Isoparametric Formulation

42
MANE 4240 & CIVL 4240 Introduction to Finite Elements Mapped element geometries and shape functions: the isoparametric formulation Prof. Suvranu De

description

Isoparametric Formulation

Transcript of Isoparametric Formulation

Page 1: Isoparametric Formulation

MANE 4240 & CIVL 4240Introduction to Finite Elements

Mapped element geometries and shape functions: the isoparametric formulation

Prof. Suvranu De

Page 2: Isoparametric Formulation

Reading assignment:

Chapter 10.1-10.3, 10.6 + Lecture notes

Summary:

• Concept of isoparametric mapping• 1D isoparametric mapping• Element matrices and vectors in 1D• 2D isoparametric mapping : rectangular parent elements • 2D isoparametric mapping : triangular parent elements • Element matrices and vectors in 2D

Page 3: Isoparametric Formulation

For complex geometries© 2002 Brooks/Cole Publishing / Thomson Learning™

General quadrilateral elements

Elements with curved sides

Page 4: Isoparametric Formulation

s

t1 1 12

3 4

1

1

Consider a special 4-noded rectangle in its local coordinate system (s,t)

44332211

44332211

vNvNvNvNv

uNuNuNuNu

Displacement interpolation

)1)(1(4

1),(

)1)(1(4

1),(

)1)(1(4

1),(

)1)(1(4

1),(

4

3

2

1

tstsN

tstsN

tstsN

tstsN

Shape functions in local coord system

Page 5: Isoparametric Formulation

Recall that

ttNtNtNtN

ssNsNsNsN

NNNN

44332211

44332211

4321 1 Rigid body modes

Constant strain states

Page 6: Isoparametric Formulation

Goal is to map this element from local coords to a general quadrilateral element in global coord system

s

t1 1 12

3 4

1

1

Local coordinate system

s

y 1

2

3

4x

s

t

Global coordinate system

),(

),(

tsyy

tsxx

),(

),(

yxtt

yxss

),(1 tsN ),(1 yxN

),()),(),,((),( 111 yxNyxtyxsNtsN

Page 7: Isoparametric Formulation

In the mapped coordinates, the shape functions need to satisfy

1. Kronecker delta property

nodesotherallat

inodeatN i 0

1

yyN

xxN

N

ii

i

ii

i

ii

1

Then

2. Polynomial completeness

Page 8: Isoparametric Formulation

The relationship

ii

i

ii

i

ytsNy

xtsNx

),(

),(

Provides the required mapping from the local coordinate systemTo the global coordinate system and is known as isoparametric mapping

(s,t): isoparametric coordinates(x,y): global coordinates

Page 9: Isoparametric Formulation

s

t1 1

1

1

s

t

y

x

Examples

s

t

1

1

y

x

s

t

Page 10: Isoparametric Formulation

1D isoparametric mapping

1 2

x2x1 x1 2

s1 1

Local (isoparametric) coordinates

3 noded (quadratic) element

3

3 x3

23

2

1

1)(

2

1)(

2

1)(

ssN

sssN

sssN

Isoparametric mapping

3

1

)(i

ii xsNx

32

21 12

1

2

1xsx

ssx

ssx

Page 11: Isoparametric Formulation

32

21 12

1

2

1xsx

ssx

ssx

NOTES1. Given a point in the isoparametric coordinates, I can obtain the corresponding mapped point in the global coordinates using the isoparametric mapping equation

2

3

1

;1

;0

;1

xxsAt

xxsAt

xxsAt

Question x=? at s=0.5?

Page 12: Isoparametric Formulation

2. The shape functions themselves get mappedIn the isoparametric coordinates (s) they are polynomials.In the global coordinates (x) they are in general nonpolynomialsLets consider the following numerical example

4;6;0 321 xxx

1 2

x

3

4 2

Isoparametric mapping x(s)

21 2 3

2

2

1 11

2 21 1

0 6 1 42 2

4 3

s s s sx x x s x

s s s ss

s s

Inverse mapping s(x)

2

4253 xs

Simple polynomial

Complicated function

Page 13: Isoparametric Formulation

Now lets compute the shape functions in the global coordinates

)(

4252102

1

2

42531

2

4253

2

1

2

1)(

2

2

xN

xx

xx

sssN

Page 14: Isoparametric Formulation

Now lets compute the shape functions in the global coordinates

N2(x) is a complicated function

However, thanks to isoparametric mapping, we always ensure 1. Knonecker delta property2. Rigid body and constant strain states

1 2

s1 1

3

N2(s)

1 2

x

3

4 2 11

N2(x)

N2(s) is a simple polynomial

2

1)(2

sssN

xxxN 425210

2

1)(2

Page 15: Isoparametric Formulation

Element matrices and vectors for a mapped 1D bar element

1 2

x1 2

s1 1 3

3

Displacement interpolation dNuNuNuNu 332211

Strain-displacement relation dBudx

dNu

dx

dNu

dx

dN

dx

du 3

32

21

1

Stress dBEE

The strain-displacement matrix

dx

dN

dx

dN

dx

dNB 321

Page 16: Isoparametric Formulation

The only difference from before is that the shape functions are in the isoparametric coordinates

23

2

1

1)(

2

1)(

2

1)(

ssN

sssN

sssN

And we will not try to obtain explicitly the inverse map.How to compute the B matrix?

