Iridium Satellite Communications System, Tsunami Warning System

23
Iridium Satellite Communications System As Utilized by The DeepOcean Assessment & Reporting of Tsunami Project Warning System May 3, 2015 David Regan EN.635.411.81.SP15 Principles of Network Engineering Professor John Romano Johns Hopkins University

Transcript of Iridium Satellite Communications System, Tsunami Warning System

Page 1: Iridium Satellite Communications System, Tsunami Warning System

       

Iridium Satellite Communications System

As  Utilized  by    

The  Deep-­‐Ocean  Assessment  &  Reporting  of  Tsunami  Project  Warning  System  

 

 

 

 

 

 

May  3,  2015  

David  Regan  EN.635.411.81.SP15  Principles  of  Network  Engineering  Professor  John  Romano  Johns  Hopkins  University    

Page 2: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

1  

Introduction  &  Approach  ............................................................................................  2  

Scope  Limits  ................................................................................................................  2  

Terrestrial  Components  Overview  ...............................................................................  2  

Space-­‐Based  Components  Overview  ...........................................................................  4  

Network  Links  .............................................................................................................  6  Tsunameter  <  -­‐-­‐  >  Buoy  ...........................................................................................................................................  6  Narrative  &  Technical  Details  ...............................................................................................................................  6  

Buoy  <  -­‐-­‐  >  Iridium  Satellite  ...............................................................................................................................  11  Narrative  &  Technical  Details  ............................................................................................................................  11  

Iridium  <  -­‐-­‐  >  Iridium  Inter-­‐Satellite  Links  (ISL)  ......................................................................................  12  Narrative  .....................................................................................................................................................................  12  

Iridium  <  -­‐-­‐  >  Ground  Station  ............................................................................................................................  13  Discussion  ....................................................................................................................................................................  13  

Routing  ......................................................................................................................  13  

Latency  Calculations  ...................................................................................................  15  

Total  Transfer  Time  ....................................................................................................  16  

Conclusions  and  Further  Research  ..............................................................................  16  

References  .................................................................................................................  18  

APPENDIX  A  –  X-­‐Modem  Protocol  Structure  ...............................................................  19  

APPENDIX  B  -­‐  Images  .................................................................................................  20    

Page 3: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

2  

Abstract  This  paper  analyzes  how  the  Iridium  Satellite  Communications  System  is  used  by  The  National  Oceanic  and  Atmospheric  Administration’s  (NOAA)  Tsunami  Warning  System.  Each  network  link  is  evaluated  providing  a  basis  for  understanding  the  overall  system  that  yields  a  robust  and  trustworthy  tsunami  warning  system.  

Introduction  &  Approach  This  paper  is  organized  as  follows;  first,  a  general  overview  of  both  the  space  and  

terrestrial  based  components  of  The  Deep-­‐Ocean  Assessment  and  Reporting  of  

Tsunamis  (DART)  Version  II  project  will  been  made,  then  we  will  delve  into  

individual  network  links,  including  those  provided  by  Iridium.  A  focus  on  the  

acoustic  link  is  made,  since  it  is  relatively  unusual.  This  will  provide  a  clear  and  

logical  context  from  which  to  understand  the  entire  networked  warning  system.  As  

each  link  is  analyzed,  end-­‐to-­‐end  networking  achievements  are  revealed.  

Scope  Limits  This  paper  is  focused  on  the  DART  and  Iridium  network  links  and  uses  publically  

available  information  in  the  process.  Some  detail  related  to  the  Iridium  system  are  

proprietary,  therefore  extrapolation  from  

known  systems  is  used  to  make  the  best  

approximation  of  missing  detail.    

Terrestrial  Components  Overview  For  more  than  30  years,  NOAA  researched  

the  causes  and  impacts  of  tsunamis  and  in  

response  to  a  massive  tsunami  on  March  28,  

1964  in  Alaska,  NOAA  began  development  of  

the  first  Tsunami  Warning  Center.  The  

foundation  of  the  warning  system  is  DART,  

whose  buoys  and  bottom-­‐sensor  

components  are  shown  in  (Figure  1).    Figure  1:  DART  System  Components  

Page 4: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

3  

By  2008,  there  were  36  buoys  installed  in  DART’s  Pacific  Ocean  zone  providing  

detailed  sea  level,  temperature,  barometric  pressure,  GPS  coordinates,  timing  and  

other  buoy-­‐specific  information  [1].  The  secret  of  DART’s  success  is  the  use  of  global  

communication  links  provided  by  the  Iridium  Satellite  Constellation  (Iridium).    

Each  buoy  is  installed  with  a  companion  tsunameter,  as  depicted  in  (Figure  2)  (also  

known  as  a  bottom  pressure  recorder)[1],  a  that  collectively  constitutes  the  

transmission  system  for  the  water-­‐based  link  for  DART.    Buoy’s  have  GPS  receivers  

to  maintain  geo-­‐location  for  servicing,  and  for  tsunami  calculations.  

