ISSUE27!!|!!October!!2017 · 2017. 11. 6. · !!!!!ESPAÇO!ENERGIA!!| !!!ISSUE27!!|!!October!!2017...

10
ESPAÇO ENERGIA | ISSUE 27 | October 2017 1 Energy and monetary payback time of rockwool as an insulation material in the retrofit of buildings in the temperate climate zone in Brazil Tempo de retorno energético e monetário da lã de rocha como material de isolamento térmico no retrofit de edifícios na zona de clima temperado do Brasil Aloísio Leoni Schmid [email protected] Ricardo Cezar Mello Mattos Habib [email protected] Universidade Federal do Paraná – UFPR Programa de PósGraduação em Engenharia de Construção Civil Abstract: This paper aims at raising more detailed and specific data on the embodied energy of rock wool, in low density, 5 cmthick mats, and also at calculating the payback time of rockwool as the main material of the retrofit of a social house in Curitiba, Brazil. Five scenarios (A to E) were established. Scenario A is a baseline of the embodied energy and costs. Each variation on the scenarios B, C, D and E had its increased embodied energy and costs calculated and simulated to obtain the operation energy. It was observed that the retrofit with rockwool produced savings on heating and cooling costs despite an increase in embodied energy. Therefore, the payback time of the investment in each scenario was calculated. Keywords: Thermal insulation materials; embodied energy; building thermal simulation; energy retrofit. Resumo: Este artigo visa a levantar dados mais detalhados e específicos sobre a energia incorporada de lã de rocha, de baixa densidade, mantas de 5 cm de espessura. Calcula também o tempo de retorno da lã de rocha como o principal material do retrofit de uma casa com projeto de interesse social em Curitiba, Brasil. Foram estabelecidos cinco cenários (A a E). O cenário A é a linha de referência da energia incorporada e dos custos. Cada variação nos cenários B, C, D e E teve seu aumento de energia incorporada e custos calculados e simulados para obter a energia de operação. Observouse que o retrofit com lã de rocha produziu economias em custos de aquecimento e refrigeração, apesar do acréscimo na energia incorporada. Portanto, calculouse o tempo de retorno da operação em cada cenário. Palavraschave: materiais de isolamento térmico; energia incorporada; retrofit energético. 1 Introduction Brazil is mainly a tropical country; however, it includes at least nine climate zones according to the national standard ABNT 15220. One of them, the socalled Bioclimatic Zone 1, is a temperate zone, and more than half of its population lives in the metropolitan region of Curitiba, capital to the State of Paraná. The city has latitude 25°S and longitude 45˚W, and at an altitude higher than 900 m, on the first of three highlands, which make out most of the territory of the state. Climate is highly humid throughout the year; summers are moderate, with absolute maxima mostly under 30˚C; in winter, absolute minima below 0˚C are not rare. The city of Curitiba presents 26,000 yearly degree hours for heating at 18˚C, ranging from 377 degree hours in February to 4,473 degree hours in June, and only 780 yearly degree hours for cooling at 26˚C, which are negligible in May, June and July. The population has a relevant share of descendants of immigrants from cold countries like Poland, Germany, Italy, Ukraine and Japan, who combined original and adapted vernacular elements in their houses. However, such buildings reflected an original condition of temporary rural settings, which were rather poor. Brazil experienced an intense urbanization and the real estate business left behind most technological contributions by the immigrants. The current building industry resembles nowadays what is built in the majority of the country: a reinforced concrete structure; external walls most frequently 12 cm thick, made of

Transcript of ISSUE27!!|!!October!!2017 · 2017. 11. 6. · !!!!!ESPAÇO!ENERGIA!!| !!!ISSUE27!!|!!October!!2017...

Page 1: ISSUE27!!|!!October!!2017 · 2017. 11. 6. · !!!!!ESPAÇO!ENERGIA!!| !!!ISSUE27!!|!!October!!2017 1 ! Energyand monetarypayback time’of’rockwool’as aninsulation’ materialinthe’

                                   ESPAÇO  ENERGIA    |      ISSUE  27      |      October    2017  

1

 

Energy  and  monetary  payback  time  of  rockwool  as  an  insulation  material  in  the  retrofit  of  buildings  in  the  temperate  climate  zone  in  Brazil    

Tempo  de  retorno  energético  e  monetário  da  lã  de  rocha  como  material  de  isolamento  térmico  no  retrofit  de  edifícios  na  zona  de  clima  temperado  do  Brasil      

Aloísio  Leoni  Schmid  [email protected]    Ricardo  Cezar  Mello  Mattos  Habib  [email protected]    

Universidade  Federal  do  Paraná  –  UFPR  Programa  de  Pós-­‐Graduação  em  Engenharia  de  Construção  Civil    

 

Abstract:   This   paper   aims   at   raising   more   detailed   and  specific   data   on   the   embodied   energy   of   rock   wool,   in  low  density,  5  cm-­‐thick  mats,  and  also  at  calculating  the  payback   time   of   rockwool   as   the   main   material   of   the  retrofit  of  a  social  house  in  Curitiba,  Brazil.  Five  scenarios  (A  to  E)  were  established.  Scenario  A  is  a  baseline  of  the  embodied   energy   and   costs.   Each   variation   on   the  

scenarios   B,   C,   D   and   E   had   its   increased   embodied  energy  and  costs  calculated  and  simulated  to  obtain  the  operation  energy.   It  was  observed   that   the   retrofit  with  rockwool  produced  savings  on  heating  and  cooling  costs  despite   an   increase   in   embodied   energy.   Therefore,   the  payback   time   of   the   investment   in   each   scenario   was  calculated.  

Keywords:   Thermal   insulation   materials;   embodied  energy;  building  thermal  simulation;  energy  retrofit.  

Resumo:   Este   artigo   visa   a   levantar   dados   mais  detalhados  e  específicos  sobre  a  energia   incorporada  de  lã   de   rocha,   de   baixa   densidade,   mantas   de   5   cm   de  espessura.  Calcula  também  o  tempo  de  retorno  da  lã  de  rocha  como  o  principal  material  do   retrofit  de  uma  casa  com  projeto  de  interesse  social  em  Curitiba,  Brasil.  Foram  estabelecidos  cinco  cenários  (A  a  E).  O  cenário  A  é  a  linha  de  referência  da  energia   incorporada  e  dos  custos.  Cada  variação   nos   cenários   B,   C,   D   e   E   teve   seu   aumento   de  energia  incorporada  e  custos  calculados  e  simulados  para  obter  a  energia  de  operação.  Observou-­‐se  que  o  retrofit  com   lã   de   rocha   produziu   economias   em   custos   de  aquecimento   e   refrigeração,   apesar   do   acréscimo   na  energia   incorporada.   Portanto,   calculou-­‐se   o   tempo   de  retorno  da  operação  em  cada  cenário.      

