Is SiC a Game Changer? - · PDF file+ljk hohfwulf euhdngrzq ilhog doorzv orz rq uhvlvwdqfh lq...

88
Center for Power Electronics Systems 7KH %UDGOH\ 'HSDUWPHQW RI (OHFWULFDO DQG &RPSXWHU (QJLQHHULQJ &ROOHJH RI (QJLQHHULQJ 9LUJLQLD 7HFK %ODFNVEXUJ 9LUJLQLD 86$ Is SiC a Game Changer? 'XVKDQ %RUR\HYLFK &KULVWLQD 'L0DULQR &RQJUHVVR %UDVLOHLWR GH (OHFWU{QLFD GH 3RWrQFLD 6RXWKHUQ 3RZHU (OHFWURQLFV &RQIHUHQFH )RUWDOH]D %UD]LO 1RYHPEHU Tutorial: 2XWOLQH ,QWURGXFWLRQ +LJK )UHTXHQF\ DQG +LJK (IILFLHQF\ ± &RPSDULVRQ ZLWK 6L ± &KDUDFWHUL]DWLRQ RI N9 6L& GLVFUHWH WUDQVLVWRUV +LJK 7HPSHUDWXUH ± )RU SRZHU GHQVLW\ LQ QRUPDO WHPSHUDWXUH DPELHQW ± )RU RSHUDWLRQ LQ KLJKWHPSHUDWXUH DPELHQW 0HGLXP 9ROWDJH +LJK 9ROWDJH &RQFOXVLRQV 5HIHUHQFHV 7XWRULDO ,V 6L& D *DPH &KDQJHU" GE 1RYHPEHU

Transcript of Is SiC a Game Changer? - · PDF file+ljk hohfwulf euhdngrzq ilhog doorzv orz rq uhvlvwdqfh lq...

Center for Power Electronics Systems

Is SiC a Game Changer?Tutorial:

WBG devices and new packaging technologies are key to meeting these growing needs.

Wafer diameter increases.

Vdc

R DS(

on)

VGS

VGS

VGS

On-state resistance

V GS(

th)

VGS VDS ID

Gate threshold voltage

g fs

VDS ID

VDS ID

Transconductance

0 100 200 300 400 500 600

Junction capacitances

Switching energiesTurn-on waveforms

Blue = 25 °C Red = 125 °C

Module features

Module layout Integrated functions

SiCPhase

Leg

Si Phase

Leg

Gate drive w/ Miller clamp

ivov

High-frequency dual-active-bridge (DAB)

600 V Si CoolMOS

PEBB(300 V bus)

1200 VSiC MOSFET

PEBB(600 V bus)

newer-generation

1.5-3x improvement!4-6x improvement with SiC!

220 W LED driver using Wolfspeed C3M

SiC MOSFETs

220 W LED driver using Si SJ MOSFETs

lowerincreased reduces

ID

VDS

ID

VDS

ID

VDS

ID

VDS

SiC

33 kg

15% lower BOM

173 kg

> 10x lower!

f

VF

RONgFS IDSS

(A. Agarwal, 1997) (R. Singh, 2004, 2007) (A. Lelis, 2008, 2011) (M. Das, 2011)

SiCMOSFET

Device terminal behaviors under both high VGS and high TJ?

HT gate biasing test(TJ = 200 °C, VGS = 20 VDC)

HT gate switching test(TJ = 200 °C, VGS = -4/20 V at 70 kHz)SiC MOS die

in HT package

x2 for each test condition

Other device parameters

Savings with SiC

smaller

lower

less

99 % - Efficient

99 % - Efficient

without

How do the SiC devices compare to one another?

200 ºC

200 C25 C

negative

P+P+

N+Source

N drift layer

N+ 4H SiC substrate

GateGate

P

Information courtesy of GeneSiCTM

Information courtesy of GeneSiCTM

2.2x smaller

2.2xsmaller

Information courtesy of GeneSiCTM

4xsmaller

Unlike IGBTs, the SJT does not have a tail current.

Information courtesy of GeneSiCTM

It is expected that the on-resistance can be drastically reduced with the trench gate structure.