 

 

                       

 Messaging  Path    DART  uses  Iridium  as  the  backbone  for  transmitting  tsunami  data  from  buoys  that  

are  sited  in  the  open  ocean.  An  RS232C  interface  with  AT  commands  is  used  for  

accessing  satellites  and  PPP  is  the  LLC  layer  protocol  used.  Messages  destined  for  

the  tsunami-­‐warning  center  are  triggered  by  tsunami  waves  passing  over  a  buoy    

                                                                                                                         a  The  tsunameter’s  data  storage:  “The  FLASH  memory  provides  four  years  continuous  backup  of  the  entire  raw  pressure  record,  at  a  15-­‐second  sample  period.  Preserving  the  entire  time  series  in  memory  allows  post-­‐deployment  engineering  review  of  the  instrument’s  performance,  as  well  as  scientific  analysis  of  the  entire  deployment  record”.  For  more  information,  refer  to:  Sea-­‐Bird  Electronics.  http://www.seabird.com/sbe54-­‐tsunami-­‐pressure-­‐sensor    

Figure  2:  DART  System  Boundaries  

Page 5: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

4  

(or  from  seismograph-­‐driven  auto  generated  commands)  that  activates  a  real-­‐time  

data  feed  from  the  tsunameter  to  the  surface  buoy.  Data  received  at  the  surface  buoy  

from  the  tsunameter  and  is  then  forwarded  to  an  Iridium  Satellite,  which  transmits  

the  data  either  to  a  ground  station  (GS),  or  to  an  adjacent  satellite  via  inter-­‐satellite  

links  (ISLs),  which  is  then  forwarded  to  the  nearest  GS  for  appropriate  distribution.    

A  typical  GS  is  shown  in  (Figure  3)  (gateway)  –  there  are  

two  b  of  them  -­‐  with  the  primary  being  in  Tempe,  AZ,  and  

each  has  uplinks/downlinks  using  the  Ka  band  over  ranges  

29.1-­‐29.3  GHz  and  19.1-­‐19.6  GHz  respectively.    The  

gateway  interfaces  with  the  PSTN    and  ISPs.  

Space-­‐Based  Components  Overview  Iridium  consists  of  66  low  Earth  orbit  (LEO)  

satellites  c  distributed  over  6  polar  orbital  planes  

that  are  approximately  31.6  degrees  apart  

longitudinally  at  86.4  degrees  inclination[2]  that  

co-­‐rotate.  A  seam  develops  between  plane  1  &  6  

where  the  satellites  are  counter-­‐rotating.  As  shown  

in  (Figure  4),  each  Iridium  satellite  produces  a  

footprint  that  overlaps  adjacent  satellites’  

footprints  providing  seamless  ground  coverage.  

Also  note  that  as  satellites  approach  the  poles,  they  overlap  progressively  –  this  is  

important  due  to  an  obvious  contention  issue  that  will  be  discussed  later.  

 “In  space,  each  Iridium  satellite  is  linked  to  four  others  —  two  in  the  same  orbital  

plane  and  one  in  each  adjacent  plane  —  creating  a  dynamic  network  that  routes  

traffic  among  satellites  to  ensure  a  continuous  connection,  everywhere  [2]”.    

Iridium’s  routing  algorithms  are  proprietary,  but  the  mostly  likely  approach  is  Ad-­‐                                                                                                                          b  After  contacting  Iridium  Communications,  and  an  exhaustive  Internet  search,  it  appears  that  there  are  2  ground  stations  left  out  of  the  original  13.  c  Additional  in-­‐orbit  spares  are  held  at  a  lower  orbit  and  are  moved  up  to  operational  height  as  needed.  All  of  the  spares  have  been  used  presently,  but  the  new  Iridium  NEXT  is  to  be  launched  this  year  (2015)  in  October  on  the  current  timeline.  This  will  include  all  new  satellites  with  higher  capacity,  although  it  is  beyond  the  scope  of  this  paper  to  analyze  the  new  system.  

Figure  3:  Iridium  Ground  Station  

Figure  4:  Iridium  Satellite  Footprints  

Page 6: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

5  

hoc  On-­‐Demand  Distance  Vector  (AODV)[3]  routing,  which  considers  the  

complexity,  transmission  overhead,  dynamic  update  convergence  and  infinite  loop  

issues  related  to  not  only  a  routed  environment,  but  also  one  that  is  continually  in  

flux.  Select  aspects  of  AODV  are  considered  and  described  later  in  the  routing  

section.    

Each  satellite  has  three  antennas  with  16  spot  

beams  (48  spot  beams  per  satellite)  and  240  

channels  for  user  communications  utilizing  L-­‐

band  (1-­‐2  GHz)  over  the  range  1616-­‐1626.5  

MHz  for  a  bandwidth  of  10.5  MHz  [4]  .  Within  

each  satellite’s  footprint  (Figure  5),  48  

separate  spot-­‐beams  (cells)  are  identified  

alphabetically  A-­‐L  in  a  pattern  that  repeats  

four  times).  As  noted,  since  the  space  vehicles  

converge  near  the  poles,  footprint-­‐overlap  becomes  an  issue  –  to  maintain  a  uniform  

loading  on  the  SVs,  outer  cells  in  the  overall  footprint  (Figure  4)  are  selectively  

turned  off  at  SV  convergence  latitudes.  Similar  to  cellular  systems,  Iridium  reuses  

frequency  bands;  specifically  with  a  reuse  factor  of  12  as  reflected  in  (Figure  5).    

