Acceleration Ground Acceleration

28

DESIGN BASIS:EQ PARAMETERS – CANTILEVER COLUMN

CANTILEVER COLUMN STAYS LINEAR

M Ωframe E

V Ωcantilever Ωframe E

δ

P

E

E=𝑆𝑎

𝑅=8

3E

Design

Capacity

SPECIAL CASE (!)

29

Ωframe

DESIGN BASIS:EQ PARAMETERS – SPECIAL MOMENT FRAME

M

V

1,25E ASCE 7-10

Ωframe 1,25E δ

P

E

E =𝑆𝑎

𝑅=8

1,25E

SPECIAL CASE (!)

30

DESIGN BASIS-LATERAL SYSTEM: STEEL TRUSS

PIN-PIN CONNECTION

NOT PART OF MAIN LATERAL SYSTEM

EQ

DIAPHRAM FORCES

31

DESIGN BASIS-LATERAL SYSTEM: STEEL TRUSS

1.4G+1.6Q

𝐹𝑝𝑥 =σ𝑖=𝑥𝑛 𝐹𝑖

σ𝑖=𝑥𝑛 𝑊𝑖

×𝑊𝑝𝑥

0.2𝑆𝐷𝑆𝐼𝑤𝑝𝑥 < 𝐹𝑝𝑥 < 0.4𝑆𝐷𝑆𝐼𝑤𝑝𝑥

DIAPHRAM DESING LOADS

TSC DRAFT 2017/ASCE 7-10

32

DESIGN BASIS-FOUNDATION SYSTEM

SOIL CLASS: Z2ALLOWABLE SOIL

STRESS: 180 Τ𝑘𝑁 𝑚2

33

SPREAD FOOTING

DESIGN BASIS-FOUNDATION SYSTEM

ASSUME NO SOIL FOUNDATION INTERACTION ASSUMPTION

LINK BEAMS

34

DESIGN BASIS-FOUNDATION SYSTEM

δ

E

3EΩf = 3

P

M

V

E

3E

35

DESIGN BASIS: OTHER TOPICS

MODELS USEDIN-PLANE RIGIDITY

OUT-PLANE RIGIDITY

REGULAR SLAB %100 %100

FLEXIBLE SLAB %1 %1

EFFECTIVE SLAB %25 %25

36

DESIGN BASIS: MATERIALS

MATERIAL UNIT WEIGHT

ELASTICITYMODULUS

POISSONRATIO

CONCRETE 25 kN/m³ 32 × 106 N/m² 0,2

STEEL 79 kN/m³ 210 × 106 N/m² 0,265

ALIMINIUM 27 kN/m³ 69 × 109 N/m² 0,334

PLASTER 20 kN/m³

MORTAR 20 kN/m³

E.PARTITION WALL 4,5 kN/m

I.PARTITION WALL 2,5 kN/m

37

DESIGN BASIS: STRUCTURAL LOADS

Material Load

Concrete 25 kN/m³

Steel 79 kN/m³

Aluminium 27 kN/m³

E.Wall 4,5 kN/m

I.Wall 2,5 kN/m

Floor 5,92 kN/m²

Material Unit Weight

RC Slab 25 kN/m³

Plaster 20 kN/m³

Marble 26 kN/m³

Mortar 21 kN/m³

Mortar

Marble

RC Slab

Plaster38

DESIGN BASIS: STRUCTURAL LOADS

LIVE LOADS

Live Load: 5 kN/m²

SNOW LOADS

Snow Load: 0,75 kN/m²

39

SEISMIC WEIGHT

W = D + 0.3L + 0.3S

DESIGN BASIS: STRUCTURAL LOADS-SEISMIC LOADS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

SPEC

TRA

L A

CC

ELER

ATIO

N,

A(T

)

Period T(s)

TSC-2017

TSC-2007

DESIGN SPECTRUM

40

DESIGN BASIS: STRUCTURAL LOADS-SEISMIC LOADS

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 0.5 1 1.5 2 2.5 3 3.5

R

PERIOD(S)