We know the isoparametric mapping

3

1

)(i

ii xsNx

Page 17: Isoparametric Formulation

Do I know ?)(

ds

sdN i

Do I know ?dx

ds

I know

3

1

)(i

ii xsNx

Hence )()(3

1

mappingofJacobianJxds

sdN

ds

dx

ii

i

ds

sdN

Jdx

sdN ii )(1)(From (*)

dx

ds

ds

sdN

dx

sdN ii )()(

Using chain rule

(*)

Page 18: Isoparametric Formulation

What does the Jacobian do?

dsJdx

Maps a differential element from the isoparametric coordinates to the global coordinates

Page 19: Isoparametric Formulation

The strain-displacement matrix

ds

dN

ds

dN

ds

dN

J

dx

dN

dx

dN

dx

dNB

321

321

1

For the 3-noded element

321

3

1

22

12

2

12)(sxx

sx

sx

ds

sdNJ

ii

i

s

ss

JB 2

2

12

2

121

Page 20: Isoparametric Formulation

The element stiffness matrix

1

1

2

1

JdsdxJdsBBEA

dxBBEAk

T

x

x

T

NOTES1. The integral on ANY element in the global coordinates in now an integral from -1 to 1 in the local coodinates2. The jacobian is a function of ‘s’ in general and enters the integral. The specific form of ‘J’ is determined by the values of x1, x2 and x3. Gaussian quadrature is used to evaluate the stiffness matrix3. In general B is a vector of rational functions in ‘s’

Page 21: Isoparametric Formulation

Isoparametric mapping in 2D: Rectangular parent elements© 2002 Brooks/Cole Publishing / Thomson Learning™

Parent element

Isoparametric mapping

Mapped element in global coordinates

ii

i

ii

i

ytsNy

xtsNx

),(

),(

Page 22: Isoparametric Formulation

1

2

3

4

1( , ) (1 )(1 )

41

( , ) (1 )(1 )41

( , ) (1 )(1 )41

( , ) (1 )(1 )4

N s t s t

N s t s t

N s t s t

N s t s t

Isoparametric mapping

ii

i

ii

i

ytsNy

xtsNx

),(

),(

Shape functions of parent element in isoparametric coordinates

Page 23: Isoparametric Formulation

NOTES:1. The isoparametric mapping provides the map (s,t) to (x,y) , i.e.,

if you are given a point (s,t) in isoparametric coordinates, then you can compute the coordinates of the point in the (x,y) coordinate system using the equations

2. The inverse map will never be explicitly computed.

ii

i

ii

i

ytsNy

xtsNx

),(

),(

Page 24: Isoparametric Formulation

s

t1 1 34

1 2

1

1

7

8

5

6

8-noded Serendipity element© 2002 Brooks/Cole Publishing / Thomson Learning™

Page 25: Isoparametric Formulation

8-noded Serendipity element: element shape functions in isoparametric coordinates

1 5

2 6

3 7

4 8

1 1( , ) (1 )(1 )( 1) ( , ) (1 )(1 )(1 )

4 21 1

( , ) (1 )(1 )( 1) ( , ) (1 )(1 )(1 )4 21 1

( , ) (1 )(1 )( 1) ( , ) (1 )(1 )(1 )4 2

1 1( , ) (1 )(1 )( 1) ( , ) (1 )

4 2

N s t s t s t N s t t s s

N s t s t s t N s t t t s

N s t s t s t N s t t s s

N s t s t s t N s t s

(1 )(1 )t t

Page 26: Isoparametric Formulation

NOTES1. Ni(s,t) is a simple polynomial in s and t. But Ni(x,y) is a complex function of x and y.2. The element edges can be curved in the mapped coordinates3. A “midside” node in the parent element may not remain as a midside node in the mapped element. An extreme example

s

t1 1 12

3 4

1

1

5

6

7

8x

y 1

85

7

2,6,3

Page 27: Isoparametric Formulation

4. Care must be taken to ensure UNIQUENESS of mapping

s

t1 1 12

3 4

1

1

x

y

1

2

3

4

Page 28: Isoparametric Formulation

Isoparametric mapping in 2D: Triangular parent elements

s

t2

3 1

1

1

P(s,t)st

)1(2

12

2

2

1

12

23

31

123

ts

s

t

P

P

P

tsL

tL

sL

P

P

P

1123

123

123

312

123

231

Parent element: a right angled triangles with arms of unit length Key is to link the isoparametric coordinates with the area coordinates

Page 29: Isoparametric Formulation

Now replace L1, L2, L3 in the formulas for the shape functions of triangular elements to obtain the shape functions in terms of (s,t)

