It I~'~-F,-- · increases with height and unstable when potential temperature decreases with...

77
TECHNICAL REPORT RR-83-2 WIND SPEED, STABILITY CATEGORY, AND ATMOSPHERIC TURBULENCE AT SELECTED LOCATIONS Oskar M. Essenwanger and Dorathy A. Stewart Research Directorate US Army Missile Laboratory May 1983 K 'NomLw"? •r el/ t Approved for public release; distribution unlimited. ED MON. !S "2,LF'r It LU I~'~-F,-- * .1

Transcript of It I~'~-F,-- · increases with height and unstable when potential temperature decreases with...

Page 1: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TECHNICAL REPORT RR-83-2

WIND SPEED, STABILITY CATEGORY, ANDATMOSPHERIC TURBULENCE AT SELECTED LOCATIONS

Oskar M. Essenwanger and Dorathy A. Stewart

Research DirectorateUS Army Missile Laboratory

May 1983

K

'NomLw"? •r el/ t

Approved for public release; distribution unlimited.

ED MON. !S "2,LF'r

It

LU I~'~-F,--* .1

Page 2: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

DISPOSITION !NSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LO,"NGER NEECED. DO NO7

RETURN iT TO THE ORIGINATOR.

DISCLAIMER

T..E FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN

OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO CEZSIG.

NATED aY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES

NOT CONSTITUTE AN OFFICIAL INDORSEMENT OR APPROVAL OF

THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.

Page 3: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

RR-83-2F

4. TITLE (nd Subtitle) S. TYPE OF REPORT & PERIOD COVERED

WIND SPEED, STABILITY CATEGORY, AND ATMOSPHERICTURBULENCE AT SELECTED LOCATIONS

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) 8. CONTRACT OR GRANT NUMBER(&)

Oskar X. Essenwanger and Dorathy A. Stewart

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKommander AREA & WORK UN:T NUMBERS-USArmy -(ssl Conm.mand

ATT: 0- DRS.I -RRRed stone Ars~enal, Ala 35898

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATECommander May 1983

T:DRS.,±TCo- I and 13. NUMBER OF PAGES

Redstone Arsenal, Ala 35898 7314 MCNITORING AGENCY NAME a ADDRESS(lf different from Controlling Office) 15. SECURITY CLArS, (of thil report)

Unclassi f ied

1S5. DECL ASSIFICATION/DOWNGRADINGSCHEDULE

16. 0ISTRISUTION STATEMENT (of tile Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, it different from Report)

18. SUPPLEMENTARY NOTF.S

19. KEY WORDS (Continue on reverse aide if necesaery and Identify by block number)

CLI MATOLOGI CALATMOSPHERIC STABILITYTURBULENT WINDFLUCTUATIONS

20. A•DSRACr (Cant•Eruie am reverse a fib if nec-esary amd Identify by block number)

This report includes climatological information about wind speed,atmospheric stability, and turbulent wind fluctuations. It containsfrequency distributions of observed surface wind speeds at 35 stationslocated throughout the Northern Hemisphere. Observations from two Germanstations and one Korean station are classified as a function of wind speedand stability category. A procedure is developed to use these observationsto prepare seasonal climatologies of turbulent wind fluctuations. Our dataon Pasquill category and wind speed relationship are also compared with

DD 'FO7 1473 EDIToo OF I Nov 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Wren Date Entered)

Page 4: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

UNCLASSIFIED

SECURITY CLASSIFICATION OW THIS PAGE(WhO•n Date Entered)

four locations in the United states described in the literature. Finally,the United States data were also used to compute an annual climatology ofturbulent wind fluctuations,

I

ii

j

SECURITY CL ASSIFICATION OF THIS PAOEUI•'• Dta P~nt¢.'.)

Page 5: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

ACKNOWLEDGMENTS

The authors express appreciation to Mrs. Alexa Mims and Mr. Clarence

Wood for their work on the computer program to determine joint distributions

of Pasquill stability category and wind speed. Thanks also go to Mrs. Mona

White for her careful typing of the manuscript.

IA

:

~NDTI S' 'T 'EU

DTID~ELECTE C

SEP 1 5 1983 A Di~ t V, _3.AvI :./ u r

Dist

I

II~1 ii__

Page 6: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

CONTENTS

Section Page

I INTRODUCTION ......................................... ...... .. 5

II PASQUILL STABILITY CATEGORIES ................................... 6

III ESTIMATION OF TURBULENT FLUCTUATIONS ............................ 8

IV CLIMATOLOGY OF TURBULENT FLUCTUATIONS ........................... 11

V SUMIMARY AND CONCLUSIONS .......................................... 13

APPENDIX ........................................................ 33

REFERENCES .......................................... ........... 59

1 1

Page 7: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

LIST OF TABLES

Table Title Page

1. Pasquill stability category as a function of wind

speed and net radiative index ...... .......... 14

2. Number of observations at 0000 GMT as a functionof Pasquill stability category and windspeed at Frankfurt ..... ................ ... 15

3. Number of observations at 0600 GMT as a functionof Pasquill stability category and windspeed at Frankfurt ..... ................ ... 16

4. Number of observations at 1200 GMT as a functionof Pasquill stability category and windspeed at Frankfurt ..... ................ ... 17

5. Number of observations at 1800 GMT as a functionof Pasquill stability category and windspeed at Frankfurt ..... ................ ... 18

6. Number of observations at 0000 GMT as a functionof Pasquill stability category and windspeed at Hahn ...... .................. ... 19

7. Number of observations at 0600 GMT as a functionof Pasquill stability category and windspeed at Hahn ...... .................. ... 20

8. Number of observations at 1200 GMT as a functionof Pasquill stability category and windspeed at Hahn ...... .................. ... 21

9. Number of observations at 1800 GMT as a functionof Pasquill stability category and windspeed at Hahn ...... .................. ... 22

10. Number of observations at 0000 local time as afunction of Pasquill stability categoryand wind speed at Osan ....... .............. 23

11. Number of observations at 0600 local time as afunction of Pasquill stability categoryand wind speed at Osan ....... .............. 24

1?. Number of observations at 1200 local time as afunction of Pasqjill stability categoryand wind speed at Osan ....... .............. 25

13. Number of observations at 1800 local time as afunction of Pasquill stability categoryand wind speed at Osan ....... .............. 26

14. Parameters needed for the computation of u.from wind speed at Z = 10m when Z= 0.5m, . . . 27

2

"-- --. > -

Page 8: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

LIST OF TABLES

Tah l e Title Page

15. Computed estimates of the mean friction velocityas a function of wind speed and Pasquillcategory ....... ..................... .... 28

16. Percentage frequency of au at Frankfurt as afunction of time and season .............. .... 29

17. Percentage frequency of au at Hahn as a functionof time and season ..... ................ ... 30

18. Percentage frequency of a at Osan as a functionof time and season ..... ................ ... 31

19. Annual percentage of standard deviations 4n eachclass estimated from Pasquill and wind datarecorded by Reiquam (1980) .... ............ .... 32

Al. Cumulative distributions of wind speed (m/s) forSJanuary . . . . . . . . . . . . . . . . . . . ... 34Jaury............... , .............. .3

A2. Cumulative distributions of wind speed (m/s) forFebruary ....... ..................... .... 35

A3. Cumulative distributions of wind speed (m/s) forMarch ....... ....................... ... 36

A4. Cumulative distributions of wind speed (m/s) forSApril . . . . . . . . . . . . . . . . . . . . . . . 37Api................................ .3

A5. Cumulative distributions of wind speed (m/s) forMay ........ ........................ ... 38

A6. Cumulative distributions of wind speed (m/s) for7June ....... ....................... .... 39

A7. Cumulative distributions of wind speed (m/s) forJuly ....... ....................... .... 40

A8. Cumulative distributicns of wind speed (m/s) forAugust ......... ... ...................... 41

A9. Cumulative distributions of wind speed (m/s) forSeptember ...... ..................... .... 42

AID. Cumulative distributions of wind speed (m/s) forOctober ............ ...................... 43

All. Cumulative distributions of wind speed (m/s) forNovember ......... ..................... .... 44

A12. Cumulative distributions of wind speed (m/s) forDecember ....... ..................... .... 45

A13. Elevation, location, and period of record forstations included in Tables 1-12 ......... ...... 46

- --, , --- -A. . .

Page 9: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

I. !NTRODUCTION

This report contains climatological information about three atmosphericcharacteristics: mean wind speed, turbulent fluctuations of wind, andatmospheric stability. Wind speeds have been measured and recorded systemat-ically at many locations throughout the world. The Richardson number, astability parameter, can be computed from radiosonde data, but it is alsopossible to infer atmospheric stability from standard surface meteorologicalmeasurements by calculations of the Pasquill index. Surface data are readilyavailable for numerous stations, but data for the calculation of theRichardson numbers are limited. When wind speed and stability are known,a good estimate of turbulent wind fluctuations, which are always present tosome degree, can be made.

In order to extend the usefulness of this study, monthly frequencydistributions of surface wind speeds at different locations in the NorthernHemisphere are included in the appendix.

Pasquill classes are widely used to estimate the degree of stability ofthe atmosphere from surface observations. The determination of these classesdepends upon wind speed and heating or cooling by radiation. Heatingduring the day depends upon insolation which is a function of solar angle andamount and type of clouds. Cooling at night is estimated from cloud & a. Theanalysis in Section II shows that the atmosphere is unstable or neutralduring the day and is stable or neutral after sundown. Neutral conditions

"a are normally associated with the highest wind speeds at all hours.

Stewart (1981) reviewed and summarized earlier measurements of intensityof atmospheric turbulence in the planetary boundary layer. The magnitudeof turbuint fluctuations varies in space and time. Turbulence is usuallymore intense over land than over water, and rough land surfaces cause moreturbulence thai. smooth terrain. Intensity of turbulence is normally greaterunder unstable conditions than under stable conditions. The intensity ofturbulence, which is the ratio of the standard deviation to the mean windspeed, tends to decrease as mean wind speed increases. Wind speed normallyincreases with altitude in the atmospheric boundary layer, and intensity ofturbulence typically decreases rather rapidly with altitude in the lowest20m. Decreases are slow above this level.

As poinred out, direct measurements of atmospheric turbulence are notavailable from any location for a long enough period to establish aclimatology. Therefore, needed climatological information must be inferredfrom available meteorological data. The relationship between readilyavailable meteorological data and turbulent wind fluctuations is described inSection III. The magnitude of turbulent fluctuations which are associatedwith a given wind speed depends upon atmospheric stability and is larger underunstable conditions. Section IV contains climatologies of turbulent windfluctuations. These fluctuations are represented by o which is the standardu

deviation of tha longitudinal component of the wind. Most u 'S are less than

2 m/s except during the day in the summer.

SOM& n U.MwW RIM

Page 10: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

II. PASQUILL STABILITY CATEGORIES

When detailed measurements are available from special studies ofturbulence, the most commonly used stability parameter is the Richarson number,Ri. This dimensionless number is usually defined by

LOaRi = ()

where g is the acceleration due to gravity, 0 is the potential temperature,z is the altitude, and ýu/ýz is the vertical wind shear. Richardson inter-preted this as a characteristic ratio of work done against gravitationalstability to energy transferred from mean to turbulent motion (Huschke, 1959).The atmosphere is gravitationally stable when the potential temperatureincreases with height and unstable when potential temperature decreases withheight. Theoretical studies have indicated that the critical Richardsonnumber is between 0.25 and 2 (Huschke, 1959), and Hansen (1977) believes thatit is unity. However, some evidence supports the belief that the criticalRichardson number is lower. Businger (1973) suggests 0.20-0.21, and Estoque(1973) even recommends the negative value -0.03. Values of Ri below thecritical value are associated with instability, i.e., turbulence increaseswith time. Turbulence decreases with time for larger values of Ri, and theatmosphere is stable.

Pasquill (1961) outlined a procedure by which stability can be estimatedfrom standard surface meteorological measurements. Six stability categoriesare specified in terms of wind speed, insolation, and state of the sky.Surface wind speeds are measured at the standard anemometer height of 10 m,and therefore these speeds give an indication of the wind shear in the lowest10 m of the atmosphere, because it is assumed that the wind speed at groundlevel is zero. Insolation heats the surface, and surface heating causessteeper lapse rates to develop. If the insolation is large enough, thepotential temperature may even decrease with altitude. Cooling of the sur-face at night causes a less steep lapse rate to develop, and a temperatureinversion often forms. The amount of heating during the day and cooling atnight depends upon the amount of cloud cover.

The six Pasquill categories ace designated by the indices A through F.Categories A, B, and C are very unstable, moderately unstable, and slightlyunstable, respectively. A neutrally stable atmosphere is indicated by D.Category E is moderately stable, and F is very stable.

Luna anJ Church (1972) processed standard burface weather observationsto obtain Pasquill categories for 2461 cases. For each of these caseswinds at 40 m and temperatures at 3 and 40 m were used to determine stabilityfrom a finite-difference form of the Richardson number which they called S.In their discussion Luna and Church implicitly assume that the criticalRicharson number is zero, and that the neutral category of S should becentered at zero. Although the categories are established in the propersequence, Luna and Church are concerned because approximately half theobsei'vations fall in the D (neutral) Pasquill category, but fewer than 6 per-cent of the computed S values are between -0.01 and +0.01. For practical

Page 11: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

purposes, it seems reasonable to allow a wider range of S velves to be in theneutral category. Furthermore, if Estoque's (1973) recommended criticalRichardson number of -0.03 were used, a larger percent of S values would fallbetween -0.02 and -0.04. If a wider range is also assumed, it is realisticto conclude that between 20 and 30 percent of the S values fall in the neutralcategory. Luna and Church pointed out other small discrepancies which may beimportant in dealing with individual cases, but which should be much lessserious when dealiag statistically with large data collectives.

Pasquill stability indices in this report were determined according to theprocedure outlined in Chapter 15 of Duncan (1981), Information from Duncan'sTFable 15-9 is listed here in Table 1, which contains the Pasquill index as afunction of wind speed (V) and net radiative index (NRI). The net radiativeindex depends upon the mean cloud cover and height in the second layer and uponthe solar angle. lhe solar angle (a) is a function of latitude, time of day,and time of year. Details of the computational method to obtain the solar anglecan be obtained from a standard reference such as the Smithsonian MeteorologicalTables (List, 1958)

When a <0, NRI depends upon the mean cloud coler (C) of the second layeraccording to the synoptic code and the mean cloud height (H) in hundreds offeet (1 ft = 0.3048 m). If C is 9 or 10, NRI = 5. When C = 8, NRI is 5 if

H < 7 and 6 if H > 7. For a C of 4-7, NRI - 6, and if C is 0-3, NRI = 7.Thus, at night NRI varies from 5 to 7.

When a > 0, NRI depends upon C, H, and a parameter s which is a functionof a. Furthermore, when a > 0, NRI cannot be greater than 4. If NRI is"computed to be greater than 4 when a > 0, it must be set equal to 4. The

quantity s = 1 for 0 < a < 15, s = 2 for 15 < a < 35; s = 3 for 35 < a < 60;and s = 4 for 60 < a < 90. When C = 0 through 4, NRI = 5-s. NRI = 4 forC = 9-10. For C = 5-7, NRI varies as tollows: (1) if H < 7, NRI - 7<s;(2) if H = 7-16, NRI = 6-s; and (3) if H > 16, NRI - 5-s. When C = 8, NRI - 4if H < 7. For C = 8, NRI = 7-s for H = 7-16 and NRI - 6-s for H > 16.

Table 2 contains monthly summaries of the number of observations invarious Pasquill categories as a function rf wind speed at 0000 GMT inFrankfurt, West Germany. From the previous discussion it follows that onlycategories D, E, and F can occur at 0000 GMT at Frankfurt throughout the year.The very stable F category contains the largest number of observations through-

out the year. In all months except November and December there are more ob-servations classified as F than as D and E combined. Furthermore, wind speedsat Frankfurt are low near midnight. Annually, more than 70 percent of thewind speeds are less than 7 knots (3.6 m/s).

Observations of wind speed and Pasquill stability index at 0600 CMT atFrankfurt are shown in Table 3. Because the solar angle is negative in winterand positive in summer at this hour, all Pasquill indices had to be includedin the table. In May, June, and July, the atmosphere at Frankfurt is nruier-ately unstable at 0600 GMT more than one-third of the time, and in Augustmore than one-fourth of the observations were il'ade during moderately unstableconditions. During the months November through February the stabilit) con-ditions at 0600 GMT are similar to those at 0000 GlT. Wind speeds are slightlyhigher during the early morning than near the middle of the night.

: 7

Page 12: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

Data from Frankfurt at 1200 GMT are listed in Table 4. During the monthsNovember through February approximately one-third of the observations occurredunder neutral stability, and fewer than one-third were moderately or veryunstable. In June and July only a few percent were neutral, and more than70 percent of the observations were at least moderately unstable. Wind speedsare higher in the middle of the day than at earlier hours throughout theyear.

Table 5 contains Pasquill and wind speed data for 1800 GMT at Frankfurt.No observations were more than slightly unstable (C). During the summer morethan two-thirds of the observations were made under neutral conditions. Inwinter a large majority of the observations were made under stable conditions.Wind speeds are comparable to those at 0600 GMT at Frankfurt.