SEISMIC MODIFICATION COEFFICIENT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

S(T)

/R(T

)

PERIOD(S)

S(T)/R(T)

DESIGN SPECTRUM

41

DESIGN BASIS: STRUCTURAL LOADS-SEISMIC LOADS

Vt =σ ሻW × A(T

R

EQ3

EQ2

EQ1

V MW42

EQUIVALENT STATIC FORCE PROCEDURE

BASE SHEAR

Fi = (Vt−∆FNሻ ×Wi × hi

σ ሻ(Wi × hi

F

h1

∆FN = 0,0075𝑁𝑉t

W2

h2

𝐹2

W1

𝐹1

𝐹3

W3

h3

∆𝐹𝑁

DESIGN BASIS:ANALYSIS PROCEDURES-EQUIVALENT SEISMIC LOAD METHOD

43

LOAD COMBINATIONS

1.4G+1.6Q

G+Q±Ex±0,3Ey

G+Q±Ey±0.3Ex

DESIGN BASIS: LOAD COMBINATIONS

DESIGN BASIS: SOFTWARE

v18

v3.6.1

44

45

INTRODUCTION: OUT OF STUDIES

VERTICAL SEISMIC EFFECT

SUPER OPTIMIZATION

TEMPERATURE EFFECT

LONG TERM DEFLECTION EFFECT

SOIL SUPPORT INTERACTION (ELASTIC SUPPORT)

RESPONSE SPECTRUM METHOD

DIAPHRAGM DESIGN

46

1.INTRODUCTION2.PRELIMINARY DESIGN3.STRUCTURAL ANALYSIS4.DETAILED DESIGN5.BIM STRUCTURAL INTEGRATION6.CONCLUSION

CONTENT

47

PRELIMINARY CALCULATION:DESIGN BASIS

MEMBERS LOAD COMBINATION CAPACITY

COLUMN 1.4G+1.6Q• %30 Axial D/C Ratio (0,3Acfck)

• 1.8 Coefficient

BEAM 1.4G+1.6Q Structural Code

SLAB 1.4G+1.6Q Structural Code

FOUNDATION 1.4G+1.6Q Vcr = 0,65 × fctd × bw ×d

STEEL 1.4G+1.6Q 1 ΤkN m2

48

PRELIMINARY CALCULATION:DESIGN BASIS

MEMBER DIMENSIONS

COLUMN 70x70 cm

BEAM 60x30 cm

SLAB Thick. = 18 cm

FOUNDATIONThick. = 70cmMax. 3.25x3.25mMin. 2.10x2.10m

STEEL ROOF Detailed Design

49

1.INTRODUCTION2.PRELIMINARY DESIGN3.STRUCTURAL ANALYSIS4.DETAILED DESIGN5.BIM STRUCTURAL INTEGRATION6.CONCLUSION

CONTENT

50

STRUCTURAL ANALYSIS: DESIGN SPECTRUM

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

SPEC

TRA

L A

CC

ELER

ATIO

N, A

(T)

PERIOD T(S)

T TT=0,2

TSC-2007

51

STRUCTURAL ANALYSIS: DESIGN SPECTRUM

EQ3

EQ2

EQ16342.24

4938.69

2001.92

V(kN) M(kNm)

