Ising Landau 1

Upload
marcofrasca 
Category
Documents

view
229 
download
2
Transcript of Ising Landau 1
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 1/21
The Ising model
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 2/21
Ernst IsingMay 10, 1900 in KölnMay 11 1998 in Peoria (IL)
S. G. Brush, History of the LenzIsing Model, Rev. Mod. Phys 39 , 883893 (1962)
• Student of Wilhelm Lenz in Hamburg. PhD 1924.Thesis work on linear chains of coupled magneticmoments. This is known as the Ising model.
• The name ‘Ising model’ was coined by Rudolf Peierls in his 1936 publication ‘On Ising’s model of ferromagnetism’.
• He survived World War II but it removed himfrom research. He learned in 1949  25 years afterthe publication of his model  that his model hadbecome famous.
• Lars Onsager solved the Ising model (zero eld)in two dimensions in 1944.
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 3/21
Ising modelA general Ising model is dened as
• No phase transition at d=1 for T>0
• For J1ijk =0 , phase transition(s) for
• For d>4, mean eld results are exact
∑i= j
 J i j  < ∞
H = − ∑i
H isi − ∑i, j
J i. j sis j − ∑i, j , k
J 1i , j , k sis j sk + ....
It has the following general properties
pair interactions 3body interactionscoupling to a eld
Lower critical dimension is d L =1 and the upper critical dimension is d U=4.
Thermodynamics of the Ising model can be obtained from
F = − k B T ln [Tr e − βH ] s i = −∂ F
∂ H i T
for example
Ising model in 2D
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 4/21
Ising model in 1DDene
can be calculated exactly.
In the following, we will take a look at boundary conditions, thermodynamicsand correlations.
Ising model in 1D
h ≡ βH and K ≡ β J . The partition function is given by
Z (h,
K , N ) = ∑
{s }
e h ∑ N i= 1 s i+ K ∑ i s i s i+ 1
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 5/21
Ising model in 1D: Periodic boundariesPeriodic boundary conditions are dened by
We assume that there is no external eld (h=0). Then, we have
s N + 1 = s 1
Ising model in 1D with PBC
1 2 3 N1 N N+1
......
Z = ∑s 1
∑s 2
.... ∑s N
e K ∑ N − 1i = 1 s i s i+ 1 + Ks N s 1
PBCnote
We can solve this. Dene η i= s
is
i + 1where i = 1
, ..., N − 1
η i +1 when s i=s i+11 when s i=s i+1
= }. Then, we have
Substitution to the partition function gives Z = ( 2cosh K ) N + ( 2sinh K ) N
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 6/21
Ising model in 1D: Free boundaries
Again we assume that there is no external eld (h=0). Then, we have
Ising model in 1D with free boundary conditions
1 2 3 N1 N......
Using the same transformation as before, i.e., η i = s i s i + 1 where i = 1, ...,
N − 1
η i +1 when s i=s i+11 when s i=s i+1
= }that is,
Z = ∑s 1 ∑s 2.... ∑s N
eK ∑ N − 1
i = 1s i s i + 1
we have Z = 2 (2cosh K ) N − 1
We have the partition function now. Next, we take a look at free energy andthermodynamics.
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 7/21
Ising model in 1D: Free energy Since we have the partition function, we also have the free energy
For PBC:
F = − k B T N ln (2cosh K ) + ln [1 + ( tanh K ) N ] → − Nk B T ln (2cosh K )
thermodynamic limit
For free (or open) boundary conditions:
F = − k B T N ln 2 + N − 1 N
ln (cosh K ) → − Nk B T ln (2cosh K )
thermodynamic limit
The difference between boundary conditions becomes negligible
at the thermodynamic limit.
The more general way is do this with transfer matrix. Works alsofor nonzero eld.
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 8/21
Ising model in 1D: Pair correlation functionThe twopoint spinspin correlation function is dened as
G(i , j ) ≡ (si − si )( s j − s j ) = si s j − si s j
If the system is spatially homogeneous (has translational invariance), then
si = s j ≡ s
Above T c we haves
=0 G
(i , j
) =s
is
j
What does G(i,j) measure?
The probability for spins i and j to have the same value is
Pi j = δ si s j
= 12
(1 + a i s j )
=1
2+
1
2[G(i , j ) + si s j ]
Above T c we have Pi j =1
2[1 + G(i , j )]
Around T c
At T=0
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 9/21
Pair correlation functionFor a translationally invariant system we have
The result (homework exercise, see e.g., Goldenfeld) is
Then, obviously G(i)=1.This denes perfect longrange order.