Tables 6-9 consist of data for Hahn, West Germany, similar to the datafor Frankfurt in Tables 2-5. Wind speeds are higher at Hahn in winter thanin summer. A stable atmosphere is much more common than a neutral atmosphereat Hahn at 0000 GMT in the warmer part of the year, but in December andJanuary neutral and stable conditions are almost equally probable. At 0600 GMTconditions are neutral approximately half the time during December throughApril, but during May through September about half of the observations areslightly unstable. At 1200 GMT the atmosphere is unstable more often thanit is neutral throughout the year. However, the degree of instability is muchgreater during the warmer months. It fact, during June and July the atm.osphereis in the highly unst~hle A category approximately one-third c1 the time. At1800 GMT not one observation is more than slightly unstable in any month.Most observations are neutral during April through August, and most are verystable in March and September. In late fall and winter neither neutral norstable observations are in an overwhelming majority.

Finally, data for Osan, Korea, are listed in Tables 10-13. Very stableconditions occur more Lhan 85 percent of the time in every month at 0000 localOsan time. At 1200 local time unstable conditions predominate throughout theyear, and during summer more than two-thirds of the observations are in thevery unstable A category. %t 0600 local time few observations are in theneutral D category. Most conditions are classified as very stable when the

* solar angle is negative, and most are classified as having some degree of- I instability when the solar angle is positive at 0b00. Neutral stability

occurs more frequently at 1800 hours. In May and in July a majority ofobservations are neutral at this t'me, and a large number are neutral in themonths April through August.

The inforitation in this section will be used later to establish aclimatology by a procedure discussed in Section III.

111. ESTIMA',ION OF TURBULENT FLUCTUATIONS

In the present study the standard deviations of the u and v componentsof the wind are estimated from formulae recommended by Weber et al. (1982).The u component is in the direction of the mean horizontal air motion, andthe v component is in the direction of the horizontal coordinate perpendicularto the mean motion. The standard deviatiuns of the u and v components aredenoted by a and o , respectively.

8

S... 4l~ • D-,

Page 13: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

Under stable conditions

o - 2.0u* (t-z/h) (2)

and

Cv " 1.3u* (1-z/h) (3)

where u* is the friction velocity, z is height, and h is the scale height of

the stable boundary layer. h is proportional to (u*L/f)•, where L is theMonin-Obukhov length (see p. 10) and f is the Coriolis parameter (defined as2 •: sir: ý where 0 is the angular velocity of rotation of the earth and 4ý is

latitude, •2 - 7.2921 (10-5) radians per second). There are several estimatesof the constant of proportionality: 0.22 by Wyngaard (1975); 0.4 or greaterby Nieuwstadt and Tennekes (1981); 0.6 by Mahrt et al. (1982); and 0.4 to 0.7by Caughey et al. (1979). Apparently the constant of proportionality dependsupon the state of development of the stable boundary layer. In this reporth is computed by

h - 0.5 (u.L/f)½ (4)

Under neutral conditions3

j 2.0u, [exp (- • fz/u*)] (5)

and

ci 1.3u* [exp (-fz/u*)] (6)V

Under unstable conditions

,1 .. . u, (12-0.5 z1 /L) l/ 3 (7)

where z Is the depth of the mixed layer. Empirical evidence indicates that

z may vary from less than 1.0 km to more than 2.0 km (Lenachow et al., 1980;

Panofsky et al., 1977; Garrett, 1981; Kaimal et al., 1982). Considerabledisagreement exists concerning parameterization of the height of the unstableboundary layer (Zilitinkevich, 1972; Deardorff, 1972, 1973, 1974; Tennekes,1973; Wyngaard, 1973; Clarke and Hess, 1973; Benkley and Schulman, 1979;HOjstrup, 1982), Therefore, it was decided to use a constant value of 1500 mfor zi.

The friction velocity u* can be obtained from the equation

u- - (8)

9

L

--- _ _

Page 14: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

where U is a time average of u, k is the von Karman constant, z is the0roughness length, and ip is a stability parameter. If z/L is zero, ' - 0.Otherwise, one of the following equations is applicable:

'p -4.7 z/L for z/L > 0 (9)

or

1- 2 In [(txX)/21 + In [(l+X 2)/2] - 2 tan- 1 (X) + !L for jy < 0 (10)2 [ 5o

where X [1-15 (z/L]1/4 (Businger, 1973; Paulson, 1970). Wind speeds from

a standard anemometer at 10 m can be used for Ur, and therefore z in (8) is10 m. The von Karman constant is now customarily taken to be 0.4. The rough-ness length z° has somewhat arbitrarily been chosen as 0.5 m. This seemed

reasonable for the environment of an airport where meteorological measurementsare normally made. By comparison, a city typically has a z of 1-4 m, and z

0 0

over ice may be a small fraction of a centimeter.

The remaining parameter which must be determined is the Monin-Obukhovlength L. L is positive for stable conditions and negative for unstable con-ditions. The magnitude of L is seldom less than 10 m (Tennekes and Lumley,1972), and no upper limit exists. Large magnitudes are associated with

approximately neutral conditions, and L- 1 0 is the condition for completeneutrality. Weber et al. (1982) consider Iz/LI < 0.05 as the criterion fora nearly neutral planetary boundary layer. According to Wyngaard and Clifford(1977) L z 50 m represents moderately stable conditions; L " -50 m is assoc-iated with a moderately unstable atmosphere; and a very unstable atmosphere

has L near -13 m. According to Blackadar et al. (1974) L-I can be estimatedas a function of Pasquill category and 7o, and they provide a figure for

doing this. From all of the above information, it was possible to estimate an

average value of L for each Pasquill category. Column 2 of Table 14 liststhe values which were chosen.

It is now possible to obtain u, from (8). Columns 3, 4, and 5 of

Table 14 contain z/L, ý(z/L), and (1/k) [in (z/z ) - IP (z/L)] which are needed

for each Pasquill category. Table 15 records the magnitudes of u* which are

computed for each combination of wind speed and Pasquill category which ispermitted according to the classification scheme used in this report. Theoriginal data were recorded to the nearest tenth of a meter per second.Therefore, the mean wind speed for each speed category is the mean of themeter-per-second values which are permitted in that category. It was assumedPthat all values in each category were equal to the mean value for V < 12 knots(6.1728 m/s). The category V > 12 knots is open-ended, and it is not realisticto let one value represent the whole category. It was assumed that half of theobservations were represented by each of the two values of u for V > 12 knots.

10n

Page 15: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

The effect of these assumptions can be seen by making a sample calculationfrom Table 4 for Frankfurt at 1200 GMTr. Consider the number of au greater

than 2.0 m/s for fall (September, October, and November). All 21 observationsfor which the Pasquill category is B and 6 < V < 7 are classified as Ou >2.0 m/s because the computed a associated with the u* from Table 15 is 2.02 m/s.

U

No attempt is made to represent a distribution of values over the wind speedcategory or over the stability category. In addition, 16 other observationsfrom category B and 13 from category C fall into the group au > 2.0 m/s,

which is a total of 50. In category D there are I11 observations for which12 < V in fall. Half of these (rounded to 56) were counted as a = 1.96 m/s

and half (55) have a 11 2.14 m/s. Thus, in our tabulation (Table 16) 105 ofu

601, or 17.5 percent, of the observations were placed into the groupa > 2.0 m/s. If all Ill observations for 12 < V had to be classified as

Uau > 2.0 m/s, we would have to add 56 more into the group au > 2.0 m/s, which

amounts to a total of 26.8 percent. It would be an extreme case, however, ifall 56 observations would have to be counted into the a > 2.0 m/s class.

uThus, our estimates in the a > 2.0 m/s class could have been somewhat higher,

Ubutothrs lacd ito he u> 2.0 m/s group may be lower than 2.0 m/s. Thus,

the statistical estimates by our simplified method are reasonable.

The theoretical framework developed in this section was applied to"observational data in Section II to obtain frequency distributions of thestandard deviation of the wind which are presented in the next section.

IV. CLIMATOLOGY OF TURBULENT FLUCTUATIONS

Stewart (1981) reviewed and summarized measurements of the intensityof turbulence in the planetary boundary layer. The intensity of turbulence isgenerally greater over rough surfaces than over smooth surfaces, and turbulenceis normally stronger under unstable conditions than under stable conditions.Unfortunately, routine measurements of turbulence characteristics have notbeen made at any one location for a long enough period to establish aclimatology.

Because measurements are not available, it is necessary to estimateclimatological information, and the method described in Section III is usedhere. Seasonal frequency distributions of au for Frankfurt are given in

Table 16. More than half of the standard deviations are less than 0.5 m/sduring all seasons at 0000 GMT, during fall and winter at 1800 GMT, and duringwinter at 0600 GMT. At 1200 GMT fewer than 15 percent of the standarddeviations are below 0.5 m/s during all seasons. During summer at 1200 GMT57.4 percent of the standard deviations are greater than 2.0 m/s, and duringspring 37.1 percent of the a 'a are greater than 2.0 m/s. During fall anduwinter at 1200 GMT the majority of the standard deviations are between 1.0and 2.0 m/s.

Table 17 contains the seasonal frequency distributions of a for Hahn,uand they are quite similar to those at Frankfurt. Turbulence is greater at

1. 11

Page 16: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

Hahn than at Frankfurt at all hours in winter, but there is no consistentpattern to the small differences during the other seasons.

Data from Osan, Korea, are shown in Table 18. There are more values ofa less than 0.5 m/s at Osan than at either of the German stations at all

Utimes throughout the year. One of the biggest reasons that wind fluctuationsare smaller at Osan is that wind speeds are smaller than at the Germanstations.

Annual frequencies of standard deviations of the u component of the windspeed at some other locations can be estimated from Reiquam's (1980) data.Categories E and F are combined in Reiquam's data, but this does not pose aserious problem. The E-F observations in the 0-3 mi/hr (0 - 1.34 m/s) speedcategory are F, and those in the 7-10 mi/hr (3.13 - 4.47 m/s) category areE. It was decided that observations in the E-F stability category and the 4-6mi/hr (1.79 - 2.68 m/s) wind speed category should be equally divided betweenE and F.

Table 19 contains estimates of the annual percentage of the a inu

different categories for four locations in the United States. One locationis Moorcroft, Wyoming, and a second is a project site approximately 80 kilo-meters away. A third location is Farmington, New Mexico, and a fourth is aproject site nearly 65 kilometers from Farmington. In New Mexico and inWyoming the more rural project sites have higher a 's even though neither

Moorcroft nor Farmington is a large city which would be expected to alter theenvironment drastically. Moorcroft has an annual average similar toFrankfurt. None of the American stations is similar to Osan where nearlytwo-thirds of the a 's are less than 0.5 m/s. It is difficult to form tooU

many conclusions from Reiquam's data because it is for only one year and isnot broken down by time of year or time of day.

12

V_

S" . . ... . . .. . . . . .. . . .. . .. . . - . .

Page 17: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

V. SUMMARY AND CONCLUSIONS

This report includes climatological information about wind speed, atmcs-pheric stability, and turbulent wind fluctuations.

The appendix contains frequency distributions of observed surface windspeeds at 35 stations located throughout the Northern Hemisphere. Asexpected, the frequency distributions are normally asymmetrical and skewed tothe right in all seasons. The overall average mean is 10 percent greaterthan the median. The ratio of the standard deviation to the mean is between0.4 and 1.0 for almost every frequency distribution. Mean wind speeds aregenerally larger in the cooler part of the year than in the warmer part of theyear.

In Section II observations from two German stations and one Koreanstation are classified as a function of wind speed and stability category.The classification of atmospheric stability was made by means of the Pasquillmethod, which uses standard surface meteorological data. At night, conditionsare stable or neutral, and in the middle of the night stable conditions pre-dominate at all stations. In the middle of the day, the atmosphere is unstablemore often than it is neutral throughout the year, and in the summer nearlyall observations are unstable. The highest wind speeds occur during the dayand under neutral or slightly unstable conditions.

In Section III, a procedure is outlined to estimate standard deviationsof turbulent wind fluctuations from wind speed and stability, and in Section IVturbulence climatologies are estimated by this procedure. More than 90 percentof the au's are less than 2.0 m/s between sunset and sunrise throughout theyear. Near the middle of the day approximately half of the oa's are greater

u

than 2,0 m/s in summer, and more than one-third are greater than 2.0 m/s inspring. It is hoped that more stations can be examined in the future.

731 _ _ _.. . .4 .

Page 18: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 1. Pasquill stability category (A through F) as a function of windspeed (V) in knots (I knot = 0.5144 m/s) and net radiative index (NRI).

WIND SPEED NRI(KNOTS) 2 __3 4 5 6

O<V<2 A A B C D F F

2<V<4 A B B C D F F

4<V<6 A B C D D E F

6<V<7 B B C D D E F

7<V<8 B B C D D D E

8<V<10 B C C D D D E

10<<V<11 C C D D D D E

11 < V < 12 C C D D D D D

12<V C D D D D D D

I

1Jti

Page 19: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 2. Number of observations at 0000 GMT as a function of Pasquill stabilitycategory and wind speed at Frankfurt for the period 17 February 1969through 31 March 1977. V is in knots (I knot = 0.5144 m/s).

MONTHPASQUILL WINDCATEGORY SPEED JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

D O<V<2 4 2 0 0 1 0 0 0 0 11 4 42<V<4 1 0 0 0 0 0 1 0 0 4 2 34TV<6 1 0 0 0 0 0 0 0 0 2 3 36<V<7 0 0 0 0 0 0 0 0 0 0 0 07<V<8 6 8 6 2 2 2 2 2 1 2 6 88<V<1O 3 7 11 6 4 3 3 3 3 6 9 13

10(V<11 0 4 5 4 2 1 0 0 2 2 6 311<V<12 3 5 3 1 1 3 4 1 1 2 4 512KV 24 8 13 12 5 1 1 0 4 8 26 18

TOTAL 42 34 38 25 15 10 11 6 11 37 60 57

E 4<V<6 25 16 17 3 13 5 7 1 11 11 14 166<V<7 5 7 11 8 2 1 0 2 0 6 2 77<V<8 1 6 0 5 3 2 2 4 0 5 5 88<V<10 9 7 8 7 10 8 4 8 6 4 7 9

10<V<11 4 4 3 2 1 1 1 1 1 2 4 3TOTAL 44 40 39 25 29 17 14 16 18 28 32 43

F O<V<2 48 40 38 27 27 24 23 28 49 35 40 362KV<4 38 35 31 18 15 24 21 20 21 43 28 414TV<6 15 8 14 16 8 8 15 12 6 16 12 86(V<7 4 4 5 5 8 5 1 12 2 4 9 7TOTAL 105 87 88 66 58 61 60 72 78 98 89 92

1?1

I. _ _ __ _ _ _

Page 20: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 3 . Number of observations at 0600 GMT as a function of Pasquillstability category and wind speed at Frankfurt for the period17 February 1969 through 31 March 1977. V is in knots (I knot =0.5144 m/s).

PASQUILL WIND MONTH

CATEGORY SPEED MONTHJAN FEB---MAR--APR- A---TJUN JUL AU - --GS OC-T-----NO-V DECA osV<2 0 0 0 0 0 0 0 1 0 0 0 02•V<4 0 0 0 0 0 0 0 0 0 0 0 040v<6 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 0 0 0 0 0 1 0 0 0 0B OV<2 0 0 1 8 35 30 37 23 9 3 0 02SV<4 0 0 1 10 27 28 34 24 1 3 0 04SV<6 0 0 0 0 0 0 0 0 0 0 0 060V7 0 0 0 0 0 0 0 0 0 0 0 07V<8 0 0 0 0 0 0 0 0 0 0 0 08<V<10 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 2 18 62 58 71 47 10 6 0 0C OýV<2 0 0 42 29 2 2 1 17 62 13 0 02ýV<4 0 0 55 23 1 1 0 16 36 15 0 04ýV<6 0 0 1 5 31 36 39 18 0 0 0 06ýV<7 0 0 0 4 24 15 19 12 0 0 0 07V<8 0 0 0 5 16 12 21 6 0 0 0 08SV<IO 0 0 0 7 14 15 11 8 0 0 0 0IOSV<I 0 0 0 0 0 0 0 0 0 0 0 0"11SV<12 0 0 0 0 0 0 0 0 0 0 0 012SV 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 98 73 88 81 91 77 98 28 0 0D OV<2 8 7 0 0 0 0 0 0 0 12 5 52!V<4 3 2 0 0 0 0 0 0 0 6 6 44ýV<6 2 1 34 16 3 0 0 19 39 13 5 56ýV<7 0 0 15 13 1 1 0 6 12 4 0 07SV<8 3 2 9 9 1 0 0 6 8 5 6 108ýV<10 7 7 20 11 1 1 0 9 12 5 16 12I0V<011 1 4 15 13 6 5 4 4 3 4 7 51%IV<12 4 2 7 4 3 4 6 2 4 3 9 512SV 28 19 18 17 9 11 7 1 10 9 25 21TOTAL 56 44 118 83 24 22 17 47 88 61 79 67E 4ýV<6 14 15 2 0 0 0 0 0 0 9 7 176ýV<7 6 3 0 0 0 0 0 0 0 2 7 87SV<8 5 6 0 0 0 0 0 0 0 8 4 88SV<10 7 11 2 0 0 0 0 0 0 13 12 12lOV<ll 8 4 1 0 0 0 0 0 0 4 1 5TOTAL 40 39 5 0 0 0 0 0 0 36 31 50OSV<2 57 41 4 0 0 0 0 0 0 25 38 422SV<4 45 41 5 0 0 0 0 0 0 39 31 344SV<6 15 24 1 0 0 0 0 0 0 16 18 9600 6 6 1 0 0 0 0 0 0 4 12 13TOTAL 123 112 11 0 0 0 0 0 0 84 99 98

16

L -'.