Reuse  allows  limited  spectrum  to  be  repetitively  provisioned  provided  sufficient  

spatial  isolation  between  duplicated  frequency  ranges.  The  ability  to  employ  this  

reuse  capability  is  a  function  of  the  attenuation  characteristics  of  the  specific  

frequencies  [5]  i.e.  as  the  power  density  of  a  given  frequency  attenuates,  it  becomes  

so  weak  that  it  can  be  ignored,  and  the  frequency  can  be  “re-­‐amplified”  and  used  

once  more  for  a  different  unique  channel.  

The  240  available  channels  per  satellite  are  divided  among  the  spot  beams  yielding  

20  channels  per  spot  beam.    Each  satellite’s  10.5  MHz  user-­‐bandwidth  is  evenly  

distributed  over  240  channels  using  FDMA,  where  each  channel  is  provided  with  

41.67  kHz    (minus  guard-­‐bands)  of  bandwidth  as  visualized  in  (Figure  6).  The  

remaining  500  kHz  is  used  to  provide  approximately  2  kHz  of  guard  band  between  

channels.  This  arrangement  facilitates  managing  many  unique  user  channels.  

Figure  5:  Iridium  Spot  Beams  (Cells)  

Page 7: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

6  

TDMA  is  also  utilized,  but  specific  

details  are  not  published  by  Iridium  

except  that  the  frame  is  90  ms  long  

as  depicted  in  (Figure  7)  and  

contains  4  full-­‐duplex  user-­‐channels  

with  a  frame  burst  rate  of  50  kbps.  

Time  slots  effectively  multiply  the  20  frequency  channels  into  80  after  time  division  

slotting  into  the  90-­‐millisecond  TDMA  frame.  A  maximum  bit  rate  for  a  single  user  

channel  is  2.4  kbps,  although  if  multilink  point  to  point  protocol  is  used,  channels  

may  be  bonded  for  higher  effective  bandwidth  and  capacity  [6].  The  link  between  

the  tsunameter  and  buoy  is  not  

as  sophisticated  as  Iridium’s,  

yet  it  has  unique  

characteristics  –  particularly  its  

carrier  and  media.    

 

Network  Links  

Tsunameter  <  -­‐-­‐  >  Buoy    

Narrative  &  Technical  Details  The  tsunameter  and  buoy  both  use  acoustic  transducers  to  transmit  digital  data  

over  analog  carrier  up  to  a  distance  of  6,000  meters  in  unguided  media  (seawater).  

Modulation  of  the  digital  data  is  accomplished  by  use  of  multilevel  frequency  shift  

keying  (MFSK),  which  is  highly  amplified  at  the  transducer  (dB  193)  as  it  produces  

the  acoustic  signal  in  waterd.    

The  tsunami-­‐messaging  channel  opens  when  the  tsunameter  sends  a  transmission  to  

the  buoy  (or  buoy  to  tsunameter)  via  acoustic  modem  every  six  hours  in  standard  

                                                                                                                         d  There  is  an  entire  field  of  study  dedicated  to  underwater  acoustic  networking.  See  https://seagrant.mit.edu/publications/MITSG_08-­‐37J.pdf  “Underwater  Acoustic  Communications  and  Networking:  Recent  Advances  and  Future  Challenges”  

Figure  7:  User  Channels  

Figure  6:  TDMA  User  Slots  

Page 8: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

7  

mode.  The  tsunameter  always  records  readings  every  15  seconds  from  its  sensors  

and  saves  the  data  to  flash  memory.    If  the  tsunameter  detects  a  pressure  variation  

determined  to  be  a  tsunami,  (determined  by  detection  algorithm)[7],  or  if  an  

automated  remote  command  is  received,  the  tsunameter  goes  into  an  event-­‐mode  

where  a  file  with  120,  one-­‐minute  average  readings  are  sent  to  the  buoy  

immediately  vs.  the  six  hour  interval  in  standard  mode.    Whether  standard  or  event  

mode,  the  transmissions  are  forwarded  to  

the  tsunami  warning  center  using  Iridium.    

(Figure  8)  shows  basic  blocks  of  the  

tsunameter’s  computer  system.  

 

 

 

 

The  message  payload  is  a  small  (2  KB  +/-­‐)  xml  file  containing  key  data  including  

water  pressure  

(leads  to  wave  

height),  date-­‐time,  

system-­‐status,  and  

temperature.  A  more  

detailed  diagram  of  

internal  flow  appears  

in  (Figure  9).  