How about the other limit, T> 0?
Denition for the correlation length:
For the 1D Ising model we have
Around T c
At T=0
G(i , i + j ) = G(i + j − i) = G(i)
G (i) = ( tanh K ) i
G (i) = e − i / ξ
ξ = [ ln (coth K )]− 1
As T>0, ξ e 2 K → ∞
This is not a power law but an essential singularity!
Denition, the correlation function exponent :G (i) i 2 − d − η
η
G (i) = e − i / ξ = 1 −
i
ξ+ ... constantNow,
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 10/21
2D magnetization
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 11/21
Phase equilibrium
Tc
T(~1/J)
Hcoexistence line
disordered
Phase diagram of the Ising model at nite temperature (d>1):
domain wall
system size, L
TcT
LdM H=0
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 12/21
Landau theory of phase transitions
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 13/21
Reminder: phase transitions
Change of a system from one phase (state) toanother at a minute change in the externalphysical conditions.
They are divided into two classes:
1) Firstorder transitions2) Continuous transitions
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 14/21
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 15/21
Digression: Lev Davidovich Landau
• Graduated from Leningrad University at the age of 19. Hestarted at the age of 14! After graduating from Leningrad hespent time in Denmark with Bohr. Collaborated andinteracted also with Pauli, Peierls and Teller. For his travels hegot a Rockefeller fellowship!
• His work covers basically all of theoretical physics fromuids to quantum eld theory.
• Was imprisoned by Stalin for a year after being accused tobe a German spy. Was freed after Piotr Kapitza threatenedto stop his own work unless Landau was released
• On Jan. 7 1962 he suffered a major car accident and wasunable to continue his work. For the same reason he wasnot able to attend the Nobel Prize seremonies.
Lev Davidovich Landau, Jan. 22 1908 in Baku – Apr. 1 1968 MoscowNobel Prize 1962 for pioneering theories in condensed matter physics
Akhiezer, Recollections of Lev Davidovich Landau, Physics Today 47, 3542 (1994).Ginzburg, Landau's attitude towards physics and physicists, Physics Today 42 , 5461 (1989).
Khalatnikov, Reminiscences of Landau, Physics Today 42 , 3441 (1989).
More reading:
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 16/21
Landau and Lifshitz started in 1930’s and the 10volume series was completed in 1979 byLifshitz.They received the 1962 Lenin Prize for the“Course of Theoretical Physics”.
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 17/21
Landau’s revolutionary ideas
• Superuidity:Landau considered the quantized states of the motion
of the whole liquid instead of single atoms. That was a revolutionaryidea and using it Landau was able to explain superuidity.
• Superconductivity: Even before the BCS theory, Ginzburg andLandau suggested a phenomenological theory of superconductivity based
on Landau's earlier theory of continuous phase transitions. When it waspublished, the GL theory received only limited attention. This changeddramatically in 1959, when L.P. Gorkov showed rigorously that close toTc the GL theory and the BCS theory become equivalent. Furthermore,two years before Gorkov, A. Abrikosov predicted the possibility of twodifferent kinds of superconductors by using the GL theory!
• Landau’s theory of phase transitions.
• If we sum up the leading ideas we end up with two things: theimportance of symmetry and symmetry breaking, and theexistence of an order parameter.
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 18/21
The phenomenological Landau theory of continuous phase transitions stresses
the importance of overall general symmetry properties and analyticityover microscopic details in determining the macroscopic properties of a system.
Those generic properties were also used in the superconductivityand superuidity problems!
The Landau theory is based on the following assumptions:
Landau theory
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 19/21
Symmetry
Ψ
Ψ = 0
The order parameter characterizes the system thefollowing way:
in the disordered state (above T c),is small and nite in the ordered state (T<T c).
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 20/21
system order parameterliquidgas density
ferromagnetic magnetization
superconducting condensate wave function
liquid crystal degree of molecular alignemnt
binary mixture (methanolnhexane) concentration of either substancehelixcoil number of helix base pairs
XYmodel magnetization (Mx,My)
BaTiO 3 polarization
crystal density wave
liquid crystal director
Order parameters
7/31/2019 Ising Landau 1
http://slidepdf.com/reader/full/isinglandau1 21/21
Symmetry
F (Ψ ) =∞
∑n = 0
a 2 n Ψ 2 n
expansion coefcients are phenomenologicalparameters that depend on T and microscopics
free energy order parameter. must be small
Close to T c the free energy can be expanded in powers of the order parameter
Order parameter must be small for the expansion to converge.