Palavras-­‐chave:   materiais   de   isolamento   térmico;  energia  incorporada;  retrofit  energético.  

1 Introduction  

Brazil  is  mainly  a  tropical  country;  however,  it  includes  at  least   nine   climate   zones   according   to   the   national  standard   ABNT   15220.   One   of   them,   the   so-­‐called  Bioclimatic   Zone  1,   is   a   temperate   zone,   and  more   than  half  of   its  population   lives   in   the  metropolitan   region  of  Curitiba,   capital   to   the   State   of   Paraná.   The   city   has  latitude   25°S   and   longitude   45˚W,   and   at   an   altitude  higher  than  900  m,  on  the  first  of  three  highlands,  which  make   out   most   of   the   territory   of   the   state.   Climate   is  highly   humid   throughout   the   year;   summers   are  moderate,   with   absolute  maxima  mostly   under   30˚C;   in  winter,  absolute  minima  below  0˚C  are  not  rare.  The  city  of   Curitiba   presents   26,000   yearly   degree   hours   for  heating   at   18˚C,   ranging   from   377   degree   hours   in  February   to   4,473   degree   hours   in   June,   and   only   780  yearly   degree   hours   for   cooling   at   26˚C,   which   are  negligible   in   May,   June   and   July.   The   population   has   a  relevant   share   of   descendants   of   immigrants   from   cold  countries  like  Poland,  Germany,  Italy,  Ukraine  and  Japan,  who  combined  original  and  adapted  vernacular  elements  in   their   houses.   However,   such   buildings   reflected   an  original  condition  of  temporary  rural  settings,  which  were  rather  poor.    

Brazil   experienced   an   intense   urbanization   and   the   real  estate   business   left   behind   most   technological  contributions   by   the   immigrants.   The   current   building  industry   resembles   nowadays   what   is   built   in   the  majority  of  the  country:  a  reinforced  concrete  structure;  external   walls   most   frequently   12   cm   thick,   made   of  

Page 2: ISSUE27!!|!!October!!2017 · 2017. 11. 6. · !!!!!ESPAÇO!ENERGIA!!| !!!ISSUE27!!|!!October!!2017 1 ! Energyand monetarypayback time’of’rockwool’as aninsulation’ materialinthe’

                                   ESPAÇO  ENERGIA    |      ISSUE  27      |      October    2017  

2

 

hollow   ceramic   bricks   and   a  mortar   finish;   single-­‐glazed  windows;   concrete   slabs   laid   on   the   ground   or   over  garage   space,   with   no   thermal   insulation;   ceramic   or  fibrocement   roof   tiles  with  no  thermal   insulation.   In   the  last   20   years,   radiant   barriers   have   become   more  frequent.    

The   search   for   thermal   comfort   in   buildings,   associated  or   not  with   the   care   for   keeping   operation   energy   (OE)  costs   low,   may   encourage   the   building   retrofit.   One  representative   situation   is   the   case   of   a   single   building,  what   matters   is   the   point   of   view   of   the   owner,   who  compares   costs   and   benefits.   Another   is   the   case   of   a  public   policy   to   promote   the   retrofit   of   a   number   of  building   units.   That   choice   cannot   be   only   a   matter   of  scale  as,  beside  costs  and  benefits,   there  are   inputs  and  outputs,   and   a   whole   energy   balance   involved.   The  embodied  energy   (EE)  of   the  retrofit,  which  may  appear  as   an   external   cost   to   the   single   owner,   becomes   an  explicit  cost  to  society.  

Thermal   insulation   is  one  of   the  most  effective   forms  of  energy  saving  used  for  heating  and  cooling  buildings.  In  a  moderate   climate,   heating   the   air   inside   buildings,  especially   in   the  winter,   but   also   in   transitional   periods  (autumn   and   spring)   is   significant   as   the   demand   for  thermal  energy   is  needed.  Therefore,   the  determination  and   choice   of   the   best   insulation   thickness   is   the   main  objective  of  many  research  projects  [1].  

In  many   countries,   the  energy   consumption  of  buildings  is  around  40%  of  global  energy  demands  and  the  energy  requirement   for   heating   and   cooling   a   building   is  approximately   60%   of   the   total   energy   consumed   in  buildings,   which   represents   the   largest   percentage   of  energy  use  [2].  

In  2001,  the  United  States  consumed  18.6  EJ  of  energy  in  the   residential   sector   and   was   responsible   for   the  emission  of  1,155  Gt  of  CO2   [3].  These   figures   represent  about   18%   of   energy   needs   and   20%   of   national   CO2  emissions  [4].    

Heating   and   cooling   accounted   for   41%   of   the   primary  energy   used   and   36%   of   the   CO2   emissions   in   the  residential  sector,  representing   in  both  cases  around  7%  of   the   national   values   in   that   country.   While   the  importance   of   residential   heating   and   cooling   is   well  understood,   less  obvious  are   the  environmental   impacts  associated   with   the   manufacturing   process   and   the  transportation,  recycling  or  disposal  of  materials  used   in  construction,  renovation  and  maintenance  [5].    

During   the   first   decade   of   the   21st   century,   energy  consumption   has   been   increasing   rapidly   due   to  increasing  population  growth,  urbanization,  migration  to  large   cities   and   improved   quality   of   life.   This  consumption   is   distributed   among   four   main   sectors:  industrial,   construction   (residential   /   commercial),  transport  and  agriculture  [6].  

When  the  building  thermal  load  is  mainly  a  heating  load,  classic   solutions   to   reduce   the   operation   energy   costs  are:    

a) improving  the  thermal  resistance  of  the  envelope;    

b) minimizing   the   ventilation   air   flow,   or   the  implementation   of   heat   recovery   in   the   ventilation  system;  and    

c) improving  solar  direct  or  indirect  gains.    

Ventilation   becomes   relevant   in   buildings   that   have   an  already   efficient   envelope.   The   increase   of   solar   gains,  usually  accomplished  by   the  attachment  of  greenhouses  to  the  facade,  might  be  a  more  difficult  task.    

Both   solutions   are   of   relatively   low   impact   in   terms   of  added   materials   and   increase   of   embodied   energy.  However,  most  probable   is   that   the   increase  of   thermal  resistance  has  a  higher  impact  in  the  reduction  of  energy  consumption,   particularly   when   the   building   envelope  was  not  designed  for  the  whole  year  climate  conditions.  This   choice  may  be  associated  with  a   relevant   impact   in  embodied  energy.      