 

 

Figure  8:  Tsunameter  Computer  Block  Diagram  

Figure  9:  Tsunameter  Logic  Diagram  

Page 9: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

8  

The  tsunameter  <-­‐-­‐>  water  <-­‐-­‐>  buoy  communication  channel  is  a  clear  instance  of  

the  basic  communications  system  model,  which  is  repeated  throughout  the  DART  

system  with  varying  degrees  of  complexity.        

 

The  communication  model  maps  to  the  tsunameter/transducer  (source  system),  

seawater  (transmission  system)  and  the  buoy/transceiver  (destination  system)  

assuming  we  are  sending  signal  from  the  bottom  up  as  depicted  in  (Figure  10).      

“The  acoustic  modems  on  the  DART  II  systems  are  configured  to  operate  in  the  9-­‐

14kHz  frequency  band  at  600  baud,  using  MFSK  modulation  and  error-­‐correcting  

coding  [8]”.  X-­‐modem  protocol  is  used  and  its  packet  structure  is  described  in  

Appendix  A.  Maximum  throughput  is  controlled  by  the  maximum  receive  rate  of  the  

acoustic  modems,  fade  and  noise,  which  is  theoretically  2400  bps  [9].  The  actual  

throughput  from  NOAA  is  shown  at  600  baud  and  it  is  assumed  that  r  =  (1  data  

element  /  1  signal  element)  for  600  bps.  A  complete  latency  chart  will  be  presented  

after  all  the  links  are  defined.  To  clarify,  we  have  digital  data  stored  for  analog  

transmission  on  the  tsunameter,  therefore,  we  need  to  modulate  the  data  for  analog  

transmission,  which  is  done  with  a  multilevel  frequency  shift-­‐keying  (MFSK)  

approach  at  the  physical  layer.  

From  the  surface  buoy,  data  is  transmitted  to  the  switched  Iridium  satellite  network,  

then  to  a  GS  that  forwards  to  the  Tsunami  Warning  Center  e.    It  takes  30.16  seconds  

for  a  2KB  message  to  arrive  complete  at  the  buoy  as  will  be  shown.    For  analysis,  a  

                                                                                                                         e  Ground  stations  have  9-­‐foot  diameter  dishes  and  link  users  to  Internet/PSTN.    

Figure  10:  Tsunameter-­‐Buoy  Communication  Model  

Page 10: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

9  

depth  of  3000  meters  is  chosen  (approximate  average)  and  speed  of  sound  in  water  

is  defined  to  be  1500  m/s.  Further,  a  single  data  file  size  of  2KB  is  used  for  

transmission  calculation.    First,  sound  propagation  in  water  over  distance  3000  

meters.  

𝑇𝑝 =𝑑𝑟 =

3000𝑚1500𝑚/𝑠 = 2  𝑠𝑒𝑐𝑜𝑛𝑑𝑠  

Secondly,  our  2  KB  file  is  processed  by  x-­‐modem  protocol,  which  has  a  128-­‐byte  

payload  per  132-­‐byte  packet,  requires  this  many  packets:  

 

16000  𝑏𝑖𝑡  𝑓𝑖𝑙𝑒

128  𝑏𝑦𝑡𝑒𝑠/𝑝𝑎𝑐𝑘𝑒𝑡  𝑥  (8𝑏𝑖𝑡𝑠𝑏𝑦𝑡𝑒𝑠)  = 15.625  𝑝𝑎𝑐𝑘𝑒𝑡𝑠  𝑟𝑜𝑢𝑛𝑑𝑒𝑑  𝑡𝑜  16  

 

Total  transmit  size  for  16  packets:  

16  𝑝𝑎𝑐𝑘𝑒𝑡𝑠 132  𝑏𝑦𝑡𝑒𝑠𝑝𝑎𝑐𝑘𝑒𝑡 =  2112  𝑏𝑦𝑡𝑒𝑠  

 

Transmission  Time  for  a  2KB  file  over  600  bps  channel:  

2112  𝑏𝑦𝑡𝑒𝑠 8𝑏𝑖𝑡𝑠𝑏𝑦𝑡𝑒 1

𝑠𝑒𝑐𝑜𝑛𝑑600  𝑏𝑖𝑡𝑠 = 28.16  𝑠𝑒𝑐𝑜𝑛𝑑𝑠  

Considering  that  data  is  being  transmitted  through  3000  meters  of  seawater,  an  efficiency  of  94.7%  is  impressive  (2KB/2.112KB).  

In  summary,  it  takes  two  seconds  for  the  setup  notice  to  arrive  at  the  buoy.  Ignoring  

actual  setup  processing  delay  and  queuing  at  buoy,  it  takes  28.16  seconds  to  

complete  the  data  transfer  for  a  total  of  30.16  seconds.  Time  for  resend  of  bad  

packets  not  factored.  Table  1  contains  summary  details  and  short  narratives  to  

complete  the  review  of  the  tsunameter  to  buoy  link.  

