ISIMS 2012: First High-Resolution Thermal-Ions Imaging in a DT-IMS

23
First detection of thermal ions and ion swarm imaging in a DT-IMS by means of a high spatial-resolution IonCCD™ Omar Hadjar 1 , Stephen Davila 2 , Gary Eiceman 2 1 OI Analytical, CMS field product, Mass Spectrometry and Ion Imaging, Pelham, AL 2 NMSU, Department of Chemistry and Biochemistry, Las Cruces, NM

Transcript of ISIMS 2012: First High-Resolution Thermal-Ions Imaging in a DT-IMS

First detection of thermal ions and ion swarm imaging in a DT-IMS by means of a high spatial-resolution IonCCD™

Omar Hadjar1, Stephen Davila2, Gary Eiceman2 1OI Analytical, CMS field product, Mass Spectrometry and Ion Imaging, Pelham, AL

2 NMSU, Department of Chemistry and Biochemistry, Las Cruces, NM

Motivations

• To explore the capabilities of the IonCCD as a detector for IMS • To extend detectability from keV down to thermal ions • To provide real time, high density imaging of the ion swarm at

ambient pressures. • To determine the diffusion of ion swarms in the drift region • To characterize optics for ions • To obtain sufficient experimental data on ion motion under electric

fields and form theoretical modeling and calculations

Introduction to the IonCCD

Setup Schematics of the DT-IMS

1

2

4

6

8

3

5

7

9

IonCCD chip

Slit-plate

Potential

Distance

IonCCD housing Ch

ip

Ion

CC

D H

ou

sin

g

Co

ld f

oo

t

De

tect

or

bo

ard

Slit

-Pla

te 1 2 3 4 5 6 7 8 9

Femto-Amp

Ring 1

Ring 2

Ring 3

Ring 4

Ring 5

Ring 6

Ring 7

Ring 8

Ring 9

Ring stack of the DT-IMS

IonCCD in SS enclosure

Camera box

IonCCD base lined signal

Picture shot while Stephen was changing the DT-IMS rings arrangement with the IonCCD ON and recording no ion signal but an unperturbed base line

Experimental Setup

6 rings DT-IMS (pre-ring lens & slit disc)

-10 -5 0 5 10 15 200

100

200

300

400

500

0 20 40 60 80

0

50

100

150

200

250

300

350

400

450

-10 -5 0 5 10 15 200

200

400

600

800

1000

IonCCD X axis (mm)

2 kV DT-IMS

Ion

CC

D s

ign

al (d

N)

IonCCD

encosure

bias:

70V

50V

30V

25V

20V

14V

10V

6V

4V

1.6V

0.8V

0.2V

0V

3 kV

2 kV

Ion

CC

D in

tegr

ated

sig

nal

(kd

N)

IonCCD enclosure Bias (V)

Ion

CC

D s

ign

al (d

N)

IonCCD

encosure

bias:

70V

50V

30V

25V

20V

14V

10V

6V

4V

1.6V

0.8V

0.2V

0.1V

0V

3 kV DT-IMS

IonCCD housing voltage bias effect

Detection Efficiency

-25 -20 -15 -10 -5 0 5 10 15 20 25

0

100

200

300

400

500

600

700

800

0 500 1000 1500 2000 2500 3000

0

100

200

300

400Io

nC

CD

sig

nal (d

N)

IonCCD coordinates (mm)

IMS voltage (V)

3000

2500

2000

1500

1000

500

Ion

CC

D in

teg

rate

d s

ign

al (k

dN

)

IMS voltage (V)

0

20

40

60

80

Fe

mto

Am

plif

ier

(pA

)

IonCCD vs. FemtoAmp response to the IMS ion throughput

0 5 10 15 20 25 30 35 40 45 50 55 60 65 700

50

100

150

200

250

300

350

Ion

CC

D (

kd

N)

FemtoAmplifier (pA)

Equation y = a + b*

Adj. R-Squar 0.99793

Value Standard Erro

E Intercept -22913.3526 5498.23184

E Slope 5263.6508 119.6966

The integrated profiles are plotted here against the Femto-Amplifier response when

operated at 1011 gain. This comparative study was conducted at same experimental

condition with a 16x1mm2 slit plate and grounded IonCCD plate to expose both

detection surfaces to the same ion beam cross section hence the same total ion current.

1000 1500 2000 2500 3000

1

10

100

1000

10000Io

nC

CD

re

sp

on

ce

(io

n/d

N)

IMS voltage (V)

noise floor (12 dN)

IonCCD detection efficiency at different IMS high voltage bias

0.01 0.1 1 10 100 1000 100001

10

100

1000

10000

Ion

CC

D r

esp

on

se (

ion

/dN

)

Ion energy (eV)

Broad band detection>105

Ion energy range of maintained IonCCD detection efficiency

We observed a slight decrease of the IonCCD detection efficiency at lower IMS HV. This can be due to experiment-to-experiment variation, or witnessing the effect of the floating pixels, during charge integration time, on the ion collection (retarding field effect).