When  the  building  thermal  load  is  mainly  a  cooling  load,  classic  solutions  are:    

a) blocking  solar  radiations  through  roof  and  aperture;    

b) improving  ventilation,  preferring  cross-­‐ventilation  to  chimney  effect;    

c) increasing  the  thermal  resistance  of  the  envelope  at  the   surfaces   that   are   most   critically   hit   by   the  sunshine   like  west-­‐facing  walls,   or   along   the  whole  building  envelope  in  the  case  of  night  ventilation,  or  mechanical  cooling.  

In  a  temperate  climate,  the  latter  choice  agrees  with  the  situation   of   prevailing   heating   loads.   Shadow   can   be  achieved,  also,  by  means  of   vegetation:  deciduous   trees  are  to  be  preferred;  green  walls  and  green  roofs  add  heat  capacity  and  an  evaporative  effect.  The   increase  of  heat  capacity   in   order   to   diminish   the   thermal   amplitude   of  the   internal   amplitude   might   be   not   feasible   due   to  structural  restrictions.    

Considering   that   the   increment  of   thermal   resistance  of  the  building  envelope   is  a  solution  for  both  situations  of  prevailing   heating   and   cooling   loads,   and   that   it   has   an  expected   impact   in   embodied   energy   [7],   such  technological   solution   requires   a   closer   examination.   It  encompasses  both  opaque  and   transparent  parts  of   the  envelope.    

Transparent   elements   and   framing   are   usually   much  thinner   than   opaque   elements,   giving   rise   to   thermal  bridges   which,   according   to   the   transparent   to   opaque  ration  of  envelope  area,  may  become  relevant.    

Opaque   elements   usually   cover   a  much  wider   envelope  area   and   are   much   thicker   than   transparent   elements,  possibly  becoming  the  most  influential  item  in  the  energy  

Page 3: ISSUE27!!|!!October!!2017 · 2017. 11. 6. · !!!!!ESPAÇO!ENERGIA!!| !!!ISSUE27!!|!!October!!2017 1 ! Energyand monetarypayback time’of’rockwool’as aninsulation’ materialinthe’

                                   ESPAÇO  ENERGIA    |      ISSUE  27      |      October    2017  

3

 

payback   calculation.   Most   common   thermal   insulation  choices  for  opaque  parts   include  natural  materials  (cork,  coconut   fibre,   cotton   and   wool);   processed   mineral  materials  (glass  wool,  rock  wool,  vermiculite  and  perlite);  synthetic  materials  (EPS,  EPU).    

Rock  wool   is   described   by   [8]   as   a  mostly   grey   or   olive  green   coloured   material,   which   has   a   use   as   a   thermal  insulation,  or  in  the  protection  against  fire  and  also  in  the  acoustic   insulation.   It   is   less   flexible   than   glass   wool,  which  provides  it  with  a  better  behaviour  in  the  assembly  of   wall   panels.   The   same   reference   mentions   an  embodied   energy   of   13  MJ/kg   (this   value  was   obtained  mainly  from  German  companies).    

Rock   wool   presents   most   advantages   over   other  insulation   materials:   it   is   durable,   non-­‐biodegradable,  non-­‐inflammable   and   non-­‐toxic   and   made   of   abundant  raw  materials.   Its  costs  are  close  to  most  alternatives  as  EPS   or   glass   wool.   However,   the   manufacture   of   rock  wool   requires   high   temperatures,   which   leads   one   to  expect   an   impact   on   energy   consumption.   As   the   final  product   is   voluminous,   it   limits   the   carrying   capacity   of  trucks,  so  that  an   impact  of  the  transportation  energy   is  also  expected.  However,  literature  indicates  a  favourable  payback  time  in  some  applications  [9,  10,  11,  12,  13].    

The  present  work  has  two  purposes.  First,   to  raise  more  detailed   and   specific   data   on   the   embodied   energy   of  rock  wool  in  low-­‐density,  5  cm-­‐thick  mats,  as  transported  to   Curitiba,   in   the   temperate   climate   zone   in   Brazil.   In  order  to  do  that,  authors  visited  the  main  factory  of  the  product   in  Brazil.   Second,   to   calculate   the  payback   time  of  rockwool  as  the  main  material  to  the  energy  retrofit  of  a   social   housing   unit   in   same   city.   The   house   was  modelled   and   simulated   as   to   its   thermal   behaviour  considering   the   temperate,   super   humid   climate,   with  moderate  summer  temperatures,  and  a  cold  winter  with  heating  load  along  about  two  months  a  year.    

This   study   contributes   to   the   research   on   energy  efficiency  in  buildings  highlighting  the  implementation  of  a  rock  wool-­‐based  thermal  insulation  in  walls  and  ceilings  as   one   of   the   ways   to   improve   this   efficiency.   As   an  innovation,   this   study   also   considerd   the   initial   energy  (IE)  and  its  trade-­‐off  with  operation  energy  (OE)    

Starting  with  a  standard  house  (scenario  A)  in  Curitiba,  in  a   temperate   climate   (bioclimatic   zone   1),   whose  envelope   presents   a   lacking   thermal   resistance,   a  payback   time   shorter   than  one   year  was   obtained   in   all  scenarios  B,  C,  D  and  E.      

Furthermore,  although  studies  show  that   the   IE   for   rock  wool   production   in   Brazil   is   similar   to   that   spent   in   the  USA,   the  Brazilian   energy  matrix   is   almost   entirely   from  renewable   sources,  unlike   the  U.S.  energy  matrix   that   is  based  on  non-­‐renewable  energy.  

The   city   of   Curitiba   has   population   over   1.7   million  inhabitants,   which   gives   the   problem   a   quantitative  relevance  [14].  

2 Materials  and  Methods  

The  determination  of  the  embodied  energy  of  rock  wool  required,  first,  bibliographic  and  documental  research.    

Next,  authors  visited  a  factory  of  the  main  manufacturer  of   rock   wool   in   Brazil   and   could   observe   all   production  steps  and   interview  the  Company  CEO   in  order   to  verify  the  conformity  of  the  literature  and  the  actual  practice.  

Once   the   value   of   embodied   energy   of   rock   wool  (specifically,   for   a   low-­‐density,   5   cm-­‐thick   mat)   was  obtained,  the  three-­‐dimensional  model  of  the  house  was  developed  and  four  retrofit  scenarios  of  addition  of  new  materials  were  considered.      

Transportation   energy   of   new  materials   to   the   building  site  was  considered.    

Operation   energy   consumption   was   calculated   from   a  thermal   simulation  of   the  building   thermal  performance  according  to  the  climate  data  of  Curitiba.      

2.1 Addition  of  thermal  insulation  

In  order  to  determine  the  embodied  energy  of  rock  wool,  authors  first  considered  basic  information  from  the  North  American   Insulating   Material   Association   -­‐   NAIMA   [15].  The   interview   with   the   company   CEO   can   be   found   in  [12].  