Table  1:  Communication  Links  Overview  –  Tsunameter  -­‐-­‐  >  Buoy  

Page 11: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

10  

Link  Features  @  given  OSI  Layer    

Tsunameter  -­‐-­‐>  Buoy  

Application   Data  collected  from  pressure,  temperature  and  other  sensors  and  written  to  a  space-­‐delimited  text  file  by  C  application  

Presentation   XML  data  file  –  space  delimited  text  

Session   Half  Duplex  operation  due  to  open  water  medium,  manages  link  

Transport   Checksums  and  X-­‐modem  protocol    –  no  port  addressing  entire  packets  of  data  with  many  blocks  are  sent  without  requesting  an  acknowledgement  from  the  receiver  after  each  block.  When  blocks  are  missing  or  erroneous,  receiver  requests  resend  of  individual  blocks.      

Network:     X-­‐modem  protocol  packetizes  data  file  bit-­‐stream    

DLL:LLC/MAC    Physical   Sea  Water  Media:  

Characteristics:    pressure,  temperature,  salinity,  density  Speed  of  Sound  in  water  taken  as  1500  m/s    Bi-­‐directional  Acoustic  Telemetry  in  Water  (Media);  Benthos  ATM-­‐880  Telesonar  modem/AT    Multiplexing  Multilevel  Frequency  Shift  Keying  approach  is  used  to  modulate  the  binary  stream  into  an  analog  for  transport  via  media.      The  source  level  is  at  193  dB  re  1ųPa  @  1  m  with  a  40  VDC  supply.  

Bandwidth   9-­‐14kHz    =  5kHz  Throughput  Ranges  

Trans  Rate    Tx    =  150  -­‐  15360  bps  Receive  Rate  Rx  =  150  –  2400  bps    (see  signaling  rate  for  actual)  

Signaling  Rate   Actual  -­‐  600  baud  (signal  elements/second)  assumed  1/1=r  Propagation  T   Sound  in  water  –  taken  as  1500  m/s;    T  (propagation)  t=d/r  Latency   Sum  of  Propagation  times:  signal  propagation  and  message  

transfer  time  included;  queuing  and  processing  times  at  each  node  ignored  for  this  analysis  

Attenuation   Not  addressed  Distortion  (fading  from  multipath)  

UW  sound  propagation  is  characterized  as  either  vertical  or  horizontal.  Horizontal  calculations  have  to  consider  seafloor  reflections,  while  not  in  vertical;  issues  with  multi-­‐path  reflections  confusing  the  receiver  –  handled  algorithmically  

Page 12: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

11  

Noise    (Whale  Song)  

Straight  SNR=  Signal/Noise;    SNRdB  =10log10SNR  Not  evaluated  in  this  analysis  

Data  Rate  Limits  –  Noiseless  Channel  

Nyquist  Bit  Rate:  Not  evaluated  on  this  link  in  this  analysis.  2  x  bandwidth  x  log2  L,  where  L  is  number  of  signal  level  

Data  Rate  Limits  -­‐  Noisy  

Shannon  Capacity:  Not  evaluated  on  this  link  Bandwidth  x  log2  (1+SNR)  

Bandwidth  Delay  Product  

(600-­‐bit/s)(2  s)  =  1200  bits  

 

Buoy  <  -­‐-­‐  >  Iridium  Satellite  

Narrative  &  Technical  Details  As  shown  previously,  data  arrives  at  the  buoy  and  is  queued  and  or  stored.  Then,  the  

Iridium  transceiver  is  activated  and  the  file  is  transmitted  via  the  uplink  to  Iridium  

for  switching  to  the  Tsunami  Warning  Center.  As  will  be  shown  in  the  next  section,  

propagation  time  is  2.60  ms  and  file  transmission  time  is  6.67  seconds  for  the  2  KB  

data  file.  Iridium  uses  FDMA  and  TDMA,  both  at  the  media  access  sub-­‐layer  of  the  

DLL  for  channelization,  and  time  division  duplexing  (TDD)  at  the  physical  layer.    

Channels  are  comprised  of  a  frequency  band  and  time  slot.  Multilink  Point  to  Point  

Protocol  (MPPP),  at  the  DLC  layer  [5]  controls  establishing,  maintaining,  configuring  

and  terminating  endpoint  connections  as  well  as  data  transfer[5].  

Table  2:  Communication  Link  Overview  –  Buoy  -­‐-­‐  >  Iridium  Link  Features  @  given  OSI  Layer  

Buoy  -­‐-­‐>  Iridium    

Application    Proprietary  

Presentation   Not  defined  -­‐  proprietary  Session   Not  defined  -­‐  proprietary  

Transport   Checksums  and  X-­‐modem  protocol  –  no  port  addressing  Network:     Defined  in  section  entitled  “routing”  DLL:DLC/MAC   Muiltilink  PPP  at  LLC  and  FDMA/TDMA  at  MAC  

Physical  

The  radio  frequency  transmission  in  the  1565  MHz  to  1626.5  MHz  range  and  the  data  transmission  rates  are  at  2.4  kilobits  per  second.    