Page 21: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 4. Number of observations at 1200 GMT as a function of Pasquill stabilitycategory and wind speed at Frankfurt for the period 17 February 1969through 31 March 1977. V is in knots (1 knot = 0.5144 m/s).

MONTHPASQUILL WIND ________ MAY______________________CATEGORY SPEED JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

A O<V<2 3 0 7 10 15 9 8 14 15 4 2 12?ýV<4 0 0 0 0 3 26 7 0 0 0 0 04<V<6 0 0 0 0 8 37 18 0 0 0 0 0TOTAL 3 0 7 10 26 72 33 14 15 4 2 1

B O<V<2 30 20 6 0 0 0 1 0 0 29 20 212•V<4 28 23 33 21 19 0 12 21 40 28 20 244(V<6 0 1 28 23 25 1 23 28 32 1 2 16<V<7 0 0 10 7 13 19 17 19 21 0 0 07<V<8 0 1 8 10 10 13 15 13 15 0 1 18-<V<10 0 0 0 0 7 22 17 0 0 0 0 0TOTAL 58 45 85 61 74 55 85 81 108 58 43 47C O<V<2 6 3 0 0 0 0 0 0 0 2 6 72<V<4 7 5 1 0 0 0 0 0 0 1 1 54<V<6 28 29 14 0 0 0 0 0 0 30 23 296<'V<7 13 16 6 0 0 0 0 0 0 19 6 207<V<8 10 18 11 0 0 0 0 0 0 6 20 168<V<0 20 20 33 17 13 0 16 28 20 33 29 23

1OZV<11 0 0 8 14 15 13 10 5 4 0 0 011(V<12 0 0 6 11 9 6 4 6 9 0 0 012EV 0 0 0 0 16 25 10 0 0 0 0 0TOTAL 84 91 79 42 53 44 40 39 33 91 85 100

D 4<V<6 9 7 1 0 0 0 0 0 0 4 0 76<ýV<7 2 4 0 0 0 0 0 0 0 0 1. 37-ýV<8 4 1 1 0 0 0 0 0 0 1 2 38";V <10 2 1 0 1 0 0 0 0 0 2 2 510V<11 11 12 5 0 0 0 0 0 0 5 15 1811V<12 10 13 5 1 0 0 0 0 0 5 14 10120V 35 35 48 59 19 2 9 26 32 29 50 32

TOTAL 73 73 60 61 19 2 9 26 32 46 84 78

17

i.iZ.

iz~~z-

Page 22: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 5 . Number of observations at 1800 GMT as a function of Pasqui1 stabilitycategory and wind speed at Frankfurt for the period 17 February 1969through 31 March 1977. V is in knots (1 knot = 0.5144 m/s).

MONTH

PASQUILL WINDCATEGORY SPEED JAN FM MAR APR MAY JUN JUL AUG SEP OCT 0NO0 -C

A O<V<2 0 0 0 0 0 0 0 0 0 0 0 02KV<4 0 0 0 0 0 0 0 0 0 0 0 04(V<6 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 0 0 0 0 0 0 0 0 0 0

S O<V<2 0 0 0 0 0 0 0 0 0 0 0 02FV<4 0 0 0 0 0 0 0 0 0 0 0 04<V<6 0 0 0 0 0 0 0 0 0 0 0 067V<7 0 0 0 0 0 0 0 0 0 0 0 07<V<8 0 0 0 0 0 0 0 0 0 0 0 08-V<10 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 0 0 0 0 0 0 0 0 0 0

C 0<V<2 0 0 0 8 20 15 12 19 0 0 0 02KV<4 0 0 0 17 24 20 20 27 0 0 0 04(V<6 0 0 0 0 0 0 0 0 0 0 0 064V<7 0 0 0 0 0 0 0 0 0 0 0 07(V<8 0 0 0 0 0 0 0 0 0 0 0 08VV<10 0 0 0 0 0 0 0 0 0 0 0 0

10V4<11 0 0 0 0 0 0 0 0 0 0 0 011(V<12 0 0 0 0 0 0 0 0 0 0 0 012(V 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL 0 0 0 25 44 35 32 46 0 0 0 0

D C<V<2 3 1 0 0 0 0 0 0 0 4 4 22•V<4 0 0 0 0 0 0 0 0 0 1 3 04<V<6 0 1 0 18 22 37 24 26 0 1 0 46-V<7 0 0 1 18 12 10 12 8 0 0 0 C7(V<8 3 2 4 13 13 14 11 5 3 1 6 68KV<10 10 6 7 16 16 13 17 13 2 6 4 8

10•V<11 3 1 2 4 7 5 7 7 0 1 1 411(V<12 8 6 12 8 8 10 2 3 2 2 10 612ZV 21 20 18 16 13 8 9 6 3 14 27 20

TOTAL 48 37 44 93 91 97 82 68 10 30 55 50

E 40V<6 14 8 13 1 0 0 0 0 3 5 16 246(V<7 3 7 6 0 0 0 0 0 2 5 2 107<V<8 6 5 7 2 0 0 0 0 5 5 3 58<V<10 12 13 13 4 0 0 0 0 8 8 12 15

10<V<11 3 2 7 3 0 0 0 0 5 1 4 5TUTAL 38 35 46 10 0 0 0 0 23 24 37 60

F O<V(2 48 39 28 6 0 0 0 0 26 38 34 362<V<4 43 47 31 9 0 0 0 0 18 30 29 3947V<6 16 15 18 5 0 0 0 0 20 16 15 96(V<7 6 7 5 3 0 0 0 0 11 6 3 1TOTAL 113 108 82 23 0 0 0 0 75 90 81 85

' 13

i4

Page 23: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 6 . Number of observations at 0000 GMT as a function of Pasquill stabilitycategory and wind speed at Hahn for the period 11 March 1969 through31 December 1976. V is in knots (I knot = 0.5144 m/s).

MONTH

PASQUILL WINDCATEGORY SPEED JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

D O<V<2 3 1 4 1 0 0 1 0 3 2 6 02(V<4 4 2 1 1 0 1 0 1 1 3 5 34(V<6 8 4 4 2 1 1 0 1 1 6 1 56<V<7 0 0 0 0 1 0 0 0 0 1 1 57#V<8 8 10 6 5 13 5 2 1 2 11 7 88(V<1o 18 9 9 7 6 3 4 3 6 5 9 22

10V<11 1 1 2 3 0 1 0 1 1 3 1 011ýV<12 9 5 6 4 0 4 2 2 1 3 10 1112TV 30 22 11 9 6 3 1 0 7 7 24 18

TOTAL 81 54 43 32 27 18 10 9 22 41 64 72

E 4<V<6 8 15 13 10 11 5 1 11 11 6 11 106TV<7 5 4 7 3 4 3 1 2 0 1 2 57TV<8 10 10 8 14 9 11 2 8 3 12 13 78<V<10 15 17 10 11 6 8 6 9 5 11 16 12

10ýV<11 6 2 4 2 0 3 0 0 0 2 1 3TOTAL 44 48 42 40 30 30 10 30 19 32 43 37

F O<V<2 14 12 26 31 31 36 46 54 51 20 15 82ýV<4 10 17 27 33 34 44 49 44 33 29 17 204ZV<6 11 10 17 23 38 30 26 34 16 11 23 186ZV<7 6 5 11 7 12 8 11 6 7 10 9 4TOTAL 41 44 81 94 115 120 132 138 107 70 64 50

19

Page 24: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 7. Number of observations at 0600 GMT as a function of Pasquill stabilitycategory and wind speed at Hahn for the period 11 March 1969 through31 December 1976. V is in knots (I knot = 0.5144 m/s).

MONTH

PASQUILL WINDCATEGORY SPEED JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

A O<V<2 0 0 0 0 1 0 1 0 0 0 0 020V<4 0 0 0 0 0 0 0 0 0 0 0 04<V<6 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 0 0 1 0 1 0 0 0 0 0

B 0<V<2 0 0 0 1 31 18 18 13 2 0 0 02TV<4 0 0 3 9 27 42 43 23 5 2 0 04TV<6 0 0 0 0 0 1 2 0 0 0 0 06<V<7 0 0 0 0 1 2 0 0 0 0 0 07•V<8 0 0 0 0 0 0 1 0 0 0 0 0C8V<1O 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 3 10 59 63 64 36 7 2 0 0

C OV<2 0 0 28 22 3 1 2 24 47 2 0 02ZV<4 0 0 21 24 1 2 0 28 35 3 0 04ZV<6 0 0 2 12 46 38 41 22 5 0 0 06<V<7 0 0 1 4 15 14 13 2 0 0 0 07<V<8 0 0 0 3 14 14 11 6 1 0 0 08<V<1O 0 0 2 3 18 20 14 9 0 1 0 01OV<11 0 0 0 0 0 0 0 0 0 0 0 011<V<12 0 0 0 0 0 1 0 0 0 0 0 012•V 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL 0 0 54 68 97 90 81 91 88 6 0 0

D O<V<2 3 3 0 0 0 0 0 0 0 1 4 12ZV<4 7 4 0 0 0 0 0 0 0 2 2 24<V<6 3 1 21 29 2 3 5 28 32 7 5 136<V<7 3 4 8 12 1 2 4 6 9 3 1 47<V<8 12 14 14 9 4 6 3 6 8 6 7 78(V<10 14 16 19 20 5 3 3 11 11 18 17 12

10<V<11 3 3 6 3 1 2 0 0 4 5 4 311TV<12 10 14 7 5 5 4 1 4 3 6 8 13124V 32 16 13 14 8 3 3 3 9 9 34 30

TOTAL 87 75 88 92 26 23 19 58 76 57 82 85

E 4<V<6 8 4 2 0 0 0 0 0 0 9 7 96<V<7 5 4 1 0 0 0 0 0 0 1 5 67<V<8 7 5 4 0 0 0 0 0 0 4 11 108ZV<10 14 13 1 0 0 0 0 0 0 10 9 9

IO0V<VI 4 7 2 0 0 0 0 0 0 0 5 6TOTAL 38 33 10 0 0 0 0 0 0 24 37 40

F 0<V<2 7 16 10 0 0 0 0 0 0 20 21 192<V<4 17 16 4 0 0 0 0 0 0 30 22 184<V<6 9 10 5 0 0 0 0 0 0 16 16 146<V<7 6 3 1 0 0 0 0 0 0 11 7 2TRTAL 39 45 20 0 0 0 0 0 0 77 66 53

420

Se

Page 25: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 8 . Number of observations at 1200 GMT as a function of Pasquill stabilitycategory and wind speed at Hahn for the period 11 March 1969 through31 December 1976. V is in knots (1 knot = 0.5144 m/s).

MONTH

PASQUILL WINDCATEGORY SPEED JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

A O<V<2 2 0 13 12 11 11 8 12 18 2 1 12(V<4 0 0 0 0 8 23 23 0 1 0 0 04<V<6 0 0 0 1 13 34 21 1 0 0 0 0TOTAL 2 0 13 13 32 68 52 13 19 2 1 1

B O<V<2 10 7 2 0 0 1 0 0 0 8 9 52<V<4 14 7 29 12 16 1 8 23 27 20 21 194ZV<6 2 1 20 32 21 0 19 36 36 3 4 360V<7 1 1 6 15 18 18 8 19 17 2 2 37ZV<8 4 0 13 21 24 30 30 18 8 1 2 88TV<10 0 0 0 0 10 30 22 0 1 0 0 0TOTAL 31 16 70 80 89 80 87 96 89 34 38 38

C O<V<2 2 1 0 0 1 0 1 0 0 0 1 52ZV<4 1 2 1 1 0 0 1 1 0 5 4 44ZV<6 11 20 14 2 1 0 2 1 1 34 21 226TV7 6 9 2 1 2 1 0 0 1 9 10 107ZV<8 13 9 7 0 0 1 0 2 1 19 15 88-V<10 35 31 33 43 25 0 11 28 28 27 26 24

10<V<11 2 0 6 8 8 6 5 9 5 0 0 1I1ZV<12 4 2 4 11 6 10 6 14 5 0 0 0

12ZV 0 0 1 0 6 12 7 0 0 0 0 0TOTAL 74 74 68 66 50 30 33 55 41 94 77 74

D 4<V<6 2 2 2 0 0 0 2 1 0 4 1 46<V<7 5 4 1 1 0 0 0 1 0 2 2 3

S7TV<8 2 1 2 1 1 0 0 0 0 4 5 58<V<10 4 6 1 3 0 0 0 0 0 3 3 1

i0(V<11 8 7 1 0 1 0 0 2 1 4 3 811(V<12 18 9 4 0 1 0 0 0 0 10 15 912<V 30 30 26 28 8 0 2 17 19 24 43 38

TOTAL 69 59 37 33 11 0 4 21 20 51 72 68

211} 7 iii.

Page 26: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 9 • Number of observations at 1800 GMT as a function of Pasquill stabilitycategory and wind speed at Hahn for the period 11 March 1969 through31 December 1976. V is in knots (I knot = 0.5144 m/s).

MONTHPASQUILL WINDCATEGORY SPEED JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV EC

A OV<2 0 0 0 0 0 0 0 0 0 0 0 02<V4 0 0 0 0 0 0 0 0 0 0 0 04<V<6 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 0 0 0 0 0 0 0 0 0 0

B O<V<2 0 0 0 0 0 0 0 0 0 0 0 02<V<4 0 0 0 0 0 0 0 0 0 0 0 04<V<6 0 0 0 0 0 0 0 0 0 0 0 06<V<7 0 0 0 0 0 0 0 0 0 0 0 07<V<8 0 0 0 0 0 0 0 0 0 0 0 08<V<10 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 0 0 0 0 0 0 0 0 0 0

C O<V<2 0 0 0 22 24 12 24 29 3 0 0 02•V<4 0 0 0 28 36 31 38 55 6 0 0 04(V<6 0 0 0 1 0 1 0 0 0 0 0 06<V<7 0 0 0 0 0 0 0 0 0 0 0 07<V<8 0 0 0 0 0 0 0 1 0 0 0 08<V<10 0 0 0 0 0 0 0 0 0 0 0 0

10<V<11 0 0 0 0 0 0 0 0 0 0 0 011<V<12 0 0 0 0 0 0 0 0 0 0 0 012<V 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL 0 0 0 51 60 44 62 85 9 0 0 0

D O<V<2 I 1 0 0 0 0 0 0 0 2 6 02<V<4 4 4 1 0 0 0 0 0 0 0 2 34<V<6 7 3 0 33 50 49 46 45 6 2 6 76(V<7 2 2 0 10 15 23 22 14 2 3 0 77<V<8 6 5 6 17 24 21 15 25 6 12 4 98<V<10 13 6 7 28 19 23 15 16 4 11 6 1910TV<11 5 1 0 2 2 5 4 0 1 1 1 31L`V 12 15 8 5 6 7 9 4 4 4 6 6 13

12<V 30 19 15 14 8 6 2 3 6 11 34 31TbTAL 83 49 34 110 125 136 108 107 29 48 65 92

E 4(<V<6 14 6 11 3 0 0 0 0 7 7 8 864V<7 1 4 2 0 0 0 0 0 2 1 3 57ZV<8 8 12 15 0 0 0 0 0 3 14 10 48<V<10 15 8 15 1 0 0 0 0 8 16 19 20

10(V<11 5 3 2 0 0 0 0 0 1 1 3 4TVTAL 43 33 45 4 0 0 0 0 21 39 43 41

F O<V<2 18 20 28 5 0 0 0 0 46 28 12 192ýV<4 9 19 45 2 0 0 0 0 33 31 25 94<V<6 11 23 22 5 0 0 0 0 25 24 16 1360V<7 7 11 7 0 0 0 0 0 5 5 10 6TOTAL 45 73 102 12 0 0 0 0 109 88 63 47

22

Page 27: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 10. Number if observations at 0000 local time as a function of Pasquillstability category and wind speed at Osan for the period 1 January 1973 through31 December 1979. V is in knots (1 knot = 0.5144 m/s).

PASQUILL WIND MONTHCATEGORY SPEED JAN- •FE MAR APR MAY JUN JUL A9--SEP OCT NOV DEC

D O<V<2 1 0 1 1 2 1 1 1 1 3 0 12•V<4 0 0 0 0 3 0 0 0 0 0 0 04TV<6 0 0 0 0 0 0 1 0 0 0 0 06<V<7 0 0 0 0 0 0 0 0 0 0 0 07(V<8 1 2 2 3 2 4 0 3 2 1 0 38<V<10 1 2 1 2 2 1 0 2 1 0 5 1

10V<11 1 0 1 0 0 0 1 0 0 0 2 0l1<V<12 3 1 2 0 3 2 1 0 0 2 3 212TV 0 1 0 2 3 0 1 2 i 1 3 1

TOTAL 7 6 7 8 15 8 5 8 5 7 13 8

E 4<V<6 4 9 5 6 4 5 7 6 4 3 7 46KV<7 2 2 11 1 1 1 2 1 0 0 17<V<8 4 3 4 3 1 3 1 0 1 5 2 18ZV<1O 6 4 4 0 1 2 2 0 0 0 3 3

I0lV<11 0 1 0 1 1 0 1 1 0 0 1 0TOTAL 16 19 14 11 8 11 12 9 6 8 13 9

F O<V<2 121 101 125 109 150 142 140 154 161 137 122 1232,V<4 39 44 44 52 25 33 44 33 30 49 48 624(V<6 15 10 9 12 9 1M 10 9 5 10 9 126ýV<7 2 6 0 4 Q 1 3 1 1 2 2 ?"TOTAL 183 161 178 177 184 187 197 197 197 198 181 199

23

"t

• L- -

Page 28: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TAKLE 11. Number of observations at 0600 local time as a function of Pasquillstability category and wind speed at Osan for the perird 1 January 1973 through31 December 1979. V is in knots (1 knot O.5144 m/s).