The  NAIMA  survey  demonstrates   that   the  production  of  1.00  m2   of   rock  wool  mat  weighting   3.36  kg   requires   as  raw   materials   1.10  kg   of   basalt   rock,   1.29  kg   of   sludge  obtained   from   the   production   of   iron,   silicon   and  manganese   alloys,   1.32  kg   of   water   and   1.43  kg   of  residues.  As  energy  sources,  there  is  the  consumption  of  16.90  MJ  of  coal   (to  melt   the   rocks   in   the  cupola  oven),  7.68  MJ  of  natural  gas  (to  provide  heat  to  the  process  of  curing  and  also  for  the  product  wrapping),  and  3.87  MJ  of  electric  energy  (to  power  the  conveyor  belt)  considering  a   100%   efficient   power   plant.   Therefore,   the   energy  consumption  is  8.467  MJ/kg  or  569  MJ/m3,  or  28.4  MJ/m2  of  the  5  cm-­‐mat.    

NAIMA  survey  2.1.1

Figure  1  illustrates  the  production  process  of  rock  wool.  

 Figure  1:  Scheme  of  rock  wool  production  [16].  

Page 4: ISSUE27!!|!!October!!2017 · 2017. 11. 6. · !!!!!ESPAÇO!ENERGIA!!| !!!ISSUE27!!|!!October!!2017 1 ! Energyand monetarypayback time’of’rockwool’as aninsulation’ materialinthe’

                                   ESPAÇO  ENERGIA    |      ISSUE  27      |      October    2017  

4

 

Visit  to  Rockfibras  2.1.2

In   September,   2013,   the   authors   visited   the   Rockfibras  Company,   100  km   Northeast   from   São   Paulo.   The   visit  allowed   them   to   follow   each   step   of   rock   wool  production   and   confirm   the   information   found   in   the  NAIMA   Report   [15].   Figures   2   to   4,   by   the   authors,  illustrate  part  of  the  production  process.    

According   to   the   Company,   the   energy   consumption  needed  to  produce  1  kg  of   rock  wool   is  2,349  kcal/kg  or  2.73  kWh/kg.  That  value  comprehends  coal  (70%),  BPF  oil  (14%),   diesel   oil   (6%)   and   electric   energy   (11%).   Diesel  costs   are   due   to   the   transportation   of   raw  materials   to  the   factory.   There   is   a   specific   consumption   of   9.828  MJ/kg,   or   660  MJ/m3,   or   33.0  MJ/m2   for   the  5   cm-­‐thick  rock  wool  mat.    

 Figure  2:  General  Prospect  [9].  

 Figure  3:  Output  of  melt  rock  on  the  conveyor  belt.  [9].  

 Figure  4:  Cutting  the  mat  to  the  final  width    [9].  

A   critical   analysis   of   those   data   would   take   the   electric  energy   consumption   as   obtained   by   a   27.5%-­‐efficient  plant  to  convert  heat  into  electricity.  The  result  would  be  higher  12.678  MJ/kg,  852  MJ/m3,  or  42.6  MJ/m2  of  the  5  cm-­‐thick  mat.  

Considering   the   construction   site   in   Curitiba,   500   km  from   the   factory,   and   the   specific   consumption   of   3.56  MJ/km/t  on  a  28  t-­‐truck,  according  to  the  comprehensive  ecological   inventory   by   IFIB   [17]   apud   [18],   one   gets  76.74  MJ/m2  of  rock  wool  mat.    

2.2 Building  evaluation  

Does   it   make   sense   to   adopt   rock   wool   in   an   energy  retrofit   action?   A   quantitative   evaluation   requires   a  defined   geometry,   which   will   influence   the   energy  embodied   in   the   necessary   materials,   as   well   as   the  thermal   behaviour   and   consequently   the   operation  energy   consumption.   As   a   representative   case,   a  standard  low-­‐income,  single  family  house  known  as  R1B,  as   described   by   the   Brazilian   Standard   ABNT   12721,  which   establishes   a   national   cost   index,   was   adopted  [19].  Figure  5  depicts  the  plan  of  the  adopted  design.    

   

 Figure  5:  Plan,  R1B  design–  NBR  12721  [19].  

 

Building  description      2.2.1

The  building  under  analysis  is  single-­‐floor  and  consists  of  following  materials:    

! 11   cm-­‐thick   walls   made   of   9   cm-­‐wide   hollow  bricks,   1  cm   of   mortar   and   paint   outside,   and  1  cm  of  gypsum  and  PVA  paint  inside;    

! aluminium  frames  and  single  glass  panes,  4  mm-­‐thick;    

! 35  mm-­‐thick  wooden  doors;    ! 10   cm-­‐thick   concrete   floor   slab   on   piers,   and  

1  cm-­‐thick  ceiling  of  light  timber;    ! ceramic   roof   tiles,   1   cm-­‐thick,   on   timber  

structure.    

2.3 Determination  of  cost  and  embodied  energy  

Scenario   A   was   taken   as   baseline   of   both   embodied  energy   and   costs.   Each   variation   B,   C,   D   and   E   had   its  increased   embodied   energy   and   costs   calculated,   and  was  simulated  to  obtain  the  operation  energy.  

 

Page 5: ISSUE27!!|!!October!!2017 · 2017. 11. 6. · !!!!!ESPAÇO!ENERGIA!!| !!!ISSUE27!!|!!October!!2017 1 ! Energyand monetarypayback time’of’rockwool’as aninsulation’ materialinthe’

                                   ESPAÇO  ENERGIA    |      ISSUE  27      |      October    2017  

5

 

2.4 Pre-­‐operation  energy  

The   embodied   energy   was   calculated   having   as   main  reference   [18],  which   is   a   study   of   embodied   energy   of  the  R1B  house  model.  The  transportation  component  of  embodied   energy   was   corrected   considering   the  construction  site  in  Curitiba.    

2.5 Pre-­‐operation  energy  in  construction  materials  

Scenarios   A   to   E   are   shown   in   Table   1.   Added  construction  costs  are   shown   in  Table  2.  All   costs  are   in  US$  and  use  metric  notation.  The  average  exchange  rate  (R$  to  US$)  for  February  of  2015  was  considered  [20].    Table  1:  Pre-­‐operation  energy,  scenarios  A  to  E  [9].    Scenario  A  –  baseline  

      Total  (MJ)  Total       0.00    Scenario   B   –   Addition   of   rock   wool   (5   cm)   and   gypsum  (1cm)  at  inner  face  of  exterior  walls  [9].  

 Volume  (m3)   EE  (MJ/m3)   Total  (MJ)  

Total  Scenario  A       0.00  Rock  wool  50  mm   2.7063   1,475.00   3,991.79  Gypsum  plasterboard   0.5607   5,400.00   3,027.78  

Galvanized   profile  48  mm  x  29  mm   0.0072   265,330.00   1,910.38  

PVA  paint   0.0097   84,500.00   819.65  Total       9,749.60    Scenario  C  –  Addition  of  rock  wool  (5  cm)  on  the  ceiling  [9].  