Bandwidth   5kHz  

Page 13: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

12  

Throughput   2.4  kbps  constrained  at  ground-­‐user  modem,  although  can  be  upgraded  to  higher  rate  based  on  channel  bonding  via  inverse  multiplexing  or  MLPPP  

Signaling  Rate   See  section  titled  “Space-­‐based  components  overview”  

Propagation  T   See  latency  calculations  above  Latency   See  latency  calculations  above  Attenuation(db)  Db=10log10(P2/P1)  

Not  addressed  –  data  not  published  

Distortion  (fading  from  multipath)  

Not  addressed  -­‐  data  not  published  

Noise   Not  addressed  -­‐  data  not  published  Data  Rate  Limits  –  Noiseless  Channel  

Nyquist  Bit  Rate:  Not  addressed    2  x  bandwidth  x  log2  L,  where  L  is  number  of  signal  level  

Data  Rate  Limits  -­‐  Noisy  

Shannon  Capacity:    Not  addressed  –  data  not  published  Bandwidth  x  log2  (1+SNR)  

Delay  Product   Time  to  fill  channel  with  data/bits:  2400bps  x  1s/1000ms  x  2.05  ms  =  4.92  ms  

 

Iridium  <  -­‐-­‐  >  Iridium  Inter-­‐Satellite  Links  (ISL)  

Narrative  Data  delivered  to  Iridium  cross  its  nodes  over  inter-­‐satellite  links  (ISL)  that  operate  

at  22.55  –  23.55  GHz  at  25  Mbps  using  the  slotted  TDMA,  which  is  transmitted  with  

QPSK.  Maximum  user  throughput  is  not  known  due  to  absence  of  data  on  ISL  

overhead,  data  compression  and  factors.  Frequency  conversion  of  received  signal  

allows  the  Iridium  to  receive  and  transmit  without  interference,  since  frequencies  

utilized  for  inter-­‐satellite,  uplink,  downlink  and  user  links  are  different.  Crosslink  

delay  is  shown  to  be  13.33  ms  over  an  average  distance  between  satellites  of  4000  

meters.    

An  interesting  issue  arises  as  the  satellites  converge  at  the  poles  remembering  that  

each  orbit  is  in  a  polar  plane.  The  48  spot  beams  begin  to  increasingly  overlap  

creating  a  situation  where  the  spot  beams  need  to  be  managed  to  avoid  interference.  

Page 14: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

13  

It  is  assumed  that  this  is  done  dynamically  by  algorithm  where  selected  spot  beams  

are  progressively  shutdown  at  the  periphery  of  the  main  footprint  [3].  As  defined  in  

the  space-­‐based  components  section,  there  are  six  orbital  planes  with  11  satellites  

each.  They  all  rotate  in  the  same  direction,  which  gives  rise  to  a  “seam”  orbit  -­‐-­‐orbits  

that  are  in  counter  rotation  relative  to  each  other.  This  is  managed  by  blocking  

communication  between  the  “seams”  [10],  since  Doppler  effects  would  create  

unacceptable  delay  and  overhead  based  on  frequency-­‐shifting  transcriptions.  

Iridium  <  -­‐-­‐  >  Ground  Station  

Discussion  From  a  networking  perspective,  the  Iridium  nodes  are  in  two  planes:  the  orbital  and  

terrestrial  [11].  The  Iridium  network  is  similar  to  a  cellular  network  in  that  static  

base-­‐stations  communicate  with  moving  devices  and  orders  handoffs  as  signal  

strength  drops;  in  our  case,  the  cells  are  moving.  Another  difference  is  that  cellular  

base  stations  switch  directly  into  a  terrestrially  based  network,  not  to  other  cellular  

base  stations  using  wireless  transmissions.  This  is  an  important  distinction  since  the  

ground-­‐based  network  has  more  capacity,  while  the  space-­‐based  Iridium  is  

constrained  by  available  RF  throughput  and  signaling  overhead.    

There  appears  to  be  two  ground  station  gateways  (Hawaii  and  Arizona)  and  21  

antennas  distributed  geographically,  yet  this  is  difficult  to  verify  as  Iridium  

Communications  Inc.    does  not  respond  to  questions  related  to  details  of  its  system  

(warnings  manifest  if  enough  research  is  done).  Gateways  ensure  space  to  ground  

link  availability,  no  matter  whether  a  satellite  is  passing  immediately  overhead,  or  

not  given  that  traffic  is  routed  to  the  closest  GS  by  the  constellation.  Routing  is  

examined  in  the  next  section.    

Routing  Iridium  does  not  advertise  its  routing  algorithm,  and  speculation  abounds  about  it  

in  the  aerospace  industry,  yet  researchers’  models  reveal  that  a  modified  Bellman-­‐

Ford  (mBF)  algorithm  is  likely  [3],  which  is  no  mean  feat  given  such  a  highly  

Page 15: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

14  

dynamic  system,  especially  if  we  are  relying  on  distance  vector  updates  

propagating  through  the  system.  Given  that  system  details  are  scarce,  the  next  

section  covers  a  macro-­‐view  of  a  potential  configuration.      