PASQUILL WIND MONTHCATEGORY SPEED JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

A O<V<2 0 0 0 0 2 1 2 3 0 0 0 02/V<4 0 0 0 0 0 0 0 0 0 0 0 04<V<6 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 0 (J 2 1 2 3 0 0 0 0

B O<V<2 0 0 1 0 107 122 104 28 8 7 0 02KV<4 0 0 0 2 36 28 51 10 1 0 0 04KV<6 0 0 0 0 0 i 0 0 0 0 0 06ýV<7 0 0 0 0 0 0 0 0 0 0 0 07KV<8 0 0 0 0 1 0 0 0 0 0 0 08VV<10 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 1 2 144 151 155 38 9 7 0 0

C O<V(2 0 16 135 113 18 2U 7 112 154 65 0 02ýV<4 0 2 41 41 10 10 10 34 26 11 0 04KV<6 0 0 0 0 12 14 27 3 1 kJ 0 06<V<7 0 0 0 0 1 1 2 C 0 0 0 07<V<8 0 0 0 0 5 2 3 1 0 0 0 08ZV<IO 0 0 0 0 3 3 2 I 0 0 0 0

-0KV<11 0 0 0 0 0 0 0 0 0 0 0 0::1VV12 0 0 0 0 0 0 0 0 0 0 0 0124V 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL 0 18 176 154 49 50 51 151 181 76 0 0

S 0\V<2 2 0 0 0 0 0 0 0 0 7 5 621V<4 0 0 0 0 0 0 0 0 0 1 0 1:V<6 0 3 14 20 5 2 1 12 5 1 0 06\V<7 0 0 1 7 0 0 1 1 0 0 0 0

0 3 1 3 0 0 0 0 3 2 3 2SIV<IO 2 1 6 4 2 1 1 4 2 0 3 1:V(11 0 1 0 0 0 0 1 1 0 0 1 0:'1V<12 2 1 2 1 0 0 1 1 0 0 0 127V 1 0 0 3 1 1 1 1 3 0 1 2TOTAL 7 9 24 38 8 4 6 20 13 11 13 13

E 4V<6 4 6 0 C 0 0 0 0 0 3 6 76,4<7 1 0 0 0 0 0 0 0 0 1 1 1.1V<8 2 2 0 0 0 0 0 0 0 3 2 137V<10 2 2 0 0 0 0 0 0 0 1 1 0

:oV<11 0 0 0 0 0 0 0 0 0 0 1 0TOTAL 9 10 0 0 0 0 0 0 0 8 11 9

F ),V<2 124 102 0 0 0 0 0 0 0 85 127 1322'V<4 47 33 0 0 0 0 0 0 0 18 43 454ýV<6 13 9 0 0 3 0 0 0 0 10 5 13

1ýV<7 1 4 0 0 0 0 0 0 0 0 2 37TTAL 185 148 0 0 0 0 0 0 0 113 177 193

24I

Page 29: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 12. Number of observations at 1200 local time as a function of Pasquillstability category and wind speed at Osan for the period 1 January 1973 through31 December 1979. V is in knots (1 knot = 0,5144 mis).

PASQUILL WIND MONTHCATEGORY SPEED JAN FEB MAR APR MAY JUN- JUL AUG SEP OCT NOV DEC

A O<V<2 0 34 33 32 43 53 38 53 55 65 15 02 ZV<4 0 0 0 27 44 52 51 57 0 0 0 04<V<6 0 0 0 15 39 47 45 37 0 0 0 0TTAL 0 34 33 74 126 152 134 147 55 65 15 0

B O<V<2 51 7 6 2 0 1 0 0 1 5 33 622:V<4 33 36 31 14 7 3 0 3 52 45 47 374<V<6 0 25 41 12 6 2 2 3 48 32 4 96<V<7 0 6 12 10 18 16 20 11 15 14 3 07<V<8 0 15 13 18 14 12 16 15 9 18 5 08<V<IO 0 0 0 9 15 12 19 15 0 0 0 0TOTAL 84 89 103 65 60 46 57 47 125 114 92 99

C O<V<2 11 0 2 0 0 0 0 0 1 0 8 1420V<4 3 1 1 0 0 0 0 0 0 0 3 04<V<6 31 2 3 1 1 0 1 1 0 0 27 276<V<7 10 4 2 0 0 0 0 0 0 0 10 107<V<8 9 1 4 1 0 0 0 0 0 1 7 168<V<10 18 26 19 5 1 0 1 2 13 16 15 15

10<V<11 0 3 3 6 4 2 5 3 2 4 0 011(V<12 0 8 8 13 6 2 4 4 2 1 1 012<V 0 0 0 14 11 3 4 9 0 0 0 0

TOTAL 82 45 42 40 23 7 15 19 18 22 71 82

D 4<V<6 5 0 0 0 0 0 0 0 0 0 0 86(V<7 0 0 0 1 0 0 0 0 0 0 1 070<V8 0 1 0 0 0 0 0 0 0 0 2 38<V<10 2 0 0 0 0 0 0 0 0 0 0 0

I1•<V11 2 0 2 0 0 0 0 0 0 0 6 411<V<12 10 2 0 0 0 0 0 0 0 0 5 512ZV 22 14 28 16 1 1 0 0 9 13 17 13

TOTAL 41 17 30 17 1 1 0 0 9 13 31 33

25

Page 30: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 13. Number of observations at 1800 local time as a function of PasquillsýLability category and wind speed at Osan for the period 1 January 1973 through31 Dkcember 1979. V is in knots (I knot = 0.144 m/s).

PASQUILL WIND MONTHCATEGORY SPEED JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

A O<V<2 0 0 .0 0 0 0 0 0 0 0 0 02<V<4 0 0 0 0 C 0 0 0 0 0 0 04ZV<6 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 0 0 0 0 0 0 0 0 0 0

B O<V<2 0 0 0 0 0 0 0 0 0 0 0 02(V<4 0 0 0 0 0 0 0 0 0 0 0 04ZV<6 0 0 0 0 0 0 0 0 0 0 0 06<V<i 0 0 0 0 0 0 0 0 0 0 0 07ZVe8 0 0 0 0 0 0 0 0 0 0 0 09<i<10 0 0 0 0 0 0 0 0 0 0 0 0TOTAL 0 0 0 0 0 0 0 0 0 0 0 0

O<V<2 0 0 0 23 35 60 45 80 0 0 0 02<V<4 0 0 0 26 53 43 56 60 0 0 0 04<V<6 0 0 0 1 0 0 0 0 0 0 0 06-<V<7 0 0 0 0 0 0 0 0 0 0 0 07<V<8 0 0 0 0 0 0 0 0 0 0 0 08<V<10 0 0 0 0 0 0 0 0 0 0 0 0

107<V<11 0 0 0 0 0 0 0 0 0 0 0 011<V<12 0 0 0 0 0 0 0 0 0 0 0 012KV 0 G 0 0 0 0 0 0 0 0 0 0

TOTAL 0 0 0 50 88 103 101 140 0 0 0 0

0 O<V<2 0 1 0 0 0 0 0 0 0 0 0 12-V<4 0 0 0 0 0 0 0 0 0 0 0 04(V<6 0 0 0 23 58 51 62 29 0 0 0 06V<V7 0 1 0 8 17 19 15 4 0 0 0 07-V<8 0 2 3 15 17 13 17 7 5 0 4 38•OV<O 3 4 4 10 21 11 11 4 1 1 5 1

I0V<11 0 0 0 0 1 0 2 0 0 0 0 0* 11ZV<12 4 3 6 6 2 2 1 1 0 0 1 1

12KV 1 3 6 9 4 2 2 1 1 3 1 3TOTAL 8 14 19 71 120 98 110 46 7 4 11 9

4<V<6 7 9 11 7 0 0 0 4 3 1 5 26<V<7 1 2 1 3 0 0 0 0 1 2 3 1

S7ZV<8 4 5 13 4 0 0 0 0 2 1 2 38<V<10 3 6 10 7 0 0 0 0 0 2 6 4100V<11 1 0 4 0 0 0 0 0 0 0 2 2

rOTAL 16 22 39 21 0 0 0 4 6 6 18 12

F 00V<2 130 77 72 16 0 0 0 6 130 159 131 1442<V<4 33 41 36 22 0 0 0 10 48 32 35 374<V<6 13 26 33 15 0 0 0 6 17 11 9 116<V<7 5 4 7 4 0 0 0 1 0 2 4 2TOTAL 181 148 148 57 0 0 0 23 195 204 179 194

26

S .. ... .. -..... . ,_ --7

Page 31: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 14. Parameters needed for the computation of u. from wind speed atz lOm when zo 0.5m.

PASQUILL L-1 z 1() 1 [in (z) _ O. (-) ]CATEGORY (m-') P k Lz

A -0.08 -0.8 0.98 5.0

B -0.04 -0.4 0.68 5.8

C -0.01 -0.1 0.27 6.8

D 0.00 0.0 0.00 7.5

E 0.01 0.1 -0.47 8.7

F 0.05 0.5 -2.35 13.4

"•I

: • 27

Page 32: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 15. Computed estimates of the mean friction velocity u, in metersper second as a function of wind speed and Pasquill category.Urm is a mean speed for V<12 (see text).

WIND SPEED um PASQUILL CATEGORY(KNOTS) (m/s) A B C D E F

0 < V < 2 .50 0.10 0.09 0.07 0.07 0.042 < V < 4 1.55 0.31 0.27 0.23 0.21 0.124 < V < 6 2.55 0.51 0.44 0.38 0.34 0.29 0.196 < V < 7 3.35 0.58 0.49 0.45 0.39 0.257 < V < 8 3.90 0.67 0.57 0.52 0.458 < V < 10 4.65 0.80 0.68 0.62 0.53

10 < V < 11 5.40 0.79 0.72 0.6211 < V < 12 5.90 0.87 0.7912K< V 7.00 1.03 0.93

8.00 1.18 1.07

'I

--I i l

Page 33: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

- - - '"rV- - .,

TABLE 16. Percentage frequency of ou at Frankfurt as a function of time andseason.

STANDARD DEVIATION SEASONGMT CATEGORY (m/s) WINTER SPRING SUMMER FALL

0000 O< ou< 0.5 54.8 55.6 72.7 63.4

0.5< Gu< 1.0 17.5 16.2 9.0 13.1

1.0< au< 1.5 16.2 19.1 14.6 13.5

1.5< au< 2.0 7.0 5.5 3.0 5.8

2.0< au 4.6 3.7 0.7 4.2

0600 0< ou< 0.5 57.6 22.0 21.7 48.2

"0.5< Ou< 1.0 14.3 34.5 25.2 26.6

1.0< Ou< 1.5 15.6 26.3 32.8 15.5

1.5< Ou< 2.0 7.3 13.6 18.6 6.3

2.0< 0 u 5.2 3.6 1.8 3.4

1200 O< ou< 0.5 13.9 6.6 6.4 13.0

0.5< Ou< 1.0 19.0 13.0 6.6 15.8

1.0< Ou< 1.5 29.4 5.2 6.6 17.5

1.5< ou< 2.0 29.7 38.1 23.0 36.3

2.0< 0u 8.0 37.1 57.4 17.5

1800 0< ou< 0.5 54.4 29.0 12.8 60.7

0.5< au< 1.0 15.2 30.8 51.1 11.1

1.0< ou< 1.5 16.4 23.8 25.6 14.6

-. 5< Ou< 2.0 8.9 11.4 7.5 8.7

2.0< ou 5.2 5.0 3.1 4.9

29

.74.

- -.----- - -

Page 34: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 17. Percentage frequency of au at Hahn as a function of time and season.

STANDARD DEVIATION SEASONGMT CATEGORY (m/s) WINTER SPRING SUMMER FALL

0000 O< ou< 0.5 31.4 58.9 79.1 56.5

0.5< 0 u< 1.0 20.4 17.3 9.3 14.9

1.0< Gu< 1.5 28.0 16.7 9.3 17.3

1.5< Ou< 2.0 12.7 4.8 1.8 6.9

2.0< Ou 7.4 2.4 0.6 4.3

0600 O< uu< 0.5 31.7 20.1 14.6 38.9

0.5< Ou< 1.0 17.4 31.2 35.4 26.6

1.0< Gu< 1.5 27.7 31.1 31.2 20.9

1.5< du< 2.0 15.4 14.0 16.9 8.4

2.0< Cu 7.9 3.6 1.9 5.2

1200 O< au< 0.5 6.5 6.9 6.1 7.2

0.5< au< 1.0 13.2 11.2 7.1 16.0

1.0< Gu< 1.5 23.7 6.6 9.6 18.6

1.5< Ou< 2.0 41.7 39.5 19.7 42.2

2.0< au 14.8 35.8 57.5 16.0

1800 O< au< 0.5 35.2 29.7 12.0 53.1

0.5< cu< 1.0 17.8 37.4 59.6 15.6

1.0< ou< 1.5 24.1 22.8 23.1 18.3

1.5< ou< 2.0 14.8 6.6 4.2 8.0

2.0< au 8.1 3.5 1.1 5.1

30

I ..•

Page 35: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 18. Percentage frequency of au at Osan as a function of time and season.

LOCAL STANDARD DEVIATION SEASONTIME CATEGORY (m/s) WINTER SPRING SUMMER FALL

0000 O< ou< 0.5 89.6 90.7 92.1 92.4

0.5< Ou< 1.0 4.9 4.3 4.3 3.7

1.0< Ou< 1.5 4.1 3.3 2.7 2.4

1.5< 0u< 2.0 1.2 1.2 0.6 1.0

2.0< Ou 0.2 0.5 0.3 0.6

0600 0< au< 0.5 91.7 62.9 63.1 86.8

0.5< au< 1.0 4.8 29.6 25.3 9.7

1.0< ou< 1.5 2.3 4.8 8.7 2.9

1.5< Ou< 2.0 0.8 2.0 2.4 0.3

2.0< Ou 0.3 0.7 0.5 0.3

1200 O< ou< 0.5 29.5 19.2 23.2 29.0

0.5< au< 1.0 90.3 8.8 1.0 23.5

1.0< Ou< 1.5 15.8 13.0 25.9 7.1

1.5< Ou< 2.0 24.9 18.i 1.6 25.2

2.0< ou 9.4 40.9 48.3 15.1

1800 O< au< 0.5 86.9 42.9 33.3 91.7

0.5< au< 1.0 5.8 36.5 54.9 3.2

1.0< Ou< 1.5 4.8 15.2 10.4 4.1

1.5< au< 2.0 1.7 3.8 1.0 0.3

2.0<. ou 0.8 1.6 0.5 0.6

31

S 1.- _... _-

Page 36: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

TABLE 19. Annual percentage of standard deviations in each c:ass estimatedfrom Pasquill and wind data recorded by Reiquam (1980).

STANDARD DEVIATION WYOMING NEW MEXICO(meters per, second) Moorcroft Project Site Farmington Project Site

0 < cru< 0.5 34.3 20.5 38.5 24.3

0.5 < au< 1.0 24.6 37.3 33.4 41.9

1.0 < au< 1.5 18.9 19.1 16.2 16.0

1.5 < Gu< 2.0 10.3 9.8 5.6 8.1

2.0 < yu 11.9 13.3 6.3 9.7

32

5' I'

1!7_

7-

Page 37: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

APPENDIX

WIND SPEED DISTRIBUTIONS

In order to understand the relationship between turbulence, Pasquillindex and wind speed, it may be of interest to provide a survey on wind speeddistributions for a selected number of stations in the Northern Hemisphere.

The data in Tables Al-A12 were obtained from surface winds recorded asthe lowest level of radiosonde ascents. These surface winds were observed bycustome-y measurements with standard anemometers at each site. The standardheight of an anemometer is 10 m above the ground (Haynes, 1958, see p. 120).All data have been checked according to a procedure outlined by Essenwanger(1970) to assure good quality.

For many problems of the practitioner the higher probability thresholdsare particularly important, and therefore the following thresholds of thecumulative frequency are included in Tables Al-A12: 50.0, 84.1, 90.0, 95.0,97.7, and 99.0 percent. These tables also contain means, maxima, standarddeviations, and numbers of observations. The standard deviations listed inTables Al-A12 are computed from the observations and should not be confusedwith the standard deviations of turbulent fluctuations which are discussed inprevious sections. The station locations, elevations, and periods of recordsare listed in Table A13.

The station called Osan-Ni here is the same station referred to as Osan,Korea, in Sections II and IV. The frequency distributions for Osan-Ni inTables Al-A12 are for the period April 1957-April 1963. The wind data forOsan in the earlier sections are for the period January 1973-December 1979.The wind speeds are lower during the later period. This is probably an effectof urbanization. Empirical evidence cited by Landsberg (1981) shows that windspeeds become lower as a city grows. Landsberg illustrates that the meanwind speed decreased by 40 percent from 1945 to 1970 at one location. Koreahas indeed been industrializing rapidly (Young, 1982), and in recent years aconsiderable shift from the country to metropolitan areas has been observed.Young estimates that one-half of the Koreans now live in urban areas.

As expected and known from the literature (Stewart and Essenwanger, 1978),the frequency distributions are typically asymmetrical and skewed to theright in all seasons at most stations. The annual average mean of all stationsis 10 percent greater than the annual average median, and the monthly varia-tion of "he ratio of the two quantities is small. The mean wind speeds arelargest in wintr and smallest in summer. Most of the frequency distributionsare consistent with Hennessey's (1977) suggestion that the ratio of thestandard deviation to the mean should be between 0.4 and 1.0. A discussionof parameterization of wind frequency distributions is found in Stewart and

Essenwanger (1978).