 Volume  (m3)   EE  (MJ/m3)   Total  (MJ)  

Total  Scenario  B       9,749.60  Rock  wool  50  mm   2.2340   1,475.00   3,295.22  Total       13,044.82    Scenario  D–  double  glazing  (8mm  +  8mm  +  6mm).  [9]  

  Volume  (m3)   EE  (MJ/m3)   Total  (MJ)  

Total  Scenario  C       13,044.82  Wooden  frames   -­‐0.0439   2,100.00   -­‐92.19  Single  glazing    3  mm   -­‐0.0230   46,250.00   -­‐1,063.75  

Aluminium  frames   0.0078   567,000.00   4,422.60  Double   glass  8+8+6    

0.10752   46,250.00   4,972.80  

Total       21,284.28    Scenario   E–   Addition   of   rock  wool   (5   cm)   under   the   floor  slab,  with  gypsum  plasterboard  [9].  

 Volume  (m3)   EE  (MJ/m3)   Total  (MJ)  

Total  Scenario  D       21,284.28  Rock  wool  50  mm   2.23405   1,475.00   3,295.22  Gypsum  plasterboard   0.5607   5,400.00   43,027.78  

Galvanized   profile  48mm  x  29mm   0.0072   265,330   1,910.38  

Total       29,517.66    

2.6 Operation  energy  

A   three-­‐dimensional  model   of   the   RB1   house  was   built,  as   depicted   in   Figure   7,   and   simulated   as   to   its   thermal  behaviour  using  the  Mestre  simulation  system.    

Mestre   considers   a   building   as   a   thermal   model   of  lumped   masses   representing   multiple   zones   with   a  realistic  geometry  for  consideration  of  solar  radiation  by  means  of  a  numeric  approximation.    

The  standard  year  is  discretized  in  time  steps  of  one  hour  in  an  unsteady-­‐state  thermal  transfer  analysis.    

   

Table  2:  Added  construction  costs  [9].    Scenario  A  –  baseline  

          Total  (US$)  Total       0.00    Scenario   B   –  Addition   of   rock  wool   (5   cm)   and   gypsum   (1cm)  internally  to  exterior  walls  [9].  

  Area  (m2)  Costs  

(US$/  m2)   Total  (US$)  

Total  Scenario  A       0.00  Rock  wool  50  mm    54.27      4.50      244.22    Gypsum  plasterboard    54.27      23.24      1,261.13    

Galvanized   profile  48mm  x  29mm    54.27      10.42      565.49    

PVA  plaster      54.27      0.63      34.19    Total        2105.13      Scenario  C  –  Addition  of  rock  wool  (5  cm)  on  the  ceiling.  [9].  

  Area  (m2)  Costs  

(US$/  m2)   Total  (US$)  

Total  Scenario  B        2105.13    Rock  wool  50  mm   44.68      4.50      201.06    Total       2,306.19      Scenario  D–  double  glazing  (8mm  +  8mm  +  6mm)    

  Area  (m2)  Costs  

(US$/  m2)   Total  (US$)  

Total  Scenario  C        2,306.19    Wooden  frames    7.680     -­‐83.30     -­‐639.74    Single  glazing    3  mm    7.680     -­‐11.44     -­‐87.89    

 Aluminium   frames  and  double  glazing  

 7.680    502.28      3,857.55    

Total        5,436.10      Scenario  E–  Addition  of  rock  wool  (5  cm)  under  the  floor  slab,  with  gypsum  plasterboard  [9].  

  Area  (m2)  Costs  

(US$/  m2)   Total  (US$)  

Total  Scenario  D        5,436.10    Rock  wool  50  mm   44.68    4.50      201.60    Gypsum  plasterboard    44.68    23.24      1,038.36    

Galvanized   profile  48mm  x  29mm  

44.68    10.42      465.57    

Total       7,141.09  

Page 6: ISSUE27!!|!!October!!2017 · 2017. 11. 6. · !!!!!ESPAÇO!ENERGIA!!| !!!ISSUE27!!|!!October!!2017 1 ! Energyand monetarypayback time’of’rockwool’as aninsulation’ materialinthe’

                                   ESPAÇO  ENERGIA    |      ISSUE  27      |      October    2017  

6

 

 Figure  6:  Simulation  model.  Render  by  Mestre  [21].  

 

Fences,  trees  or  other  shadow-­‐casting  elements  were  not  included.   The   house   main   facade   was   oriented   to   the  west.  The  effect  of  building  orientation  on  the  operation  energy   consumption   was   not   considered,   as   apertures  are  almost  equally  distributed  between  different  facades  and   the   roof   offers   protection   against   critical   solar  radiation.   A   clockwise   rotation   of   90˚   produced   no  relevant   difference   in   the   energy   consumption.  Therefore,  only   the  orientation  with   the  main   facade   to  the  West  was  considered.  The  simulation  system  had   its  development   started   in   2001   by   the   first   author,   using  the  Java  language.  

First,   the   thermal   analysis   module   was   developed.  Results  of   that  analysis  are  either   the  zone  temperature  

marches  for  non-­‐conditioned  buildings,  or  the  marches  of  heating   and   cooling   power   values   at   each   zone   in   the  case   of   mechanically   conditioned   buildings.   Later,   a  module   for   the   simulation   of   light   propagation   by   a  combination   of   raytracing   and   radiosity   method   was  added.    

Besides   isolux   lines,   realistic   imagens   in   three-­‐point  perspective   and   fish-­‐eye   view   can   be   obtained.   Later,   a  room   acoustics   module   was   also   added,   including   the  possibility  of  auralization  (acoustic  rendering  of  anechoic  files   according   to   the   numerically   calculated   impulse  response  of  the  room).  The  thermal  analysis  module  was  tested   under   the   International   Energy   Agency   IEA  BESTEST   procedure   for   multiple   zones,   non-­‐airflow  buildings  and  yielded  trustable  results  [21].  

The   physical   properties   of   the  materials   influencing   the  thermal  behaviour  of  the  building  are  listed  in  Table  3.

Table  4  presents  zone  ventilation  rates  (m³/h).  The  living  room   is   not   ventilated,   once   other   rooms   have  ventilation  rates  above  the  minimum  hygienic  standards,  and   sufficient   air   exchanges   between   rooms   are  assumed.   The   house   had   its   comfort   range   defined  between   18˚C   and   28˚C.   At   each   time   step,   any  temperature   occurring   outside   that   range   causes  mechanical  heating   to  be   turned  on,  and  a   temperature  above  that  range  causes  mechanical  cooling  to  be  turned  on.  