If  we  consider  the  Iridium  system  as  two  elements  acting  on  two  separate  planes,    

that  of  the  Iridium  constellation,  and  that  of  ground  nodes,  updating  routing  tables  

based  on  node-­‐to-­‐node-­‐propagated  updates  seems  unnecessary  (if  we  could  rapidly  

and  autonomously  calculate  each  node’s  position).  From  that  perspective,  consider  the  

following;  inter-­‐satellite  distances  can  be  determined  instantaneously  based  on  GPS  

calculations  on  each  node,  and  while  the  speed  of  the  satellites  quickly  negates  

coordinate  calculation,  the  routing  tables  should  be  able  to  update  themselves  faster  

using  an  application  specific  integrated  circuit  (ASIC)  existing  as  a  separate  

subsystem.      

Node  awareness  of  instantaneous  relative  position  would  allow  the  mBF  algorithm  

to  determine  least-­‐cost  distances  by  the  node  for  itself,  rather  than  having  rapid  and  

ongoing  route  updates  broadcast  everywhere.  Said  another  way,  this  would  allow  

distance  vectors,  for  the  constellation,  to  be  maintained  by  calculation  internally  on  

each  satellite  using  an  ASIC.    This  would  eliminate  convergence  time  and  route  

update  traffic.    

Uplinking  user-­‐access  devices  always  connects  with  the  nearest  satellite  based  on  

signal  strength  (and  in  consideration  of  the  seam),  and  if  the  constellation  already  

knows  the  least-­‐cost  path  through  the  constellation,  then  knowing  the  correct  exit  

node  will  complete  the  path.  

Handoffs  could  be  made  on  the  same  basis  by  having  ground  stations  feeding  the  

nearest  satellite  a  flag  saying  “you  are  closest  to  me”;  this  distance-­‐vector  (for  the  

two  ground  stations)  would  propagate  through  the  constellation  every  few  seconds,  

creating  system-­‐wide  awareness  of  exit  points  relative  to  the  constellation’s  nodes.  

System-­‐wide  latency  is  considered  next  using  our  original  2KB  source  file  from  the  

tsunameter.    

Page 16: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

15  

Latency  Calculations    Tfile(2  kilobyte)  =  T(tsunameter-­‐>buoy)  +  T  (transmission)  +T  (uplink)  +  (N-­‐1)T  (cross)  +  T(downlink)      

Where,  

T(tsunameter-­‐>buoy)    =  propagation  delay  and  transmission  time  for  file  on  the  tsunameter-­‐>buoy  link  

T  (transmission)     =  transmission  time  for  the  file  (2  kilo-­‐byte)  

T  (uplink)     =  propagation  delay  from  buoy  to  the  satellite  

 T  (cross)         =  propagation  delay  on  satellites  cross  links    

T(downlink)       =  propagation  delay  satellite  to  the  ground;  (processing/queuing  delays  per  satellite  ignored  for  this  analysis)    

N                        =  number  of  satellites  in  overall  link  

T  (uplink)  =  T(downlink)      =  !"#$%%&#$  !"#$#%&'!"##$  !"  !"#!!= !"#!"

!.!!"!!!"!!"!"#

= 2.60  𝑚𝑠    [10]  

Distance  between  satellites  averages  4000  km[12].  So,  

T  (cross)         =  !"#$$%&'(  !"#$%&'(!"##$  !"  !"#!!

=  4000 !"!.!!"!!!"!!"

!"#

= 13.34  𝑚𝑠  [10]  

T  (transmission)        =   !"#$  !"#$!"#$%&'()'"  !!!"#$!!"#

=  2 !"#$%&!.!  !"#$

= 6667  𝑚𝑠  [10]  

Therefore,  the  Total  time  to  move  a  2KB  file  over  the  system  is:  

T  (Total)      =  ([30.15𝑠  𝑥 !"""!"!]+ 6667  𝑚𝑠 + 2 2.60  𝑚𝑠 +  13.34  𝑚𝑠) = 36.85  𝑠    

To  simplify  this  analysis,  overhead/padding  to  frames  not  included  in  calculations  

except  in  the  case  of  the  tsunameter  to  buoy.  

   

Page 17: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

16  

Total  Transfer  Time    

 

Figure  11:    End-­‐to-­‐End  Latency  

Conclusions  and  Further  Research  The  Tsunami  Warning  System  is  a  masterwork  of  technology  and  it  has  been  proven  

to  give  warning  to  those  in  the  path  of  incoming  tsunamis  saving  lives.  This  was  

demonstrated  in  Japan  in  2011,  and  while  the  scale  of  a  tsunami’s  potential  

devastation  is  terrifying,  systems  can  be  improved  to  provide  better  resolution  of  

expected  wave-­‐height  saving  as  many  as  possible  [13].    The  Iridium  Constellation  is  

integral  to  the  success  of  the  warning  system,  and  its  networking  is  a  major  factor  in  

this  success.  