33

Page 38: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

C),----,,---~-,'.-,~---.~-

CM0

LLU

f,~a LO C~ Cn r ~~ -4 M ~ M %0 "- CO --4 Co) cY0 a) M

Xc C\J - .4 -4 - C%,J 1 - -'J 4 0 0Q C\J -4 - '.4 -4 0 01 -

a. m~ C\J C'.J LO C'. * m -4 ) C~J " Wd* L n qJ LnC'

C -L4 M- Mn cs, M2 %D 0) .0 CO '.0 4r COi C, " W C*, - C) M

U, --4- C\J .- 4 -4 C\lj .- . -. \J -4 -s 4 4 .

0 C

al .- 4 ---'.)4 4'.) '-4 -4 A4 -4

CL - M 1-

C: 0-/4 0 Ln m~ (n O 00 -4T 1'U m0 O il 'U - .- 4 00 c'.. O r' 0 ko CO

0 o 0 . -4 -4 C,) - - -- 4 '. -4

0

to m'. .UO cc .- r- w cr% %0 a O 4DO W4, %-. r- P -.

-o x0

00

0A faj ~ 0 Cr4- 0. '.0j) '0 C') CU) U 00 L. C'. &A 00 'U- C-j ~ ~ ~ ~ .+ U- C. = " I- ) = 'uI- 4J 4- - C. 4 " r .

'.o 4J) 'U U O " . 0 ' ' ' 0 CM 4-- M M'~ r.

cc0 4t 'e co. co' em co u- 'u 4' j in e~c c o "

Page 39: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

00

: rw to C '.0 rL- r-~ k.0 W Lo' ko crn

CC -L ej Mn Cr n c'ý c'. d'j C~ M c'.t Ln M'. -rn ej qr

enuc~jC C o Co L rn 0 n C)-- C) ON L cea 00 M- Co

>( f) 4 -en C'J (%J -~ Cý U c C ;J C\J - 4 -

~C3

mE C'. c;n _;J0s ' o o ' 06 .4 0ý r 0 C\J kr(ON _- -4 -4 -4 1-4 '-4 011 - 4 4-4 -4

V)A r-_ a)Co c'. j Cod6 ON 00 0 ko Q' CD d' - -4 0 ' 0 D C~

V)-0 u- ~- CA ~- 04 0' L C co -lj Co "1 s 040 C.J ý un

ON' -4 .

CooI.--C Cod' r- CO CJ LA co - 00 -40a CoD' Co Oli

Co C) -e~

C 0- 00 ON4* 00 Co (\I LC) 00 CD 0 .- 4 C) LA r- 00Co~'

0l Tr ' rn LA a; C'J k r n d' L Aý LA C o C% Lc

C LmA 5%LA 11* .- 4 K's mAI ON LO 00 0C~j-c 0 ('.J m f

Ln rA ( LA L crA 1. M v' Cs k 0 qw WD CD s CD - C " a

C Li

r_ CC f, a

mi J9 C 2 w&- ~ ~ .ma oe0 a V

C 0 -=M= M

cc U '4 - CL 50 0C CL US cco - in c L. 'a 0 c @ QJ Ma '4-'j - u

cc A d) o & ) m C -

35

Page 40: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

Cd,

cLj w * CAJ C) 00 00 C- CLO Rd" CI aCD r.,) Cl m- 0 l m C ) m- w

-4) :t -4 R~t -4 4: -9 -4 (n -q ' LU- LO -4 00 Cl .4- Ln

00

-ii '. - CO 0C COý .' 0ý LA: cl CO .C Cý Cý o-4 0ý Cýc;

oL Lo r'.0 CY) 00 m- CD LC) m 0.0 -4 '.o m. rr -4 Cý -cA mA M

C* LA D ý -4 00 rý m LD C~ to k-4 '.0 O~'0 O N U'~) LO %

a; u-44-ý4 NM .~ -- -- I N~ -4 -4-4q -4 -- 4 -4 C 4 r-4ON

4mLL

-J Ln -4 1 4 -4 r4--4 .- 4 N -4

LA ; C6 N ý C-1 a; ' r-. 0 - ~" O .4 LA Ný COý C6 r-ý CO N -COLi:J LA1- 4.- - -

aN

*c C) tD COi Nr LA r ? 0 -4 q ~ . 0m NN 0 ai d, r'.0m Lo (\j %d, Ic-

0. C

394-- 0 C,0! r !- fl, -g t %; 0 C) 0 CDt k0 CO C) CN -40

V) LOC0

M.. CD e O C 00 C) Q -. 00' C'%jk Nr) ON CO -d - CD M~ 4-4

4-3 L&iZ: IfLA LA EU (1 (")LA LA; '.0 'EU E LAý M") 4U C" C6 a; 4U 4U

10EU-

EU_

Li -)v 0 >4S. m'' ~ L 4J E= -W .-

.e 0) #10 C - 0 wU * 4

I- 0 z L.. -- 3 C U.inc U. > ,-LJm 0 U +j 0 4) 0j i to E L- vi ou EU Cr-j 41. ~ L .~ - 4J) , 4 J $.- =. W) 0 - - E 4-

M~ M - M U EUE U0 L~.) W. 1 he '9 ) -

36

VIP

Page 41: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

LAJ~ 0 U) CLA(.: 1ý C\j M Ln r. '-4 m~ 0 -4 'cr qrCo LAJ t" M. a'0'I- m4 C%JiD Ck i ON 0 0c 00Cc ja c'. o

LA -4 C'.J m ko' qvt Cz C.J 00 (n1 ix) 00 m~ to .rn -4

o'3 L dO al C)' CNJ 0. Lo t~o C~J LA a) C'.j w C ..) mC ý C'% re*) clý 01 c.. e. c-j Cý 4~ cl mý ej I. Cý.

ILiJ

(C3

i-Lj~ C\j kD 00 U') en m' a' r~- Ln co CO -I .o LA %.

o .- i ~- ('i ) 14ID q C'? '" '- -4 . i LA i C0' -'4. -1i

C -i ('I .A C\. Ln* -O 4 1-4 -%J LO M% Mf (". (') Cj

1'-4 i .i -4 -4 .4 (% \J . "J - -

-. c 4 C'j C* e-. CO 0c C) M q r. C'.j 0= 0) Lo co

0- 0C ) ~ 00CmCV L0'c q-~ Cc r-~ CD 4 mi %

LiJ LA - .4 4 4- -

CD 0 0 Cl m r-- rn -- LA .-- in( r-. r-. C,4 0 0 C-.

co -' 0 4 ' 1 C\ J C 6 t 1- - 4 : i D L C ; 0 ý L A ; 0; a a '

czf -4 -I

0-0

00 L A )% C\j Ln ff 00 ON LA j - -c. C) cm c'J

0

> 0)

op (A . toLM~ ?.. Q--. 0 C ým

-j u 44 - c L- .c 0 M IA

Go &AC & fa 0 r- (U ou +j 00 0w 4J X30 .0 L- m .C

37

______7

Page 42: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

LL z

LU L (V) 03 LA) r- Lo (\j Lfl Ln M 00 m~ 03 rl- 'r C'j 03 m \CADLLU LO m~ M LO M LA 03 r-. LO C~j r- (7' LA) -c LO 00 C 00 00 Cx (A - '-4 q-d d -ý qt' c~ .-- ~-c I'l LO Ln -4 Ch qz cr LO

C3 < 1 V ~ O ~-C M~ lz Mv CDC -4 kD .o LO Ceý LA -4 LA -4 0) l~

cl. rf C. C) ; C ") cm C\; C'sl C_;C C") CýJ C'J c\J; '~j- (\ \JILO

AC)

-LA m- ' LO LA It r- LA (n Zd ULA LA) 00 r. m" C t.0 00 m" t'-.

C0 C, qz CY) .e' ("4 zj 40 r-- -cz -cz fl- t.0 kD .- 4 -:1* ' C" ) m O 0o a

CD LA; Ci 4 06 4 4 , O' ("4 " C6 LA .- 4 .4 C; 0 l a;) 0 40; - 4 -1 -1 ' r -4 1- .M1 r-4 -4 -- 1-4 -4 -4 ("1 A-

-l (Ili t.o 0" C0 C'- I,- -d CD m" C\.g w3 j--- m w 03m LA) I-#

C") -4; C C) LAO C C6 C\ 0 0 LA '4 0)0 30 ("'40)60);

-J-to V)or

C) (A m to -A m 3 cr.jC) 1-4 %, LAj t. 0" ) C") M3)0 :Z0 -4 030

L LAJ -4 .- 1 -4 - .-4 -A4 .4,.4 .4. *'

0- t. t.o Zri M" M3 '. '4' M) a" LA) r- r- M ýC' L) td- M) M">- >-0

a;- 0)0 0'. LA '.00 0)4 ("1 '.0 r- C0 _-. 03 t-0, C0 r-.' r_*

a) -- ic

< C0 C'- r m' .- 4 Lo MO zj- LA) (NJ LAO -CT M ".4 LA M" M) nr LO Lo* I (o -4

M) CD c6 C16 :3 LA - 030 '.0 '.c 00 '.0;Cý r'- LAý CJ C6 t.0, '.

ko.C").- C) );: o i rý c ~ LA m C'i (0 oo c ') a% Co r. 03 -q c0 C

LA LA

LIU

4-J

4- 000 n-* 0T 0RrC~ 4r- L l 4N n--) LjI

- 0

. ce W r 0 *.- c-0

CD 0 3 s-z L 3 -C a C to ) . > - 0

I-- s- =. .000 = L. L- L- o) 0 )~ 0)- 00C

-leI - - - C to0 ). (U Q 10 M0 ) 3 --

38

Page 43: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

LL.

CO)

0'J exJ .-D CD O ~ m 4. 4t 0L .- 0n to u -4 C:

mC)

m cc ~ LA C1* C) .0, 00~ Co '-4 -4 (J C) Li -40 LA0 ~l. ..- ; (-4 .- 4 rl4 ..4 l-4 (NJ - 4- 4-d: "; l -4-4

.-< .- C% (J Cl 4 -4 . CN LA .-4 I~C o -4 J 0.' -4

ONI 4 41- --4-44---1 -4 -4 -4 -4 1- - 4 -4 -4

--J00 C m. r-- Lo r-, .- D ON a. n C')r fn - LA co t-r N

*n. a 0.' cOCN 00. 0a; '0 o6 cJ 0 LAý LAO CoO. -WA LA 1.4-4-4-4 -. 4-4

0 -NJ '.0 (D m .. 0o LA CD (NJ Cl K~ Co LA LA m'

I- * I-. t.0 0.' 11: C6 '.0 LA 0 0' 1ý *~ Co r-1 C16 r-.0 -4 .E.-4 -4

C) 0m m' fl- r.. LA - m' -40 m~ Co m 1C') LA LAO 7

o * LA LA (7 Co '.0 C6 LA 4 Co 06 - C') %- '.0 P- LA;0-: -4

0-c

MN (NJ LA LA 0' LA -*l -0) k LA r-,.cj -4C r-. M

Cý C ') cl L .L A LI; (1 '.0 (N 1 NJ I-. C) 4

Z Wý) . LAý C') XA C') a; U) '.0 P.: C\; C') Cj (

4-,

0 c)

0. 0 0,

F.- EU 4- 0 L C

o 3L &. o! v do 4j4 3: to-f -- =)GAE

39

Page 44: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

V.. -

03~mCD

m C)wA ~ 0 '0 CJ 0 0 ) ~ 0~ - ,C V)U

CC al CD Io r- Nj Ui 00 Ln U, 0n '01 r-_ Cl (J cn U, -q m

pLAJ

V) 14CiC. I I

C)L* '.TV 'gO co m- Cl 00 t)(N .0 C') (Vi (NJ N- m U, U,

C) U, C-4 U,ý N- 0) (i C6~ U, ,O .. CO CO .ý - 40 V 400) ~ 4 -4 r-4 1-4 -- 4 r-4 -4 -4 r-4 r-o4 -4 ,--4 4 ~ (N -4 .- q .- 4

S- 1--

-jS.- 00 C) c ) U, U, Lo '0 %D -40)i (NJ ko -4 c0 N -. 4 -- # U,) (Nj0 = C

4- (/) . '1'' 0) C'.J (M '.- 4 1-4 (N r-. 0) 4 CNJ a)0 CO4 o6 U (J\ CO C6uiLo , ~ 4 -4-1 -4 -4 r-4 -q -

E-0 CD W 0) (N O U ý M- (vt k.0 M M 0 0 C CO MV r- -4 (1i() (y) r-

c ) ?-ý CD* P' LA N- CO 0) r-: '.0 C- ), N-, N-* '.0- 4

CL (1-c )-\ CDJ 00 LO - C ,J CO - r (ý C -C '.00 C)0 Ul a) r, qN - O (V

) CD

4-'

4-) c

-i m 40 , m N 04 I m U,_ U, (V) w N- q.0 r ( - CO t (

U)

=3 IC >cu 4- 00

0U : 0S- r- 10' r

1 0- m I- = .~ S- L- 4- 04 S- CL. (U 4) 0 - 24

CC w000 u oC 4-. 5-0 CM. 4-' to to44 a

V) CC CC -O -O cm 00 o0 u~ wC w COO 14 3

I- U)40

Page 45: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

~V)

CAD

0n C)cc c~~c o ~0i n~~.i

C ') :I* m~ w w~ O -4 w 4 MD 4 Cl LO %D cr rl L2ti 4 4 4 9 4 4 4 C' \ 4 - -

V) 4-4 -4 -4 -- 4 -4 -4 -4 -4

C\J 0) L) fft r_- 0 1-4 %0 1-4 C\ 4 0L i R Ol f, m~ Rrc o

a* r-. a ý Cl. e rj o l .- 6 cc cc ý Cý 0 ý in 01cy; -4 -4-4 1f --4 -4-4-4 1--4 1 -

CJ i C%J M -r r ~.) .- 4 CDi * ' " 1-4 0-. M U C %J c \

1" c -4 -4 0- r- 4 -1 , -. o -4 1- 4 1 C c

o to CLO 01 -- 1) CJ .- 4 CT~ cc M% f -4 -4ts q C -4 00

V) * in C6 0 1ý 1- 01 ' C; _ )kl 0 CC C\J 06 CO ý r. i

C) '.d -~i C) C" " t C -4 in co01 oL C ) -4 4.0 C

Cý -4

CD ký in; i C6 J in; o6 L C; C6 in in f'; P, c

0-c

in

w m n 0) r- 0a . tD -cO r. U-n c'j r__ c o~e

clJ ( c; 4.0 in ý C 6~ cc 1t in ý 4.0 C' ( C%;

V,

4 .-

> 41 VVC00 at( to~ IV -4i

-LJ 0 'a >- 0C 0

L 4- C L.0 C in 44 c9

an -cc (A C S_ 'a C C d)4 00 4-' :3 V) i 40 'a-c I-- o 1 0f 1 'a r. 4- (3g a MC S_ 'a =

a- m~ Kn (n (A e) 0F-__i~l I-- 1-- 39 3c h

-. 1

Page 46: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

LA.! C'O Ln U r Ln U) U-4 U) O C CZP m O LA Tr mt~- Lnto C') 00 ( LO C') UO C..j M' LO C\J 0D0 LA) U) U) r C'.o U) -4

x (n ~ Ln -4 wr r-4 -* -It -4 -cr 9 LO LA Ln 4 ON 4* LA Ln

loo

9=C

m r- C- 0D "N U) U) U) 0l LA -1 CD U) LA 0D Ul) c 0 ULAX~ fA -4 r-4 (\j -4 r-4 -4 CNJ -4 m' "N .- 4 4- -4J .-

-,v (NJ - C) 0 CD) 0 M LA L.0 r- r- -0- 0) C') M

* ý a;) 0) C) U) 0 a; C')c COO 00 _; a;)O C) 0; CO 00); 1- rE -4 r -4 - .4 -4 -4 1-4 -4 .- 4 .- 4.

- r-4 ) 0ý 4= -0* q* m -4 Q)0 C) - (NCJ LA CO CO 1O C -4

(NJ C6 -4 C 0 C')( U) COO)y fl- C')6 00; CO U) (J CO N-N- ~4 ~ 9-4 -4--4 - 4-4-

-JCp 00 LO CNI kO M' LO -4 -4r- kO WI- 0 C\j - n 00) 00 CJCO CO

4+- C) c* 0_ 06 00 CO -4 m' N-ý N- U4 _: C O CO 06z 4 r-ý t)ui U) 4 1- A 4 - - 4 1-4 11-'

C))

Ln < C) CU) 0tL) 0)N 000 Utr_ ýC) U " (nJ 0)?00N- m) Coj k0 U) U)ca -4 -

a -d

390- 0) (NJ 0 00D ) m -cz ) U) U) C') U) -4 ) 0 0 m 0)4 COCD q

0 N C ') c~l (N C') 4 LA U) C4~ Cý N-r ')U C O C') C6(NJ

CA CýU)

~~04-L-4- r

iz- r-0

C')to C7) 4 J 0 0 ) U) C'C) N-U) 40 L r-) 0 CO to m

F-- he - -

cc ccwmM 2eb

6 -2

Page 47: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

LL W .ko '.0 to 0 ko M o Co M .tD t. o Mo C'.J M kCOLIJ a3 M' U) M~ WO '.0 aU CJ U) N C\1j wo m

Eu) M W,1 LO U) LO M) MY M)O' ~ U ~ .

fm -ex C C)J m\ m\ C' -4c.j M\ -4J C r) aY Lo4 M~)(~ CD a CM

bLLUL' f

ZLU

Lj( vcr m-4r m4 - C CMj C) m - m- .- D w cy

o o CD0 c' 0) mr -4 qd' U-) 00 m LC) tAo -tr 00 C'.r . 0 .4 .- .- CO -C .i . .4 .4 .o . . . .