Table   5   presents   the   simulation   zones   with   thermal  capacities   due   to   furniture,   and   inner   heat   generation  rates  and  inner  heat  generation  rates.  

 

 Table  3:  Physical  properties  of  building  materials  [9].  

 

 

 

     

Absorptivity  to  solar  radiation  

Transmissivity  to  solar  radiation  

Material  

Thermal  

cond

uctiv

ity  

(W/m

K)  

Specific  he

at  

(J/kgK)  

Specific  mass  

(kg/m³)  

 red  

 green

 

 blue  

 red  

 green

 

 blue  

Masonry   0.80   700   1000              Timber,  door   0.18   1800   500              Concrete   1.0   1100   2400              Single  glazing   1.0   2400                Ceramic  roof  tiles   0.6   700   2000              Double  glazing   0.11   700   1500   0.1   0.1   0.1   0.9   0.9   0.9  Timber,  ceiling   0.10   1500   550   0.1   0.9   0.8   0   0   0  Masonry  (11  cm)+rock  wool  (5  cm)+plaster  (1  cm)   0.121   641   1478   0.1   0.9   0.8   0   0   0  Concrete  +  rock  wool  (5  cm)  +plaster  (1  cm)   0.117   641   861   0.5   0.5   0.5   0   0   0  

Page 7: ISSUE27!!|!!October!!2017 · 2017. 11. 6. · !!!!!ESPAÇO!ENERGIA!!| !!!ISSUE27!!|!!October!!2017 1 ! Energyand monetarypayback time’of’rockwool’as aninsulation’ materialinthe’

                                   ESPAÇO  ENERGIA    |      ISSUE  27      |      October    2017  

7

 

Table  4:  Simulation  zones  with  ventilation  rates  (m³/h)  [9].  

Room   Bedroom  1   BWC   Bedroom  2   Kitchen   Living  room   Attic  0-­‐6   0.015   0.0015   0.015   0.015   0   0.1  6-­‐12   0.015   0.0015   0.015   0.015   0   0.1  12-­‐18   0.015   0.0015   0.015   0.015   0   0.1  18-­‐24   0.015   0.0015   0.015   0.015   0   0.1  

 

Table  5:  Thermal  zones:  heat  capacity  and  indoor  heat  energy  generation  rate  [9].  

  Heat  capacity  (J/K)  Room   Bedroom  1   BWC   Bedroom  2   Kitchen   Living     Attic  

  500,000   300,000   500,000   500,000   500,000   500,000  

Obs.   Furniture,  apparel  

Sanitary  ware  

Furniture,  apparel   Furniture,  dishware   Furniture   Roof  truss  

Time  (h)   Indoor  heat  generation  (W)  0-­‐1   160   0   160   300   30   0  1-­‐2   160   0   160   300   30   0  2-­‐3   160   0   160   300   30   0  3-­‐4   160   0   160   300   30   0  4-­‐5   160   0   160   300   30   0  5-­‐6   160   0   160   300   30   0  6-­‐7   160   0   160   300   30   0  7-­‐8   0   6,000   0   2,800   30   0  8-­‐9   0   0   0   300   30   0  9-­‐10   0   0   0   300   30   0  10-­‐11   0   0   0   300   30   0  11-­‐12   0   0   0   5,500   30   0  12-­‐13   0   0   0   500   30   0  13-­‐14   0   0   0   300   30   0  14-­‐15   0   0   0   300   30   0  15-­‐16   0   0   0   300   30   0  16-­‐17   0   0   0   300   30   0  17-­‐18   0   0   0   300   30   0  18-­‐19   0   6,000   0   5,600   30   0  19-­‐20   0   0   0   600   400   0  20-­‐21   0   0   200   400   400   0  21-­‐22   0   0   200   300   400   0  22-­‐23   0   0   200   300   200   0  23-­‐24   0   0   200   300   200   0  

Table  6:  Operation  energy  consumption  and  costs  [9].  

      A   B   C   D   E        

Energy  consumption  

Heating  (kWh/year)   5,106   3,016   21,27   1,858   534  

Cooling  (kWh/year)   -­‐5,877   -­‐6,368   -­‐6,642   -­‐6,725   -­‐7,602  

Heating+cooling  (kWh/year)   10,984   9,384   8,769   8,583   8,136  

Heating+cooling,  difference  (kWh/year)     -­‐1,600   -­‐2,215   -­‐2,401   -­‐2,848  

Heating+cooling,  difference  (MJ/year)       -­‐20,945   -­‐28,996   -­‐31,431   -­‐37,283          

Costs  

Heating  energy  costs,  (US$/year)   1,048   619   436   381   109  

Cooling  energy  costs,  (US$/year)   1,206   1,307   1,363   1,380   1,560  

Heating+cooling  energy  costs,  (US$/year)   2,254   1,925   1,799   1,761   1,669  Heating  energy  costs:  difference  ,  

(US$/year)   0   -­‐429   -­‐611   -­‐667   -­‐938  

Heating+cooling  energy  costs,  difference,  (US$/year)  

0   -­‐328   -­‐454   -­‐493   -­‐584  

Page 8: ISSUE27!!|!!October!!2017 · 2017. 11. 6. · !!!!!ESPAÇO!ENERGIA!!| !!!ISSUE27!!|!!October!!2017 1 ! Energyand monetarypayback time’of’rockwool’as aninsulation’ materialinthe’

                                   ESPAÇO  ENERGIA    |      ISSUE  27      |      October    2017  

8

 

Table  7:  Energy  payback  time  calculation  [9].    

  A   B   C   D   E  

Hot  &  cold  air  conditioning            

increased  embodied  energy  (MJ)  from  Table  1   0    9,749    13,044    21,284    29,517  

saved  operation  energy  (MJ/year)   0   -­‐20,944   -­‐28,997   -­‐31,424   -­‐37,285  

energy  payback  time  (years)    

 0.46    0,44    0,67    0,79  

Hot  air  conditioning  &  ventilation              increased  embodied  energy  (MJ)  from  Table  1   0    9,749    13,044    21,284    29,517  

saved  operation  energy  (MJ/year)   0   -­‐7,524   -­‐10,724   -­‐11,693   -­‐16,459  

energy  payback  time  (years)    

 1.29    1.21    1.82    1.79  

Table  8:  Monetary  payback  time  calculation  [9].  