Using the averaged value obtained we show clearly that not only the IonCCD not detects

thermal ions but equally important maintain its detection efficiency from ~keV down to ~meV ion energies. By analogy to optical CCDs, the IonCCD

has a broad band detection > 105

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

0

200

400

600

800

1000

Ion

CC

D s

ign

al (d

N)

Offse

t Y

va

lue

s

IonCCD coordinates (mm)

740V

720V

700V

680V

660V

650V

640V

630V

664V

16 mm B&N Gate

2nd

ring

transversal

B&N gate Imaging

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

0

200

400

600

800

Ion

CC

D s

ign

al (d

N)

Offse

t Y

va

lue

s

IonCCD coordinates (mm)

2070V

2050V

2030V

2010V

2000V

1990V

1980V

1970V

1989V

16 mm B&N Gate

6th ring

transversal

-25 -20 -15 -10 -5 0 5 10 15 20 25

0

100

200

300

400

500

600

700

800

-8 -6 -4 -2 0 2 4 6 8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5 6 7 8 9

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IonC

CD

sig

nal (d

N)

Off

set

Y v

alu

es

IonCCD coordinates (mm)

B&N Gate

8th ring +5V

6th ring -9V

2nd ring -24V

Str

uctu

re F

WH

M (

mm

)

Structure centroid location (mm)

Gate location 8th ring

6th ring

2nd ring

truncated

avera

ge p

eak w

idth

(m

m)

Gate position(ring #)

ring-to-ring=10 mm

Equationy = Intercept + B1*x^1

Weight Instrumental

Residual

Sum of

Squares

0.02831

Adj. R-Squar 0.99857

Value Standard

Error

CIntercept 0.9567 0.02184

B1 0.1940 0.00518

The slope suggests that diffusion in those conditions (3000V/8 rings=80mm, and Please check the total distance)

result in ~0.2 mm radial expansion for every 10mm axial motion (~2%)

0.194 mm

3000V/80mm

300 ml/min

10 mm

-100 -50 0 50 100

100

1000

10000

100000

Ion

CC

D in

teg

rate

d s

ing

na

l (d

N)

wire-set V (V)

B&N 2nd transversal

B&N 6th transversal

B&N gate

Opening and closing settings of the B&N gate

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

0

200

400

600

Ion

CC

D s

ign

al (d

N)

Offse

t Y

va

lue

s

IonCCD coordinates (mm)

740V front

720V front

700V front

660V front

664V back

Tyndall Gate

2nd

ring

collinear

16 mm

Tyndall gate Imaging

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

0

200

400

600

800

1000

Tyndall Gate

2nd

ring

transversal

720V back

700V back

690V back

680V back

660V back

640V back

620V back

Ion

CC

D s

ign

al (d

N)

Offse

t Y

va

lue

s

IonCCD coordinates (mm)

664V front

16 mm

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

0

200

400

600

800

1000

1200

1400

Tyndall Gate

2nd

ring

transversal

Ion

CC

D s

ign

al (d

N)

Offse

t Y

va

lue

s

IonCCD coordinates (mm)

740V front

720V front

700V front

680V front

670V front

660V front

664V back

16 mm

Front set scan Back set scan

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

0

100

200

300

400

500

Ion

CC

D s

ign

al (d

N)

Offse

t Y

va

lue

s

IonCCD coordinates (mm)

2070V front

2060V front

2040V front

2020V front

2010V front

2000V front

1989V front

1989V back

16 mm Tyndall Gate

6th ring

collinear

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

0

200

400

600

800

1000 Tyndall Gate

6th ring

transversal

Ion

CC

D s

ign

al (d

N)

Offse

t Y

va

lue

s

IonCCD coordinates (mm)

2120V front

2100V front

2080V front

2060V front

2040V front

2020V front

2000V front

1980V front

1989V back

16 mm

-10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18

0

200

400

600

800

Ion

CC

D s

ign

al (d

N)

Offse

t Y

va

lue

s

IonCCD coordinates (mm)

2060V back

2040V back

2020V back

2000V back

1980 back

1960V back

1989V front

16 mm Tyndall Gate

6th ring

transversal

Front set scan Back set scan

• 1117 V, 2 ring • Ion source in-and-out • 10 pixels avg., 10 frames avg. • 95 MB file

IonCCD signal (dN)

Dynamic Images with IMS Parameters

• Zoom window, 35 sec, 19 mm • No pixel and frame avg. • 24 µm x 100 ms Resolution

Dynamic Images with IMS Parameters

IonCCD signal (dN)

0 2 4 6 8 10

0

1000

2000

3000

4000R

ing p

ote

ntia

l (V

)

ring # source-to-IonCCD

Increasing

Decreasing

-10 -5 0 5 10

0

200

400

600

800

1000

345 kdN

Increasing E-field

Decreasing E-field

IonCCD X axis (mm)

IonC

CD

sig

nal (d

N)

170 kdN

Increasing vs. decreasing E-field effects

Conclusions

• IonCCD showed linear response and detection of ions in the thermal energy regime, extending the detection band with from thermal to medium energy regime (10 meV – 10 keV)

• The first high resolution imaging of ion diffusion determined experimentally with better than 0.1 mm resolution in one direction.

• Shadowing of the ions observed from shutter wires throughout the drift region of the IMS.

• Gathered experimental data for improved ion modeling.

Acknowledgements

OI Analytical, for funding the collaborative work

Questions

I