Gate

Gate oxide

Drain

4H-SiC (0001)substrate Buried p+ region

Bottom oxide protection from hard breakdown

electronflow

{03-38-} facesHigh quality MOS interface

High channel mobilityHigh threshold voltage

Drift layer

Channel layer

p nSource

Device structure

Unique high-mobility channelLower RDS(on) with high blocking voltage

Proc. of the 27th ISPSD

DMOSFET on (0001)

DMOSFET on (0001)

SEI Proprietary©2015 Sumitomo Electric Industries, Ltd. All Rights Reserved

SEI Proprietary©2015 Sumitomo Electric Industries, Ltd. All Rights Reserved

VGS=18 V

VDS (V)

I D(A

) 15 VVIR =VR

tr = 71 ns tf = 26 ns

SEI Proprietary©2015 Sumitomo Electric Industries, Ltd. All Rights Reserved

ItemsSiC MOSFET Si IGBT

New IGBT compatible

ID 100 A 100 A 100 ARDS(on) 12 m 18 m (21 m )

Eon + Eoff 1.1 mJ 4.8 mJ 14.5 mJ

Conventional Layout

Switch Pairs in a Phase-Leg

Improved Layout

Q

D

D

Q

VPOS

VNEG

VOUT

Module structure

Substrate & stencil preparation

Stencil printing solder paste

Placing PCB & dice

PCB, dice, & leadframe soldering Wire-bonding

MOSFET gate driverPhase-leg with drivers

Phase-leg switching waveforms600 V, 17.4 A

VDS TC EonRG

EonRG

Eoff RG

50%

DPTs were performed on the top MOSFET so that the Miller effect could be more accurately observed.

More Electric Airplanes:Limited space and more power converters

(R. Lai, 2008)

VdcVac

Only normally-on JFETs available at the time.

FEA thermal simulation

Continuous operation at 250 ºC

100

50

0

50

100

150

200

250

0 50 100 150 200

Targets:

SOI-based half-bridge gate driver for SiC MOSFETs by Cissoid

High-freq. modulation SiC JFET driver by Univ. Buffalo

Edge-triggered SiC JFET driver by ETH Pos. pulse Neg. pulse

Modified edge-triggered SiC JFET driver by CPES

Pos. pulse Neg. pulse

16.5 cm 14 cmElectrical test

Tj

50 kW inverter/rectifier for starter/generatorHigh-temperature and high-power-densityAmbient temperature: 200 – 250 CSwitching frequency: 70 kHz

Target:

VDC

Commercial products(1200 V, 100 A)

Pb95-Sn5

AlN DBC

AlSiC

Al

Electro-less Ni

NuSil R-2188 silicone

Ni-plated Cu

Improved substrate layout to minimize loop inductances

Fabricated module with DC decoupling capacitors

Fast & clean switchingTurn-on Turn-off

Switching Lossis 10-20% of an equivalent IGBT

Module

Test setup

Buck-mode operation Test results at 560 V & 100 kHz

Fabricated module

200 ºC ambient

Pareto of IDSSleakage (A)

Pareto of VGSTH shift (%)

HTGB: 1000 hr, 200 ºC, VGS=23 V

passed

HTRB: 1000 hr, 200 ºC, VDS=960 V

passed

1000 temp. cycles (-55 to +200 ºC)

passed

1.7 kV

POS

NEG

Vdc

Vdc

LO

Grid

Larm

Larm

C

Filter dc

O

arm

armVdc

LODC

BusLarm

Larm

C

Filter 1800

mm

230mm

lowsimilar higher

highhigher

totalhigher

SEI Proprietary©2015 Sumitomo Electric Industries, Ltd. All Rights Reserved

DMOSFET I-V

SEI Proprietary©2015 Sumitomo Electric Industries, Ltd. All Rights Reserved

10-15x lower

The all-SiC inverter has 55 % lower switching losses than conventional silicon-based inverters.

10 kV 1.7 kV

120 V, 60 Hz

2500 V / 120 V

3600 V DC

>10X higher

30 %

increase

reduced

3x bus voltage, 25x smaller ESW

dv/dt

The world’s highest-voltage semiconductor switch!

Information courtesy of GeneSiCTM

Information courtesy of GeneSiCTM

Information courtesy of GeneSiCTM

20 μs

Not a game changer, but a New Game.

Not a game changer, but a New Game.

Int. Conf. Integrated Power Systems

Proc. IMAPs Conf. and Expo. on HiTEN 2013

Proc. Energy Conversion Engineering Conference

Integrated Power Electronics Systems (CIPS)