W=25368.95kN

Vt =σ ሻW × A(T

R

T=0,2s

52

STRUCTURAL ANALYSIS: MODELLING

3D SAP2000 MODELS

REGULAR SLAB

FLEXIBLE SLAB

WITHOUT SLAB

EFFECTIVE RIGIDITY

2D MODELS

RECTANGULAR BEAM

T-SHAPE BEAM

PYTHON-RECTANGULAR

PYTHON-T SHAPE

53

STRUCTURAL ANALYSIS: 3D REGULAR SLAB SAP2000 MODEL

IN-PLANE SLAB RIGIDITY: %100

54

EQ𝑋

EQ𝑋EQ𝑌

EQ𝑌

PARTITION WALL LOAD

SNOW LOADLIVE LOAD

DEAD LOAD

STRUCTURAL ANALYSIS: 3D REGULAR SLAB SAP2000 MODEL LOADS

55

STRUCTURAL ANALYSIS: 3D WITHOUT SLAB SAP2000 MODELSTRUCTURAL ANALYSIS: 3D FLEXIBLE SLAB SAP2000 MODEL

IN-PLANE & OUT-PLANE SLAB RIGIDITY: %1

56

STRUCTURAL ANALYSIS: 3D WITHOUT SLAB SAP2000 MODEL

WITHOUT SLAB

57

STRUCTURAL ANALYSIS: 3D WITHOUT SLAB SAP2000 MODEL-LOADS

58

STRUCTURAL ANALYSIS: 3D EFFECTIVE RIGIDITY SAP2000 MODEL

IN-PLANE SLAB RIGIDITY: %25COLUMN: %70

BEAM: %35

TSC-2017 4.5.8.1

67

STRUCTURAL ANALYSIS: 2D RECTANGULAR BEAM SAP2000 MODEL

COLUMN & BEAM RIGIDITY: %100

68

STRUCTURAL ANALYSIS: 2D T-SHAPE BEAM SAP2000 MODEL

59

STRUCTURAL ANALYSIS: 3D EFFECTIVE SECTION SAP2000 MODEL

EQY T=0,773s

0

2

4

6

8

10

12

14

16

0 0.01 0.02 0.03 0.04

HEI

GH

T(M

)

DISPLACEMENT(M)

3D MODELS DEFLECTION (B-B AXİS)

Rigid Slab

No Slab

Effective Rigitidy

Flexible Slab

8,6

4,6

TYPE MODEL TOP DEFL.3D Flexible Slab 0,0207 m3D Rigid Slab 0,0181 m3D No Slab 0,0220 m3D Effective Slab 0,0380 m2D Rect. Beam 0,0191 m2D T-Beam 0,0152 m

60

STRUCTURAL ANALYSIS: 3D SAP 2000 MODELS COMPARASION

0.482 0.512 0.512

0.773

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9P

ERIO

D(s

)

Period Comparison

RIGID SLAB FLEXIBLE SLAB WITHOUT SLAB EFFECTIVE RIGIDITY

61

STRUCTURAL ANALYSIS: 3D SAP 2000 MODELS COMPARASION

234.05 234.05224.05 229.94

0

50

100

150

200

250

SHEA

R(k

N)

Shear Comparison

RIGID SLAB FLEXIBLE SLAB WITHOUT SLAB EFFECTIVE RIGIDITY

EQY T=0,773s

62

STRUCTURAL ANALYSIS: 2D PYTHON MODEL

63

STRUCTURAL ANALYSIS: STIFFNESS METHOD

N1

Ө

N0

N1N0

E0

LOCAL DEGREE OF FREEDOM GLOBAL DEGREE OF FREEDOM

1’

2’3’

4’

5’6’

1’

2’

3’4’

5’6’

64

STRUCTURAL ANALYSIS: STIFFNESS METHOD

STIFFNESS MATRIX

65

STRUCTURAL ANALYSIS: STIFFNESS METHOD

𝐓𝑒 =

cosx sinx 0 0 0 0−sinx cosx 0 0 0 00 0 1 0 0 00 0 0 cosx sinx 00 0 0 −sinx cosx 00 0 0 0 0 1

STRUCTURAL ANALYSIS: STIFFNESS METHOD

66

69

STRUCTURAL ANALYSIS: 2D SAP2000 & PYTHON MODELS

HEI

GH

T(M

)

DISPLACEMENT(M)

2D MODELS DEFLECTION (B-B AXİS)

Rectangular Beam

T Shape Beam

Python

1,52

cm

1,91

cm1,

93cm

14,6

8,6

4,6

EQY T=0,773s

70

STRUCTURAL ANALYSIS: 2D SAP2000 & PYTHON MODELS

14,6

8,6

4,6

172.09 174.07 175.32

0

20

40

60

80

100

120

140

160

180

200

T-SHAPE RECTANGULAR PYTHON

SHEA

R(k

N)