Given  the  complexity  of  routing  in  a  dynamic  system  of  nodes,  such  as  Iridium’s,  

more  research  should  be  undertaken  to  improve  dynamic  routing  in  rapidly  

Page 18: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

17  

changing  RF  networks.  This  has  implications  well  beyond  satellite  constellations  in  

our  ever-­‐expanding  mobility-­‐oriented  world.  

   

Page 19: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

18  

References    

[1]   C.  Meinig,  S.  E.  Stalin,  A.  I.  Nakamura,  and  H.  B.  Milburn.  (2005,  March  29).  Real-­‐Time  Deep-­‐Ocean  Tsunami  Measuring,  Monitoring,  and  Reporting  System:  The  NOAA  DART  II  Description  and  Disclosure  [Article].  Available:  http://www.ndbc.noaa.gov/dart/dart_ii_description_6_4_05.pdf  

[2]   Iridium.  (2015,  March  30).  Ground  Infrastructure.  Available:  https://www.iridium.com//About/IridiumGlobalNetwork/GroundInfrastructure.aspx  

[3]   L.  Xiangdong,  G.  Dilip,  M.  Tim,  and  S.  Peter,  "Analysis  of  IP  Routing  Approaches  for  LEO/MEO  Satellite  Networks,"  in  28th  AIAA  International  Communications  Satellite  Systems  Conference  (ICSSC-­‐2010),  ed:  American  Institute  of  Aeronautics  and  Astronautics,  2010.  

[4]   S.  R.  Pratt,  R.  A.  Raines,  C.  E.  Fossa,  and  M.  A.  Temple,  "An  operational  and  performance  overview  of  the  IRIDIUM  low  earth  orbit  satellite  system,"  Communications  Surveys,  IEEE,  vol.  2,  pp.  2-­‐10,  1999.  

[5]   B.  A.  Forouzan,  Data  Communications  AND  Networking,  5th  ed.  New  York,  NY:  McGraw  Hill,  2013.  

[6]   A.  M.  Jabbar,  "Multi-­‐Link  Satellite  Data  Communication  System,"  Master  of  Science,  Engineering,  Electrical,  Osamia  University  University  of  Kanas,  2001.  

[7]   NOAA.  (n.d.,  April  20).  Tsunami  Detection  Algorithm.  Available:  http://nctr.pmel.noaa.gov/tda_documentation.html  

[8]   NOAA,  "DART  II  System,"  ed,  2015.  [9]   Benthos.  (2014,  April  30).  Benthos  Modems    [PDF  Files].    [10]   S.  R.  Pratt,  R.  A.  Raines,  C.  E.  Fossa,  and  M.  A.  Temple,  "An  Operational  and  

Performance  Overview  of  the  Iridium  Low  Earth  Orbit  Satellite  System,"  ed,  1999.  

[11]   Staff.  (2015,  March  30).  Available:  https://www.iridium.com/About/IridiumGlobalNetwork/SatelliteConstellation.aspx  

[12]   I.  C.  Inc.,  "Ground  Station,"  ed:  Iridium  Communications  Inc.,  2015.  [13]   D.  Demetriou.  (2013).  Tsunami  two  years  on:  Japan  finally  gets  warning  

system  that  would  have  saved  hundreds  of  lives.  Available:  http://www.telegraph.co.uk/news/worldnews/asia/japan/9920042/Tsunami-­‐two-­‐years-­‐on-­‐Japan-­‐finally-­‐gets-­‐warning-­‐system-­‐that-­‐would-­‐have-­‐saved-­‐hundreds-­‐of-­‐lives.html  

[14]   Wikipedia.  (2015).  XMODEM.  Available:  http://en.wikipedia.org/wiki/XMODEM  

 

   

Page 20: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

19  

APPENDIX  A  –  X-­‐Modem  Protocol  Structure  X-­‐Modem  uses  a  132-­‐byte  packet  structure  with  128  bytes  reserved  for  data.    A  3-­‐

byte  header  that  included  a  <SOH>  control  character,  a  block  number  from  0-­‐255,  

and  the  inverse  of  the  block  number  (-­‐255)  minus  the  block  number  with  block  

numbers  starting  at  1  and  incrementing  by  1  for  subsequent  blocks.    

The  packet  trailer  is  a  checksum  of  1-­‐byte.    The  checksum  is  the  sum  of  all  bytes  in  

the  packet  module  256.  Only  the  eight  least  significant  are  retained,  ignoring  

overflow  keeping  the  continuity  of  the  1-­‐byte  check.  Once  a  file  transmission  was  

complete,  a  special  <EOT>  character  was  sent,  which  was  not  part  of  the  block  [14].  

Page 21: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

20  

APPENDIX  B  -­‐  Images  

 

Figure  12:  DART  II  Image  

Page 22: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

21  

 

 

Figure  13:  DART  Buoy  -­‐  Open  Ocean  

 

Figure  14:  Tsunameter  Awaits  Deployment  

Page 23: Iridium Satellite Communications System, Tsunami Warning System

Iridium-­‐DART  Network            

 |  P a g e    

22  

 

Figure  15:  Iridium  Satellite