0 ý C *-4:ý - -4 -4 w 4- -4- -d 4 M 4

-CM C M 0) ) CO ) CM ) 0) -4 0ý M to0 q* r- '.r-C ý ý C N-CO 06 )003 U) 00) C') 00 N-ý 003

-4: -1-

00 C) q~ c 030 c) 0 -4 q*- r ce) Ur) Ur) r- '.0 r- m' 00=0C

0 ý CM ý '00 C6M U 0C6M C') 1100 U)ý N-N-CMr U) CO C')

CO -4

U) m N- U") N- U) m N- N- Cl m m. VIA I*.

0D CON U Co CM C6) Coý 4)0 C') co CMý C C

Cý CM U CMý Lf C') C6 4' .U U) CMý C4)CV C4) .-

4)

LU~ ~~ ~ 0 c4'0 N C - -e '0 '0 C . -

ar)>

0 4- C I-a CIo cc cz -mII o jg43

Page 48: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

LA-

LL&J C 0 CM to M 0 0 0' M CD CO M-C) C\IClt 0 WA wOLCO LA LO -4 W CI O LO -4-4 LA q~ Ch W\ CO - LO * %0 .- 4 M'

V) -- q4 ' M -4 lr -41 "d Mr .-4 M~* MV .Ct %:t i -4 0' Tr 49r LCAco

I= ~ L < r Cj o 4* 0 C'." LAO M m\ 4 ý) t-. 4 .9 ko 4- LA O W m

C. C' j (%J m% ' CýJ C') ('4 ('. _- C\J (' (%. (% C\J ('- C') ('4 -i

I--LLJ

o~

'-4W Ln m LO LA -f 4d- C) mO M- c qLA C) mO LA LO r0 0 CN '.

~CD

0 D mA C') LA C - ý L (' 7 CO C 0 C') LA LA- C6 a;('

* 0 -yl0' C. -4 r-4 r04 0'4 r-m 0 'j . - 4 1- 4 ' O

0' -- 4 r-4 -- 4 r-4 -1 -4 r-4. -4 -4

S-) C C* COi a)O k0 CO l-~ 00 COrm CO) co -4 Co C 00 LA) ('.4 U-) t

o C04- .A rý LA 0' -ý4 r: 00' ý l 0' -, ('40 Iý 0'ý a; -fl: LA

WLAJ "1 .4.-4 -- 4 ..-

E 'ý~ r-. r-. Uo C) qD r- f'.- ko 1-4 4'- M 0O c'.a 0'm -rý q~

4- * 0 LA; 0O CO '.00'3 C6 CO lAý LA 14 C6 kA 4'-. kA 0 0 LA LA;

OCD

CO -4-a 0: 4 LA _:~ LAý LA C6O _ 4'-. 4 LA LA;CT 0'--. LA!- LA a; a; LA

0- oco

0- CD 4 -::r -CT LO .U ) ko C) m m C') -4 kJ- q') (-- 0. 0A--. r-4 C%

'I) 0C LA

0

I- Z-

VV

r_,

C.. Q) Eu X C

CD~~4 0 -. . C ) C 4LJV074J0) Q U) 0.- U 0 - EuC WMt

'.0 4J S $ - 4J J L- 9. 4-' 4 E -~ '- 4Jcm .0 E u -a S- L0 EuI- m 0 t - M0

0 0 to to" M W = Eu 43 4') 3,u9Ci ) 'CC -CC 0 CC 00 00 C CO U) Uj E 4-c be leu 1U.

Page 49: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

C.D

03U COMO ~jK C D~ 00 Lo C Ln -i I-- Ln -A aO-4 en2 V) 14 m4 mr LO r-. LO M4 m4 m~ -,: *tz- (n~ 4ct n '-4

=D m

C)-r clj m~ CLo CJ -:r 00 J c ) C\j CJ n ' C~j t ea- P-~ fn

ZLLJ

'.LLJ (n M % CY C )) 0 ' 00 00 C -4 0- 0 co co (4 C)V~L) -q 14-4-4- -4 .-- 14 -4 4 - 4 C'.j - .- -4 -4 --4

0 ON LA)- LA () CO 04C C\J f- LA 4304.00D )% -40M

, m' 0 C'. 00 )0 4. .ý 0ý 0) -4rJ CC 0 4 C\ON -- 4 -4 -4-4 -4 1- .- 4 -1 -4 -

-C14 0N) 0 .4 -c~ - 4. k -4 (1) R~ .- 4 C~j .- 4 C'.j (.j 0D LA)

-. 06C '-0) C6C C6 a; )0 '-40 a-; a;. 0)I~~*.. -4 4 - .. 4

-J0)0 LA m) C- 0O r-_ LA) -4 LA 4to40(4) .- 4 M~ 4D0 m'1(4

k6 '.A 00 C6 43ý C'-ý f-. % C O 06 )C I-ý 0) LA 06 LA

>- C

O: D M D C r-. .,o M~ M. M' 0', -) 0 CO -4 4 r) C M. 0- '-d

in. COCO" ' ' '0 ~ ~ - O C.

0 l * n (4 LA O 40 cl ff3 LA 0_ m3 CO r"- rn 43 r- LO '

QCO

* (- 4 C\ J 0 'l * l;)4 (1 L ý c'.i * Cý. cl.J 0

LA

Z C'- () CD co toJ co (44 ( Lo M4. co% '

0 di

r> -j 4-j V1

L'U >- iU .- -3 U C 0 4) 0 -

2 4-' C- 0) @ CL 0-cc 0 ) z) w1 0C 40 0. L'-

*) 2c C 9I A V

39 X -

iL - - 45

Page 50: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

LUJ Lo -g 0) lA ClJ VA ) - CO z00 CD \J M~ - LO r-4 UD M 00

COLLj LA) c'J M LO M' Ul 0' C*\J I- f- m m~ ko LO 0 C C m -4V) -* t -T M~~ - ~ ~ 4 CO) -C** mt.~ -40 ON in -tz

cmCO

cz -cc 0 M A m kn 1-4 CD% l CO LA.0 LAO CDC .- 4 LA ko 00

71 C (*1 .- C.J I~z C CJ\J C9J CJl M' ' 9 ~ CM J M" C\J C" CJ .-4 -4

C3

'4W % N 0 00 C" C -4 LA (n) LAO Cc - CD (.0(0 -s 00 LOX. VI) 04- - -4 (J 4 - C%. 4 4 -4 -

OD LA M9 q* m LA) ::r U' LAC ~ C) 4: m -z -t m) m" m9 m ) C A) L /

>1 CO COý LI;. o6 C)0 C-4 (.0) (91ý C 06 cl 06 c~g N.ý r-ý:3 (4 -44-

LLJ -4 1-4L O C - I O .4 0 0 0 A N ) C

C=. L r-. t-. ~L O00 -1 CO * t0L O LA O COr '.1 CO4 m'. w C) q

LA 00C LA 00 LA CO) LA LA r~ CO) n An 00 COi Ld M. -t4 t. .rlr 0o o _-

"a- CD *j r- in C) r-: r C 06 06C. C '~0 C- -. .~O LA LA

(A 0 ý C\; ('4 LA 1;9 1; L A L C A CO C O O Cý ('

3E * ý LA LA COO LA F- CO COý LA LA - ý CO A LA) 0) LA LA

.~ 0

eo) cc LA mO 4 ) (9 LA= . C) L L A O (. ( 4 0) -0 M A 4- 0 c'-0 0. LAd - - -A LA La to N. LA mAO 3-L9.L OL

o ý w

4 06

Page 51: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

C)'

LUI (e 0 mi (l) ULA C%J mi m~ m~ COj co C" w mCO LLJ WO C) MV (Lo M~ 0 %0 .-j- 00 C~i (7% N.- Cj -4 ol rx( .-4 M' -Z LO N- LO M~ M~ M~ .-:* -d M~ t.-0 q* -4

=Dco

~LLJ

0-4 LLJ r- C) LA) C.r M) . O's 00 .0 C) M 00 CO C:) C\J C:(j< tr-4 r-4 --- 4 -4-4--4r-4 r--4 -4-r-4

MEC)

-C). ko CO L C) Ný L.0 4c) .-4 m R* 49* C'j L 104 to C

-. LAý a; C) CO c CO6C C'J 0ý C7; .- CO (ý O6 N-

(a;

V) c

C:)C) N- 0i m l ~C\i -d lc C=) LA) Lir m 0 enL LA CS.)= C)(A- -1 N-ý C4 N-: f- N-ý N-: rý 06 1O Cý (1 N-LA C6 LAýLLJ LO -4

CO 0O rr k0 C7 N- qr () COC) .C N- C L A) ' -.- 4 -A ()

ccCD) M~ -z N-_ m~ m LA Itt a) CD))r ON-- LO r- -4 m'

0CO

CO LO O LA CO Cý ON- C') C)0 '. OA -L

cc C') m CD % C') r" c') LA ko A ~ C' ' CS) qc)

Lii

'-4 ~ ~ ~ ~ ~ U (' C. C fL ) L L A4 ') Cý C') cl) 1.4

4)v

C>

d=Cef C 0 C1a4

CD ~ ~ ~ , 0 - cM=

ZJ 0 a --. >, =U 'U)

j 1.- . 14- C CL0 C 0.CL J-- Co -cc X s- m 0 c 9 4) ov 4.) a LA W#4 to

o w 40 CA4) to mC 4-' 39 fa mC L. .-Cl 0. z a- n vcn CA :x x- N

'47

Page 52: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

=: o

mOi -cc M C) LA M Ln f.-4 ko fl, MN M- C''J LO LA L G Y C

< >. C~ - ý e Cj c' ý - N N C -4 (NJ C CJ (N) cl m (J

ELn

W Li%.O 0 LA -4 (j LA O W C LA WO LO Nj M~ r-4 --4 -4 CO j

>< Ln -4 h- C 1O -4 C1 ý O N 14 -0 O IJ COO -.4C

o ~ . ~ .- 4 1-4 1-4 .- 4 '-4 1- - -4 (NJ - -

4-) -- Ci CN 0 )O 0 co 011 %A.0 4 -4 to cr LA to to 0) 0D m C )

=3 0; r_: Go* C-1 r-. 0ý C'ý 06 O LAý c 0 ý GO C GO r C) O r; LA Icm-ý -4 - 1- 4 4 144 -4 -4 r.4 -4 .- 4

0 Cto 0 N- LA to J -o Oý CC) (J 0ý ct* L O GO : C 0 0 * LA U C LA

Li LA -4 ~4 -4 -4- 4

CE 0 0 CO 00 co C OL LA) r- mN ýr 4 (NJ LA (\i LA' r- (NJ -4 0'11

F- * LA ; LA LA LA L A ON O A N- (iN L N O CO LA LA

CL c

'a C=) Ln LAý Lr LA LAý 06 GO LA; LAO LA k LAý CO N-ý ON r-_:~Ce 1 -4

OL 00

(NJ C) ') (l) (Nj (N0 mN CLA m m iC L O C) m ) m r- MN M

c LA0

L. d

+j < - 0) - r- 00ýC)t OLA CIO criO m LA CO CNJ W- m C 00C'A LUJ

a)a

C6 0r Q A 0m c s- 1- 1 -

-be. 4) a 0 fa

C) 0~ = i L- 0- 0 C #0=-LJ 6- v 0 r+ 0 a) 4w 0W U. M S- a A

o1 0 L- L . 4J 44- 0 . Q. ) ) 0 '-) 1 --ao) m- w C = S- M 0.. 0 m 4- t a, 4.-CC V~ M M- = 0 , C C 00 M, W .

V) 4 -ccM M M WU W U8

1 SNAMPO-

Page 53: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

~CD

LO ('4 -c , in M . .- 4 M - M) C) W% r*. 0O M.

I= cc r " ,j L - d4 -4 (' -4 1-4 ('4-4-4 c-i ('4 C k -4

ol 0) 011 CO 0- Cý c .0 ('4 .- 4 C-O r) C (4'

W '.0 W' C) o 00D Cn C) M ) m C) mO W. ('!CO0) -4-4- -4 -4 4 .~ - 4 .-l N -

0: )

CD. CD 00) 0 CD ' Lo CO C) 0 ON -td 0M.C:) -4 -4-4 -4 -4c; 0 6 C l; 0 l _

0ý -

I0 0O Cn In ::r -' 4 (M 'ý.0 (-- U, 0M4' CD%0 " 00 )C

CD U, COý Cm In h-i -4 !, ko Lo C) In "- In C) M

oz C'4 C~l C. ' 0 ) m a% m -- 0D m IN4 U, mO ~-C d

CIO< 0) ca ON~ Q) . M' M' 4') ('4 -'.0 -4 !-. M. ' IN

C) LO 0m m' ' Lc) r-- -i 4-- mr '.0 %0 INJ -t LAr In

~~C CO 4" .0)4 CO qý 4"Cý- CO'0 . ,

LIn

L;415C

ot 4)0

LL) -. .4 0.-

*'r 0 - CC 0 ECco 4A *1.- 0 cu 4A 0)U #a

0 w mC 0

4.9

Page 54: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

CC

LL ce, CD O r C) m- 0 ; mn N - C D m' C* I k) mA L- CD (nJ t4J Cý) m

caZ j (nJ M N 1-4 LO J -- I V) C~) -1 Lj-4 00J 1- 1-J -4 L C )) C') 0)NJ (

(< A .- 4

' -4 qz N.J .-r "r J -,-I (NJ q -4 ~ (NJ

~cn :

*= N- (N0 LO r- a) r a a 00 a) T')L C) O COi 0. a (\i m 0

>< V)-4 -a -4- M - 4 r-4 (N -4 - 4 a~ 4 CJ -4 (J -

C-)

C) C) ' 0 -4 CD a'l ~ Lr) -4i O*i N. ) (- C) -4 C) -:I r-a) cl ýa CC ; 60 - ;C;a

0" 1-. 1-4 -4 'A -4 14 .~-4 ~ -4 -4 - r4

a) V) an

C) 00 (N Cl ) (n J -. 0 CYO -4 .- a a ) La -) LA LO a C '% (l) CO0 =0C

4.. V) * ý CO LOj O' J -ý L,6 -4 i ( -. r,: jO a' r-: (J C0 Lin r.: t i:flLULA -4- -- 4 -4

r I- -4 -4 L.0 f- M~ vt (7) k. 00 CO r "J (n '.0 0 CD C= r

F- * . LI; C6 a' LA Ný a' 0ý LO '.0 4~ co '0 a' CO r1 N LA In

0 O -4

CD 0 Lo t .0 LA ý In c6 cO a' Lo' rý I-. uA :- r-: L.0 )' LAý

a-- 00c

C+.- 0D to q.0 U-) 00 CO ) OlJ 0) -,I m~ a'% O N-a r O .0 In a', 0 0 C0

CDI

.0

41' -C a' '.0 (J 4~ r-4 '.0 f- 0D N~ LA LA 4: CO - M' ) 4: -4CA LiJ

V

'U to

r 00 t

a ~ 0) = I-; C ..0 4A r- fa 0iLUJ '-7 '0 4-j 0~ (V 0~-0 U 00 &- a AA 00 #0 CM~- 4-' S- . L . 4- . 4J -' S. 0. o.' W o - *~

CO. .4;U . . L- S.- MU M 4-' V a''- U i

j 50

Page 55: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

LL 0 0 C a** -c C%J 00 1-4 -Q EX C\J o C 00 0 a) alca Li W a Ln M~ -4 R~ ko - LoA rý ~ Lo r-A ai Ln mx ~ V) n M LO V,. LO re) C14j M% Kr -: C LO M~ --I

LC)0

F-LAJ

.- LJ ~LO - 7% M -4 () .-4 00C,j CJ 00 -40 CD 04xLn~ -4 -. 4 -- - -4 .- CJ .- 4 .- 4 04J OQ. -4 -4 -I -4

CC

0) -4 C"J qT en 0 K3- r- ko 0) Cli 0,0 C)- * 0, mC) r_ C %J 01; l .40% r-: kc C4 -4 k.O Cý c0 r r- '

OCj a% m% r- C4~ -4 ej) 1.J m .%D 0 0o k I(D C*.j LA

a; 06 o4 0%3%r- LA -. ; 00% a; 0 '.I.---4 -4-44r-4 -4

-LJ

00 1-. M 0 0 k.0 r-4 Lo 0cL) 00 C:) LA, LAo 0%) r C\

0C 0 C-) ý 1 00 -1 ) O N00 C). C '.j C: m 40, C %

-Jo.