Column Shear Comparision

71

STRUCTURAL ANALYSIS: 2D SAP 2000 MODELS COMPARASION

14,6

8,6

4,6

COMPARISON2D RECT. SAP2000

2D RECT. PYTHON

ACC(%)

COLUMN AXIAL / 1,4G+1,6Q 1460,47 kN 1460,92 kN 99,97

COLUMN SHEAR / G+Q-E -202,87 kN -204,06kN 99,42

COLUMN MOMENT / 0,9G+E 677,79 kNm 674,32kNm 99,49

CANTILEVER DEFLECTION / E 1,91 cm 1,93 cm 98,96

TRUSS DEFL. / 1,4G+1,6Q 4,52cm 4,56cm 99,12

72

STRUCTURAL ANALYSIS: FUNDAMENTAL STRUCTURAL CHECKS

14,6

8,6

4,6

0 0.02 0.04

HEI

GH

T(M

)

DISPLACEMENT(M)

3D MODELS DEFLECTION (B-B AXİS)

3,38

cm

14,6

8,6

4,6

Δ3

Δ2Δ1

1,70

cm

0,69

cm

Model with Effective Rigidity

EQY T=0,773s

0 0.05 0.1

HEI

GH

T(M

)

RELATİVE STOREY DRİFTS (M)

3D MODELS EFFECTİVE RELATİVE STOREY DRİFTS (B -B AXİS) TSC-2017

EffectiveRigidity2017

𝜆 𝛿2/ℎ2=0,0072<0,0080

STRUCTURAL ANALYSIS: FUNDUMANTAL STRUCTURAL ANALYSIS CHECK

EFFECTIVE RELATIVE STOREY DRIFTS CHECK

0 0.05 0.1

HEI

GH

T(M

)

RELATİVE STOREY DRİFTS (M)

3D MODELS EFFECTİVE RELATİVE STOREY DRIFTS(B-B AXİS) TSC-2007

EffectiveSectionRigitidy2007

𝛿2/ℎ2=0,018<0,02

73

74

STRUCTURAL ANALYSIS: IRREGULARITIES CHECK

IRREGULARITIES IN PLANE

TORSIONAL IRREGULARITY

FLOOR DISCONTUNITIES

PROJECTIONS IN PLANE

IRREGULARITIES IN ELEVATION

INTERSTORY STRENGTH IRREGULARITY

INTERSTORY STIFFNESS IRREGULARITY

DISCONTUNITIES OF VERTICAL STRUCTURAL ELEMENTS

η23 =2.18

2.075= 1.05 < 1.20

75

STRUCTURAL ANALYSIS: TORSIONAL IRREGULARITIES CHECK

∆2=1,97 cm

∆4=1,97 cm

∆1=2,18cm

∆3=2,18cm

33.Story32.Story 3EQ

76

1.INTRODUCTION2.PRELIMINARY DESIGN3.STRUCTURAL ANALYSIS4.DETAILED DESIGN5.BIM STRUCTURAL INTEGRATION6.CONCLUSION

CONTENT

77

DETAILED DESIGN: COLUMN DESIGN

M

V

Ωframe E

Ωcantilever Ωframe E

M

V

1,25E

Ωframe 1,25E

M

V

E

Ωframe E ൗ𝑆 (𝑅 = 8ሻ = 𝐸

78

DETAILED DESIGN: COLUMN DESIGN

70x70 Column

Axial Capacity 14700 kN

0,3fckAc 4410 kN

4410 kN >2353.48 kN

Max Axial (1,4G+1,6Q)

60x60 Column

Axial Capacity 10800 kN

0,3. fck. Ac 3240 kN

79

887.74; 1600.37

-6000

-4000

-2000

0

2000

4000

6000

8000

0 200 400 600 800 1000

P (

kN)

M (kNm)

P-M-M interaction (Column37 16φ28)

3240

DETAILED DESIGN: COLUMN DESIGN

80

DETAILED DESIGN: COLUMN DESIGN

ρ =0,0274

2)Is this constructable?