  A   B   C   D   E  

Hot  &  cold  air  conditioning            

increased    construction  costs  from  Table  2  (US$)     0   2,105   2,306   5,436   7,141  

Saved  operation  costs  (US$/year)   0   -­‐329   -­‐455   -­‐493   -­‐585  

monetary  payback  time  (years)    

9.04   6.61   24.26   34.17  

Hot  air  conditioning  +  ventilation  

increased    construction  costs  from  Table  2  (US$)   0   2,105   2,306   5,436   7,141  

Saved  operation  costs  (US$/year)   0   -­‐429   -­‐612   -­‐667   -­‐938  

monetary  payback  time  (years)    

6.34   4.59   13.06   11.70  

 

3 Results  and  discussion  

Results  and  discussion  on  operation  energy  and  costs  are  presented  below.  

3.1 Operation  energy  

Table   6   presents   simulation   results:   operation   energy  consumption   values   and   respective   costs   for   the  scenarios   A   to   E,   separated   by   heating   and   cooling  situations.      

The   adopted   electric   energy   tariff   to   the   residential  consumer  is  US$  0.2047  (R$  0.69118/kWh)  [22],  which  is  valid  since  June  24  2016.  This  tariff  includes  the  value  of  US$0.7042   (R$0.25062)   to   account   for   the   ICMS   and  PIS/COFINS  taxes.  

A   reduction   in   heating   costs   is   observed,  mainly,   in   the  transition  from  scenario  A  to  scenario  B.  The   increase   in  cooling   costs   is   also   observed,   as   the   building   envelope  becomes   more   insulated   and   therefore   dependent   on  mechanical   cooling.   Although   the   thermal   insulation  brings   improvement   in   the   prevention   of   radiant   heat  fluxes   descending   from   the   roof,   also   of   vertical   walls  which,   despite   having   light   colours,   absorb   heat   from  direct   sunshine,   a   liquid   effect   of   imprisoning   inner  generated  heat  is  observed.  

3.2 Energy  payback  

Next,  simple  energy  payback  calculations  are  presented.    

 Figure  7:  Progressive  energy  payback  time  of  scenarios  A  

through  E  under  hot  and  cold  air  conditioning  [9].  

 Figure  8:  Progressive  energy  payback  time  of  scenarios  A  through  E  under  hot  air  conditioning  in  winter  and  natural  

ventilation  in  summer  [9].  

Page 9: ISSUE27!!|!!October!!2017 · 2017. 11. 6. · !!!!!ESPAÇO!ENERGIA!!| !!!ISSUE27!!|!!October!!2017 1 ! Energyand monetarypayback time’of’rockwool’as aninsulation’ materialinthe’

                                   ESPAÇO  ENERGIA    |      ISSUE  27      |      October    2017  

9

 

Figure  7  presents  the  energy  payback  time  of  scenarios  A  to  E,  in  the  case  that  mechanical  air  conditioning  is  simply  turned  on  the  whole  year.  

In  a  wholly  mechanized  air  conditioning  one  can  assume  that  ventilation   follows  a   theoretical  model.  However,   if  natural   ventilation   is   used,   the   ventilation   rates,   most  probably,  are  in  disagreement  with  the  actual  conditions,  once   there   is   the   influence   of   local   wind   conditions,   as  well   as   vertical   temperature   gradients,   which   are   not  taken   into   account   by   Mestre,   as   it   happens   with   the  majority   of   simulation   systems   which   assume  concentrated  mass.      

Figure  8   corresponds   to   the   case   in  which   a  mechanical  air   conditioning   in   winter   and   natural   ventilation   in  summer.   Natural   ventilation,   as   a   strategy   to   achieve  thermal   comfort   in   summer,   is   sufficient   in   Curitiba.   A  simulation  of  scenario  E,  modified  to  consider  a  ten  times  stronger   ventilation   air   flow,   and   also   considering   that  the   living   room   is   ventilated   at   0.15   m³/s,   leads   to   an  almost  null  energy  consumption  in  summer.    

Table  7  presents  the  calculation  of  energy  payback  time,  which   ranges   from  0.45  years   (scenario  C)   to  0.79  years  (scenario   E)   when   considering   hot   and   cold   air  conditioning.  These  surprisingly   low  values  are   the  main  finding  of   the  present  paper:   rock  wool   as   an   insulation  material   to   a   single   family   residence  has   a   short   energy  payback  time  even  in  a  temperate  climate.  

3.3 Costs  

The   following   cost   calculations   were   based   on   the  compound  interest  formula  at  an  annual  rate  of  7.5%.  

Table   8   presents   the   calculation   of   monetary   payback  time,   which   ranges   from   6.6   years   (scenario   C)   to   34.2  years   (scenario   E)   when   considering   hot   and   cold   air  conditioning.   Figures   9   and   10   present   the   evolution   of  operation  energy  costs  along  scenarios  A  to  E.    

The  retrofit   scenario  which  has  shortest  payback   time   is  C.   Scenario  D,   substitution   of   single   glazing  windows   by  double  glazing  windows,   is   least  attractive,  as   it   involves  a   costly   operation,   mainly   because   there   is   not   a  developed   market   of   standardized   double-­‐glazing  products  in  Brazil.  

 

 Figure  9:  Costs  considering  mechanical  heating  and  cooling  [9].  

 Figure  10:  Costs  considering  only  mechanical  heating  [9].  

Only   scenarios   B   and   C   have   proved   an   attractive  investment,   although   not   at   a   comparable   rate   to   the  energy  payback.  The  arrow  gradient  at  Figures  9  and  10  suggests   that   the   addition   of   rock  wool   under   the   floor  slab   is   slightly   less   profitable   than   B   scenario   and  therefore   should   be   made   prior   to   the   glazing  replacement,   which   has   not   proved   a   profitable  operation  in  the  present  case.      

4 Conclusion  

The   energy   retrofit   of   a   social   housing   unit   located   in  Curitiba  using  the  addition  of  rock  wool  to  envelope  walls  and,  further,  of  other  insulation  items  was  analysed  as  to  its  energy  and  monetary  payback  time.  Conclusions  may  not   be   generalized   for   other   locations   in   Brazil   due   to  climate  and  transportation  distances.    

If   the   energy   payback   is   considered,   the   retrofit   actions  considered  in  scenarios  B  through  E  make  sense;  in  terms  of  investment,  only  for  rock  wool  (not  for  double  glazing),  and  at  a  much  lower  rate  than  in  terms  of  energy.  

As   the   analysis   was   conducted   in   a   temperate   climate,  the   effects   are   felt   in   both   cases   (cooling   and   heating  loads).  A  similar  analysis  conducted  in  climates  which  are  only   cold   or   only   hot   would   show   more   extreme  situations,   leading   to  much   shorter   payback   times.   It   is  relevant   to   consider   that   the   “passive   operation   of   the  house  requires  an  active  occupant”.1    

The   analysis   makes   evident   that   the   energy   costs   are  comparatively  high  to  the  residential  consumer,  and  low  to   the   industry,   and   suggests   the   presence   of   heavy  subsidies   of   energy   costs   to   industry.   Under   such  circumstances,   a   comprehensive   energy   efficiency  programme  will  divide  opinions.      