0. c

%: m0 m\ C-.4 C\1 1CU C'~) to 0.' 0, 0a4(J 0 0 .CoL C --l; 1 C-- L 1.0 Cý 0 -: N. 0 L Aý LA ; -C\ 0 m

0'C .-ý 1 L C O *: 0ý 0, ('9 LA 9A ý 109 C\J 1.0 k9 LAO f

0

0o0

0) 0 % to M- toL 0) Lm 0, m- , 10 () (~La - C 4 - .-j 4- C CL (NJ 0 r;J M-~ ~ L C- (AJCi -

0~~~ 4A0 C 4J X - - M -

V) 3E a -M Cl 0- 3.' Do

1.. .~ - U Li . *. 51/

Page 56: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

LLJ W Ln -C q~ Ln Cl\j LO M' m, - LO LA '0 qr t.0 LA) (Ij q~ I*CL*3 LAJ CUl M' LO M n ) LA -4 LO (%j C\j M'" Cý to LO 10 m~ ff) LAX:, V) Az C~ c -4 -r,. -4 , -c qt -* -4 71 (n) -: LA

C)LL -:c m C ') LO 0i O'j -z 0. r') (n 0-LA 0 C") LA 00 0'- -40- ':x >. -l .- 4; C '. 4 .- 4; C'.. rl4 C '. vj .-4 -4 ý- 4 C") .-

OL c C)- M~ .- 4 COO 0 M LA O t~.C.0 CLA LrA V~ - -.0 -cdA*< V) . 1-4'. C-i r~ 0 -4 COO --4 C" t -4 C'q. C -40 r -4 -4

-CDJ -d- a) 0' O C -4 C - '0 C'.. m" LC) 0- On ) C'O 0: Lo ) C) C -

a; C-' 1-4 -- 1 - 4 .~ 4 CJ r4 .- 4 -4 C-4J r4 -

a) .) 00.- 00 r') wo C'I .0 r- '-4 m. m.0 CO mO ' m'. 000CO 0 10. r-- C .0.C.) C- 00 c'.. 0r- C-- a;0' CO .4 La; CO COL

4J ) -4 -4 - - - -

o = C '.. C. . '. 0. C.. CO . A O A L O'0 .4 U -

v- *r CO LA C-- 0'. , '0 0 -4 C" .'.6 0 ~ CO C C; C) 00 '0ý LA

Q~. coV) cc LA U-) U LA C') - C' ) LAO LO ON) C'. 0 ' C:, 0ll C- a' Iz- -' LA)

CC)-4

el- 0 0.

C) ~ 0n -4C C\1 0m 1-1 031 C: q C'.. C)0 C'.. 1'. 0 U-) C. - -*0 C0

C'. '. " C'. C'.) 11; LO, '. C") ' C6 4' rý 4 '.0 l -4 C

LA C)

4")

4- Z

7)

CD '0 d)0c L

S- ~ .- 0L ac ( -

'UJ 0 Or4-J 0 (V 0).. 4J) UU to- C: AA do to~

V) -c CC WU CJ wU 4U 'U U) uj 52

Page 57: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

01 *1

LL&J AO LA tn M -- MO q M 4 (14 CO M~ M~ MCC)LA mO 14 wO .- 4 M LA I%. r-l w -4 m~ to Ln ko m

zV~ 4) M d Ln r- LO M~ Cj M 41 49t M M Ln M

00

mC cc LAO ý U C~) On Ln LA .0 -4 C~J to mV .4 r, ID

CC ~ C\ (J NJCý ) C\J -04 ll o') (NI . ~ l; (NJ (NJ (N (J

ui~)

LJ mi r k L -. 4 LA to "N N C 'i m O w O w N m'~ m' mX( V) -A 4- -4 -- 1-4 (NJi mN rN ~ - - - -4

0D m' 0D 0 m' qr ( LA m- 4T ~ LA ,%. Ln .- 4 V, -

*n 04 mN m. P') 0 0 LO w 00 NOJ 0 00 (1)

a;.- 0)0- (NJ a; LAO c;N C7 0) COO 0) CO C6Oa;1,-4-4 -4i -j 1-4

00 1) .- 4 LA CO q C)0 -4 LA CO f)0 COO LAO) a% k (cJ

V) * . c 0)0 C ' ý -. C6 LA 06OO C6 LAO) C6 k6 '-. C'-.La LAI r- - -4

>.0CI- * L AO ) L C '- Uý LAO cy '- C') r-ý C- LA tlA LA

"C mm".4 'm 0 -4L D om n0

r-O LO) C') 0NJ C6 0o) C) 0d -0) LA: kLA C) '0 C) *) LAO)

1-4 -

0D r'- LA n ' -i u-4LA) M -4 m CO 4, %0 to L ON

0

toLAr

CC .4 NJ0 L ld~CO L C ' >' 4J CO 0)

LA) >-) LA 0 IVJ 0 to )~ C- C) C) (N N

CiU 4 cS C 0 M 4co 0 o 2# Jf

w 0- 0. wmAL#0 CELn a.' cn t^ VIL

CC L ~ ~- 0 C ) C .- O:53I

Page 58: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

0D-

L&J~ 0k C) r-. 0 LO 0 me m 0l U) 00 00 C'j m 0l c'J -4 Ch c'~jCM LaJ Lfn al .a an .- 4 a% --a -4 La) ac n -4 - * X Lot a i Q. 0-a R

V)i -i M R -4 q* -- qd. .q -4 rn m, .-9. R~. .m -4 00 m -c an)

cm < c OD 00 -rD C: 0 aX) C). m C) 00 Lcm r-. m OD 0 m~ OY

-. nc c cc c c 0 c; .. 0i vi afl mý cc c .-a 0 OaLzco

0) (N ta nm C -ccam ~ n~~~

m

d--

" "L LAJ -an cc co 0 CoO " ta C) M k a( 00 n 00 1-1 C) cn. cc cXIVI 4 .- 4 -~ -4 --a .N c -4 M- - -

< mo

or , -4 r-4 an c 0 0 ~ia- r- ac 4c a - -

a) a. ( n m a a, C an %D 0 n co cr co ccrý r a) -a

cu J a; -4 C; .- 4 C6 .- 4 .-a .- 4 a; .- 4 6 o

S- CmC c,,j 00 r, C\ co :zr an an -mt cca r- r, co mr a.o a) aNC

a)* I 0

E mp l-. mm m *t U-) a4 m ý. fl Q m~ an m N.j an M 4D

w- -j aEu E

- Li2

(UE

4-)

= -a 0

@1~: U *.- 0 Eu -- -- 0oL 0o o I.T Aa U. C Eu C>

LU EU0 0 0 0)1 w1 m1 EU L. m n' E -I- 44 L. ~ L.. L . 4-J 41 -i 'T I 4) @ 0 - -0 -I .- - o $- I- s- M "a Eu 4- #0~C r

I.I'

Page 59: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

V5

02-

L&JX 0 0C Cý l -t~ '. k O .(n m 14; w -f -4 WO U,CO LLJ wC D to w. rO-4 mr U, LO M -4 Ir- C%J 0) -z LAI Cj

V)' 1-4 m q 1..r l U,) m C'.J m, -d 41 m~ ct ul m -co

0.- Cj'cJ- . . . '. O ,C C Oý C\; C -ý U COOC

LAJ

LL~J

Eco

C)< (A -4 . -4 M M' .-o l-4 M- C rJ (' h .4 ( a M'. M' - -4 .- 4

011 - .- 4 Cý ; 0 .-4 I- r-: 00'c CJ 4 ('a -4

1 -4 -4 -4 -- 4 1- - -4 -4 -44 -- 4r-4-4-4

-('a toa '. Y) fl- "(' 0 CO 0 r 0' * 0 CO CO 0 Ln m4 to0

-i00 C 0 'j -4 to v.0 -4 U, 0-4 tD W. CO kD c30

Ln * r- r- -4 (7 Il-a '.0 COC 06 nl a; CO CO: CO0 06 auLJUO .- 4 -4 -4 .

0l U, qz 5-- r-_ ('a 5-- "' q 0 "' r. r- ('a 0 m' m~

Lc) *ý U, U, 0 C6 . CO Uý U, 0 CO C-' U,ý 5-: r.: f,: '.

C0 -4

4 C6 .- 6 5-- r-ý 0- C cla' C6 P.: 5--a 4 U4 ('a U'

r-4 140-CO

0) 0) .~ .- I r- en CO CO .4 U, cys N'A %D0 ('4 ('a -I

m 0-i4 Ln Ln l'4 cl ('a (75 1 C6 ('4 (4 C1 C4~ ('a

0V

('W COe. 0 (A0- Qn 'a0 4n 00Co 0~ -a 2E U, .4 0 U, W' -~ U, U, CO 'a *,-)~

-A - o 3)6r 2#

-j U O - Z U a L. 4L.C - = OU 2.

1--3 0. 0 to =j 4j x Ef U

55

Page 60: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

4V)

01-

LAJC W A U) P- LO q i LO CJ C\j M~ r-ý m~ -4 to LO LA a) ILD C D.COL.Lj Lo M~ LA ) M n CJ ý LA) (" 0 C) ) en~ M Ln q* ON M'V R t

Z: (n r-- qCO -4 0 ~ 0's Tr-4 CYt .q K -' 00's C A e' LAJ LA- LC O

C)

3 CCJ I-. W Cn CD4 M-4 C") CD- M~, CO) `LA M- LA C) 1-4 r-4 00 C)< /' m4 -ý C\ .) C.ý -4 -4 ("5 4 C") -4 6 C '.); C -~ 4 -4

P-i U A 0"- CDO 4 - M"' r- 0 M' kO1 4'- c-s M- M q4 W. ON) CDs a'L0) - -4 -4 ) .--4 C'.) .-4 .-4 -44 C~-4 .-f -f 4 C'.) .-

C)

.0 ~C" 0) LO LA m" mt - " C's 0 CO LA n CO w ýc ' m .-4 LO LA?E ~r-

.r- c6 as Un F'- . C'~ COO' C". . 4 a 0 0' C '=) CO CO0ý 0U '- .4 ,--4 1 4 C") .- 4

4) V~) CYN

0 C0

4- Cd' * l C" C-ý C6 .- 4 lAo' C-1; i 0 COO LAO' COO CO a; 06 0 C". C'.- 1:.Wi LO .- ~.4 sS - -4 14 -4

S.S I

c-- L 5 o6 LAO'si a;s c4 r-: CO c r-. r-.- oi r-ý inu .0

4) ON

<i . C ) m ý N C m 1'.0 LA n C.-- %dL UD -;t ' q LA to U -- rl_ C') m 4 CdI ff)

V 0iQ' LAin A ~ C O .4 LA; C'- C" 06 0A C--- LA C") L Lc;

0-C co

C-D Ln LAo ' Ch r LO fl. mr -- 4 m" w' m' mO ' m~ m" 0' 0s '

CDL

Z: Ln m" m' C'.) C'. 4 LeC'. '4 4 C13 4t '1ý .56) CO (I; ff)

>~ILA

'U

to -

4- 0C.'. c' a) kow 0. - to c L

) 0' N- L .- a m) rE viLL'U M 0- Cr 4J 0, W4) u L c # 0 #o15 6~~ - 4J 4J I-) C U-L ~

co .11 4C a ' I I+-

:56

Page 61: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

'L11Cl

CIO'. aw uý m m~ mn CO mc m C~.i ON qzc aln kOto (%(nL MO 0 d C -a0, fl. LO M O C Oj qdJ 0'c M Lo MA i%

ko -4 to) ko EUI m. LA mV CJ 0 0' C) LO -4 V

C'~J C~j (A) C. C\1 4 .~ i (\J 44 C~ Id (j m V (j m m

(n0

ZLAJ

LA ~ %D (%J N LO ý .-4 to r- MA LA MA 0) " LC)A>< (n 4 - %j -4 .4 N. C%J -I " -4 C\ J - 4 . ý.4 -4

ca

C) 0n 0) N.i -4 LA C"j .- 4 W m MA 0) t.0 OC'.

0> m LA (\%J -4 C' 0'; C4 1' . - ý.4 ( C\0M -444-- (a - (V.-4 -4r-4 -1

0C ~ (D V.J mV~ kD f-, 0o mA N '. -4 LAo r-, 00

M ýa;P: y C . 7

Cý0' CA 0'I all toO m. 0" tn on cl_ -11 .-C

=0C

wA mC* LAC 0'NCO N. N. m CO m A CD O 0~.LA . . . . . . . . . .

I-4

CC ~ C O D ; C). a) " LA CO (\) mA 0q LO C'O Cn (J CO- -d

LO* N co U c tI a; 0-4 -4 - U

0D C 0 0 CD .to I ' 0n (Va 0) 44 LA LA LAN N. C %

V; 0 * LI) 060 CO LA LA1. ; ~c .L ALA

0-CO

c C

0~ to - 01- .11 > v

- -W to c0 Cm 0(

j(-j8 .e S. -- - CLm0 C

co A 0 c 9- 0 o 0. _ . 0 (A 0 W .0.46 LO) L4 Cn C ( ) I- 1- 3fl 33 14

¶9 57

It*.,I-

Page 62: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

1-12.

STATION ELEVATION {mJ_ LATITUDE LONGITUDE -PEP LOD OF RECORD

Akita 10 39043'N 1400061E Jan 56-Dec 6UAibrook 6 8059'N 79034'W Jan 56-Jul 63Albuquerque 1619 35003'N 106037'W Jan 56-Jun 63Alert 66 82030'N 620201W Jan 56-Cfc 60Anchorage 30 61010'N 149059'W Jan 56-Apr 63Bahrein 2 26016'N 50037'E Jan 56-Dec 60Barrow 8 71018'N 156 0471W Jan 56-Apr 63Barter Island 15 70008'N 143 0381W Jan 56-Dec 63Berlin 48 52029'N 13024'E Jan 56-Dec 60Chateauroux 162 46051'N 1043'E Jul 57-May 64Churchill 30 56057'N 94011'W Jan 56-Apr 63El Paso 1195 31048'N 106024'W Jan 56-May 63International Falls 360 48034'N 93023'W Jan 56-May 64Kadena 49 26021'N 127045'E Jan 56-Jun 63Kagoshima 5 31034'N 130"33'E Jan 56-Dec 63Keflavik 49 63057'N 22037'W Jan 56-0cý 63Kwajalein 11 8044'N 167 043'E Jan 56-Dec 62Miami 4 25049'N 80017'W a56Jl3Montgomery 61 32018'N 8624 Jn 56-May 64Moscow 186 55045'N 37034'E Jul 55-Jun 61Munich 526 48008'N 111042'E Jan 56-Dec 60New York 5 40040'N 730471W Sep 56-Dec 62Norfolk 9 36053'N 76012'W Jan 56-Dec 62Osan-Ni 15 37006'N 12700?'E Aor 57-Apr 63Peoria 201 40040'N 890411W Sep 56-May 64San Juan 19 18027'N 66006'W Jan 56-Apr 63Shemya 34 52043'N 174 006'E Jiil 58-Jul 63Stephenville 58 48c32'N 58033'W Jan 56-Feb 64Swan Island 10 17024'N 83056'W Jan 56-Jul 63Tatoosh Island 31 48023'N 124"441W Jan 56-May 64Thule 39 76033'N 68049*W *Jan 56-Felb 64Tripoli 11 32054'N 13017'E Jan 56-Dec 62Washington, D.C. 88 38050'N 76057'W Jan 56-May 64Wiesbaden 134 50000%N 8020'E Jan 51-Dec 57Zhana/Semey 206 50021'N 80015'E Nov 58-Oct 63

58

Page 63: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

REFERENCES*

Bnkley, C. W., and L. L. Schulman, 1979: Estimating hourly mixing depths

from historical meteorological data. J. Appl. Meteor., 18, 772-780.

Blackadar, A. K., H. A. Panofsky, and F. Fiedler, 1974: Investigation of

the Turbulent Wind Field Below 500 Feet Altitude at the Eastern Test

Range, Florida. NASA Contractor Report CR-2438, 92 pp.

Businger, J. A., 1973: Turbulent transfer in the atmospheric surface layer.

Workshop on Micrometeorology (D. A. Haugen, Ed.), American Meteorologi-

cal Society, Boston, 67-100.

Caughey, S. J., J. C. Wyngaard, and J. C. Kaimal, 1979: Turbulence in the

evolving stable boundary layer. J. Atmos. Sci., 36, 1041-1052.

Clarke, R. H., and G. D. Hess, 1973: On the appropriate scaling for velocity

and temoerature in the planetary boundary layer. J. Atmos. Sci., 30,

1346-1353.

Deardorff, J. W., 1972: Numerical investigation of neutral and unstable

planetary boundary layers. J. Atmos. Sci., 29, 91-115.

Deardorff, ' W., 1973: Three-dimensional numerical modeling of the planetary

boundary layer. Workshop on Micrometeorology (D. A. Haugen, Ed.),

American Meteorological Society, Boston, 271-311.

Deardorff, J. W., 1974: Three-dimensional numerical study of the height and

mean structure of a heated planetary boundary layer. Bound.-Layer

Meteor., 7, 81-106.

*NOTE: These references are in the format used by journals published by

the American Meteorological Society.

59

I .7

Page 64: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

Duncan, L. D., 1981: Technical Documentation, EOSAEL 80, Volume I. Atmos-

pheric Sciences Laboratory Report ASL-TR-0072 (Limited distribution),

292 pp.

Essenwanger, 0. M., 1970: Analytical procedures for the quality control

of meteorological data. Meteorological Observations and Instrumentation,

Meteor. Monogr.,, No. 33, 141-147.

Estoque, M. A., 1973: Numerical modeling of the planetary boundary layer.

Workshop on Micrometeorology (D. A. Haugen, Ed.), American Meteorological

Society, Boston, 217-270.

Garrett, A. J., 1981: Comparison of observed mixed-layer depths to model

estimates using observed temperatures and winds and MOS forecasts.

J. Appl. Meteor., 20, 1277-1283.

Hansen, F. V., 1977: The Critical Richardson Number. Atmospheric Sciences

Laboratory Technical Report ECOM-5829, 27 pp.