Example: 3-noded triangle

y

xs

t2

3 1

1

1 (x1,y1)s

t

Parent shape functions

tsN

tN

sN

13

2

1

Isoparametric mapping

332211

332211

),(),(),(

),(),(),(

ytsNytsNytsNy

xtsNxtsNxtsNx

2 (x2,y2)

3 (x3,y3)1

Page 30: Isoparametric Formulation

Element matrices and vectors for a mapped 2D element

Stress approximation

Recall: For each element

Element stiffness matrix

Element nodal load vector

dNu

dBD

dBε

eV

k dVBDBT

S

eT

b

e

f

S ST

f

V

T dSTdVXf NN

Displacement approximation

Strain approximation

STe

e

Page 31: Isoparametric Formulation

In isoparametric formulation1. Shape functions first expressed in (s,t) coordinate systemi.e., Ni(s,t)2. The isoparamtric mapping relates the (s,t) coordinates with the

global coordinates (x,y)

3. It is laborious to find the inverse map s(x,y) and t(x,y) and we do not do that. Instead we compute the integrals in the domain of the parent element.

ii

i

ii

i

ytsNy

xtsNx

),(

),(

Page 32: Isoparametric Formulation

NOTE1. Ni(s,t) s are already available as simple polynomial functions2. The first task is to find and

x

N i

y

N i

Use chain rule

t

y

y

N

t

x

x

N

t

yxN

s

y

y

N

s

x

x

N

s

yxN

iii

iii

),(

),(

Page 33: Isoparametric Formulation

In matrix form

y

Nx

N

t

y

t

xs

y

s

x

t

Ns

N

i

i

i

i

Can be computed

We want to compute these for the B matrix

This is known as the Jacobian matrix (J) for the mapping(s,t) → (x,y)

y

Nx

N

J

t

Ns

N

i

i

i

i

Page 34: Isoparametric Formulation

t

Ns

N

J

y

Nx

N

i

i

i

i

1

How to compute the Jacobian matrix?Start from

ii

i

ii

i

ytsNy

xtsNx

),(

),(

ii

i

ii

i

ii

i

ii

i

yt

tsN

t

yy

s

tsN

s

y

xt

tsN

t

xx

s

tsN

s

x

),(;

),(

),(;

),(

Page 35: Isoparametric Formulation

ii

i

ii

i

ii

i

ii

i

yt

tsNx

t

tsN

ys

tsNx

s

tsN

t

y

t

xs

y

s

x

J

),(),(

),(),(

Need to ensure that det(J) > 0 for one-to-one mapping

Page 36: Isoparametric Formulation

3. Now we need to transform the integrals from (x,y) to (s,t)

Case 1. Volume integrals

1

1

1

1

)det(),(),(),( dsdtJhtsfdAhtsfdVtsfee AV

h=thickness of element

This depends on the key result

dsdtJdxdydA )det(

Page 37: Isoparametric Formulation

s

t1 1 12

3 4

1

1

Problem: Consider the following isoparamteric map

y

12

3 4(3,1) (6,1)

(6,6)(3,6)

xISOPARAMETRIC COORDINATES

y

GLOBAL COORDINATES

Page 38: Isoparametric Formulation

44332211

44332211

vNvNvNvNv

uNuNuNuNu

Displacement interpolation

)1)(1(4

1),(

)1)(1(4

1),(

)1)(1(4

1),(

)1)(1(4

1),(

4

3

2

1

tstsN

tstsN

tstsN

tstsN

Shape functions in isoparametric coord system

Page 39: Isoparametric Formulation

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

x N s t x N s t x N s t x N s t x

y N s t y N s t y N s t y N s t y

The isoparamtric map

(1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )6 3 3 6

4 4 4 43(1 )

2(1 )(1 ) (1 )(1 ) (1 )(1 ) (1 )(1 )

6 6 1 14 4 4 4

7 5

2

s t s t s t s tx

s

s t s t s t s ty

t

In this case, we may compute the inverse map, but we will NOT do that!

Page 40: Isoparametric Formulation

The Jacobian matrix

NOTE: The diagonal terms are due to stretching of the sides along the x-and y-directions. The off-diagonal terms are zero because the element does not shear.

30

25

02

x y

s sJx y

t t

3(1 )

27 5

2

sx

ty

since

1 2 / 3 0 15and det( )

0 2 / 5 4J J

Page 41: Isoparametric Formulation

Hence, if I were to compute the first column of the B matrix along the positive x-direction

I would use

1

1

1

0

N

x

N

y

B

1 1

1

1 1

112 / 3 0 64

0 2 / 5 1 1

4 10

N N ttx sJN N s sy t

1

1

1

1

60 0

1

10

N t

x

N s

y

B

Hence

Page 42: Isoparametric Formulation

The element stiffness matrix

1 1T T

1 1B D B dV B D B det( ) dsdt

eVk J h