1)0,01<ρ<0,04(TSC 2007)

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2

SPEC

TRA

L A

CC

ELER

ATI

ON

, A(T

)

PERIOD T(S)

T=0,2s T=0,773s

For T=0,2 s

𝑉𝑡 = 6342,24 𝑘𝑁

For T=0,773 s

𝑉𝑡 = 3744,02 𝑘𝑁

DETAILED DESIGN: COLUMN DESIGN

8

1

DETAILED DESIGN: COLUMN DESIGN

549.32; 1687.70

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

0 200 400 600 800

P (

kN)

M (kNm)

P-M-M interaction (Column37 10φ26 T=0.773s)

3240

ρ =0,0147

82

1

DETAILED DESIGN: COLUMN DESIGN

83

84

DETAILED DESIGN: COLUMN DESIGN

MOMENT CURVATURE

𝑀𝑃İ ≈ 1.4𝑀𝑟İ

1.43

85

DETAILED DESIGN: BEAM DESIGN

86

MOMENT CURVATURE

1.52

DETAILED DESIGN: BEAM DESIGN

𝑀𝑃İ ≈ 1.4𝑀𝑟İ

87

DETAILED DESIGN: FOUNDATION DESIGN

𝑉𝑐𝑟 = 0,65 × 𝑓𝑐𝑡𝑑 × 𝑏𝑤 × 𝑑

Vpr=ɣ×fctd×Up×dmean

0.70m

PUNCHING & SHEAR CHECK

88

DETAILED DESIGN: STEEL DESIGN

TOP CHORD

TRUSS MEMBER (DIAGONAL-MIDDLE)

TRUSS MEMBER (VERTICAL)

TRUSS MEMBER (DIAGONAL-END)

BOTTOM CHORDLOCAL BUCKLINGGLOBAL BUCKLINGBEARING STRENGTH

DETAILED DESIGN: STEEL DESIGN-MEMBER PROPORTION

89

STEEL ROOF HORIZANTAL STABILITY MEMBER

PURLIN

DETAILED DESIGN: STEEL DESIGN-CONNECTION DESIGN

90

A-A’ SECTION PLAN

A A’

91

DETAILED DESIGN: STEEL DESIGN-CONNECTION DESIGN

Checks--Bearing Strength of Bolds--Shear Strength of Bolds --Block Shear--Bearing Strength o Tension Member

a)Rapture Strenght b)Yielding Strength

1)WELD2BOLDS

92

DETAILED DESIGN: STEEL DESIGN-CONNECTION DESIGN

93

DETAILED DESIGN: STEEL DESIGN-CONNECTION DESIGN

94

1.INTRODUCTION2.PRELIMINARY DESIGN3.STRUCTURAL ANALYSIS4.DETAILED DESIGN5.BIM STRUCTURAL INTEGRATION6.CONCLUSION

CONTENT

52

BIM STRUCTURAL INTEGRATION

PARAMETRIC DESIGN

OPTIMIZATION

96

1.INTRODUCTION2.PRELIMINARY DESIGN3.STRUCTURAL ANALYSIS4.DETAILED DESIGN5.BIM STRUCTURAL INTEGRATION6.CONCLUSION

CONTENT

97

CONCLUSION

PRELIMINARY DESIGN

1.STAGE 2.STAGE

DETAILED DESIGN

DESIGN BASIS

98

THANK YOUFOR YOUR ATTENTION

QUESTIONS?

37

STRUCTURAL ANALYSIS: 2D PYTHON MODEL

NODE DICTIONARY

ELEMENT DICTIONARY

LENGTH,SIN,COS

FUNCTIONS

CONFIGIRATION PARAMETERS

ELEMENT STIFFNESS

MATRIX

TRANSFORMATION MATRIX

GLOABAL ELEMENT

STIFFNESS MATRIX

GLOABAL EQUILIBRIUM

STIFFNESS MATRIX

EXTERNAL FORCE EQUILIBRIUM

MATRIX

GLOBAL DISPLACEMENT

MATRIX

GLOBAL REACTION

MATRIX

ASSEMBLE

SOLVE