A   public   policy   aiming   at   energy   efficiency   should  consider   the   liquid   result  of  building   retrofits,  as  well  as  the   whole   industry   chain.   It   is   necessary   to   consider  energy  in  the  pre-­‐operation  phase.    

Acknowledgements  

Authors  are  indebted  with  Mr.  Fábio  Motta  (Rock  Fibras)  for  the  hospitality  and  information  provided.  

                                                                                                                                                       1   -­‐   A  motto  by   Prof.  Dr.-­‐Ing.   Jürgen   Schmid   (1944-­‐2013),   an  European  pioneer  in  the  technology  of  renewable  energy  and  doctoral  advisor  to  the  first  author.  

Page 10: ISSUE27!!|!!October!!2017 · 2017. 11. 6. · !!!!!ESPAÇO!ENERGIA!!| !!!ISSUE27!!|!!October!!2017 1 ! Energyand monetarypayback time’of’rockwool’as aninsulation’ materialinthe’

                                   ESPAÇO  ENERGIA    |      ISSUE  27      |      October    2017  

10

 

References  

[1]     M.   S.   AL-­‐HOMOUD,   "Performance   characteristics  and   practical   applications   of   common   building  thermal   insulation  materials.,"  no.  40,  pp.  353-­‐366,  May  2004.    

[2]     A.  P.  MELO  and  R.  LAMBERTS,  "Envelope   insulation  and   heat   balance   in   commercial   buildings.,"   in  Eleventh  International  ibpsa,  2009.    

[3]     EIA,   "Residential   Energy   Consumption   Survey  (RECS),"  EIA,  Washington,  2011.  

[4]     EIA,   "Energy   consumption   expenditures,   and  emissions  indicators,  1949-­‐2004,"  2006.  

[5]     B.  UPTON,  R.  MINER,  M.  SPINNEY  and  L.  S.  HEATH,  "The   greenhouse   gas   and   energy   impacts   of   using  wood   instead   of   alternatives   in   residential  construction   in   the   United   States.,"   Biomass   and  Bioenergy,  vol.  32,  no.  1,  2008.    

[6]     A.   BOLATTÜRK,   "Determination   of   optimum  insulation   thickness   for   building  walls   with   respect  to   various   fuels   and   climate   zones   in   Turkey.,"  Applied  Thermal,  no.  43,  pp.  1055-­‐64,  2006.    

[7]     W.   INSTITUTE,   "Final   Report   on   the   Material  Efficiency   and   Resource   Conservation   (MaRess)  Project,"  2010.  

[8]     M.   G.   R.   S.   R.   A.   PFUNDSTEIN,   "Dämmstoffe:  Grundlagen,   Materialien,   Anwendungen.   Detail  Praxis.,"  Detail,  Munich,  2007.  

[9]     R.   C.  M.  M.  HABIB,   "Tempo  de  Retorno   Energético  de   Isolantes   Térmicos   na   Climatização   de  Edificações:  Estudo  de  Caso  da  Lã  de  Rocha  à  Zona  Bioclimática  1  do  Brasil.,"  Masters,  Thesis,  (2014).    

[10]     M.   LEONARDI,   "Price   information   of   products   by  Isar  -­‐  Isolamentos  Térmicos  e  Acústicos,"  Jan  2017.    

[11]     P.   J.   F.   A.   U.   MENDONÇA,   "Habitar   Sob   Uma  Segunda  Pele,"  Doctoral,  Thesis,  2005.    

[12]     F.  MOTTA,  "Personal  communication,"  2013.    

[13]     R.   A.   SILVA,   "Price   information   of   products   by  CELPROM,"  25  Fev  2017.    

[14]     IBGE,   "cidades.ibge.gov.br,"   2017.   [Online].  Available:  http://cidades.ibge.gov.br/xtras/perfil.php?codmun=410690.  [Accessed  Jan  2017].  

[15]     P.   AMERICAS,   "Life   Cycle   Assessment   of   Mineral  Wool  Insulation  Products,"  Colorado  -­‐  US,  2010.  

[16]     GRODAN,   "   Rockwool   as   a   Growing   Substrate   for  Hydroponic   Systems,"   .   Roerdmond   -­‐   The  Netherlands   2004.   Available   under   <  http://grodan101.com/knowledge-­‐center/rockwool-­‐growing-­‐substrate-­‐hydroponic-­‐systems,   2004.   [Online].   Available:  http://grodan101.com/knowledge-­‐center/rockwool-­‐growing-­‐substrate-­‐hydroponic-­‐systems.  [Accessed  2014].  

[17]     I.   f.   I.   B.   IFIB,   "Baustoffdaten   –   Ökoinventare,"  Technische   Hochschule   (ETH)   Zürich;   M.   Holliger,  Holliger  Energie  Bern,  Karlsruhe  /  Weimar  /  Zürich,  1995.  

[18]     S.  F.  TAVARES,  "Metodologia  de  Análise  do  Ciclo  de  Vida   Energético   de   Edificações   Residenciais  Brasileiras,"  Doctoral  thesis,  2006.    

[19]     A.   B.   D.   N.   T.   (ABNT),   "NBR   12721:   Avaliação   de  custos   unitários   e   preparo   de   orçamento   de  construção   para   incorporação   de   edifícios   em  condomínio   –   Procedimento.,"   ABNT:   Associação  Brasleira  de  Normas  Técnicas,  Rio  de  Janeiro,  2006.  

[20]     UOL,   "economia.uol.com.br/cotacoes   /cambio/  dolar-­‐turismo-­‐estados-­‐unidos/?historico,"   2017].  [Online].   Available:  https://economia.uol.com.br/cotacoes   /cambio/  dolar-­‐turismo-­‐estados-­‐unidos/?historico.   [Acesse  on  Jan.  2017]..  [Accessed  Jan  2017].  

[21]     A.   L.   SCHMID   and   H.   F.   GRAF,   "Validation   of  MESTRE   Building   Simulation   System   according   to  Best-­‐Test   Multi-­‐Zone,   Non-­‐Airflow,   In-­‐Depth  Diagnostic   Cases,"   in   Proceedings   of   Building  Simulation   2011:   12th   Conference   of   International  Building   Performance   Simulation   Association,  Sydney   -­‐   Australia,   2011   -­‐   ,   In-­‐Depth   Diagnostic  Cases.  In  Proceedings  of  Building  Simulat.    

[22]     http://www.copel.com/hpcopel/root/nivel2.jsp?endereco=%2Fhpcopel%2Froot%2Fpagcopel2.nsf%2F5d546c6fdeabc9a1032571000064b22e%2Fe3a5cb971ca23bf503257488005939ba.   [Accessed   Jun  2017]