Haynes, B. C., 1958: Techniques of Observing the Weather. John Wiley and

Sons, New York, 272 pp.

Hennessey, J. P., 1977: Some aspects of wind power statistics. J. Appl.

Meteor., 16, 119-128.

Hojstrup, J., 1982: Velocity spectra in the unstable planetary boundary

layer. J. Atmos. Sci., 39, 2239-2248.

Huschke, R. E., 1959: Glossary of Meteorology. American Meteorological

Society, Boston, 638 pp.

Kaimal, J. C., R. A. Eversole, D. H. Lenschow, B. B. Stankov, P. H. Kahn,

and J. A. Businer, 1982: Spectral characteristics of the convective

boundary layer over uneven terrain. J. Atmos. Sci., 39, 1098-1114.

60

Page 65: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

,'V

Landsberg, H. E., 1981: The Urban Climate. Academic Press, New York,

277 pp.

Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and

second-moment budgets in a baroclinic convective boundary layer.

J. Atmos. Sci., 37, 1313-1326.

List, R. J., 1958: Smithsonian Meteorological Tables. Smithsonian

Institute, Washington, 527 pp.

Luna, R. E., and H. W. Church, 1972: A comparison of turbulence intensity

and stability ratio measurements to Pasquill stability classes. J. Appl.

Meteor., 11, 663-669.

Mahrt, L., J. C. Andre, and R. C. Heald, 1982: On the depth of the nocturnal

boundary layer. J. Appl. Meteor., 21, 90-92.

Nieuwstadt, F. T. M., and H. Tennekes, 1981: A rate equation for the nocturnal

boundary layer height. J. Atmos. Sci., 38, 1418-1428.

Panofsky, H. A., H. Tennekes, D. H. Lenschow, and J. C. Wyngaard, 1977:

The characteristics of turbulent velocity components under convective

conditions. Bound.-Layer Meteor., 11, 355-361.

Pasquill, F., 1961: The estimation of the dispersion of windborne material.

Meteor. Mag., 90, 33-49.

Paulson, C. A., 1970: A mathematical representation of wind speed and

* .temperature profiles in the unstable atmospheric surface layer.

J. Appl. Meteor., 9, 857-861.

Reiquam, H., 1980: Stability climatology from on-site wind data. Second

Joint Conference on Applications of Air Pollution Meteorology, American

Meteorological Society and Air Pollution Control Association, 24-27

March 1980, New Orleans, 803-808.

61

• ' . . .+ , .. .. . . .. .. . .. .. = + : + + • ,..............

Page 66: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

_T_

Stewart, D. A., 1981: A Survey of Atmospheric Turbulence Characteristics.

U. S. Army Missile Command Technical Report RR-81-6, 34 pp.

Stewart, D. A., and 0. M. Essenwanger, 1978: Frequency distribution of wind

speed near the surface. J. Appl. Meteor., 17, 1633-1642.

Tennekes, H., 1973: Similarity laws and scale relations in planetary

boundary layers. Workshop on Micrometeorology (D. A. Haugen, Ed.),

American Meteorological Society, Boston, 177-216.

Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT

Press, Cambridge, 300 pp.

Weber, A. H., J. S. Irwin, W. B. Petersen, J. J. Mathis, and J. P. Kahler,

1982: Spectral scales in the atmospheric boundary layer. J. Appl.

Meteor., 21, 1622-1632.

Wyngaard, J. C., 1973: On surface-layer turbulence. Workshop on Micro-

meteorology (D. A. Haugen, Ed.), American Meteorological Society,

Boston, 101-149.

Wyngaard, J. C., 1975: Modeling the planetary boundary layer--extension

to the stable case. Bound.-Layer Meteor., 9, 441-460.

Wyngaard, J. C., and S. F. Clifford, 1977: Taylor's hypothesis and high-

frequency turbulence spectra. J. Atmos. Sci., 34, 922-929.

Young, M. W., Ed., 1982: Cities of the World. Gale Research Co., Detroit,

300 pp.

Zilitinkevich, S. S., 1972: On the determination of the height of the Ekman

boundary layer. Bound.-Layer Meteor., 3, 141-145.

62

4,

Page 67: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

DISTRIBUTION

No. cfCopies

Office of Naval Research/Code 221ATTN: D. C. Lewis 1800 N. Quincy StreetArlington, VA 22217

Pacific Missil-e Test CenterCode 3253 1ATTN: Charles PhillipsPoint Mugu, CA 93042

CommanderUS Army Test and Evaluation CommandATTN: NBC Directorate

AMSTE-EL 1-BAF 1

Mr. Alfred H. Edwards 1Aberdeen Proving Ground, MD 21005

"CommanderUS Army Cold Regions Research

and Engineering LaboratoriesATTN: Environmental Research Branch 1

Mr. Roger H. Berger, CRREL-RP 1Hanover, NH 03755

Commander_US Army Ballistics Research LaboratoriesATTN: AMXBR-B 1

-LA 1Ken Richer 1

Aberdeen Proving Ground, MD 21005

CommanderUS Army Edgewood ArsenalATTN: SMUEA-CS-O 1

Operations Research Group 1Edgewood Arsenal, MD 21010

CommanderUS Army Frankford ArsenalATTN: SMUFA71140Philadelphia, PA 19137

63

I .4

Page 68: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

No. of

Copies

Commander

US Army Picatinny ArsenalATTN: SMUPS-TV-3Dover, NJ 07801

US Army Armament R&D CommandATTN: Murray Rosenbiuth

DRDAR-SCF-DD, 65S 1Dover, NJ 07801

CommanderUS Armament Development & Test CenterATTN: MAJ Francis Lomax 1

CPT Edward H. Kelly 1Det 10, 2 Weather Sq.Eglin AFB, FL 32542

ADTC/XRCEATTN: D. Dingus 1Eglin AFB, FL 32542

CommanderAFATL/LMTEglin AFB, FL 32544

CommanderUS Army Dugway Proving GroundATTN: Meteorology DivisionDugway, UT 84022

CommanderUS Army Artillery Combat Developments AgencyFort Sill, OK 73504

CommanderUS Army Artillery & Missile SchoolATTN: Target Acquisition DepartmentFort Sill, OK 73504

CommanderUS Army Communications-Electronics Combat

Development Agency 1Fort Huachuca, AZ 85613

CommanderDesert Test Center 1Fort Douglas, UT 84113

CommanderUS Army CBRSchoolMicrometeorological Section 1Fort McClellan, AL 36205

S~64

I

Page 69: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

No. ofCopies

CommanderUSAF Air Weather Service (MATS)ATTN: Ms. Hilda Snelling I

MAJ Kit G. Cottrell/AWS/DNPCPT William S. Weaving (7WW/LN) 1

Scott AFB, IL 62225

CommanderUS Army Combined Arms Combat

Development ActivityFort Leavenworth, KS 66027

Chief of Naval OperationsATTN: Code 427Department of the NavyWashington, DC 20350

ChiefUS Weather BureauATTN: Librarian 1Washington, DC 20235

Commander"US Army Armament Command 1Rock Island, IL 61202

CommanderUS Army Foreign Science and

Technology CenterFederal Office Bldg220 7th Street, NECharlottesville, VA 22901

CommanderUS Army Training & Doctrine CommandATTN: ATORIFort Monroe, VA 23351

DirectorBallistic Missile Defense Advanced

Technology CenLerATTN: ATC-D 1

-0 1

-R1-T1

P. 0. Box 1500Huntsville, AL 35807

65

-i

*

Page 70: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

No. ofC22 Ie s

CommanderUS Naval Air Systems Command 1Washington, DC 20360

Chief of Naval ResearchDepartment of the Navy 1Washington, DC 20360

CommanderUS Naval Air Development Center 1Warminster, PA 18974

CommanderUS Naval Electronics Lab Center 1San Diego, CA 92152

CommanderUS Naval Surface Weapons Center 1Dahlgran, VA 22448

US Army Materiel Systems Analysis, :Activity

ATTN: DRXSY-MPAberdeen Proving Ground, MD 21005

CommanderUS Air Force, AFOSR/NPATTN: LTC Gordon Wepfer 1Bolling AFBWashington, DC 20332

Naval Surface Weapons CenterATTN: Mary Tobin, WR42 1White Oak, MD 20910

HQS, Department of the ArmyATTN: DAEN-RDM/Dr. F. dePercin 1Washington, DC 20314

HQS, Department of the ArmyDirectorate of Army ResearchATTN: DAMA-ARZ 2

-ARZ-D IDr. Frank D. Verderame 1

Washington, DC20310

66

IL

Page 71: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

CopiesNo. of

DirectorUS Army Night Vision LaboratoryATTN: Mr. John Johnson 1

Mr. Joseph R. Moulton 1Dr. Richard R. Shurtz 1Dr. C. Ward Trussell, Jr. 1

Fort Belvoir, VA 22060

DirectorNaval Research LaooratoryATTN: Code 5300, Radar Division 1

Code 5370, Radar Geophysics Br. 1Code 5460, Electromagnetic

Propagation Br. 1Washington, DC 20390

Deputy for Science and TechnologyDirector of Defense ResEarch and EngineeringATTN: Military Asst for Environmental Sciences 1Pentagon, Washington, DC 20301

LTC Robert E. JohnsonTRADOCATTN: ATFE-LO-MI, Bldg 4505, Rm B-200Redstone Arsenal, AL 35898

CommanderUSA OTEAATTN: CSTE-STS-I/F. G. Lee 15600 Columbia PkFalls Church, VA 22041

Commander/DirectorCorps of EngineersWaterways Experiment StationATTN: WESEN/Mr. Jerry Lundien 1P. 0. Box 631Vicksburg, MS 39180

DirectorAtmospheric Sciences ProgramNational Sciences FoundationWashington, DC 20550

DirectorBureau of Research and DevelopmentFederal Aviation AgencyWashington, DC 20553

CommanderUS Army Aviation R&D CommandATTN: Dr. Gene MarnerP. 0. Box 209St. Louis, MO 63166

67'I 6

Page 72: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

No. ofCopies

DirectorUS Army Air Mobility Research and

Development LaboratoryAmes Research Center-Moffett Field, CA 94035

Director of Meteorological SystemsOffice of Applications (FM)National Aeronautics & Space Admin.Washington, DC 20546

CommanderCenter for Naval AnalysesATTN: Document Control1401 Wilson BlvdArlington, VA 22209

National Bureau of StandardsBoulder LaboratoriesATTN: LibraryBoulder, CO 80302

Navy RepresentativeNational Climatic CenterArcade BldgAsheville, NC 28801

National Oceanic & Atmospheric Admin.National Climatic CenterATTN: Technical LibraryArcade BldgAsheville, NC 28801

J DirectorDefense Advanced Research Projects Agency1400 Wilson BlvdArlington, VA 22209Commander

ARRADCOMATTN: DRDAR-SCF--IM

Mr. J. HeberleyDover, NJ 07801

National Aeronautics & Space Admin.ATTN: R-AERO-YMarshall Space Flight Center, AL 35812

68

S.7J K 77+-

Page 73: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

No. ofCo ies

Director of Defense Researchand Engineering

Engineering TechnologyATTN: Mr. L. WeisbergWashington, DC 20301

Office of Chief Communications-Electronics, DAATTN: Electronics Systems DirectorateWashington, DC 20315

Office, Asst Chief of Staff forIntelligence, DA

ATTN: ACSI-DSRSIWashington, DC 20310

Office of US Naval Weather ServiceUS Naval Air StationWashington, DC 20390

Office, Asst Secretary of DefenseResearch and Engineering

ATTN: Technical LibraryWashington, DC 20301

CommanderUS Air Force Avionics LaboratoryATTN: MAJ Winston Crandall, ASD/WE 1CPT J. D. Pryce, AFAL/WE IDr. B. L. Sowers, AFAL/RWI 1

Mr. Roger T. Winn, AFAL/WE 1CPT William C. Smith, AFAL/RWI-3(WE) 1Mr. Raymond Wasky 1Mr. D. Rees 1

Wright-Patterson AFB, OH 45433

DA, ODCSLOGUS Army Logistics Evaluation AgencyNew Cumberland Army DepotNew Cumberland, PA 17070

US Army Engineerin9 TopographicLaboratories

Earth Sciences DivisionATTN: ETL-GS-ES, Dr. W. B. Brierly 1Fort Belvoir, VA 22060

CommanderUS Army Research OfficeATTN: Dr. R. Lontz I

Dr. Frank DeLucia 1Dr. James Mink IDr. Hermann Robl 1P. 0. Box 12211Research Triangle Park, NC 27709

69

Page 74: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

No. of

US Army Research & Standardization

Group (Europe)ATTN: DRXSN-E-RX, Dr. A. K. Nedol 2Box 65, FPO New York 90510

US Army Materiel Development andReadiness Command

ATTN: Dr. Gordon Bushy 1Dr. James Bender 1Dr. Edward Sedlak 1

5001 Eisenhower AvenueAlexandria, VA 22333

CommanderUS Army Tank Automotive R&D CommandATTN: DRDTA-RCAF

RCAF, Mr. Eugene Spratke 1Warren, MI 48090

CommanderUSA Mobility Equipment R&D CommandATTN: DRDME-ZK, Dr. Karl H. Steinbach 1Fort Belvoir, VA 22060

Mr. Joseph Egger 1Technology DeputyEngr. Sys. BranchUS Army Combat Development

Experimentation CommandFort Hunter-Liggett, CA 93928

CommanderHQ Rome Air Development Center (AFSC)ATTN: Mr. Larry Telford 1

Mr. Edward E. Altshuler 1Hanscom AFB, MA 01731

Air Force Geophysics LaboratoriesATTN: OPI, Mr. John Selby 1

Mr. V. Falcone 1OPA, Dr. R. Fenn 1CRXL iLKI, Mr. Lund 1

Mr. Gringorten 1Mr. Lenhard 1Mr. Grantham 1

LYS, Mr. R. S. Hawkins 1LYW, Mrs. R. M. Dyer I

Mr. R. J. Donaldson 1LUP, Mr. 3. A. Kunkel 1

Hanscom AFB, MA 01731

70

Page 75: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

No. ofCopies

CommanderUS Army Electronics R&D CommandATTN: DRSEL-RD-SM, Mr. M. Lowenthal 1

DELET-MJ, Dr. H. Jacobs 1Dr. Lothar Wandinger 1

DELCS-TA, Mr. Allan Tarbell 1-R-M, Dr. B. Gelernter 1

DELCT, Dr, R. Buser 1Mr. R. S. Rohde 1

* Fort Monmouth, NJ 07703

CommanderNaval Weapons CenterATIN: Code 3173, Dr. Alexis Shlanta 1

Mr. Robert Moore 1China Lake, CA 93555

CommanderAtmospheric Sciences LaboratoryUS Army Electronics CommandATTN: DELAS-AS, Dr. E. H. Holt 1

-DD, Mr. Rachele 1Mr. James D. Lindberg 1

-EO-ME, Dr. D. R. Brown 1Dr. Donald Snider 1

-AS-T, Mr. Robert Rubio I-AS-P, Mr. John Hines 1

Dr. Kenneth White 1Mr. H. Kobaylshi 1

-EO-S, Dr. Richard Gomez 1Dr. Louis Duncan 1

-BE, Mr. Fred Horning 1White Sands Missile Range, NM 88002

Commander/DirectorOffice, Missile Electronic WarfareATTN: DELEW-M-STO, Mr. Larsen 1

-TAS, Mr. R. Stocklos IMr. R. Lee 1

White Sands Missile Range, NM 88002

DRSMI-R, Dr. McCorkle 1Dr. Rhoades I

-RO, COL Hayton 1Dr. Fowler IMr. Evans 1Mr. JacksonMr'. Lang I

-RP, Mr. Bledsoe 1

-RPR

-RN, Mr. Leonprd

-RA, Mr. Fronefield 1

-_1.

Page 76: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

1

No. ofCopies

-RH, COL DeLeuil 1

-RX, COL Hildreth 1

-RXB, Mr. Booker IMr. Thurman 1

-RL, Mr. Cobb 1

-RLA, Dr. Richardson 1Ms. Pangarova IMr. Harwell 1Mr. Green 1

-RLH, Mr. Christensen 1Mr. Dillon 1Mr. Neblett 1Mr. Williams 1

-RLM, Mr. Campbell 1

-RK, Mr. Stephens 1Dr. Smith 1

-RT, Mr. Storey 1

-RTP, Mr. Bissinger 1

-RTF, Mr. Rubert 1N Mr. Smith 1

-RD, Mr. Powell 1

-RDD, Mr. Dic.son IDr. Gibbons IMr. Wdite 1Mr. Combs 1

-RDK, Mr. Deep 1Mr. Dahlke 1

-RE, Mr. Lindberg 1

-REL, Mr. Barley 1•.REM, Mr. Anderson 1

-RES, Mr. Buie 1

-RS, Mr. Harris 1

-RSP, Mr. Forgey 1Mr. Lee 1

-RG, Mr. Yates 1

Mr. Alongi 1

72

Page 77: It I~'~-F,-- · increases with height and unstable when potential temperature decreases with height. Theoretical studies have indicated that the critical Richardson number is between

No. of

-RR, Dr. Hartman 1Dr. Bennett 1Ms. Romine 1

-RRA, Dr. Essenwanger 25Mr. Dudel 1Dr. Stewart 25Mr. Levitt 1Mr. Betts 1Mrs. Mims 1

-RRD, Dr. Merritt

-RRO, Dr. Duthie-RPT, (Record Copy) 1

(-Reference Copy) I

I7

73

•.